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Permanent grasslands in Germany are characterized by the intensity of management practices. The intensity of
management significantly influences both the biodiversity and ecosystem services provided by grasslands.
Therefore, monitoring vegetation traits of intensively managed grasslands is crucial for making management
decisions aimed at maximizing ecosystem services and minimizing environmental footprints of grassland culti-
vation. In intensively managed grasslands, aboveground dry biomass (AGBgy), plant species richness, vegetation
carbon (C) and nitrogen (N) content, and carbon to nitrogen (C:N) ratio serve as key indicators to assess the
condition of the grassland, an information which is highly relevant for farmers, inspectors, and decision-makers.
This study aimed to accurately estimate AGBqry, N, C:N ratio, plant species richness, and Shannon H-index in two
study areas in Bavaria, Germany using multi-year in-situ measurements and corresponding unmanned aerial
vehicle (UAV) imagery. The combined in situ and UAV dataset was collected at different grassland sites (Fendt,
Rottenbuch, and Bayreuth area) between 2019 and 2023, partly at several times during one year. Therefore, the
dataset covers both intra- and inter-annual growth patterns (April to October). UAV images were radiometrically
calibrated using a reflectance target and processed with Pix4D’s internal radiometric corrections. Both Random
Forest and Extreme Gradient Boosting (XGBoost) were used to estimate grassland traits. The regression models
were trained using the in-situ measurements, and as predictor variables the corresponding reflectance in the
spectral bands of the multispectral UAV imagery and the derived vegetation indices. Model performance was
assessed using an independent validation dataset, consisting of 20 % of the reference data that were not included
in the model training stage. To improve estimation accuracy, we conducted test cases by training the regression
models using different training data subsets. As a result, we derived multi-year vegetation trait maps from UAV
imagery with R? values of 0.81 for AGBgy, 0.77 for N content, 0.81 for the C:N ratio, 0.84 for SR and 0.86 for H-
index, respectively. Overall, the study highlights the potential of integrating multi-year in situ data with UAV
imagery to create multidimensional datasets that effectively capture spatial and temporal changes in vegetation
traits.

1. Introduction

Permanent grasslands cover about one-third of Germany’s agricul-
tural land area and are particularly valuable as they provide a wide
range of ecosystem services (Kirschke et al., 2021). For instance, these
services range from provisioning (e.g., food production), regulating (e.
g., climate regulation) to supporting (e.g. biodiversity) as well as
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cultural aspects (e.g., recreational activities) (Bengtsson et al., 2019;
Zhao et al., 2020). Among these, one of the most important economic
ecosystem services provided by grasslands is the provision of food for
dairy and cattle farming (Schoof et al., 2020). Therefore, permanent
grassland in Germany is primarily used to produce fodder through
regular mowing and grazing. From a climate change mitigation
perspective, grasslands have long been recognized for their significant
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role in carbon storage and sequestration, and their high species richness,
which enhances their resilience to altered precipitation patterns and
increasing temperatures (Feigenwinter et al., 2023; Gomez-Casanovas
et al., 2021; Korell et al., 2024). On the other hand, ongoing climate
change is significantly affecting grasslands (Bardgett et al., 2021),
especially in intensively managed areas, where both biomass produc-
tivity and fodder quality are increasingly impacted by changing climate
conditions (Berauer et al., 2020; Dumont et al., 2015; Korell et al., 2024;
Li et al., 2018). Therefore, spatially explicit information on vegetation
traits is crucial for developing adaptation strategies and sustaining
productivity and ecosystem functions in managed grasslands under a
changing climate.

Agriculturally used grasslands are found across all regions of Ger-
many although the intensity of management varies. In the (pre-)Alpine
regions, there are widespread grassland landscapes that are not only
used for livestock fodder but also serve as important recreational areas
(Schmitt et al., 2024; Schwarz et al., 2018). (Pre-)Alpine grasslands are
characterized by their unique biodiversity and species richness and have
historically been used as a source of fodder for livestock for centuries
(Fumy et al., 2023; Kiese et al., 2018; UNESCO World Heritage Centre,
2015). Grassland management in this region includes both extensive and
intensive approaches, with higher grazing pressure, and more frequent
fertilizer application and mowing frequency in intensively managed
areas (Vogt et al., 2019). To increase the economic efficiency of grass-
lands, farmers often aim to achieve higher biomass productivity rates,
which typically puts a lot of pressure on biodiversity, resulting in
reduced species richness (Fumy et al., 2023; Mayel et al., 2021).
Furthermore, intensive grassland management may lead to various
negative environmental impacts, e.g., water pollution (Bobbink et al.,
2022; Schlingmann et al., 2020), soil degradation (Seeger, 2023), and
increased greenhouse gas emissions (Hortnagl et al., 2018; Offermanns
et al., 2023). In particular, the management intensity can significantly
influence the ecosystem quality and health of grasslands, as indicated by
botanical composition, by altering plant diversity (Gilhaus et al., 2017).
Therefore, there is a high demand for accurate estimation of vegetation
traits at local to landscape scales, providing valuable information for
both farmers and decision-makers.

Over the past decade, UAVs have developed rapidly and are
increasingly being used in the agricultural sector, with UAVs differing in
design, range, and installed sensors depending on their intended use.
Many types of sensors (e.g., multispectral, hyperspectral, thermal, and
Light Detection and Ranging (LiDAR)) are continuously being developed
and made available for the agricultural sector, especially for monitoring
of grasslands and croplands (Norasma et al., 2019; Raj et al., 2019;
Zhang et al., 2024). However, UAV-based methods are costly and time-
consuming for large areas, especially when equipped with a wide range
of spectral bands (e.g., hyperspectral sensors); therefore, multispectral
sensors (visible/near-infrared) are predominantly used (Zhang et al.,
2024). Most popular bands in multispectral sensors include red
(620-750 nm), green (495-570 nm), near-infrared (NIR, 780-1000 nm),
and red-edge (RE, 680-730 nm). Among them, NIR and red-edge bands
are particularly effective for vegetation trait estimation, as NIR is sen-
sitive to leaf structure and biomass, while the red-edge band responds
strongly to chlorophyll and nitrogen content, making them valuable for
estimating N, C:N ratio, and biomass (Arogoundade et al., 2023; Bazzo
et al., 2023a). For example, recent studies by Biswal et al. (2024), Fur-
nitto et al. (2025), and Gao et al. (2025) demonstrated that NIR and red-
edge bands are particularly useful for analyzing vegetation traits.
Vegetation indices derived from combinations of visible bands and NIR
have already proven to be a useful method for assessing a wide range of
vegetation traits (Huang et al., 2021; Thornley et al., 2023; Zhang et al.,
2024). For instance, the Normalized Difference Vegetation Index
(NDVI), Soil-Adjusted Vegetation Index (SAVI), and Perpendicular
Vegetation Index (PVI) are the most effective and frequently used
indices for estimating various vegetation traits because they strongly
correlate with biophysical variables such as biomass, canopy cover, and
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height, and leaf chlorophyll content (Raj et al., 2019; Verrelst et al.,
2019; Vidican et al., 2023; Xue & Su, 2017). However, these indices
often show weak relationships with plant biogeochemical properties
(Arogoundade et al., 2023). As an alternative, the red edge band and its
derived indices are sensitive to biogeochemical variables and are
frequently used for estimating vegetation N and C:N ratios
(Arogoundade et al., 2023; Zhang et al., 2024). For example, recent
studies have clearly demonstrated that the Red Edge Normalized Dif-
ference Vegetation Index (NDVIieq.edge) and Red Edge Simple Ratio
(SRred-edge) have the potential to estimate the plant N content and C:N
ratios (Berger et al., 2020; Bronson et al., 2020; Walsh et al., 2018;
Zhang et al., 2024). Therefore, the vegetation traits could be estimated
with reasonable accuracy by combining the aforementioned spectral
bands and indices in machine learning (ML).

