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A B S T R A C T

Permanent grasslands in Germany are characterized by the intensity of management practices. The intensity of 
management significantly influences both the biodiversity and ecosystem services provided by grasslands. 
Therefore, monitoring vegetation traits of intensively managed grasslands is crucial for making management 
decisions aimed at maximizing ecosystem services and minimizing environmental footprints of grassland culti
vation. In intensively managed grasslands, aboveground dry biomass (AGBdry), plant species richness, vegetation 
carbon (C) and nitrogen (N) content, and carbon to nitrogen (C:N) ratio serve as key indicators to assess the 
condition of the grassland, an information which is highly relevant for farmers, inspectors, and decision-makers. 
This study aimed to accurately estimate AGBdry, N, C:N ratio, plant species richness, and Shannon H-index in two 
study areas in Bavaria, Germany using multi-year in-situ measurements and corresponding unmanned aerial 
vehicle (UAV) imagery. The combined in situ and UAV dataset was collected at different grassland sites (Fendt, 
Rottenbuch, and Bayreuth area) between 2019 and 2023, partly at several times during one year. Therefore, the 
dataset covers both intra- and inter-annual growth patterns (April to October). UAV images were radiometrically 
calibrated using a reflectance target and processed with Pix4D’s internal radiometric corrections. Both Random 
Forest and Extreme Gradient Boosting (XGBoost) were used to estimate grassland traits. The regression models 
were trained using the in-situ measurements, and as predictor variables the corresponding reflectance in the 
spectral bands of the multispectral UAV imagery and the derived vegetation indices. Model performance was 
assessed using an independent validation dataset, consisting of 20 % of the reference data that were not included 
in the model training stage. To improve estimation accuracy, we conducted test cases by training the regression 
models using different training data subsets. As a result, we derived multi-year vegetation trait maps from UAV 
imagery with R2 values of 0.81 for AGBdry, 0.77 for N content, 0.81 for the C:N ratio, 0.84 for SR and 0.86 for H- 
index, respectively. Overall, the study highlights the potential of integrating multi-year in situ data with UAV 
imagery to create multidimensional datasets that effectively capture spatial and temporal changes in vegetation 
traits.

1. Introduction

Permanent grasslands cover about one-third of Germany’s agricul
tural land area and are particularly valuable as they provide a wide 
range of ecosystem services (Kirschke et al., 2021). For instance, these 
services range from provisioning (e.g., food production), regulating (e. 
g., climate regulation) to supporting (e.g. biodiversity) as well as 

cultural aspects (e.g., recreational activities) (Bengtsson et al., 2019; 
Zhao et al., 2020). Among these, one of the most important economic 
ecosystem services provided by grasslands is the provision of food for 
dairy and cattle farming (Schoof et al., 2020). Therefore, permanent 
grassland in Germany is primarily used to produce fodder through 
regular mowing and grazing. From a climate change mitigation 
perspective, grasslands have long been recognized for their significant 
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role in carbon storage and sequestration, and their high species richness, 
which enhances their resilience to altered precipitation patterns and 
increasing temperatures (Feigenwinter et al., 2023; Gomez-Casanovas 
et al., 2021; Korell et al., 2024). On the other hand, ongoing climate 
change is significantly affecting grasslands (Bardgett et al., 2021), 
especially in intensively managed areas, where both biomass produc
tivity and fodder quality are increasingly impacted by changing climate 
conditions (Berauer et al., 2020; Dumont et al., 2015; Korell et al., 2024; 
Li et al., 2018). Therefore, spatially explicit information on vegetation 
traits is crucial for developing adaptation strategies and sustaining 
productivity and ecosystem functions in managed grasslands under a 
changing climate.

Agriculturally used grasslands are found across all regions of Ger
many although the intensity of management varies. In the (pre-)Alpine 
regions, there are widespread grassland landscapes that are not only 
used for livestock fodder but also serve as important recreational areas 
(Schmitt et al., 2024; Schwarz et al., 2018). (Pre-)Alpine grasslands are 
characterized by their unique biodiversity and species richness and have 
historically been used as a source of fodder for livestock for centuries 
(Fumy et al., 2023; Kiese et al., 2018; UNESCO World Heritage Centre, 
2015). Grassland management in this region includes both extensive and 
intensive approaches, with higher grazing pressure, and more frequent 
fertilizer application and mowing frequency in intensively managed 
areas (Vogt et al., 2019). To increase the economic efficiency of grass
lands, farmers often aim to achieve higher biomass productivity rates, 
which typically puts a lot of pressure on biodiversity, resulting in 
reduced species richness (Fumy et al., 2023; Mayel et al., 2021). 
Furthermore, intensive grassland management may lead to various 
negative environmental impacts, e.g., water pollution (Bobbink et al., 
2022; Schlingmann et al., 2020), soil degradation (Seeger, 2023), and 
increased greenhouse gas emissions (Hörtnagl et al., 2018; Offermanns 
et al., 2023). In particular, the management intensity can significantly 
influence the ecosystem quality and health of grasslands, as indicated by 
botanical composition, by altering plant diversity (Gilhaus et al., 2017). 
Therefore, there is a high demand for accurate estimation of vegetation 
traits at local to landscape scales, providing valuable information for 
both farmers and decision-makers.

Over the past decade, UAVs have developed rapidly and are 
increasingly being used in the agricultural sector, with UAVs differing in 
design, range, and installed sensors depending on their intended use. 
Many types of sensors (e.g., multispectral, hyperspectral, thermal, and 
Light Detection and Ranging (LiDAR)) are continuously being developed 
and made available for the agricultural sector, especially for monitoring 
of grasslands and croplands (Norasma et al., 2019; Raj et al., 2019; 
Zhang et al., 2024). However, UAV-based methods are costly and time- 
consuming for large areas, especially when equipped with a wide range 
of spectral bands (e.g., hyperspectral sensors); therefore, multispectral 
sensors (visible/near-infrared) are predominantly used (Zhang et al., 
2024). Most popular bands in multispectral sensors include red 
(620–750 nm), green (495–570 nm), near-infrared (NIR, 780–1000 nm), 
and red-edge (RE, 680–730 nm). Among them, NIR and red-edge bands 
are particularly effective for vegetation trait estimation, as NIR is sen
sitive to leaf structure and biomass, while the red-edge band responds 
strongly to chlorophyll and nitrogen content, making them valuable for 
estimating N, C:N ratio, and biomass (Arogoundade et al., 2023; Bazzo 
et al., 2023a). For example, recent studies by Biswal et al. (2024), Fur
nitto et al. (2025), and Gao et al. (2025) demonstrated that NIR and red- 
edge bands are particularly useful for analyzing vegetation traits. 
Vegetation indices derived from combinations of visible bands and NIR 
have already proven to be a useful method for assessing a wide range of 
vegetation traits (Huang et al., 2021; Thornley et al., 2023; Zhang et al., 
2024). For instance, the Normalized Difference Vegetation Index 
(NDVI), Soil-Adjusted Vegetation Index (SAVI), and Perpendicular 
Vegetation Index (PVI) are the most effective and frequently used 
indices for estimating various vegetation traits because they strongly 
correlate with biophysical variables such as biomass, canopy cover, and 

height, and leaf chlorophyll content (Raj et al., 2019; Verrelst et al., 
2019; Vidican et al., 2023; Xue & Su, 2017). However, these indices 
often show weak relationships with plant biogeochemical properties 
(Arogoundade et al., 2023). As an alternative, the red edge band and its 
derived indices are sensitive to biogeochemical variables and are 
frequently used for estimating vegetation N and C:N ratios 
(Arogoundade et al., 2023; Zhang et al., 2024). For example, recent 
studies have clearly demonstrated that the Red Edge Normalized Dif
ference Vegetation Index (NDVIred-edge) and Red Edge Simple Ratio 
(SRred-edge) have the potential to estimate the plant N content and C:N 
ratios (Berger et al., 2020; Bronson et al., 2020; Walsh et al., 2018; 
Zhang et al., 2024). Therefore, the vegetation traits could be estimated 
with reasonable accuracy by combining the aforementioned spectral 
bands and indices in machine learning (ML).

