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The digital transformation of science is reshaping not only research workflows but also
the integrity, openness, and societal trust in scientific knowledge. This paper investigates
these developments through the lens of the Leibniz ScienceCampus DiTraRe and its inter-
disciplinary work on digital research infrastructures. Tracing the historical foundations of
digital science – from Leibniz’s binary logic to the AI-driven research environments of to-
day – we highlight how shifts in data collection, knowledge organisation, and publication
cultures redefine what constitutes scientific evidence and reproducibility.

We examine contemporary challenges and potentials through the use case of the Chemo-
tion Electronic Lab Notebook, demonstrating how domain-specific digital tools can foster
transparency, efficiency, and trustworthiness across research lifecycles. A particular focus
is placed on the role of artificial intelligence (AI), including generative models and large
language models (LLMs), which are increasingly integrated into scientific processes. We
discuss emerging practices such as multi-agent LLM collaboration to mitigate hallucina-
tions and the rise of autonomous AI research assistants like Sakana AI’s “AI Scientist”.

At the same time, the paper addresses the ethical and epistemic challenges posed by
algorithmic processes, the impact of digitalisation on public trust, and the institutional
responses through guidelines from DFG, UNESCO, and the European Commission. By
connecting technical developments with cultural and normative reflections, we argue that
building trusted digital research workflows requires a careful balance between innovation
and responsibility, supported by interdisciplinary collaboration and continuous gover-
nance.
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1 Introduction

The Science Campus DiTraRe1 investigates the digital transformation of research, focus-
ing on how scientific workflows and research outputs have already evolved – and will
continue to change – through digitalisation, and what this means for trust in science.
DiTraRe examines the effects and potentials of digitalisation in areas such as data collec-
tion, knowledge organisation, the use of artificial intelligence (AI), handling of sensitive
data, and changing publication cultures.

Research clusters address specific use cases, while cross-cutting dimensions explore over-
arching issues. This contribution highlights two of these dimensions – Reflections &
Resonance and Tools & Processes – alongside the research cluster Smart Data Acquisi-
tion, using the “Chemotion Electronic Lab Notebook” as a use case to examine current
challenges and opportunities in the digitalisation of science, particularly in light of recent
developments in AI.

The article is structured as follows: Chapter 2 outlines a brief history of digitalisation
in science. Chapter 3 discusses current AI-related challenges in science, with a focus
on public trust and research integrity. Chapter 4 presents the “Smart Labs and AI”
use case, exploring the digital transformation of research data practices. The conclusion
summarises key developments, highlighting opportunities, challenges, and risks posed by
AI in research.

2 History of digitalisation in science

The digitalisation of science is a multi-century journey that, in the context of the DiTraRe
framework, is understood not only as a technological progression but also as a transfor-
mation of research infrastructures, knowledge practices, and the ways scientific trust and
transparency are maintained. It has transformed how knowledge is generated, dissemi-
nated, and preserved. From early mechanical innovations to the rise of AI, each phase
reflects evolving paradigms in research, communication, and epistemology. Today, with

1 The DiTraRe project, funded by the Leibniz Association and carried out by FIZ Karlsruhe and the
Karlsruhe Institute of Technology from 2023 to 2027 (https://www.ditrare.de; Visited on June 10,
2025 ) deals with the influence of digital processes on research the influence of digital processes on
research results, both in terms of research methods and in terms of with regard to communication in
science and society.
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the emergence of interdisciplinary initiatives such as the DiTraRe, this historical evolu-
tion is examined through the lens of changing research workflows, research infrastructure,
scientific outputs, and the public’s trust in science.

2.1 Foundations in Logic and Mechanisation
(17th – 19th Century)

The roots of digital science can be traced to the work of Gottfried Wilhelm Leibniz, who
introduced the binary number system in his 1703 publication Explication de l’Arithmétique
Binaire and demonstrated how all numbers could be represented using only the digits 0
and 1 (O’Regan 2021). He also designed a logical calculating machine and envisioned a
universal language of logic, which he termed the calculus ratiocinator, aiming to formalise
human reasoning through symbolic logic (O’Regan 2021).