ML techniques are becoming an important tool for estimating various
vegetation characteristics from remotely sensed data by training them
on field reference measurements (Janga et al., 2023). Such methods
combine statistical modeling and complex algorithms to perform various
prediction tasks with relatively high accuracy. In recent times, there
have been numerous efforts in estimating vegetation traits using various
ML algorithms, including aboveground biomass (Morais et al., 2021;
Wang et al., 2022), plant species diversity (Fauvel et al., 2020; Zhao
et al., 2022), plant N and C content (Ennaji et al., 2023; Peerbhay et al.,
2022), as well as C:N ratio (Arogoundade et al., 2023; Gao et al., 2020).
In particular, classic ML algorithms such as Random Forest (RF), Deci-
sion Trees (DT), Logistic Regression (LR), and Gradient Boosting Ma-
chines (GBM) are widely employed in estimating various vegetation
traits due to their robustness and flexibility in handling complex re-
lationships of remote sensing and in-situ data in reasonable accuracy
(Ennaji et al., 2023; Janga et al., 2023). Specifically, ML models
developed using RF and GBM perform well and have achieved promising
results for biomass estimation; however, predicting N content proved to
be challenging due to limited spectral features and availability of
training data (Schucknecht et al., 2022). Particularly, automated ML
(AutoML) has more recently emerged as an accessible and efficient
technique (He et al., 2021). AutoML uses an ensemble learning approach
that combines multiple algorithms or statistical models into a stronger
model to improve overall prediction so that this technique can provide
an efficient evaluation of numerous ML algorithms (Salehin et al., 2024).
However, ML algorithms typically require large amounts of high-quality
training data, and when datasets are limited, the models can overfit
(Janga et al., 2023). Their performance also depends on how well the
training samples represent different sites and conditions, which may
limit generalizability. For example, recent studies have shown that
models trained in one region often lose accuracy when applied to
different regions without re-calibration (Lemenkova, 2025; Morais
et al., 2021). Furthermore, Kupidura et al. (2024) reported that ML
performance is highly sensitive to the size of the training sample.
Therefore, ML performance could be improved by increasing the size
and diversity of the training dataset, for example, using multi-year
datasets of in situ and associated remote sensing data.

The major aim of the present study is to provide a UAV imagery-
based key vegetation traits monitoring product that can support grass-
land management and further socio-economic modeling in the (pre-)
Alpine grasslands. In this respect, this study aimed to estimate key
vegetation traits by combining multi-year datasets of in situ and asso-
ciated UAV imagery using different ML regression models and assessing
the spatiotemporal patterns of vegetation traits. First, we derived key
vegetation traits, including AGBgy, vegetation N content, C:N ratio,
species richness, and Shannon H-index, in two study areas. Second, we
conducted a spatiotemporal analysis to assess intra- and inter-annual
changes in vegetation traits across several selected grassland sites, and
third, we evaluated the predictive power and the potential of using
multi-year data to predict vegetation traits at different locations and
times.
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2. Data and methods
2.1. Study area

The study was conducted at five sites of permanent grassland in
Bavaria, Germany (Fig. la-f). The study sites of Rottenbuch (769 m
above sea level (a.s.l.;) Fig. 1b) and Fendt (595 m a.s.l.; Fig. 1c) are
located in southern Bavaria and are part of the TERENO Pre-Alpine
Observatory (Kiese et al., 2018). The study sites in northern Bavaria
around Bayreuth (340 m a.s.l.) include Gubitzmoos (Fig. 1d), Scho-
bertsberg (Fig. 1e), and Obernschreez (Fig. 1f).

The Fendt and Rottenbuch sites are characterized by a hilly, pre-
alpine landscape. This region is characterized by a humid continental
climate with an average annual precipitation of 956-1109 mm and an
average annual temperature of 8.8-8.9 °C. The vegetation cover in these
grasslands is primarily dominated by meadow grasses such as Festuca
rubra L., Poa pratensis L., and Lolium perenne L., along with a variety of
herbs and legumes, including Ranunculus repens L., Trifolium pratense L.,
and Trifolium repens L (Stadler et al., 2017; Kiese et al., 2018).

The study sites around Bayreuth are located in the part of the western
foothills of the Franconian Switzerland, which is characterized by mid-
altitude mountain ranges. The study region has a humid continental
climate, with a mean annual precipitation of 724 mm and a mean annual
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temperature of 8.3 °C. The potential dominant vegetation cover in the
grassland around Bayreuth included Taraxacum sect. Ruderalia, Dactylis
glomerata, Plantago lanceolata, Trifolium pratense L., Ranunculus acris L.,
Holcus lanatus, and Elymus repens (L.) Gould (Maria Dittmann, 2018;
Schmitt et al., 2022).

Grasslands in both regions have a long history of frequent mowing,
grazing, and regular fertilization for fodder production. Grassland
management practices at the study sites vary from extensive manage-
ment (1-2 mowings per year with no fertilizer application) to intensive
management (4-6 mowings per year with 4-5 slurry applications)
(Petersen et al., 2021; Schmitt et al., 2022; Schucknecht et al., 2020).

2.2. Datasets

2.2.1. UAV image collection

Multi-year UAV imagery was collected between May 2019 and July
2023 using a fixed-wing UAV (eBee, senseFly, Cheseaux-sur-Lausanne,
Switzerland). The fixed-wing UAV was equipped with a four-band Par-
rot Sequoia sensor (SEQ; Parrot Drones SAS, Paris, France), which was
used to acquire green (G), red (R), RE, and NIR multispectral imagery. In
addition, the UAV was equipped with irradiance sensors (“sunshine
sensors”™) mounted on top to measure the incoming solar radiation. The
UAV images were acquired at a flight altitude of 85 m, with a ground
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resolution of approximately 8 cm/pixel. Both lateral and longitudinal
overlaps were maintained at 80 % to ensure sufficient coverage and
image quality. A detailed description of the sensor and the processing of
the UAV images can be found in Schucknecht et al. (2022).