ML techniques are becoming an important tool for estimating various 
vegetation characteristics from remotely sensed data by training them 
on field reference measurements (Janga et al., 2023). Such methods 
combine statistical modeling and complex algorithms to perform various 
prediction tasks with relatively high accuracy. In recent times, there 
have been numerous efforts in estimating vegetation traits using various 
ML algorithms, including aboveground biomass (Morais et al., 2021; 
Wang et al., 2022), plant species diversity (Fauvel et al., 2020; Zhao 
et al., 2022), plant N and C content (Ennaji et al., 2023; Peerbhay et al., 
2022), as well as C:N ratio (Arogoundade et al., 2023; Gao et al., 2020). 
In particular, classic ML algorithms such as Random Forest (RF), Deci
sion Trees (DT), Logistic Regression (LR), and Gradient Boosting Ma
chines (GBM) are widely employed in estimating various vegetation 
traits due to their robustness and flexibility in handling complex re
lationships of remote sensing and in-situ data in reasonable accuracy 
(Ennaji et al., 2023; Janga et al., 2023). Specifically, ML models 
developed using RF and GBM perform well and have achieved promising 
results for biomass estimation; however, predicting N content proved to 
be challenging due to limited spectral features and availability of 
training data (Schucknecht et al., 2022). Particularly, automated ML 
(AutoML) has more recently emerged as an accessible and efficient 
technique (He et al., 2021). AutoML uses an ensemble learning approach 
that combines multiple algorithms or statistical models into a stronger 
model to improve overall prediction so that this technique can provide 
an efficient evaluation of numerous ML algorithms (Salehin et al., 2024). 
However, ML algorithms typically require large amounts of high-quality 
training data, and when datasets are limited, the models can overfit 
(Janga et al., 2023). Their performance also depends on how well the 
training samples represent different sites and conditions, which may 
limit generalizability. For example, recent studies have shown that 
models trained in one region often lose accuracy when applied to 
different regions without re-calibration (Lemenkova, 2025; Morais 
et al., 2021). Furthermore, Kupidura et al. (2024) reported that ML 
performance is highly sensitive to the size of the training sample. 
Therefore, ML performance could be improved by increasing the size 
and diversity of the training dataset, for example, using multi-year 
datasets of in situ and associated remote sensing data.

The major aim of the present study is to provide a UAV imagery- 
based key vegetation traits monitoring product that can support grass
land management and further socio-economic modeling in the (pre-) 
Alpine grasslands. In this respect, this study aimed to estimate key 
vegetation traits by combining multi-year datasets of in situ and asso
ciated UAV imagery using different ML regression models and assessing 
the spatiotemporal patterns of vegetation traits. First, we derived key 
vegetation traits, including AGBdry, vegetation N content, C:N ratio, 
species richness, and Shannon H-index, in two study areas. Second, we 
conducted a spatiotemporal analysis to assess intra- and inter-annual 
changes in vegetation traits across several selected grassland sites, and 
third, we evaluated the predictive power and the potential of using 
multi-year data to predict vegetation traits at different locations and 
times.
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2. Data and methods

2.1. Study area

The study was conducted at five sites of permanent grassland in 
Bavaria, Germany (Fig. 1a-f). The study sites of Rottenbuch (769 m 
above sea level (a.s.l.;) Fig. 1b) and Fendt (595 m a.s.l.; Fig. 1c) are 
located in southern Bavaria and are part of the TERENO Pre-Alpine 
Observatory (Kiese et al., 2018). The study sites in northern Bavaria 
around Bayreuth (340 m a.s.l.) include Gubitzmoos (Fig. 1d), Scho
bertsberg (Fig. 1e), and Obernschreez (Fig. 1f).

The Fendt and Rottenbuch sites are characterized by a hilly, pre- 
alpine landscape. This region is characterized by a humid continental 
climate with an average annual precipitation of 956–1109 mm and an 
average annual temperature of 8.8–8.9 ◦C. The vegetation cover in these 
grasslands is primarily dominated by meadow grasses such as Festuca 
rubra L., Poa pratensis L., and Lolium perenne L., along with a variety of 
herbs and legumes, including Ranunculus repens L., Trifolium pratense L., 
and Trifolium repens L (Stadler et al., 2017; Kiese et al., 2018).

The study sites around Bayreuth are located in the part of the western 
foothills of the Franconian Switzerland, which is characterized by mid- 
altitude mountain ranges. The study region has a humid continental 
climate, with a mean annual precipitation of 724 mm and a mean annual 

temperature of 8.3 ◦C. The potential dominant vegetation cover in the 
grassland around Bayreuth included Taraxacum sect. Ruderalia, Dactylis 
glomerata, Plantago lanceolata, Trifolium pratense L., Ranunculus acris L., 
Holcus lanatus, and Elymus repens (L.) Gould (Maria Dittmann, 2018; 
Schmitt et al., 2022).

Grasslands in both regions have a long history of frequent mowing, 
grazing, and regular fertilization for fodder production. Grassland 
management practices at the study sites vary from extensive manage
ment (1–2 mowings per year with no fertilizer application) to intensive 
management (4–6 mowings per year with 4–5 slurry applications) 
(Petersen et al., 2021; Schmitt et al., 2022; Schucknecht et al., 2020).

2.2. Datasets

2.2.1. UAV image collection
Multi-year UAV imagery was collected between May 2019 and July 

2023 using a fixed-wing UAV (eBee, senseFly, Cheseaux-sur-Lausanne, 
Switzerland). The fixed-wing UAV was equipped with a four-band Par
rot Sequoia sensor (SEQ; Parrot Drones SAS, Paris, France), which was 
used to acquire green (G), red (R), RE, and NIR multispectral imagery. In 
addition, the UAV was equipped with irradiance sensors (“sunshine 
sensors”) mounted on top to measure the incoming solar radiation. The 
UAV images were acquired at a flight altitude of 85 m, with a ground 

Fig. 1. Location of study site: Overview of the sites within Germany (a). Aerial view of the monitoring plots in Rottenbuch (b) and in Fendt (c). Here, the images 
below show one of sampling plots in Rottenbuch (b1–b2) and Fendt (c) 1–c2). Sampling plots in Bayreuth: Gubitzmoos (d), Schobertsberg (e) and Obernschreez (f).
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resolution of approximately 8 cm/pixel. Both lateral and longitudinal 
overlaps were maintained at 80 % to ensure sufficient coverage and 
image quality. A detailed description of the sensor and the processing of 
the UAV images can be found in Schucknecht et al. (2022).