Born in 1646, Leibniz was not only a mathematician and inventor but also a philosopher
who believed that human reasoning could be formalised through symbolic logic. His vision
of the calculus ratiocinator aimed to express all rational thought in a formal language,
anticipating later developments in computation and artificial intelligence (Smith 2007;
O’Regan 2021). In this sense, the origins of AI lie not (only) in engineering but in a
philosophical project concerned with modelling the structure of human cognition. This
conceptual leap laid the groundwork for digital computation.

The 19th century saw further developments with Charles Babbage’s Analytical Engine
and Ada Lovelace, who is credited with writing the first algorithm, foreseeing a machine
capable of manipulating symbols beyond arithmetic (Toole 1998). Meanwhile, Joseph
Marie Jacquard’s programmable loom (1801) demonstrated early mechanisation of control
via punch cards.

2.2 Mathematical Formalism and the Birth of Computing
(20th Century)

In 1936, Alan Turing formalised the concept of computation with the Turing machine,
introducing a theoretical model of algorithmic processing in his seminal paper On Com-
putable Numbers, with an Application to the Entscheidungsproblem (Turing 1936). Tur-
ing’s work was deeply influenced by foundational developments in mathematical logic,
particularly Kurt Gödel’s incompleteness theorems (Gödel 1931), which had revealed the
inherent limitations of formal axiomatic systems and intensified interest in the mechani-
sation of reasoning (Davis 2000). This line of thought also paralleled Alonzo Church’s
formulation of the lambda calculus, which arrived at equivalent conclusions concerning
the limits of computation (Church 1936).
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Around the same time, Claude Shannon’s 1937 master’s thesis applied Boolean algebra
to switching circuits, laying the groundwork for digital logic – a theoretical insight that
would later underpin modern digital circuit design (Shannon 1937, 1948). Together,
these developments converged to establish the logical and physical basis of computing
machinery, bridging abstract logic and engineering (O’Regan 2021; Ceruzzi 2000).

During World War II, programmable computers emerged, notably Konrad Zuse’s Z3
(1941), regarded as the first fully operational digital computer implementing binary arith-
metic and programmability (Ceruzzi 2000; Randell 1973). A foundational advance fol-
lowed with John von Neumann’s First Draft of a Report on the EDVAC (1945), which
introduced the concept of a stored-program architecture, where instructions and data share
the same memory space – setting the standard for future computer systems (Neumann
1945; O’Regan 2021).

Networking and Personal Computing (1960s–1980s)

The ARPANET2 project, initiated in 1969, connected multiple research institutions and
later evolved into the modern Internet (Hafner and Lyon 1996). Meanwhile, the develop-
ment of personal computers (e.g., Altair 8800, Apple I) in the 1970s began democratising
computational access.

Digital tools found increasing application in research from the 1970s onward, notably in
early computational biology, such as the first successful DNA sequencing efforts by Sanger
and colleagues (Sanger, Nicklen, and Coulson 1977). At the same time, expert systems
emerged in the field of artificial intelligence, enabling symbolic reasoning within narrowly
defined domains – for example, MYCIN in medical diagnosis – marking a shift toward
knowledge-based systems (Feigenbaum 1983; Buchanan and Shortliffe 1984). These de-
velopments laid the groundwork for rethinking how scientific data is collected, structured,
and validated – an enduring concern for initiatives like DiTraRe, which interrogate the
evolving dynamics of research in the digital age.

The World Wide Web and Open Science (1990s–2000s)

The launch of the World Wide Web by Tim Berners-Lee fundamentally transformed sci-
entific communication and laid the groundwork for the development of integrated research

2 ARPANET stands for ‘Advanced Research Projects Agency Network’. It was developed by the Ad-
vanced Research Projects Agency (ARPA) of the U.S. Department of Defense in the late 1960s and
is widely considered the precursor to the modern internet. ARPANET was the first network to im-
plement the TCP/IP protocol suite, and it enabled multiple computers to communicate on a single
network – a revolutionary concept at the time.
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infrastructures – such as those examined in DiTraRe – that enable new forms of collab-
oration, data sharing, and openness within the scientific community (Berners-Lee and
Fischetti 1999). The emergence of online repositories like arXiv.org, which pioneered the
open-access dissemination of preprints in physics and related fields (Ginsparg 1994), and
open knowledge platforms such as Wikipedia, which crowdsources encyclopaedic content
from global contributors (Lih 2009), further accelerated the global spread of informa-
tion.