The processing of the UAV images was done with the Pix4dMapper
Pro software (Pix4D S.A., Prilly, Switzerland) and consisted of three
steps. The photogrammetric processing was based on a structure from
motion (SfM) approach (Kameyama & Sugiura, 2021). First, key points
of the images were extracted and matched, and the internal (e.g. focal
length) and external (e.g. orientation) parameters of the camera were
calibrated. The georeferencing was done by integrating measured
ground control points (GCPs) and identifying them on several input
images. Coordinates of GCPs were measured with the Trimble DGPS. As
a result, georeferenced automated control points were created. The
second step was to densify the point cloud according to the pix4D
standard template for agricultural applications. The final step was to
mosaic the adjusted and calibrated individual images into orthophotos
and final reflectance images. The reflectance targets were used to
perform an additional radiometric calibration with respect to field
conditions, taking into account the illumination conditions at the date,
time and location of the image acquisition, as well as some sensor
characteristics. This provides absolute reflectance values that can be
compared between different cameras or flights.

After image processing, a set of spectral vegetation indices was
calculated from the different reflectance bands for each image acquired.
The spectral vegetation indices were selected based on how they
contributed to the estimation of vegetation traits in previous studies
(Schucknecht et al., 2022; Dashpurev et al., 2023) and a recent
comprehensive literature review (Zhang et al., 2024). Consequently, we
selected seven indices to be used as additional predictors for the esti-
mation of vegetation traits. These indices are the NDVI, NDVI eq.edge,
NDVIgreen, SAVI, Modified Soil Adjusted Vegetation Index (MSAVI),
Transformed Soil Adjusted Vegetation Index (TSAVI) and Red-Edge
Simple Ratio (SRyed.edge) (Montero et al., 2023). Finally, a multidimen-
sional dataset was created by combining the time series of reflectance
images and spectral vegetation indices using the multidimensional
toolbox in ArcGIS Pro 3.2.

2.2.2. In-situ field data

Field campaigns were conducted along with UAV imaging to collect
intra- and inter-annual in situ vegetation data at the Fendt, Rottenbuch,
and Bayreuth field sites between 2019 and 2023 (Table 1). At each site, a
20 m x 20 m plot was sampled in four 0.5 m x 0.5 m subplots after UAV
imaging. In each subplot, the bulk canopy height was measured with a
plate meter. The vegetation was cut at 7 cm above the soil surface to

Table 1
Summary of site characteristics and data collection.
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obtain the fresh weight. A Trimble DGPS with centimeter-level accuracy
was used to determine the location of each plot. In the laboratory, the
dry weight of the samples was determined after drying the samples in an
oven at 65 °C until constant weight. Aboveground fresh (AGBg.sh) and
dry biomass (AGBgry) was obtained by scaling the weight to 1 m2.
Vegetation carbon (C) and nitrogen content (N) of dry samples from
Fendt and Rottenbuch collected between 2019 and 2020 were analysed
using an elemental analyzer (vario Max cube, Elementar Analy-
sensysteme GmbH, Germany). Species composition was determined only
at the Bayreuth sites, where the Shannon-Weaver diversity index was
subsequently calculated (Ortiz-Burgos, 2016). A detailed description of
the sampling design and sampling can be found in Schucknecht et al.
(2020).

2.3. Statistical analyses

Spearman’s rank correlation and R? were used to examine the rela-
tionship between in situ vegetation traits and predictor variables derived
from UAV imagery. Spearman correlation, a non-parametric measure,
assessed the strength and direction of monotonic relationships, while R
quantified the proportion of variance in vegetation traits explained by
the predictor variables (Dodge, 2008). These statistical analyses were
conducted across all selected time frames (see Section 2.4.1 below) to
account for temporal variations and improve model performance.

2.4. Regression models

Classic and automated ML methods were applied to estimate
different grassland traits from UAV imagery. The RF (Lange et al., 2025)
and Extreme Gradient Boosting (XGBoost; (Chen & Guestrin, 2016))
algorithms are well-known classical machine learning methods for
various regression tasks with remote sensing data. RF, a representative
of the decision-tree-based *ensemble learning’ approaches, uses bagging
(bootstrap aggregation) to enhance model performance and mitigate
overfitting. During the bagging process, RF creates an ensemble of de-
cision trees by randomly selecting samples and features from both the in-
situ training data and remote sensing predictor variables. This technique
enables RF regression to produce robust predictions and provide mea-
surements of variable importance, leveraging multiple decision trees
trained on diverse subsets of the data. Similar to RF, XGBoost is also a
decision-tree-based ensemble learning method that uses boosting tech-
niques to construct a robust regression model by combining multiple
weak learners. It sequentially builds decision trees, where each tree
corrects the errors of its predecessors by minimizing a specified loss
function using gradient descent. XGBoost also integrates regularization

Study area Sites Total number of plots Management In-situ data UAV data acquisition dates
Fendt Fendt 4 Intensive: AGB 2019: 2020:
Rottenbuch Rottenbuch 2 4-5 cuts and 4-5 slurry applications per year Canopy height April 24 May 06
Extensive: C content May 17 June 24
1-2 cut and no slurry N content June 07 June 25 July 27
July 15 Oct 01
Aug 01
Sep 16
Oct 18
2021: 2022:
May June 01
2023: Aug 02
June 13
Bayreuth Gubitzmoos 20 for 2022 Intensive: AGB 2022:
9 for 2023 4-5 cuts and 4-5 slurry applications per year Canopy height May 16-19
Obernschreez 5 for 2022 Species richness 2023:
7 for 2023 April 17-19
Schobertsberg 5 for 2022

6 for 2023
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techniques to mitigate overfitting and enhance generalization.

AutoML is an approach designed to automate the process of creating
robust ensemble ML models by combining multiple algorithms or sta-
tistical models (Baratchi et al., 2024). AutoML utilizes both bagging and
boosting techniques to create strong ensemble models. It constructs an
optimal ensemble model by combining various algorithms and statistical
models such as Linear Regression, Logistic Regression, Decision Trees,
RF, and advanced boosting models like LightGBM and XGBoost. The
best-fitting model is identified based on its performance metrics. The
estimation of vegetation traits in this study was performed using a RF
package in R 4.4.2, the Forest-based and Boosted regression model, and
AutoML tool in ArcGIS Pro 3.2 software.