The processing of the UAV images was done with the Pix4dMapper 
Pro software (Pix4D S.A., Prilly, Switzerland) and consisted of three 
steps. The photogrammetric processing was based on a structure from 
motion (SfM) approach (Kameyama & Sugiura, 2021). First, key points 
of the images were extracted and matched, and the internal (e.g. focal 
length) and external (e.g. orientation) parameters of the camera were 
calibrated. The georeferencing was done by integrating measured 
ground control points (GCPs) and identifying them on several input 
images. Coordinates of GCPs were measured with the Trimble DGPS. As 
a result, georeferenced automated control points were created. The 
second step was to densify the point cloud according to the pix4D 
standard template for agricultural applications. The final step was to 
mosaic the adjusted and calibrated individual images into orthophotos 
and final reflectance images. The reflectance targets were used to 
perform an additional radiometric calibration with respect to field 
conditions, taking into account the illumination conditions at the date, 
time and location of the image acquisition, as well as some sensor 
characteristics. This provides absolute reflectance values that can be 
compared between different cameras or flights.

After image processing, a set of spectral vegetation indices was 
calculated from the different reflectance bands for each image acquired. 
The spectral vegetation indices were selected based on how they 
contributed to the estimation of vegetation traits in previous studies 
(Schucknecht et al., 2022; Dashpurev et al., 2023) and a recent 
comprehensive literature review (Zhang et al., 2024). Consequently, we 
selected seven indices to be used as additional predictors for the esti
mation of vegetation traits. These indices are the NDVI, NDVIred-edge, 
NDVIgreen, SAVI, Modified Soil Adjusted Vegetation Index (MSAVI), 
Transformed Soil Adjusted Vegetation Index (TSAVI) and Red-Edge 
Simple Ratio (SRred-edge) (Montero et al., 2023). Finally, a multidimen
sional dataset was created by combining the time series of reflectance 
images and spectral vegetation indices using the multidimensional 
toolbox in ArcGIS Pro 3.2.

2.2.2. In-situ field data
Field campaigns were conducted along with UAV imaging to collect 

intra- and inter-annual in situ vegetation data at the Fendt, Rottenbuch, 
and Bayreuth field sites between 2019 and 2023 (Table 1). At each site, a 
20 m × 20 m plot was sampled in four 0.5 m × 0.5 m subplots after UAV 
imaging. In each subplot, the bulk canopy height was measured with a 
plate meter. The vegetation was cut at 7 cm above the soil surface to 

obtain the fresh weight. A Trimble DGPS with centimeter-level accuracy 
was used to determine the location of each plot. In the laboratory, the 
dry weight of the samples was determined after drying the samples in an 
oven at 65 ◦C until constant weight. Aboveground fresh (AGBfresh) and 
dry biomass (AGBdry) was obtained by scaling the weight to 1 m2. 
Vegetation carbon (C) and nitrogen content (N) of dry samples from 
Fendt and Rottenbuch collected between 2019 and 2020 were analysed 
using an elemental analyzer (vario Max cube, Elementar Analy
sensysteme GmbH, Germany). Species composition was determined only 
at the Bayreuth sites, where the Shannon-Weaver diversity index was 
subsequently calculated (Ortiz-Burgos, 2016). A detailed description of 
the sampling design and sampling can be found in Schucknecht et al. 
(2020).

2.3. Statistical analyses

Spearman’s rank correlation and R2 were used to examine the rela
tionship between in situ vegetation traits and predictor variables derived 
from UAV imagery. Spearman correlation, a non-parametric measure, 
assessed the strength and direction of monotonic relationships, while R2 

quantified the proportion of variance in vegetation traits explained by 
the predictor variables (Dodge, 2008). These statistical analyses were 
conducted across all selected time frames (see Section 2.4.1 below) to 
account for temporal variations and improve model performance.

2.4. Regression models

Classic and automated ML methods were applied to estimate 
different grassland traits from UAV imagery. The RF (Lange et al., 2025) 
and Extreme Gradient Boosting (XGBoost; (Chen & Guestrin, 2016)) 
algorithms are well-known classical machine learning methods for 
various regression tasks with remote sensing data. RF, a representative 
of the decision-tree-based ’ensemble learning’ approaches, uses bagging 
(bootstrap aggregation) to enhance model performance and mitigate 
overfitting. During the bagging process, RF creates an ensemble of de
cision trees by randomly selecting samples and features from both the in- 
situ training data and remote sensing predictor variables. This technique 
enables RF regression to produce robust predictions and provide mea
surements of variable importance, leveraging multiple decision trees 
trained on diverse subsets of the data. Similar to RF, XGBoost is also a 
decision-tree-based ensemble learning method that uses boosting tech
niques to construct a robust regression model by combining multiple 
weak learners. It sequentially builds decision trees, where each tree 
corrects the errors of its predecessors by minimizing a specified loss 
function using gradient descent. XGBoost also integrates regularization 

Table 1 
Summary of site characteristics and data collection.

Study area Sites Total number of plots Management In-situ data UAV data acquisition dates

Fendt Fendt 4 Intensive: 
4–5 cuts and 4–5 slurry applications per year

AGB 
Canopy height 
C content 
N content

2019: 
April 24 
May 17 
June 07 June 25 
July 15 
Aug 01 
Sep 16 
Oct 18

2020: 
May 06 
June 24 
July 27 
Oct 01

Rottenbuch Rottenbuch 2
Extensive: 
1–2 cut and no slurry

2021: 
May 
2023: 
June 13

2022: 
June 01 
Aug 02 

​ ​ ​ ​ ​ ​
Bayreuth Gubitzmoos 20 for 2022 

9 for 2023
Intensive: 
4–5 cuts and 4–5 slurry applications per year

AGB 
Canopy height 
Species richness

2022: 
May 16–19 
2023: 
April 17–19

Obernschreez 5 for 2022 
7 for 2023

Schobertsberg 5 for 2022 
6 for 2023
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techniques to mitigate overfitting and enhance generalization.
AutoML is an approach designed to automate the process of creating 

robust ensemble ML models by combining multiple algorithms or sta
tistical models (Baratchi et al., 2024). AutoML utilizes both bagging and 
boosting techniques to create strong ensemble models. It constructs an 
optimal ensemble model by combining various algorithms and statistical 
models such as Linear Regression, Logistic Regression, Decision Trees, 
RF, and advanced boosting models like LightGBM and XGBoost. The 
best-fitting model is identified based on its performance metrics. The 
estimation of vegetation traits in this study was performed using a RF 
package in R 4.4.2, the Forest-based and Boosted regression model, and 
AutoML tool in ArcGIS Pro 3.2 software.

Hyperparameter optimization was performed for each time-specific 
dataset using Random Search (Rebust) with cross-validation for both 
RF and XGBoost models. For RF, the number of trees was systematically 
varied between 50 and 500 in increments of 10. Model performance was 
evaluated at each iteration using the coefficient of determination (R2), 
and the best-performing configuration was selected based on the highest 
R2 value, which was typically achieved with 250–350 trees. For 
XGBoost, the number of boosting rounds was varied between 50 and 
500, and the optimal configuration was selected similarly based on R2, 
typically ranging from 200 to 400 rounds.

2.4.1. Training data subset definition
Two types of training data subsets were created to account for spatial 

and temporal variability: time-specific training subsets (covering four 
different time frames) and site-specific training subsets (corresponding 
to different locations). Four time-specific training subsets were created 
to train the models, each representing different time frames. This 
approach aimed to better utilize the available data, enhance model ac
curacy, and account for the effects of temporal variations on model 
performance. The time frames were selected based on the available in 
situ data and corresponding vegetation growth stages. The definitions of 
the time frames are as follows: 

• Entire time series: Consists of all available in situ measurements and 
UAV data collected throughout the study period.

• Peak growing season in 2019–2023: Focuses on in situ measure
ment and UAV data from the peak vegetation growth period in June 
of each year.

• Intra-annual data within 2019: Contains multiple observations 
within 2019.