The digitisation of libraries – such as Google Books and the Internet Archive – and the
rise of open access publishing have redefined how scientific texts are preserved, discovered,
and accessed (Borgman 2007; Kahle 2007; Suber 2012). This shift has been accompanied
by growing emphasis on data curation, metadata standards, and transparency in scientific
outputs, as reflected in initiatives like the FAIR principles (Wilkinson et al. 2016). These
are all central themes in DiTraRe’s analysis of digital research workflows and infrastructure
development.

2.3 Data-Driven Research and the AI Revolution
(2000s–present)

The 21st century has seen a fundamental shift towards data-intensive science, actively
explored by initiatives such as DiTraRe (Toole 1998). These initiatives examine both
the technical and ethical dimensions of digital research workflows, focusing on how they
can improve research quality and public trust. This shift has been driven by advances
in cloud computing, big data infrastructures, and reproducibility tools such as Electronic
Lab Notebooks (ELNs Toole 1998).

Large-scale projects like CERN’s Large Hadron Collider illustrate the enormous scale of
data modern science must handle (Evans and Bryant 2008; Bejar Alonso et al. 2020). Jim
Gray’s “The Fourth Paradigm” (2011) captured this transition, describing a new model
of discovery where data exploration complements hypothesis-driven research.

AI and machine learning have since become integral to scientific workflows, reshaping how
data is processed, interpreted, and applied across disciplines (Jordan and Mitchell 2015).
Within DiTraRe, AI is applied to areas such as semantic data enrichment, metadata
curation, automated annotation of research outputs, and predictive modelling (Jordan
and Mitchell 2015). Through the use of Large language models like GPT-4 now practices
in science are being reshaped with regard to knowledge processing and communication.

Emerging AI research assistants – such as Sakana AI’s “AI Scientist” – are pushing the
boundaries of autonomous scientific work. According to its creators, this system can
generate novel research ideas, write and execute code, conduct simulations, summarise

369



results, and even draft scientific manuscripts, complete with automated peer review to
assess the quality of generated research content (Sakana AI 2024).

In addition, platforms like Elicit, SciSpace, and ResearchRabbit support researchers in
literature discovery and comprehension. These tools use large language models to fil-
ter relevant publications, summarise complex findings, and visualise citation networks,
thereby improving access to and understanding of scientific knowledge (Academia Insider
2024; Elephas 2024).

To address the persistent issue of AI hallucinations, researchers have begun experimenting
with multi-agent collaboration techniques. In such frameworks, multiple LLMs are used
to evaluate and cross-check each other’s outputs, identifying errors and inconsistencies.
Key techniques include:

• Adversarial debates, where models challenge one another’s responses to promote
consensus or correction (Yang et al. 2025),

• Uncertainty-Aware Fusion, which integrates outputs based on model confidence to
reduce hallucinated content (Dey, Merugu, and Kaveri 2025), and

• Ensemble models with shared weights, which optimise resource use while improving
output reliability (Arteaga, Schön, and Pielawski 2024).

These developments are not merely technical optimisations – they are essential steps
toward building trustworthy AI systems in scientific contexts.

The DiTraRe initiative actively engages with these advances, assessing both their trans-
formative potential and associated risks. Of particular interest are questions of research
integrity, transparency, and public trust in a time when AI is increasingly involved in
producing and interpreting scientific knowledge.

According to the Royal Society, AI can support scientific understanding in three key ways
(The Royal Society 2024, p. 31), shown in Figure 1:

• Computational Microscope: Simulating and visualising data in ways experiments
alone cannot.

• Resource of Inspiration: Providing novel, unexpected insights.
• Agent of Understanding: In theory, autonomously generating and communicating

knowledge – though this remains a conceptual frontier.

While AI has shown surprising capabilities, it has not yet reached true autonomy in
understanding.
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Figure 1: Three possibilities for AI supported scientific understanding (Source: The Royal So-
ciety 2024, p. 31).