Hyperparameter optimization was performed for each time-specific
dataset using Random Search (Rebust) with cross-validation for both
RF and XGBoost models. For RF, the number of trees was systematically
varied between 50 and 500 in increments of 10. Model performance was
evaluated at each iteration using the coefficient of determination (Rz),
and the best-performing configuration was selected based on the highest
R? value, which was typically achieved with 250-350 trees. For
XGBoost, the number of boosting rounds was varied between 50 and
500, and the optimal configuration was selected similarly based on R?,
typically ranging from 200 to 400 rounds.

2.4.1. Training data subset definition

Two types of training data subsets were created to account for spatial
and temporal variability: time-specific training subsets (covering four
different time frames) and site-specific training subsets (corresponding
to different locations). Four time-specific training subsets were created
to train the models, each representing different time frames. This
approach aimed to better utilize the available data, enhance model ac-
curacy, and account for the effects of temporal variations on model
performance. The time frames were selected based on the available in
situ data and corresponding vegetation growth stages. The definitions of
the time frames are as follows:

o Entire time series: Consists of all available in situ measurements and
UAV data collected throughout the study period.

e Peak growing season in 2019-2023: Focuses on in situ measure-
ment and UAV data from the peak vegetation growth period in June
of each year.

e Intra-annual data within 2019: Contains multiple observations
within 2019.

¢ Single observation data: Consists of individual observations from
all available in situ measurements and UAV data.

Six site-specific training subsets were created to train and validate
the models, each capturing spatial variability across different locations.
This approach enables the assessment of predictive power and the po-
tential of using multi-year data to estimate vegetation traits across
different locations. The definitions of the site-specific training subsets
are as follows:

e Fendt multi-year data: Consists of all available in situ measure-
ments and UAV data collected throughout the study period.

Fendt single observation data: Consists of individual observations
from all available in situ measurements and UAV data.

Rottenbuch multi-year data: Consists of all available in situ mea-
surements and UAV data collected throughout the study period.
Rottenbuch single observation data: Consists of individual ob-
servations from all available in situ measurements and UAV data.

e Gubitzmoos and Obernschreez single observation data: Consists
of individual observations from all available in situ measurements
and UAV data.

Schobertsberg single observation data: Consists of individual
observations from all available in situ measurements and UAV data.
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2.4.2. Regression model test cases

To improve estimation accuracy, we conducted test cases by training
the regression models using time-specific training subsets of AGBgy and
UAV data from the Fendt and Rottenbuch sites. These included entire
time series (2019-2023), peak growing season (June 2019-2023), and
single observation data (Table A-1 in Supplementary Material). Model
test cases were also conducted using site-specific training subsets to
determine whether a regression model trained on data from one site
could accurately predict AGBqyy, species richness, and Shannon H-index
at another site when using data collected same time (Table A-1 Test
cases 4-5). This approach allowed us to understand how temporal
variation in vegetation patterns and the diversity of UAV imagery
affected model performance, enabling us to improve predictions under
different vegetation and light conditions.

2.4.3. Model assessment

Regression models were evaluated using the coefficient of determi-
nation (Rz), regression error, root mean squared error (RMSE), and
Mean Absolute Percentage Error (MAPE). These evaluation metrics were
calculated from each independent estimate to assess the performance of
the regression model in two cases. First, model performance was eval-
uated by randomly selecting 20 % of the available in situ data as an in-
dependent validation dataset, while the remaining 80 % were used for
training. Second, in cases involving site-specific training subsets, in situ
measurement and UAV data from one or two sites (Fendt or Gubitzmoos
and Obernschreez) were used for training, while in situ measurement
and UAV data from the other site (Rottentbuch and Schobertsberg) were
used for validation (see Table A-1). For AutoML, a set of regression
models was evaluated by comparing their RMSE values to determine the
best model. The model with the highest R? and the lowest RMSE was
considered the most accurate and best model in this study. Model per-
formance was assessed using cross-validation.

3. Results
3.1. Field measurements of vegetation traits across study sites

Multi-year vegetation traits data were collected from the Fendt and
Rottenbuch sites for the years 2019 to 2023, and from the Bayreuth area
for the years 2022-2023. The data consist of AGBq,y, canopy height,
species richness, and vegetation N and C content. In the total of 36 plots
sampled, the values of each vegetation parameter varied depending on
the period and site (Fig. 2).

For intra-annual measurements in Fendt and Rottenbuch in 2019, the
lowest AGBg;y value ranged from 0.5 to 13 g m~2 after mowing, while
the highest value ranged from 250 to 320 g m™2, measured shortly
before grass harvesting. For the canopy height, the lowest values varied
between 2.1 to 5.2 cm, while the highest values ranged from 8.5 to 25.8
cm. Regarding chemical parameters derived from AGB samples, N
content ranged from 1.2 to 5.9 wt%, and the C content varied between
39.7 and 53.7 wt% (for further details on the comparison between the
intensively and extensively managed sites at Rottenbuch, see Figure A-1
in supplementary material).

In 2020, intra-annual measurements in Fendt and Rottenbuch
showed the lowest AGBg,y values ranging from 0.97 t0 9.6 g m 2 after
mowing, while the highest values varied from 226 to 308 g m~2 before
harvesting. Canopy height ranged from 2.8 to 7.1 cm at its lowest and
15.3 to 18 cm at its highest. Chemical parameters derived from AGB
samples indicated N content ranging from 1.4 to 4.5 wt%, and the C
content from 39.7 to 46.8 wt%.

For inter-annual measurements during the peak growing season at all
sites, significant differences were found for AGBg,y and canopy height
between 2020 and 2023. For instance, the lowest AGBg,y values ranged
from 0.52 to 8.5 g¢ m~2 after mowing, while the highest values ranged
from 35.3 to 251.2 g m~2. Canopy height ranged from 4.2 to 6 cm at its
lowest and 16.8 to 18.9 cm at its highest. At Bayreuth sites, species
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Fig. 2. Multi-year vegetation traits data collection and variation at Fendt and Rottenbuch (a—c), and study sites around Bayreuth (d-e) in 2019-2023.
richness ranged from 19 to 52 in May 2022 and compared to 14-36 in

April 2023. Similarly, AGBg,y values ranged from 15.7 to 117.5 g m2
May 2022, but declined from 0.3 to 31.2 g m ™2 in April 2023.
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Fig. 3. Matrix illustrating the relationship between UAV-based predictor variables and vegetation traits across different time frames: a) Correlation for the entire
time series (2019-2023), b) Correlation for peak growing seasons (June 2019-2023), c) Correlation for intra-annual data within 2019, and d) Correlation for a single
observation data (April 24, 2019).
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3.2. Estimating vegetation traits using regression models

3.2.1. Relationship between UAV-based predictor variables and vegetation
traits

The correlation coefficient and R? value were calculated between
eleven predictor variables extracted from the UAV imagery and vege-
tation traits across the four different time frames defined in the previous
Section 2.4.1. The predictor variables that showed strong correlations
with vegetation traits varied across different growth periods (Fig. 3).