• Single observation data: Consists of individual observations from 
all available in situ measurements and UAV data.

Six site-specific training subsets were created to train and validate 
the models, each capturing spatial variability across different locations. 
This approach enables the assessment of predictive power and the po
tential of using multi-year data to estimate vegetation traits across 
different locations. The definitions of the site-specific training subsets 
are as follows: 

• Fendt multi-year data: Consists of all available in situ measure
ments and UAV data collected throughout the study period.

• Fendt single observation data: Consists of individual observations 
from all available in situ measurements and UAV data.

• Rottenbuch multi-year data: Consists of all available in situ mea
surements and UAV data collected throughout the study period.

• Rottenbuch single observation data: Consists of individual ob
servations from all available in situ measurements and UAV data.

• Gubitzmoos and Obernschreez single observation data: Consists 
of individual observations from all available in situ measurements 
and UAV data.

• Schobertsberg single observation data: Consists of individual 
observations from all available in situ measurements and UAV data.

2.4.2. Regression model test cases
To improve estimation accuracy, we conducted test cases by training 

the regression models using time-specific training subsets of AGBdry and 
UAV data from the Fendt and Rottenbuch sites. These included entire 
time series (2019–2023), peak growing season (June 2019–2023), and 
single observation data (Table A-1 in Supplementary Material). Model 
test cases were also conducted using site-specific training subsets to 
determine whether a regression model trained on data from one site 
could accurately predict AGBdry, species richness, and Shannon H-index 
at another site when using data collected same time (Table A-1 Test 
cases 4–5). This approach allowed us to understand how temporal 
variation in vegetation patterns and the diversity of UAV imagery 
affected model performance, enabling us to improve predictions under 
different vegetation and light conditions.

2.4.3. Model assessment
Regression models were evaluated using the coefficient of determi

nation (R2), regression error, root mean squared error (RMSE), and 
Mean Absolute Percentage Error (MAPE). These evaluation metrics were 
calculated from each independent estimate to assess the performance of 
the regression model in two cases. First, model performance was eval
uated by randomly selecting 20 % of the available in situ data as an in
dependent validation dataset, while the remaining 80 % were used for 
training. Second, in cases involving site-specific training subsets, in situ 
measurement and UAV data from one or two sites (Fendt or Gubitzmoos 
and Obernschreez) were used for training, while in situ measurement 
and UAV data from the other site (Rottentbuch and Schobertsberg) were 
used for validation (see Table A-1). For AutoML, a set of regression 
models was evaluated by comparing their RMSE values to determine the 
best model. The model with the highest R2 and the lowest RMSE was 
considered the most accurate and best model in this study. Model per
formance was assessed using cross-validation.

3. Results

3.1. Field measurements of vegetation traits across study sites

Multi-year vegetation traits data were collected from the Fendt and 
Rottenbuch sites for the years 2019 to 2023, and from the Bayreuth area 
for the years 2022–2023. The data consist of AGBdry, canopy height, 
species richness, and vegetation N and C content. In the total of 36 plots 
sampled, the values of each vegetation parameter varied depending on 
the period and site (Fig. 2).

For intra-annual measurements in Fendt and Rottenbuch in 2019, the 
lowest AGBdry value ranged from 0.5 to 13 g m− 2 after mowing, while 
the highest value ranged from 250 to 320 g m− 2, measured shortly 
before grass harvesting. For the canopy height, the lowest values varied 
between 2.1 to 5.2 cm, while the highest values ranged from 8.5 to 25.8 
cm. Regarding chemical parameters derived from AGB samples, N 
content ranged from 1.2 to 5.9 wt%, and the C content varied between 
39.7 and 53.7 wt% (for further details on the comparison between the 
intensively and extensively managed sites at Rottenbuch, see Figure A-1 
in supplementary material).

In 2020, intra-annual measurements in Fendt and Rottenbuch 
showed the lowest AGBdry values ranging from 0.97 to 9.6 g m− 2 after 
mowing, while the highest values varied from 226 to 308 g m− 2 before 
harvesting. Canopy height ranged from 2.8 to 7.1 cm at its lowest and 
15.3 to 18 cm at its highest. Chemical parameters derived from AGB 
samples indicated N content ranging from 1.4 to 4.5 wt%, and the C 
content from 39.7 to 46.8 wt%.

For inter-annual measurements during the peak growing season at all 
sites, significant differences were found for AGBdry and canopy height 
between 2020 and 2023. For instance, the lowest AGBdry values ranged 
from 0.52 to 8.5 g m− 2 after mowing, while the highest values ranged 
from 35.3 to 251.2 g m− 2. Canopy height ranged from 4.2 to 6 cm at its 
lowest and 16.8 to 18.9 cm at its highest. At Bayreuth sites, species 
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richness ranged from 19 to 52 in May 2022 and compared to 14–36 in 
April 2023. Similarly, AGBdry values ranged from 15.7 to 117.5 g m− 2 in 
May 2022, but declined from 0.3 to 31.2 g m− 2 in April 2023.

Fig. 2. Multi-year vegetation traits data collection and variation at Fendt and Rottenbuch (a–c), and study sites around Bayreuth (d–e) in 2019–2023.

Fig. 3. Matrix illustrating the relationship between UAV-based predictor variables and vegetation traits across different time frames: a) Correlation for the entire 
time series (2019–2023), b) Correlation for peak growing seasons (June 2019–2023), c) Correlation for intra-annual data within 2019, and d) Correlation for a single 
observation data (April 24, 2019).
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3.2. Estimating vegetation traits using regression models

3.2.1. Relationship between UAV-based predictor variables and vegetation 
traits

The correlation coefficient and R2 value were calculated between 
eleven predictor variables extracted from the UAV imagery and vege
tation traits across the four different time frames defined in the previous 
Section 2.4.1. The predictor variables that showed strong correlations 
with vegetation traits varied across different growth periods (Fig. 3).

Overall, most spectral bands and VIs had a medium to high corre
lation with AGBdry, ranging between 0.6 and 0.8 (R2 = 0.4–0.63 and p <
0.02). Among them, the NIR band, red-edge band, and all VIs had the 
strongest correlations with AGBdry (p < 0.01). However, correlation 
coefficients varied depending on the selected time frame. In terms of 
periods, higher positive correlation coefficients between AGBdry and 
predictor variables were observed when using the peak growing season 
(June 2019–2023) and the single observation data (April 24, 2019 and p 
< 0.01) (Fig. 3-b, d). Specifically, AGBdry showed strong correlations 
with NIR band, MSAVI, NDVI, SAVI and TSAVI when using single 
observation data (Fig. 3-d and p < 0.01)).

Focusing on chemical parameters, C content showed a weak positive 
correlation with NDVIgreen, NDVI, NDVIred-edge and SRred-edge when using 
data from the peak growing season (June 2019–2023) and intra-annual 
data within 2019 (p < 0.05). However, some of these indices were 
negatively correlated with C content in other periods. On the contrary, N 
content showed medium to strong positive correlations with the NIR 
band, red-edge band, MSAVI, NDVI, SAVI, and TSAVI when using the 
entire time series data (2019–2023, and p < 0.01), intra-annual data 
within 2019 and for a single observation data. In particular, the stron
gest positive correlations were detected when using the single obser
vation data (Fig. 3-d). C:N ratio showed medium to high positive 
correlations with the red band, and NDVIgreen when using data from the 
intra-annual data within 2019 and the single observation data (p <
0.05).