Generative AI promises increased efficiency in idea generation, literature review, and
writing (Albrecht 2023), but it also raises challenges around transparency, bias, and au-
thorship (Fecher et al. 2023; Messeri and Crockett 2024). Multi-model strategies represent
one way forward, ensuring that AI becomes not just faster, but also more reliable and
responsible in supporting scientific work.
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3 AI in science: public trust & research integrity

In light of AI, the digitalisation of research affects not only how science is conducted but
also how it is perceived by the public. Factors such as transparency, data openness, and
the potential for reproducibility can enhance public trust in scientific processes (Elliott
2017; Floridi and Cowls 2019). However, looking towards AI, the reliance on black-box AI
systems and large-scale datasets raises concerns about the reliability and accessibility of
scientific findings. Especially as recent development in generative AI challenges workflows,
infrastructures and outputs in science (Schreiber and Ohly 2024). On the one hand,
generative AI provides new chances for knowledge generation and processing, e.g. by an
increased efficiency and productivity in scientific working practices with various possible
applications. It further provides potentials for research data, since it offers potentials in
training small data sets, and enables LLM-based knowledge extraction from data bases
and provides easier programming tools (Digital Science et al. 2023). On the other hand,
there are many open questions related to generative AI in science. These range from
technical limits and touch the transparency and traceability of scientific results with regard
to detection, authentication and the widely cited “hallucinations” (European Research
Council 2023). With regard to competences and skills, AI-literacy of researchers comes
into play. Further ethical questions of the use of generative AI come up and aspects like
overreliance, spread of false information, biased knowledge or source misrepresentation
(Jahnel et al. 2025).

The digitalisation of research not only affects how science is conducted but also how it is
perceived by the public.

Focusing on generative AI and open data, challenges on two levels come up with regard to
trust in science: (1) trust in science from the public as well as (2) research integrity within
science. While in general, trust in science remains high, there are four components of trust
in scientists which encompass competence, integrity, benevolence and openness (Cologna
et al. 2025, p. 714). The components are defined (Mede and Cologna 2025): Competence
encompasses the expertise, intelligence, and qualifications required to conduct high-quality
research. Integrity is about how honest, ethical, and sincere scientists are. Benevolence
addresses how much scientists care about the well-being of others, improving the lives
of others, and considering the interests of others. Openness asks how open scientists
are to feedback, transparency, and consideration for the view of others. When looking
at generative AI, the aspect of integrity as well as openness are of particular interest –
while recent developments in the use of generative AI in science may challenge research
integrity due to epistemic risks and also other types of misuse, e.g., plagiarism, cheating,
generate fictitious data and analyses (Meça and Shkëlzeni 2023). According to Cologna
et al. the openness aspect is currently more challenging, since the public perception of
the openness of scientific practices is lower than the perceived trust in research integrity.
With respect to research data management practices to keep research integrity high are
touched in this article. However, there could be further attempts to increase the public
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perception of openness in science, e.g., by more communication of results to the public
(see Figure 2, Cologna et al. 2025, p. 719). Measures proposed embrace being receptive to
feedback, transparent about funding and data sources, communicating about science with
the public by encouraging public participation in genuine dialogue, including insights and
needs of societal actors.

Figure 2: Normative perception of scientists in society and policy making (Cologna et al. 2025).

Open science and open data have traditionally been seen as key to building public trust,
as highlighted by Rosman et al. (2022). In their study, participants were asked about the
importance of open science practices and whether scientists who adopt these approaches
are perceived as more trustworthy. The vast majority considered it important for re-
searchers to make their findings publicly accessible and to follow open science principles.
Most participants also reported greater trust in science when materials, data, and code
were openly available.

To further strengthen public trust in open data, especially when using AI, several measures
can be taken. First, ensuring the reproducibility of AI-based research is essential. This
can be supported through reproducibility checklists, standardized data-sharing protocols,
and field-specific reproducibility guidelines. Additionally, investing in open repositories is
critical. This includes the sharing of datasets, software versions, and workflows, as well
as developing context-aware documentation to help adapt AI models to local research
settings (The Royal Society 2024, p. 13). Albeit these measures, still modes of engaging
and communicating with the public have to developed and explored for the specific context
of open data research and practice.
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Moreover, in the upcoming use of generative AI in science there might be the risk that
research integrity erodes, thus science-internal quality assurance needs to be built up in
order to remain high. Up to now, there are several guidelines and statements published
with regard to the use of generative AI in science. One widely cited statement is that
of the German Research Association (Deutsche Forschungsgemeinschaft 2023). In this
statement, the use of generative AI is supported, but binds to the principles of good sci-
entific practice and the transparency and traceability of scientific results. However, the
use of models should be thoroughly disclosed and a discursive process including experi-
ences with generative AI is envisaged (Deutsche Forschungsgemeinschaft 2023). Other
guidelines focus on the importance of the human factor, “[...] the usage processes should
ensure humans’ interactive engagement with GenAI and higher-order thinking, as well as
human accountability for decisions related to the accuracy of AI-generated content, and
their impact on human behaviours” (UNESCO 2023, p. 29) or point out the communica-
tive process of all actors of the science system: “[...] publishers and researchers at all
stages of their careers are essential in shaping the discussion on AI and how it can serve
the public interest in research” (European Commission 2024, p. 4).

