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Abstract. FIFO queues are a fundamental data
structure used in a wide range of applications. Con-
current FIFO queues allow multiple execution threads
to access the queue simultaneously. Maintaining strict
FIFO semantics in concurrent queues leads to low
throughput due to high contention at the head and tail
of the queue. By relaxing the FIFO semantics to al-
low some reordering of elements, it becomes possible to
achieve much higher scalability. This work presents two
orthogonal designs for relaxed concurrent FIFO queues,
one derived from the MultiQueue and the other based
on ring buffers. We evaluate both designs extensively
on various micro-benchmarks and a breadth-first search
application on large graphs. Both designs outperform
state-of-the-art relaxed and strict FIFO queues, achiev-
ing higher throughput and better scalability.

1 Introduction. FIFO (First-in first-out)
queues are data structures that support the insertion of
elements (push) and the deletion of the least recently
inserted element (pop). They are at the core of a
wide range of applications, including breadth-first
search, processing pipelines, message queues, and
network routers. Sequential implementations using
circular arrays are fast and cache-efficient, offering high
throughput with constant-time operations. As most
performance-critical computations today use parallel
hardware, concurrent queues have become increasingly
important. Indeed, in many applications, a concurrent
queue serves as the central coordination mechanism
among threads. For example, multiple threads may
concurrently produce and consume data items from the
queue, or, in a breadth-first traversal of a graph, the
queue may hold the nodes yet to be explored.

Ideally, using p threads, one would like the through-
put to be close to p times the throughput of a sequen-
tial queue. Unfortunately, high contention on the head
and tail pointers of the queue is unavoidable [5, 2],
and even sophisticated implementations of concurrent
queues with strict semantics (e.g., [17, 18, 20]) suffer
from poor scalability. The throughput remains constant
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or might even deteriorate with increasing numbers of
threads. Thus, such designs are not suitable for situa-
tions that require a high throughput with many threads.

In order to achieve higher scalability, the idea
of relaxing the semantics of queues and similar data
structures in order to benefit from reduced contention
has become an increasingly relevant topic of study [1,
15, 12, 24, 26]. We say that a popped element has rank
error r when it was pushed later than r other elements
that are still in the queue.

In this paper, we introduce the MultiFIFO and
the BlockFIFO, two concurrent relaxed FIFO queues
with particularly good scalability. The MultiFIFO (see
section 4) is an adaptation of the MultiQueue [19, 27,
26), a state-of-the-art relaxed priority queue that builds
upon multiple internal strict queues. Pushed elements
go to a random queue, along with their insertion time
stamp. Pops remove the least recent element from two
randomly chosen queues. The MultiFIFO has expected
constant time per operation and inherits a rank error
linear in the number of threads from the MultiQueue.
By making threads reuse the same internal queues for
a fixed number of consecutive operations, performance
can be further increased at the cost of higher rank errors.

The BlockFIFO (see section 5) is based on a ring
buffer of small FIFO blocks, where threads operate on
distinct blocks to reduce contention. It exhibits even
higher throughput than the MultiFIFO in its most
relaxed configurations.

Summary of Contributions.

e Introduction of two highly scalable relaxed concur-
rent FIFOs: the MultiFIFO and the BlockFIFO.

e Extensive experiments (section 6) on different ar-
chitectures with various benchmarks indicating an
order-of-magnitude improved throughput of the
new FIFO queues compared to the previous state
of the art.

2 Preliminaries. The first-in first-out (FIFO)
queue is a data structure that manages a dynamic
sequence of elements, supporting the following two
operations:
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push Insert an element at the end (tail) of the sequence.

pop Remove and return the element at the front (head)
of the sequence.

If a FIFO is empty, the pop operation fails and re-
turns the special element |, which cannot be inserted.
Bounded FIFO queues have a fixed capacity of elements,
and pushing into to a full bounded FIFO conventionally
fails!. The ring buffer (or circular buffer) is a common
bounded FIFO queue, which conceptually arranges the
slots for elements in a circular manner. Ring buffers
are typically implemented as contiguous fixed-size ar-
rays with head and tail pointers indicating the next slot
to pop from and push into, respectively. These pointers
are incremented by the corresponding operations and
wrap around to the beginning when they reach the end
of the array. Concurrent FIFO queues allow concurrent
push and pop operations by multiple threads.