Overall, most spectral bands and VIs had a medium to high corre-
lation with AGBgyy, ranging between 0.6 and 0.8 (R?=0.4-0.63and p <
0.02). Among them, the NIR band, red-edge band, and all VIs had the
strongest correlations with AGBqry (p < 0.01). However, correlation
coefficients varied depending on the selected time frame. In terms of
periods, higher positive correlation coefficients between AGBqy and
predictor variables were observed when using the peak growing season
(June 2019-2023) and the single observation data (April 24, 2019 and p
< 0.01) (Fig. 3-b, d). Specifically, AGB4ry showed strong correlations
with NIR band, MSAVI, NDVI, SAVI and TSAVI when using single
observation data (Fig. 3-d and p < 0.01)).

Focusing on chemical parameters, C content showed a weak positive
correlation with NDVIgreen, NDVI, NDVI ed.edge and SRyed.edge When using
data from the peak growing season (June 2019-2023) and intra-annual
data within 2019 (p < 0.05). However, some of these indices were
negatively correlated with C content in other periods. On the contrary, N
content showed medium to strong positive correlations with the NIR
band, red-edge band, MSAVI, NDVI, SAVI, and TSAVI when using the
entire time series data (2019-2023, and p < 0.01), intra-annual data
within 2019 and for a single observation data. In particular, the stron-
gest positive correlations were detected when using the single obser-
vation data (Fig. 3-d). C:N ratio showed medium to high positive
correlations with the red band, and NDVIgeen when using data from the
intra-annual data within 2019 and the single observation data (p <
0.05).

The primary reason for these variations was significant changes in
illumination conditions. Fig. 4 presents a violin graph illustrating how
illumination conditions varied considerably from 2019 to 2020 across
the study sites. A comparison of solar irradiance values of the red, green,
NIR, and red-edge bands at Fendt and Rottenbuch shows that irradiance
at Fendt was consistently lower than at Rottenbuch from April 24 to
June 25, 2019. However, between July 15 and September 16 in 2019,
the values at both sites became closer. From October 18, 2019 to July 27,
2020, Fendt again exhibited lower irradiance values. These fluctuations
in lighting conditions affected spectral reflectance and could lead to
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inconsistencies in the relationship between predictor variables and
vegetation traits. Furthermore, we compared the relationship between
R? values for AGBy,y estimation, which used intra-annual data within
2019, and irradiance differences across all spectral bands at the Fendt
and Rottnbuch sites (for further details on the comparison, see figure A-
11 in supplementary material). In this comparison, the irradiance dif-
ferences were calculated as the difference between the average irradi-
ance values of each band at the Fendt and Rottnbuch sites. The
comparison result showed a moderate negative correlation between R?
values and irradiance differences, ranging from —0.41 to —0.46. This
suggests that lower irradiance differences between Fendt and Rottnbuch
are associated with higher Ry values for AGBg,y estimation. Overall, the
results suggest that the most suitable time frames for training ML models
are the peak growing season (June 2019-2023) and the single obser-
vation data, as these periods may provide reasonably accurate estimates.

3.2.2. Regression model test cases used to predict vegetation traits

The model performed with low accuracy, achieving R-squared values
of 0.31-0.42 when using entire time series and 0.54 when using peak
growing season data, demonstrating that it is not reliable in predicting
AGByy across different temporal conditions (Table A-1 in supplemen-
tary material). UAV imagery was captured under varying conditions of
cloud cover, sun angle, surface moisture, and lighting throughout the
study period. These inconsistencies were a primary factor contributing
to the reduced accuracy of the regression models in estimating AGBqyy
when using entire datasets or long-term data. This finding is consistent
with the results of the correlation analysis in the previous section. On the
contrary, regression models using single observations achieved medium
to high accuracy with R-squared values of 0.55-0.89, suggesting its
reliability in predicting vegetation traits in the entire time series for
monitoring.

Furthermore, we trained regression models using single observation
data of Fendt, and Gubitzmoos and Obernschreez separately, and then
applied these site-specific trained models to predict AGBg,y in Rotten-
buch and AGBgy, species richness, and Shannon index in the Scho-
bertsberg site, which were not part of the training dataset. The results
indicate that the regression models performed poorly at Fendt (R? =
0.15-0.21) but performed well at Schobertsberg (R?> = 0.61-0.71).
These findings suggest that if UAV images are taken under relatively
similar conditions, it may be possible to use a regression model trained
on data from one site to accurately predict vegetation traits at another
site.

Overall, the test case analysis suggested that using single observa-
tions achieved medium to high accuracy. Therefore, we selected single
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Fig. 4. Solar irradiance measured by sunshine sensor in 2019-2020.
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observation data as the best model for spatial mapping, which is pre-
sented in the next section.

3.2.3. Spatial mapping of vegetation traits

Using regression models applied separately to single observations in
2019-2023, we estimated the spatial distribution and intra- and inter-
annual variations of vegetation traits at the site scale in intensively
and extensively managed grasslands. The validation results show that
the average R-squared value was 0.81 for AGBqyy, 0.77 for N content,
0.81 for C:N ratio, 0.84 for species richness, and 0.86 for Shannon index,
respectively (Fig. 5-a). The average RMSE was 29.5 for AGBgy, 0.4 for N
content, 1.7 for C:N ratio, 7 for species richness, and 0.4 for Shannon
index, respectively (Fig. 5-b). The average MAPE was 1.2 for AGBgyy, 0.5
for N content, 0.4 for C:N ratio, 0.2 for species richness, and 0.3 for
Shannon index, respectively.

Using the regression models in an upscaling approach can produce
detailed spatial and temporal distributions of vegetation traits across the
study sites. For example, for the sites in the TERENO pre-Alpine obser-
vatory in Fendt and Rottenbuch, Figs. 6 and 7 shows selected parcels
illustrating the spatial distribution of the estimated vegetation traits on
July 15, 2019.

The spatial distribution of the estimated AGBgyy, N content, and C:N
ratio exhibited clear patterns influenced by mowing practices and site-
specific grassland management. AGBg,y varied significantly across the
sites, highlighting differences e.g. in landscape, soil, and plant devel-
opment stages after respective mowing events. N content and the C:N
ratio provided valuable insights into plant nutrient status, with notice-
able variation across different sites.

For the sites in Bayreuth, AGB4ry, Shannon H-index, and species
richness were estimated separately for 2022 and 2023. Fig. 8 shows an
example of the estimated vegetation traits at Obernschreez from May 16
to 19, 2022. Additionally, Figure A-5 in the Supplementary material
provides details on the estimated vegetation traits for April 17-19, 2023,
along with a comparison of these traits between 2022 and 2023.