4 Creating Trusted Digital Research Workflows:
A Cultural Challenge

The digitalisation of research is transforming not only the tools we use but also the way
scientific knowledge is generated, validated, and shared. This transformation, however,
is not purely technological – it is profoundly cultural (OECD 2020). In this chapter, we
examine how trusted digital research workflows can be developed and sustained. We focus
in particular on laboratory practices in chemistry, drawing on insights from the DiTraRe
use case Smart Data Acquisition and the Electronic Lab Notebook (ELN) Chemotion3.
Through this lens, we explore how digital infrastructures influence everyday scientific
work, the nature of research outputs, and the reproducibility of experimental results.

4.1 From Infrastructure to Cultural Practice

The digitalisation of research entails more than the integration of new technologies or
software platforms; it necessitates a fundamental transformation of the epistemic cul-
tures that define individual scientific disciplines. These cultures have evolved over time
through established methodologies, procedural routines, and disciplinary tools. Each field
possesses distinct norms regarding what constitutes valid evidence, how experiments are
conducted and recorded, and the frameworks through which data are interpreted. Such

3 http://www.chemotion.net; Visited on June 10, 2025.
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entrenched disciplinary practices play a critical role in shaping both the adoption and per-
ceived credibility of digital workflows. This influence is clearly illustrated in the field of
chemistry, as demonstrated in Figure 3 which compares a laboratory notebook from 1927
with one from today (Herres-Pawlis, Liermann, and Koepler 2020). Despite a century of
technological advancement, experimental documentation is still predominantly conducted
with pen and paper (Butler 2005). This persistence of analogue practices highlights the
extent to which digitalisation in science is entangled with cultural inertia.

Meanwhile, as described in Chapter 2, the evolution of computing technologies has led
to powerful tools that enable standardised, computer-assisted workflows. These work-
flows hold enormous potential to enhance the reliability, efficiency, and reproducibility
of research. Yet their implementation remains uneven, and their success depends as
much on social acceptance and institutional support as on technical innovation (National
Academies of Sciences, Engineering, and Medicine 2022).

Figure 3: Comparison of the evolution of laboratory notebooks and computers: Despite decades
of digitalisation, traditional paper lab notebooks remain widespread (Herres-Pawlis,
Liermann, and Koepler 2020).

4.2 Creating Trustworthy Digital Workflows

The question, then, is not simply how to digitalise, but how to do so in a way that
researchers can trust and adopt. Initiatives such as NFDI4Chem4 provide important
answers. They demonstrate how digital workflows can support researchers across the
entire data life cycle – spanning data acquisition, processing, analysis, publication, and
long-term preservation – by adhering to open, interoperable standards.

4 Chemistry Consortium in the National Research Data Infrastructure – http://www.nfdi4chem.de;
Visited on June 10, 2025.
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Central to this approach is the development of user-friendly, domain-specific tools such as
Chemotion ELN. Designed specifically for the needs of chemists, Chemotion ELN enables
structured and semantically rich documentation of experimental data, helping ensure
both interpretability and reproducibility. Rather than replacing researchers’ practices, it
extends them into digital spaces where data can be preserved, shared, and reused.

Figure 4: From analogue to FAIR: Digital workflows in chemistry as proposed by NFDI4Chem
using Chemotion ELN and FAIR data repositories like RADAR4Chem (Source:
NFDI4Chem).

With tools like Chemotion, chemists can record structured data in a semantically rich way,
ensuring interpretability and reproducibility. The resulting FAIR data can then be stored
in repositories like RADAR4Chem5, guaranteeing long-term access and global reusability
– fuelling a new cycle of data-driven science.

4.3 Chemotion: A Model for Trusted Research Digitalisation

The Chemotion platform exemplifies a comprehensive and integrated approach to digi-
talisation in the chemistry laboratory. It enables researchers to document experimental
workflows, chemical reactions, and results in a structured, machine-readable format. This
not only facilitates the systematic organisation of data but also substantially improves
reproducibility by reducing the risk of human error and ensuring that experimental con-
ditions are recorded with precision.