The primary reason for these variations was significant changes in 
illumination conditions. Fig. 4 presents a violin graph illustrating how 
illumination conditions varied considerably from 2019 to 2020 across 
the study sites. A comparison of solar irradiance values of the red, green, 
NIR, and red-edge bands at Fendt and Rottenbuch shows that irradiance 
at Fendt was consistently lower than at Rottenbuch from April 24 to 
June 25, 2019. However, between July 15 and September 16 in 2019, 
the values at both sites became closer. From October 18, 2019 to July 27, 
2020, Fendt again exhibited lower irradiance values. These fluctuations 
in lighting conditions affected spectral reflectance and could lead to 

inconsistencies in the relationship between predictor variables and 
vegetation traits. Furthermore, we compared the relationship between 
R2 values for AGBdry estimation, which used intra-annual data within 
2019, and irradiance differences across all spectral bands at the Fendt 
and Rottnbuch sites (for further details on the comparison, see figure A- 
11 in supplementary material). In this comparison, the irradiance dif
ferences were calculated as the difference between the average irradi
ance values of each band at the Fendt and Rottnbuch sites. The 
comparison result showed a moderate negative correlation between R2 

values and irradiance differences, ranging from − 0.41 to − 0.46. This 
suggests that lower irradiance differences between Fendt and Rottnbuch 
are associated with higher R2 values for AGBdry estimation. Overall, the 
results suggest that the most suitable time frames for training ML models 
are the peak growing season (June 2019–2023) and the single obser
vation data, as these periods may provide reasonably accurate estimates.

3.2.2. Regression model test cases used to predict vegetation traits
The model performed with low accuracy, achieving R-squared values 

of 0.31–0.42 when using entire time series and 0.54 when using peak 
growing season data, demonstrating that it is not reliable in predicting 
AGBdry across different temporal conditions (Table A-1 in supplemen
tary material). UAV imagery was captured under varying conditions of 
cloud cover, sun angle, surface moisture, and lighting throughout the 
study period. These inconsistencies were a primary factor contributing 
to the reduced accuracy of the regression models in estimating AGBdry 
when using entire datasets or long-term data. This finding is consistent 
with the results of the correlation analysis in the previous section. On the 
contrary, regression models using single observations achieved medium 
to high accuracy with R-squared values of 0.55–0.89, suggesting its 
reliability in predicting vegetation traits in the entire time series for 
monitoring.

Furthermore, we trained regression models using single observation 
data of Fendt, and Gubitzmoos and Obernschreez separately, and then 
applied these site-specific trained models to predict AGBdry in Rotten
buch and AGBdry, species richness, and Shannon index in the Scho
bertsberg site, which were not part of the training dataset. The results 
indicate that the regression models performed poorly at Fendt (R2 =

0.15–0.21) but performed well at Schobertsberg (R2 = 0.61–0.71). 
These findings suggest that if UAV images are taken under relatively 
similar conditions, it may be possible to use a regression model trained 
on data from one site to accurately predict vegetation traits at another 
site.

Overall, the test case analysis suggested that using single observa
tions achieved medium to high accuracy. Therefore, we selected single 

Fig. 4. Solar irradiance measured by sunshine sensor in 2019–2020.
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observation data as the best model for spatial mapping, which is pre
sented in the next section.

3.2.3. Spatial mapping of vegetation traits
Using regression models applied separately to single observations in 

2019–2023, we estimated the spatial distribution and intra- and inter- 
annual variations of vegetation traits at the site scale in intensively 
and extensively managed grasslands. The validation results show that 
the average R-squared value was 0.81 for AGBdry, 0.77 for N content, 
0.81 for C:N ratio, 0.84 for species richness, and 0.86 for Shannon index, 
respectively (Fig. 5-a). The average RMSE was 29.5 for AGBdry, 0.4 for N 
content, 1.7 for C:N ratio, 7 for species richness, and 0.4 for Shannon 
index, respectively (Fig. 5-b). The average MAPE was 1.2 for AGBdry, 0.5 
for N content, 0.4 for C:N ratio, 0.2 for species richness, and 0.3 for 
Shannon index, respectively.

Using the regression models in an upscaling approach can produce 
detailed spatial and temporal distributions of vegetation traits across the 
study sites. For example, for the sites in the TERENO pre-Alpine obser
vatory in Fendt and Rottenbuch, Figs. 6 and 7 shows selected parcels 
illustrating the spatial distribution of the estimated vegetation traits on 
July 15, 2019.

The spatial distribution of the estimated AGBdry, N content, and C:N 
ratio exhibited clear patterns influenced by mowing practices and site- 
specific grassland management. AGBdry varied significantly across the 
sites, highlighting differences e.g. in landscape, soil, and plant devel
opment stages after respective mowing events. N content and the C:N 
ratio provided valuable insights into plant nutrient status, with notice
able variation across different sites.

For the sites in Bayreuth, AGBdry, Shannon H-index, and species 
richness were estimated separately for 2022 and 2023. Fig. 8 shows an 
example of the estimated vegetation traits at Obernschreez from May 16 
to 19, 2022. Additionally, Figure A-5 in the Supplementary material 
provides details on the estimated vegetation traits for April 17–19, 2023, 
along with a comparison of these traits between 2022 and 2023.

The obtained maps showed variations in AGBdry and plant diversity, 
emphasizing differences in biodiversity across sites. Similarly, AGBdry, 
Shannon index, and Species richness demonstrated clear spatial patterns 
and varied by site-specific management. These results demonstrate the 
effectiveness of the regression models in capturing fine-scale spatial and 
temporal variations in vegetation traits, which could support ecological 
monitoring and sustainable management decisions.

3.3. Comparison of temporal changes in plant traits at parcels

As each plot is managed site-specifically, the mowing events were 
not the same for all plots. As a result, a multi-year comparison of plots 
was not appropriate. Instead, we conducted an intra-annual 

comparative analysis based on changes in mowing events.
A mowing-event-based comparative analysis was performed be

tween selected grassland parcels from April to October 2019. Event- 
based percentage changes in AGBdry are presented in the Ribbon chart 
(Fig. 9), while spatiotemporal changes in AGBdry are illustrated in the 
maps below (Fig. 10). Focusing on intensively managed grassland par
cels at Fendt, AGBdry was generally high before the first mowing event. 
For instance, at FE2, AGBdry ranged from 25 to 150 g m− 2 on April 24, 
2019, and increased to 150–300 g m− 2 by May 17, 2019. However, 
AGBdry decreased sharply to 0–25 g m− 2 after the first mowing. After the 
first mowing, AGBdry started growing back, reaching up to 150 g m− 2 

before the second mowing event, but the regrowth was highly variable 
across the parcel. AGBdry was mostly in the range of 25–50 g m− 2 and 
50–75 g m− 2 between the first and second mowing. After the second 
mowing event, AGBdry regrowth was in the range of 25–50 g m− 2. The 
third mowing event took place on October 18, 2019.

For the extensively managed RB2 parcel, AGBdry was as low as 25 g 
m− 2 at the beginning of the growing season (April 24–May 17, 2019) 
and increased to 50–75 g m− 2 across most of the parcel by June 07, 2019 
(Fig. 9-b). At peak growth (June 25, 2019), AGBdry reached 150–200 g 
m− 2 in 11 % of the parcel, 100–150 g m− 2 in 41 %, 75–100 g m− 2 in 19 
%, and 50–75 g m− 2 in 28 %, respectively. The results highlight the 
progressive increase in AGBdry throughout the growing season, though 
the growth pattern varied across the parcel (Fig. 10). However, half of 
the parcel was mowed by July 15, 2019, resulting in a sharp decline in 
AGBdry in some areas. Following the first mowing, AGBdry began to 
recover, though the growth pattern varied across the parcel with a final 
mowing on September 16, 2019.