The obtained maps showed variations in AGBg,y and plant diversity,
emphasizing differences in biodiversity across sites. Similarly, AGBgyy,
Shannon index, and Species richness demonstrated clear spatial patterns
and varied by site-specific management. These results demonstrate the
effectiveness of the regression models in capturing fine-scale spatial and
temporal variations in vegetation traits, which could support ecological
monitoring and sustainable management decisions.

3.3. Comparison of temporal changes in plant traits at parcels
As each plot is managed site-specifically, the mowing events were

not the same for all plots. As a result, a multi-year comparison of plots
was not appropriate. Instead, we conducted an intra-annual
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comparative analysis based on changes in mowing events.

A mowing-event-based comparative analysis was performed be-
tween selected grassland parcels from April to October 2019. Event-
based percentage changes in AGBgyy are presented in the Ribbon chart
(Fig. 9), while spatiotemporal changes in AGBg,y are illustrated in the
maps below (Fig. 10). Focusing on intensively managed grassland par-
cels at Fendt, AGBq,y was generally high before the first mowing event.
For instance, at FE2, AGBqy ranged from 25 to 150 g m~2on April 24,
2019, and increased to 150-300 g m~2 by May 17, 2019. However,
AGBg,y decreased sharply to 0-25 g m 2 after the first mowing. After the
first mowing, AGBgyy started growing back, reaching up to 150 g m~2
before the second mowing event, but the regrowth was highly variable
across the parcel. AGB4ry was mostly in the range of 25-50 g m~2 and
50-75 g m~2 between the first and second mowing. After the second
mowing event, AGByy regrowth was in the range of 25-50 g m 2. The
third mowing event took place on October 18, 2019.

For the extensively managed RB2 parcel, AGBg,y was as low as 25 g
m 2 at the beginning of the growing season (April 24-May 17, 2019)
and increased to 50-75 g m~2 across most of the parcel by June 07, 2019
(Fig. 9-b). At peak growth (June 25, 2019), AGBq,y reached 150-200 g
m~21in 11 % of the parcel, 100-150 g m 2 in 41 %, 75-100 g m 2 in 19
%, and 50-75 g m~2 in 28 %, respectively. The results highlight the
progressive increase in AGBg,y throughout the growing season, though
the growth pattern varied across the parcel (Fig. 10). However, half of
the parcel was mowed by July 15, 2019, resulting in a sharp decline in
AGBg,y in some areas. Following the first mowing, AGBg,y began to
recover, though the growth pattern varied across the parcel with a final
mowing on September 16, 2019.

Overall, AGBg,y values were typically low in field measurements
conducted immediately after hay making or in parcels that were
frequently cut, whereas higher AGBg,y values were observed when
measurements were taken just before mowing events. In some cases, the
comparison clearly showed that while one parcel was mowed, another
parcels had not yet been mowed, or that some parcels were partially or
incompletely mowed.

For chemical contents, the comparison of N content and C:N ratio
between paired parcels showed distinct spatial and temporal patterns
influenced by management practices and environmental conditions
(Figs. 11 and 12). Before the first mowing, N content in FE1 varied, with
35 % of the parcel ranging from 2 to 2.5 wt%, 43 % from 2.5 to 3 wt%,
and 20 % from 3 to 3.5 wt%. For FE2, N content was mostly 1.5-2 wt%
in 13 % of the parcel, 2-2.5 wt% in 38 %, and 2.5-3 wt% in 44 %. During
the first and second mowing periods, N content in FE1 fell to 0.5-2 wt%
immediately after mowing, while it later increased to 3-4.5 wt% as the
vegetation regrew in both parcels. The rise in N content is possibly due
to fertilization and the presence of young vegetation. After the final
mowing event, N content was initially dominated by 3-3.5 wt% in most
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Fig. 7. Estimated vegetation traits at Rottenbuch on July 15, 2019. Here, the maps show aerial view of the grassland parcels in Rottenbuch (a), the estimated AGBgyy

(b), N content (c), and C:N ratio (d).

parts of both parcels. For extensively managed RB2 parcel, N content
was below 0.5 wt% in 14 % of the parcel, 1.5-2 wt% in 58 %, and 2-2.5
wt% in 18 % before the first mowing event. During the peak growing
period, the dominant N content increased to 2-3.5 wt%, occupying 85 %
of the parcel on 15 July 2019, while 3.5-4 wt% covered 84 % of the
parcel on 1 August 2019. After the first mowing, the dominant N content
decreased to 0.5-1 wt%, covering 50 % of the parcel, while 1-1.5 wt%,
1.5-2 wt%, and 2-2.5 wt% each separately covered 15 % of the parcel.
At the end of the growing season, N content of 1.5-2 wt% covered most
of the parcel. Overall, comparison results showed that seasonal changes

in N content differed between intensively and extensively managed
parcels. In intensively managed parcels, the dominant N content value
started at a moderate level in spring, peaked at 2-3.5 wt% during the
growing season, and then dropped sharply to 0.5-1 wt% after mowing,
followed by a gradual recovery. In contrast, extensively managed par-
cels had a more stable N content, starting low in spring, peaking at lower
values during the growing season, rising after the first mowing, and
gradually decreasing to a low level in autumn due to less frequent cut-
ting and fertilization.

Generally, the C:N ratio showed significant differences between
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Fig. 9. Event-based percentage changes in AGBg.y in 2019: a) FE2 parcel and b) RB2 parcel.

paired parcels with different management practices (Fig. 12). For
instance, moderate C:N ratios (10-20) were observed in all intensively
managed parcels in 24 April 2019. After the first mowing event, lower
(<10) and moderate C:N ratios increased in FE1 and FE2, while higher
C:N ratios (20-30) increased in RB1. Observations of low to moderate C:
N ratios during the peak of the growing months indicate seasonal
changes in plant growth, nutrient uptake, and organic matter decom-
position. Furthermore, moderate C:N ratios remained dominant after the
second mowing, while a mix of moderate to high C:N ratios dominated
in autumn. For the extensively managed RB2 parcel, higher C:N ratios
were observed in spring, while moderate to high C:N ratios were pro-
nounced during the peak growing months. After the first mowing, C:N
ratios remained stable at moderate levels, while high and strongly high
(30-35) C:N ratios emerged in autumn. These increases in C:N ratios
indicated slower decomposition and delayed nutrient release.