Standardisation plays a key role in Chemotion’s design. By using consistent data formats
and controlled vocabularies, the platform ensures compatibility with other digital research

5 https://radar4chem.radar-service.eu/radar/en/home; Visited on June 10, 2025.
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tools and repositories, thereby supporting interoperability across systems and institutions.
In practice, this means that data entered into Chemotion can be seamlessly exported,
analysed, or shared – forming a coherent link in a broader digital research infrastructure.

Another important feature is the automation of data logging. Chemotion can directly
capture outputs from laboratory instruments, streamlining the recording process and
reducing the administrative burden on researchers. This automation also enhances data
accuracy and consistency, since manual transcription steps – where errors frequently occur
– are minimised.

Crucially, Chemotion supports collaborative work through cloud-based access. Researchers
from different institutions or disciplines can work together in shared digital environments,
enabling more efficient knowledge exchange and interdisciplinary experimentation. The
platform’s design is also aligned with the FAIR principles – ensuring that data is find-
able, accessible, interoperable, and reusable. This is particularly important for promoting
sustainable open science, where datasets remain usable and meaningful over time.

From a compliance perspective, Chemotion offers tangible benefits as well. Its structured
documentation makes it easier to fulfil regulatory and laboratory safety requirements
(Tremouilhac et al. 2020). The ability to track, search, and verify digital records simplifies
audit processes and helps demonstrate adherence to standards of good scientific practice.
In sum, Chemotion represents a major step forward in the digitalisation of laboratory
research – enhancing not only efficiency and reproducibility, but also transparency and
trust.

4.4 Beyond Digitalisation: The Role of AI in Research
Workflows

As digital infrastructures mature, AI is becoming an increasingly important actor in
shaping how data is curated, interpreted, and reused. Within platforms such as ELN
and research data repositories, AI technologies have the potential to augment laboratory
workflows in numerous ways. In DiTraRe, we have identified several promising measures
in this regard, that are described in the following and that we plan to implement and
evaluate during the project.

One of the most immediate benefits lies from our perspective in the automatic extrac-
tion and standardisation of metadata. AI systems can analyse raw experimental data and
generate relevant metadata entries, reducing the amount of manual input required and im-
proving consistency across records. In tandem, machine learning models can classify and
tag chemical reactions or compounds based on their content and contextual relationships,
facilitating more efficient data management.
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AI also enhances data integrity through predictive data cleaning and anomaly detection,
as we believe. By identifying inconsistencies or missing information within datasets, it
supports higher standards of data quality. Natural Language Processing (NLP) techniques
extend these capabilities further by integrating information from research literature and
patents, linking experimental data with existing knowledge and enhancing the contextual
understanding of results.

The creation of chemistry-specific knowledge graphs through semantic analysis allows for
more intuitive data discovery, helping researchers navigate complex data landscapes and
uncover new relationships between concepts, substances, and reactions. AI can also sup-
port experimental design by analysing prior reaction data and recommending optimised
conditions, thereby reducing reliance on trial-and-error methods.

On the user interface level, AI-powered search functions enable context-aware querying of
experimental data, making it easier for researchers to locate relevant datasets or protocols.
Finally, AI can assist in summarising results and generating structured reports, offering
insights that might otherwise remain hidden in the data.

From our perspective, these capabilities mark a significant shift in how research is con-
ducted and interpreted. AI moves from being a back-end tool to a semi-autonomous
partner in the scientific process, suggesting hypotheses, identifying trends, and enabling
new modes of data-driven discovery.

4.5 Reflection on the Use Case

Also, with respect to open data, generative AI has the potential to strengthen and trans-
form open research data. It can improve small datasets and metadata quality, but can
also bring interactive elements, e.g. by acting as a virtual collaborator (Digital Science
et al. 2023).

It seems that also for open research data, new forms of Human-AI-Collaboration might
emerge. However, this requires clearly defining the role of human verification in research.
But how much should AI handle, and where do we draw the line for human verification?
And given the pure amount of data sets, where are the limits of “human-in-the-loop”
approaches?