Overall, AGBdry values were typically low in field measurements 
conducted immediately after hay making or in parcels that were 
frequently cut, whereas higher AGBdry values were observed when 
measurements were taken just before mowing events. In some cases, the 
comparison clearly showed that while one parcel was mowed, another 
parcels had not yet been mowed, or that some parcels were partially or 
incompletely mowed.

For chemical contents, the comparison of N content and C:N ratio 
between paired parcels showed distinct spatial and temporal patterns 
influenced by management practices and environmental conditions 
(Figs. 11 and 12). Before the first mowing, N content in FE1 varied, with 
35 % of the parcel ranging from 2 to 2.5 wt%, 43 % from 2.5 to 3 wt%, 
and 20 % from 3 to 3.5 wt%. For FE2, N content was mostly 1.5–2 wt% 
in 13 % of the parcel, 2–2.5 wt% in 38 %, and 2.5–3 wt% in 44 %. During 
the first and second mowing periods, N content in FE1 fell to 0.5–2 wt% 
immediately after mowing, while it later increased to 3–4.5 wt% as the 
vegetation regrew in both parcels. The rise in N content is possibly due 
to fertilization and the presence of young vegetation. After the final 
mowing event, N content was initially dominated by 3–3.5 wt% in most 

Fig. 5. Regression models performance boxplot, showing the distribution of metrics across all observations.
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parts of both parcels. For extensively managed RB2 parcel, N content 
was below 0.5 wt% in 14 % of the parcel, 1.5–2 wt% in 58 %, and 2–2.5 
wt% in 18 % before the first mowing event. During the peak growing 
period, the dominant N content increased to 2–3.5 wt%, occupying 85 % 
of the parcel on 15 July 2019, while 3.5–4 wt% covered 84 % of the 
parcel on 1 August 2019. After the first mowing, the dominant N content 
decreased to 0.5–1 wt%, covering 50 % of the parcel, while 1–1.5 wt%, 
1.5–2 wt%, and 2–2.5 wt% each separately covered 15 % of the parcel. 
At the end of the growing season, N content of 1.5–2 wt% covered most 
of the parcel. Overall, comparison results showed that seasonal changes 

in N content differed between intensively and extensively managed 
parcels. In intensively managed parcels, the dominant N content value 
started at a moderate level in spring, peaked at 2–3.5 wt% during the 
growing season, and then dropped sharply to 0.5–1 wt% after mowing, 
followed by a gradual recovery. In contrast, extensively managed par
cels had a more stable N content, starting low in spring, peaking at lower 
values during the growing season, rising after the first mowing, and 
gradually decreasing to a low level in autumn due to less frequent cut
ting and fertilization.

Generally, the C:N ratio showed significant differences between 

Fig. 6. Estimated vegetation traits at Fendt on July 15, 2019. Here, the maps show aerial view of the grassland parcels in Fendt (a), the estimated AGBdry (b), N 
content (c), and C:N ratio (d).

Fig. 7. Estimated vegetation traits at Rottenbuch on July 15, 2019. Here, the maps show aerial view of the grassland parcels in Rottenbuch (a), the estimated AGBdry 
(b), N content (c), and C:N ratio (d).
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paired parcels with different management practices (Fig. 12). For 
instance, moderate C:N ratios (10–20) were observed in all intensively 
managed parcels in 24 April 2019. After the first mowing event, lower 
(<10) and moderate C:N ratios increased in FE1 and FE2, while higher 
C:N ratios (20–30) increased in RB1. Observations of low to moderate C: 
N ratios during the peak of the growing months indicate seasonal 
changes in plant growth, nutrient uptake, and organic matter decom
position. Furthermore, moderate C:N ratios remained dominant after the 
second mowing, while a mix of moderate to high C:N ratios dominated 
in autumn. For the extensively managed RB2 parcel, higher C:N ratios 
were observed in spring, while moderate to high C:N ratios were pro
nounced during the peak growing months. After the first mowing, C:N 
ratios remained stable at moderate levels, while high and strongly high 
(30–35) C:N ratios emerged in autumn. These increases in C:N ratios 
indicated slower decomposition and delayed nutrient release.

We also conducted a comparative analysis at selected pair parcels 
(OB1 and OB2) in Obernschreez, as shown in Fig. 8 above and Fig. A-10 
in Supplementary Material. Results showed that the mean AGBdry value 

was 280.21 g m− 2 in OB1 and 270.01 g m− 2 in OB2 before mowing in 
May 2022 and 36 g m− 2 in OB1 and 30.83 g m− 2 in OB2 in April 2023. 
The average number of species was 32 in OB1 and 33 in OB2 in May 
2022, and 26 in OB1 and 25 in OB2 in April 2023. The mean value of the 
Shannon H-index was 2.66 in OB1 and 2.6 in OB2 in May 2022, and 2.15 
in OB1 and 2.02 in OB2 in April 2023, respectively. Overall, the AGBdry, 
H-index, and the number of species were higher in May 2022 and lower 
in April 2023 at both pair parcels, likely due to variations in mowing 
events, plant growth stages, and environmental conditions.

4. Discussion

4.1. Estimating vegetation traits from multi-year drone images

To estimate vegetation traits, we aimed to combine the advantages of 
the long-term collected in situ data and UAV imagery with ML. Previous 
work in the study region indicated that the lack of high-quality field data 
for training can be a challenge for estimating vegetation traits from UAV 

Fig. 8. The estimated vegetation traits of Obernschreez in Bayreuth. Here, the maps show aerial view of the grassland parcels (a), the estimated AGBdry (b), Shannon 
H-index (c), and Species richness (d) from May 16 to 19, 2022.

Fig. 9. Event-based percentage changes in AGBdry in 2019: a) FE2 parcel and b) RB2 parcel.
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imagery, especially N content (Schucknecht et al., 2022). For this 
reason, we collected long-term high-quality in situ data along with cor
responding UAV imagery, which provides critical information for un
derstanding changes and dynamics in vegetation traits. When utilizing 
these multi-year data, we considered how well the in situ data correlated 
with the predictor variables derived from the UAV imagery, which 
spectral variables could contribute the most significantly, and which 
regression models were best suited for estimating different vegetation 
traits.

Therefore, we firstly identified the most potential spectral variables 
based on our previous work and a literature review (Dashpurev et al., 
2023; Schucknecht et al., 2022; Thornley et al., 2023; Zhang et al., 
2024). In our study, the relationships between vegetation traits and 
variables such as NIR band, red-edge band, NDVI, NDVIred-edge, and 
MSAVI were relatively strong and positive, although depending on the 
selected time period. These observations align with previous similar 
studies. For instance, numerous recent studies have demonstrated that 

the spectral bands and vegetation indices as mentioned above are 
effective for estimating AGBdry, (Bazzo et al., 2023a; Lussem et al., 2019; 
Pan et al., 2024), N content and C:N ratio (Dal Lago et al., 2024) and 
species diversity (Bazzo et al., 2024; Lyu et al., 2024).

Subsequently, we selected regression models based on our previous 
comparative analyses and the AutoML technique to identify the most 
suitable options. AutoML is a powerful tool for evaluating different 
regression models and determining their suitability for estimating 
vegetation traits, such as AGB (Alvarez-Mendoza et al., 2022) and grass 
height (César de Sá et al., 2022). AutoML simplifies the process of 
identifying optimal algorithms without the need for extensive manual 
effort by automating processes such as model selection, hyperparameter 
tuning, and performance evaluation. In this study, AutoML was used to 
compare seven regression models and the results showed that RF and 
XGBoost performed the best when applied to single-date observation 
data. Many studies have demonstrated the effectiveness of RF and 
XGBoost in estimating vegetation traits from remotely sensed data. 