We also conducted a comparative analysis at selected pair parcels
(OB1 and OB2) in Obernschreez, as shown in Fig. 8 above and Fig. A-10
in Supplementary Material. Results showed that the mean AGBgy value

10

was 280.21 g m~2 in OB1 and 270.01 g m~2 in OB2 before mowing in
May 2022 and 36 g m~2 in OB1 and 30.83 g m~2 in OB2 in April 2023.
The average number of species was 32 in OB1 and 33 in OB2 in May
2022, and 26 in OB1 and 25 in OB2 in April 2023. The mean value of the
Shannon H-index was 2.66 in OB1 and 2.6 in OB2 in May 2022, and 2.15
in OB1 and 2.02 in OB2 in April 2023, respectively. Overall, the AGBgyy,
H-index, and the number of species were higher in May 2022 and lower
in April 2023 at both pair parcels, likely due to variations in mowing
events, plant growth stages, and environmental conditions.

4. Discussion
4.1. Estimating vegetation traits from multi-year drone images

To estimate vegetation traits, we aimed to combine the advantages of
the long-term collected in situ data and UAV imagery with ML. Previous

work in the study region indicated that the lack of high-quality field data
for training can be a challenge for estimating vegetation traits from UAV
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Fig. 10. The comparison of AGBgy at different parcels in 2019: a) Change in AGBgy in Fendt and b) Change in AGBg,y in Rottenbuch.

imagery, especially N content (Schucknecht et al., 2022). For this
reason, we collected long-term high-quality in situ data along with cor-
responding UAV imagery, which provides critical information for un-
derstanding changes and dynamics in vegetation traits. When utilizing
these multi-year data, we considered how well the in situ data correlated
with the predictor variables derived from the UAV imagery, which
spectral variables could contribute the most significantly, and which
regression models were best suited for estimating different vegetation
traits.

Therefore, we firstly identified the most potential spectral variables
based on our previous work and a literature review (Dashpurev et al.,
2023; Schucknecht et al., 2022; Thornley et al., 2023; Zhang et al.,
2024). In our study, the relationships between vegetation traits and
variables such as NIR band, red-edge band, NDVI, NDVIe4.cdge, and
MSAVI were relatively strong and positive, although depending on the
selected time period. These observations align with previous similar
studies. For instance, numerous recent studies have demonstrated that

11

the spectral bands and vegetation indices as mentioned above are
effective for estimating AGBqy, (Bazzo et al., 2023a; Lussem et al., 2019;
Pan et al., 2024), N content and C:N ratio (Dal Lago et al., 2024) and
species diversity (Bazzo et al., 2024; Lyu et al., 2024).

Subsequently, we selected regression models based on our previous
comparative analyses and the AutoML technique to identify the most
suitable options. AutoML is a powerful tool for evaluating different
regression models and determining their suitability for estimating
vegetation traits, such as AGB (Alvarez-Mendoza et al., 2022) and grass
height (César de Sa et al., 2022). AutoML simplifies the process of
identifying optimal algorithms without the need for extensive manual
effort by automating processes such as model selection, hyperparameter
tuning, and performance evaluation. In this study, AutoML was used to
compare seven regression models and the results showed that RF and
XGBoost performed the best when applied to single-date observation
data. Many studies have demonstrated the effectiveness of RF and
XGBoost in estimating vegetation traits from remotely sensed data.
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These algorithms are widely recognized for their reasonable accuracy,
especially in predicting AGB, N content and biodiversity etc.,
(Arogoundade et al., 2023; Lyu et al., 2024; Yang et al., 2024; Zhang
et al., 2024), making them valuable tools for remote sensing in vege-
tation studies.

Furthermore, our vegetation traits dataset covers multiple years, and
we initially hypothesized that this extensive dataset could improve the
accuracy and reliability of vegetation trait estimates. However, the
multi-year images were captured under varying conditions, such as
differences in illumination, cloud cover, sun angles, and ground mois-
ture. These factors made it challenging to integrate the multi-year data
into a single training dataset for regression models. This integration
process faces a typical radiometric inconsistency effect (Jenerowicz
et al., 2023; Zhu et al., 2024). Several radiometric calibration methods
have been developed for multispectral UAV imagery; however, they still
have their disadvantages and limitations, and there is no universal
method to solve this issue completely (Daniels et al., 2023; Guo et al.,
2019). In Fig. 4, the violin graph shows that illumination conditions
varied significantly over time between the Fendt and Rottenbuch study
sites. UAV imagery at Fendt was mostly captured in the morning, while
images at the Rottenbuch were taken in the afternoon. Additionally, the
intra-annual data was collected from spring to autumn, leading to sea-
sonal variations in observation angle, illumination condition, and sun
angle throughout the multi-year UAV imagery. It can be seen from Fig. 4
that solar irradiance values for each band at Rottenbuch are mostly
higher than those at Fendt over the entire observation period. Conse-
quently, the spectral predictor variables derived from UAV imagery are
affected by radiometric inconsistencies. For instance, a recent assess-
ment of different radiometric calibration methods highlighted the
impact of variations in reflectance and vegetation indices on the

estimation of AGB (Zhu et al., 2024). Despite radiometric calibration,
temporal inconsistencies often persist in UAV imagery. For example,
Olsson et al. (2021) recently assessed the accuracy of the Parrot Sequoia
camera and its sunshine sensor for radiometric correction of multi-
spectral UAV images. Their findings indicated that factors such as
camera temperature and atmospheric conditions significantly affected
radiometric accuracy, suggesting that even with calibration, temporal
inconsistencies can remain. Therefore, our study suggests collecting
UAV imagery under consistent lighting conditions or at the same time of
day utilizing standardized methods for future monitoring purposes.

The radiometric inconsistencies posed challenges for integrating
long-term data into a single regression model, however, we achieved
relatively accurate estimates of vegetation traits by training separate
regression models using the time-specific training subset data (a single
observation date). After radiometric calibration, several strategies are
commonly employed to further reduce residual inconsistencies in multi-
year imagery. Time-specific modeling is one such post-calibration
approach aimed at reducing the effects of radiometric variability. In
particular, the results showed that the regression models performed well
with R-squared values of 0.81 for AGBgyy, 0.77 for N content, 0.81 for C:
N ratio, 0.88 for Shannon H-index, and 0.86 for species richness. These
findings are comparable to those reported by Bazzo et al. (Bazzo et al.,
2023b) for AGB, Xu et al. (Xu et al., 2023) for N content and C:N ratio,
and Bazzo et al. (Bazzo et al., 2024) for species richness.