This shift also changes how we organise competences in the field of open research data,
since competences and skills change and a specific AI literacy is needed, or in other words,
there is a change from human control knowledge to translational knowledge (National
Academies of Sciences, Engineering, and Medicine 2022).
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In order to govern this change, standards and guidelines are needed. Challenges include
the rapid pace of AI developments, which often outstrip the ability of guidelines to keep
up with emerging functionalities and applications. On the other hand, the development
and implementation of the guidelines raises questions of responsibility. Should research
communities lead the way, or should top-down regulations set the framework? And how
can a discursive process between the two levels be organised? And lastly, how detailed
should guidelines be to remain practical? In order to follow a smooth implementation for
a scalable and effective AI integration in research, these key questions have to be tackled
by the open data community in a joint approach, also including relevant actors of the
science system.

5 Conclusion

The digital transformation of science reaches far beyond the mere adoption of new tech-
nologies. As we have shown throughout this contribution, it reshapes fundamental aspects
of how research is conducted, how results are documented and shared, and how trust in
scientific knowledge is created and maintained – both within science and in its relation
to society.

At the heart of this transformation is a cultural challenge. While the technical means
for digitalisation are often available, their integration into established scientific work-
flows requires a shift in epistemic practices and disciplinary habits (The Royal Society
2024). Our exploration of laboratory work in chemistry, through the DiTraRe use case
Smart Data Acquisition and the Electronic Lab Notebook Chemotion, has highlighted
this vividly: despite a century of technological advancement, paper-based documentation
remains widespread, signalling the persistence of analogue routines.

However, tools like Chemotion illustrate how digital infrastructures – if designed in align-
ment with domain-specific needs – can enable not only standardisation and reproducibil-
ity but also a more collaborative and transparent research process. By facilitating FAIR
data practices and integrating structured workflows, Chemotion supports both scientific
integrity and open science. When combined with repositories such as RADAR4Chem6

and other repositories for chemistry data recommended by NFDI4Chem7, it contributes
to a sustainable cycle of data-driven discovery.

The inclusion of AI adds a new dimension to this development. AI can assist with meta-
data curation, semantic annotation, error detection, and even hypothesis generation (Dig-
ital Science et al. 2023). These capabilities point toward a shift from manual documen-
tation to machine-augmented understanding. Yet, this shift also raises new questions:

6 https://radar4chem.radar-service.eu/; Visited on June 10, 2025.
7 https://www.nfdi4chem.de/repos/; Visited on June 10, 2025.

379

https://radar4chem.radar-service.eu/
https://www.nfdi4chem.de/repos/


What remains the role of human oversight? How transparent are the processes behind
AI-generated outputs? And what standards must be in place to ensure that AI contributes
to, rather than undermines, the integrity of research?

These questions also extend to public trust. On the one hand, we argue that the principles
of open science – transparency, reproducibility, accessibility – are strengthened through
digitalisation and AI. On the other hand, reliance on algorithms and vast datasets can
alienate non-specialist audiences and challenge the transparency and integrity of the scien-
tific process (European Research Council 2023). As survey data shows, trust in scientists
is generally high, but it is conditional on perceived openness, competence, and account-
ability. Maintaining and enhancing that trust requires not only technical solutions but
also deliberate strategies in science communication and governance. To address these
issues, institutional frameworks must keep pace with technological innovation (Cologna
et al. 2025). National and international bodies – such as Deutsche Forschungsgemein-
schaft (2023), UNESCO (2023), and the European Commission (2024) – are beginning
to articulate principles and recommendations for the responsible use of generative AI in
research. These efforts are essential, but they must be complemented by bottom-up ini-
tiatives within research communities, where disciplinary standards, peer review practices,
and ethical guidelines are continuously developed and discussed.

Ultimately, trusted digital research workflows emerge at the intersection of technical in-
frastructure, cultural change, and institutional reflection. They are not simply adopted;
they are cultivated (Jacyszyn et al. 2025). The DiTraRe initiative contributes to this
cultivation by fostering interdisciplinary dialogue and by developing exemplary use cases
that demonstrate both the potential and the limitations of digitalisation in science.

As science enters the age of AI, we are witnessing not only new tools but new ways of
knowledge generation and procession. This calls for shared responsibility of researchers as
well as actors of the science system alike: to shape the future of research in a way that is
open, transparent, and worthy of trust. Continued exchange and a dedicated guideline on
the use of generative AI in research data management practice might be valuable start.
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