Fig. 10. The comparison of AGBdry at different parcels in 2019: a) Change in AGBdry in Fendt and b) Change in AGBdry in Rottenbuch.
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These algorithms are widely recognized for their reasonable accuracy, 
especially in predicting AGB, N content and biodiversity etc., 
(Arogoundade et al., 2023; Lyu et al., 2024; Yang et al., 2024; Zhang 
et al., 2024), making them valuable tools for remote sensing in vege
tation studies.

Furthermore, our vegetation traits dataset covers multiple years, and 
we initially hypothesized that this extensive dataset could improve the 
accuracy and reliability of vegetation trait estimates. However, the 
multi-year images were captured under varying conditions, such as 
differences in illumination, cloud cover, sun angles, and ground mois
ture. These factors made it challenging to integrate the multi-year data 
into a single training dataset for regression models. This integration 
process faces a typical radiometric inconsistency effect (Jenerowicz 
et al., 2023; Zhu et al., 2024). Several radiometric calibration methods 
have been developed for multispectral UAV imagery; however, they still 
have their disadvantages and limitations, and there is no universal 
method to solve this issue completely (Daniels et al., 2023; Guo et al., 
2019). In Fig. 4, the violin graph shows that illumination conditions 
varied significantly over time between the Fendt and Rottenbuch study 
sites. UAV imagery at Fendt was mostly captured in the morning, while 
images at the Rottenbuch were taken in the afternoon. Additionally, the 
intra-annual data was collected from spring to autumn, leading to sea
sonal variations in observation angle, illumination condition, and sun 
angle throughout the multi-year UAV imagery. It can be seen from Fig. 4
that solar irradiance values for each band at Rottenbuch are mostly 
higher than those at Fendt over the entire observation period. Conse
quently, the spectral predictor variables derived from UAV imagery are 
affected by radiometric inconsistencies. For instance, a recent assess
ment of different radiometric calibration methods highlighted the 
impact of variations in reflectance and vegetation indices on the 

estimation of AGB (Zhu et al., 2024). Despite radiometric calibration, 
temporal inconsistencies often persist in UAV imagery. For example, 
Olsson et al. (2021) recently assessed the accuracy of the Parrot Sequoia 
camera and its sunshine sensor for radiometric correction of multi
spectral UAV images. Their findings indicated that factors such as 
camera temperature and atmospheric conditions significantly affected 
radiometric accuracy, suggesting that even with calibration, temporal 
inconsistencies can remain. Therefore, our study suggests collecting 
UAV imagery under consistent lighting conditions or at the same time of 
day utilizing standardized methods for future monitoring purposes.

The radiometric inconsistencies posed challenges for integrating 
long-term data into a single regression model, however, we achieved 
relatively accurate estimates of vegetation traits by training separate 
regression models using the time-specific training subset data (a single 
observation date). After radiometric calibration, several strategies are 
commonly employed to further reduce residual inconsistencies in multi- 
year imagery. Time-specific modeling is one such post-calibration 
approach aimed at reducing the effects of radiometric variability. In 
particular, the results showed that the regression models performed well 
with R-squared values of 0.81 for AGBdry, 0.77 for N content, 0.81 for C: 
N ratio, 0.88 for Shannon H-index, and 0.86 for species richness. These 
findings are comparable to those reported by Bazzo et al. (Bazzo et al., 
2023b) for AGB, Xu et al. (Xu et al., 2023) for N content and C:N ratio, 
and Bazzo et al. (Bazzo et al., 2024) for species richness.

4.2. Monitoring changes in vegetation traits using estimated data

The main usage of estimation is to monitor changes in vegetation 
traits due to management and provide high-resolution spatio-temporal 
information to farmers and decision-makers. Our result demonstrated 

Fig. 11. The comparison of N content at different parcels in 2019. Here, the maps show the estimated N content in Fendt (a) and Rottenbuch (b). The bar graph (c) 
shows the percentage of N content classes per parcel.
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that spatio-temporal maps of vegetation traits can be effectively ob
tained by combining multi-year in-situ data with UAV imagery. Moni
toring vegetation traits across intra- and inter-annual timescales is 
essential for sustainable grassland management and understanding how 
ecosystems respond to environmental changes and management activ
ities. However, inter-annual comparisons were ineffective in our case 
because each parcel is managed site-specifically, and mowing events 
were not consistent across all parcels. Additionally, mowing events 
varied in terms of time within each parcel. For example, when consid
ering changes in AGBdry at FE1 in June 2019–2023, FE1 was partially 
mowed on 25 June 2019, whereas it was completely mowed on 24 June 
2020. Furthermore, the FE1 parcel was not mowed on 01 June 2022 but 
was mowed on 13 June 2023. Therefore, one of the limitations of this 
study is that our multi-year data is not continuous, making it unsuitable 
for multi-year comparisons. However, it remains useful for intra-annual 
analysis based on mowing events.

For intra-annual spatio-temporal analysis, intra-annual variations in 
vegetation traits showed distinct patterns influenced by seasonal 
changes and differences in management intensity (Figs. 9–12). For 
AGBdry, frequently cut areas showed higher AGB values, ranging from 
250 to 350 g m− 2, while the extensively managed plot (RB2) displayed 
higher values, ranging from 200 to 260 g m− 2 during the vegetation 
growing season (April to October 2019). In intensively managed sites, 
AGB was significantly lower right after mowing events but showed rapid 
regrowth throughout the growing months due to improved growth 
conditions and regular fertilization throughout the year (Botter et al., 
2021). According to Petersen et al. (2021) the annual biomass produc
tion decreased continuously with the frequency of mowing events. For 
fertilization, manure events are typically scheduled before the growing 
season or the first mowing, and again after the first and third mowing 

events (Petersen et al., 2021). In contrast, extensively managed grass
lands displayed slower AGB accumulation throughout the growing 
season due to minimal or no fertilization.

Seasonal dynamics of vegetation N content in managed grasslands 
vary due to management practices, plant species composition, and 
environmental conditions (Wang & Schjoerring, 2012). Our study 
demonstrated that seasonal patterns in N content were also evident, with 
intensively managed sites showing higher N values, particularly during 
the growing season (Fig. 11). Conversely, extensively managed sites 
experienced lower and more consistent N content across the growing 
season. This temporal variation in N cycling is likely influenced by 
fertilization-mowing cycles, as previous studies have highlighted that 
intensive management significantly increases vegetation N content 
compared to extensive management (Zistl-Schlingmann et al., 2020). 
Furthermore, a study conducted in pre-alpine managed grasslands 
showed that N content in AGBdry was highest in late spring or early 
summer, decreased during the growing months, and remained moderate 
in autumn (Schlingmann et al., 2020). Our intra-annual estimates also 
showed moderate to high N content within the parcels following 
mowing events. This could be related to the presence of young vegeta
tion that emerges after mowing, as young plants typically have higher N 
content due to their need for nitrogen accumulation to support rapid 
growth and development (Thion et al., 2016). Additionally, the mod
erate to high N content estimates could be associated with intensive 
management practices, which tend to provide higher N content in AGB 
throughout the season due to the frequent mowing of younger biomass 
(Reyes et al., 2015).