4.2. Monitoring changes in vegetation traits using estimated data

The main usage of estimation is to monitor changes in vegetation
traits due to management and provide high-resolution spatio-temporal
information to farmers and decision-makers. Our result demonstrated
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Fig. 12. The comparison of C:N ratio at paired parcels in 2019. Here, the maps show the estimated C:N ratio in Fendt (a) and Rottenbuch (b). The bar graph (c) shows

the percentage of C:N ratio classes per parcel.

that spatio-temporal maps of vegetation traits can be effectively ob-
tained by combining multi-year in-situ data with UAV imagery. Moni-
toring vegetation traits across intra- and inter-annual timescales is
essential for sustainable grassland management and understanding how
ecosystems respond to environmental changes and management activ-
ities. However, inter-annual comparisons were ineffective in our case
because each parcel is managed site-specifically, and mowing events
were not consistent across all parcels. Additionally, mowing events
varied in terms of time within each parcel. For example, when consid-
ering changes in AGBg,y at FE1 in June 2019-2023, FE1 was partially
mowed on 25 June 2019, whereas it was completely mowed on 24 June
2020. Furthermore, the FE1 parcel was not mowed on 01 June 2022 but
was mowed on 13 June 2023. Therefore, one of the limitations of this
study is that our multi-year data is not continuous, making it unsuitable
for multi-year comparisons. However, it remains useful for intra-annual
analysis based on mowing events.

For intra-annual spatio-temporal analysis, intra-annual variations in
vegetation traits showed distinct patterns influenced by seasonal
changes and differences in management intensity (Figs. 9-12). For
AGByqyy, frequently cut areas showed higher AGB values, ranging from
250 to 350 g m 2, while the extensively managed plot (RB2) displayed
higher values, ranging from 200 to 260 g m~2 during the vegetation
growing season (April to October 2019). In intensively managed sites,
AGB was significantly lower right after mowing events but showed rapid
regrowth throughout the growing months due to improved growth
conditions and regular fertilization throughout the year (Botter et al.,
2021). According to Petersen et al. (2021) the annual biomass produc-
tion decreased continuously with the frequency of mowing events. For
fertilization, manure events are typically scheduled before the growing
season or the first mowing, and again after the first and third mowing
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events (Petersen et al., 2021). In contrast, extensively managed grass-
lands displayed slower AGB accumulation throughout the growing
season due to minimal or no fertilization.

Seasonal dynamics of vegetation N content in managed grasslands
vary due to management practices, plant species composition, and
environmental conditions (Wang & Schjoerring, 2012). Our study
demonstrated that seasonal patterns in N content were also evident, with
intensively managed sites showing higher N values, particularly during
the growing season (Fig. 11). Conversely, extensively managed sites
experienced lower and more consistent N content across the growing
season. This temporal variation in N cycling is likely influenced by
fertilization-mowing cycles, as previous studies have highlighted that
intensive management significantly increases vegetation N content
compared to extensive management (Zistl-Schlingmann et al., 2020).
Furthermore, a study conducted in pre-alpine managed grasslands
showed that N content in AGBgry was highest in late spring or early
summer, decreased during the growing months, and remained moderate
in autumn (Schlingmann et al., 2020). Our intra-annual estimates also
showed moderate to high N content within the parcels following
mowing events. This could be related to the presence of young vegeta-
tion that emerges after mowing, as young plants typically have higher N
content due to their need for nitrogen accumulation to support rapid
growth and development (Thion et al., 2016). Additionally, the mod-
erate to high N content estimates could be associated with intensive
management practices, which tend to provide higher N content in AGB
throughout the season due to the frequent mowing of younger biomass
(Reyes et al., 2015).

The C:N ratio highlighted differences in nutrient dynamics. In
intensively managed sites, C:N ratios remained low and stable due to
rapid nutrient turnover from mowing and fertilization. Furthermore,
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seasonal variations in C:N ratios at intensively managed parcels
demonstrated low to moderate ratios in late spring and the growing
months, and moderate to high ratios in autumn. These seasonal dy-
namics are influenced by intensive management practices, which result
in increased nitrogen availability that accelerates decomposition during
the early growing months and slows it down in autumn (Gill et al.,
2022). In contrast, extensively managed sites showed higher C:N ratios,
especially in late summer and early autumn, indicating slower decom-
position rates and reduced nitrogen availability. Overall, the mowing
event-based intra-annual changes in AGB4y, N content, and C:N ratio
demonstrate how intensive and extensive management differently in-
fluences vegetation dynamics throughout the growing season in
temperate grasslands.

Species richness and the Shannon H-index are important indicators
for monitoring the effects of grassland management. These variables are
influenced by grassland management practices, growth stages, and
climate conditions (Corentin Babin et al., 2023; Manning et al., 2015;
Weisser et al., 2017). According to Maria (2018), the mean species
richness of grassland in 11 plots (100 m?) at the Bayreuth study area was
32.27 (& .37) in the growing season. Our study shows species richness
ranging from 19 to 52 (avg. 35.8) in May 16-19 2022, and from 14 to 36
(avg. 26.1) in April 17-19, 2023. Comparing the two years, species
richness was higher in 2022 than in 2023 (Fig. 2-d). This difference can
be attributed to the sampling occurring one month earlier in 2022
compared to 2023. Additionally, frequent fertilization and mowing
events may have contributed to the decrease in species richness from
2022 to 2023.

5. Conclusion

This study showed the estimation of vegetation traits by integrating
in situ data with multi-year UAV imagery using ML regression models.
The in situ vegetation traits data consisted of ABGgy, C content, N
content, C:N ratio and species diversity in pre-Alpine managed grass-
lands. In the estimation context, correlation analysis was conducted
between vegetation traits and eleven predictor variables extracted from
UAV imagery across different time frames. The correlation results sug-
gested that the peak growing season or single observation data are the
most suitable time frames for training ML regression models, rather than
using the entire time series.

We further selected regression models based on previous expertise
and AutoML, which allowed for a systematic comparison of models and
identified the most suitable approaches for our data. The accuracy of
vegetation trait estimates depended heavily on the chosen algorithm and
selected period of time, as the multi-year images were captured under
varying illumination conditions, leading to spectral inconsistency.
Consequently, future research should prioritize collecting UAV imagery
under consistent lighting conditions or at the same time of day, using
standardized methods.

However, the spatial distribution of vegetation traits was separately
estimated with acceptable accuracy by using single observation datasets
or by combining data captured under similar lighting conditions. ML can
effectively address minor spectral inconsistencies by modeling complex
nonlinear relationships between spectral predictor variables and vege-
tation traits. Additionally, incorporating vegetation indices (NDVI,
MSAVI, etc.,) that are less sensitive to spectral inconsistencies can
enhance model robustness and estimation accuracy, especially when
analyzing multi-year data.

The multidimensional dataset was created from the final vegetation
traits map products, allowing us to assess event-based spatiotemporal
changes across several selected grassland parcels. This spatiotemporal
comparative analysis demonstrated an effective approach for moni-
toring intra-annual variations in vegetation traits, and the results will be
used as input for further modeling. The results of spatiotemporal anal-
ysis are particularly essential for understanding the impacts of man-
agement intensification on grassland ecosystem functions and
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sustainable management.
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