The C:N ratio highlighted differences in nutrient dynamics. In 
intensively managed sites, C:N ratios remained low and stable due to 
rapid nutrient turnover from mowing and fertilization. Furthermore, 

Fig. 12. The comparison of C:N ratio at paired parcels in 2019. Here, the maps show the estimated C:N ratio in Fendt (a) and Rottenbuch (b). The bar graph (c) shows 
the percentage of C:N ratio classes per parcel.
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seasonal variations in C:N ratios at intensively managed parcels 
demonstrated low to moderate ratios in late spring and the growing 
months, and moderate to high ratios in autumn. These seasonal dy
namics are influenced by intensive management practices, which result 
in increased nitrogen availability that accelerates decomposition during 
the early growing months and slows it down in autumn (Gill et al., 
2022). In contrast, extensively managed sites showed higher C:N ratios, 
especially in late summer and early autumn, indicating slower decom
position rates and reduced nitrogen availability. Overall, the mowing 
event-based intra-annual changes in AGBdry, N content, and C:N ratio 
demonstrate how intensive and extensive management differently in
fluences vegetation dynamics throughout the growing season in 
temperate grasslands.

Species richness and the Shannon H-index are important indicators 
for monitoring the effects of grassland management. These variables are 
influenced by grassland management practices, growth stages, and 
climate conditions (Corentin Babin et al., 2023; Manning et al., 2015; 
Weisser et al., 2017). According to Maria (2018), the mean species 
richness of grassland in 11 plots (100 m2) at the Bayreuth study area was 
32.27 (± .37) in the growing season. Our study shows species richness 
ranging from 19 to 52 (avg. 35.8) in May 16–19 2022, and from 14 to 36 
(avg. 26.1) in April 17–19, 2023. Comparing the two years, species 
richness was higher in 2022 than in 2023 (Fig. 2-d). This difference can 
be attributed to the sampling occurring one month earlier in 2022 
compared to 2023. Additionally, frequent fertilization and mowing 
events may have contributed to the decrease in species richness from 
2022 to 2023.

5. Conclusion

This study showed the estimation of vegetation traits by integrating 
in situ data with multi-year UAV imagery using ML regression models. 
The in situ vegetation traits data consisted of ABGdry, C content, N 
content, C:N ratio and species diversity in pre-Alpine managed grass
lands. In the estimation context, correlation analysis was conducted 
between vegetation traits and eleven predictor variables extracted from 
UAV imagery across different time frames. The correlation results sug
gested that the peak growing season or single observation data are the 
most suitable time frames for training ML regression models, rather than 
using the entire time series.

We further selected regression models based on previous expertise 
and AutoML, which allowed for a systematic comparison of models and 
identified the most suitable approaches for our data. The accuracy of 
vegetation trait estimates depended heavily on the chosen algorithm and 
selected period of time, as the multi-year images were captured under 
varying illumination conditions, leading to spectral inconsistency. 
Consequently, future research should prioritize collecting UAV imagery 
under consistent lighting conditions or at the same time of day, using 
standardized methods.

However, the spatial distribution of vegetation traits was separately 
estimated with acceptable accuracy by using single observation datasets 
or by combining data captured under similar lighting conditions. ML can 
effectively address minor spectral inconsistencies by modeling complex 
nonlinear relationships between spectral predictor variables and vege
tation traits. Additionally, incorporating vegetation indices (NDVI, 
MSAVI, etc.,) that are less sensitive to spectral inconsistencies can 
enhance model robustness and estimation accuracy, especially when 
analyzing multi-year data.

The multidimensional dataset was created from the final vegetation 
traits map products, allowing us to assess event-based spatiotemporal 
changes across several selected grassland parcels. This spatiotemporal 
comparative analysis demonstrated an effective approach for moni
toring intra-annual variations in vegetation traits, and the results will be 
used as input for further modeling. The results of spatiotemporal anal
ysis are particularly essential for understanding the impacts of man
agement intensification on grassland ecosystem functions and 

sustainable management.
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Feigenwinter, I., Hörtnagl, L., Zeeman, M.J., Eugster, W., Fuchs, K., Merbold, L., 
Buchmann, N., 2023. Large inter-annual variation in carbon sink strength of a 
permanent grassland over 16 years: impacts of management practices and climate. 
Agric. For. Meteorol. 340, 109613. https://doi.org/10.1016/J. 
AGRFORMET.2023.109613.

Fumy, F., Schwarz, C., Fartmann, T., 2023. Intensity of grassland management and 
landscape heterogeneity determine species richness of insects in fragmented hay 
meadows. Global Ecol. Conserv. 47, e02672. https://doi.org/10.1016/J. 
GECCO.2023.E02672.

Furnitto, N., Ramírez-Cuesta, J.M., Intrigliolo, D.S., Todde, G., Failla, S., 2025. Remote 
sensing for pasture biomass quantity and quality assessment: challenges and future 
prospects. Smart Agric. Technol. 12, 101057. https://doi.org/10.1016/J. 
ATECH.2025.101057.

Gao, J., Han, M., Zhang, D., Ma, Z., Zhang, Y., Fu, S., Liang, T., 2025. Cross-scale 
estimating of forage nitrogen in alpine grassland integrating UAV imagery and 

Sentinel-2 data. Eur. J. Agron. 170, 127760. https://doi.org/10.1016/J. 
EJA.2025.127760.

Gao, J., Liang, T., Liu, J., Yin, J., Ge, J., Hou, M., Feng, Q., Wu, C., Xie, H., 2020. 
Potential of hyperspectral data and machine learning algorithms to estimate the 
forage carbon-nitrogen ratio in an alpine grassland ecosystem of the Tibetan Plateau. 
ISPRS J. Photogramm. Remote Sens. 163, 362–374. https://doi.org/10.1016/J. 
ISPRSJPRS.2020.03.017.

Gilhaus, K., Boch, S., Fischer, M., Hölzel, N., Kleinebecker, T., Prati, D., Rupprecht, D., 
Schmitt, B., Klaus, V.H., 2017. Grassland management in Germany: Effects on plant 
diversity and vegetation composition. Tuexenia 37 (1), 379–397. https://doi.org/ 
10.14471/2017.37.010.

Gill, A.L., Adler, P.B., Borer, E.T., Buyarski, C.R., Cleland, E.E., D’Antonio, C.M., 
Davies, K.F., Gruner, D.S., Harpole, W.S., Hofmockel, K.S., MacDougall, A.S., 
McCulley, R.L., Melbourne, B.A., Moore, J.L., Morgan, J.W., Risch, A.C., Schütz, M., 
Seabloom, E.W., Wright, J.P., Hobbie, S.E., 2022. Nitrogen increases early-stage and 
slows late-stage decomposition across diverse grasslands. J. Ecol. 110 (6), 
1376–1389. https://doi.org/10.1111/1365-2745.13878.

Gomez-Casanovas, N., Blanc-Betes, E., Moore, C.E., Bernacchi, C.J., Kantola, I., 
DeLucia, E.H., 2021. A review of transformative strategies for climate mitigation by 
grasslands. Sci. Total Environ. 799, 149466. https://doi.org/10.1016/J. 
SCITOTENV.2021.149466.

Guo, Y., Senthilnath, J., Wu, W., Zhang, X., Zeng, Z., Huang, H., 2019. Radiometric 
calibration for multispectral camera of different imaging conditions mounted on a 
UAV platform. Sustainability 11 (4), 978. https://doi.org/10.3390/SU11040978.

He, X., Zhao, K., Chu, X., 2021. AutoML: a survey of the state-of-the-art. Knowl.-Based 
Syst. 212, 106622. https://doi.org/10.1016/j.knosys.2020.106622.
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