Linearizability [13] is a popular consistency crite-
rion for specifying the semantics of concurrent data
structures with respect to their sequential counterparts.
Essentially, a concurrent data structure is linearizable if
each operation appears to execute instantly at a single
point in time (its linearization point) between its invo-
cation and response. Linearizability is generally highly
desirable: with non-overlapping operations, the data
structure behaves like a sequential one, and concurrent
executions offer strong and intuitive guarantees. Un-
fortunately, linearizable FIFO queue implementations
suffer from high contention and exhibit limited scala-
bility [5, 2]. To alleviate this issue, the semantics of
FIFO queues can be relazed, allowing the pop operation
to remove elements out-of-order, or even fail to remove
elements that are still in the queue. For many appli-
cations, it is useful for failed pops to be linearizable,
meaning that popping may only fail if the queue was
empty at some point during the operation. A natural
quality metric for the degree of relaxation is the rank
error: For an element e that was returned by a pop
operation, the rank error of the pop operation is the
number of elements in the queue that were inserted be-
fore e.

An algorithm is lock-free if at least one thread is
guaranteed to make progress towards completing an
operation within a bounded number of steps, regardless
of the actions of other threads.

The ABA problem arises when a thread reads the
same value A from a shared memory location twice,
incorrectly assuming the value has not changed between
the reads, even though it was changed to B and then
back to A by other threads.

1Other semantics, such as overwriting the oldest element or
allocating more space, are possible.

We denote p as the (maximum) number of threads
participating in an algorithm concurrently. An event
occurs with high probability (with respect to p) if the
probability is at least 1 — p~° for some constant a > 1.

3 Related Work. The FIFO queue is a concep-
tually simple data structure that appears in most in-
troductory algorithm textbooks (e.g., [4]) and is readily
available in the standard library of most programming
languages. As a core component in a wide range of ap-
plications, including message queues, processing pipe-
lines, and breadth-first searches, FIFO queues have been
studied extensively in the literature. Here, we focus on
concurrent FIFO queues with an emphasis on relaxed
variants.

Linearizable FIFO Queues. One of the earliest
linearizable lock-free concurrent FIFO queue algorithms
is the MS-Queue, proposed by Michael and Scott [17].
The algorithm is based on a linked list, where nodes
can be appended and removed in a lock-free manner.
To avoid the ABA problem during atomic updates of
next-pointers, each pointer is tagged with a version
number. The design suffers from high contention on
the head and tail pointers, which limits its scalability.
Nevertheless, its simplicity and ease of implementation
have made it the foundation for numerous subsequent
designs (e.g., [11, 7, 14]). One notable example is
the Baskets Queue by Hoffman et al. [14], which uses
unordered baskets for concurrently inserted elements as
nodes in the linked list.

Tsigas and Zhang [23] propose a bounded, lock-
free FIFO queue based on ring buffers. Although
bounded queues are less flexible than unbounded ones,
they offer several practical advantages: they do not
require dynamic memory allocation, are generally more
cache-friendly, and do not require complex memory
reclamation mechanisms.

The LCRQ (List of Concurrent Ring Queues), in-
troduced by Morrison and Afek [18], is a state-of-the-
art concurrent FIFO queue design. It combines the
MS-Queue with ring buffers to leverage the advantages
of both data structures. Its implementation favors
the more efficient atomic fetch-and-add operations over
compare-and-swap operations. Both the MS-Queue and
the LCRQ rely on the double-width compare-and-swap
operation (dCAS), which most platforms do not support
natively. The LPRQ (portable LCRQ) [20] improves the
portability of the LCRQ by eliminating the dCAS while

maintaining comparable performance.

Relaxed FIFO Queues. Afek et al. [1] introduce
the Segmented Queue, a relaxed FIFO queue based on
a linked list of segments, where each segment is a static
array of size C. When pushing, a thread writes the



element into a random empty cell in the tail segment,
appending a new segment if necessary; popping is
performed analogously. The Segmented Queue exhibits
bounded worst-case rank errors in O(C'). The k-FIFO
queue by Kirsch et al. [15] enhance this design with
scalable, linearizable emptiness checks.

A popular approach to relaxing the semantics of a
data structure is to employ multiple (thread-safe) in-
stances of the data structure and distribute the access
to them among the threads (e.g., [11, 21, 24]). The dis-
tribution mechanism is crucial for the performance and
quality guarantees of these designs. Rukundo et al. [21]
introduce the 2D-Queue, which distributes operations
among its internal queues such that their sizes remain
within a fixed range. This design guarantees a bounded
worst-case rank error of O(wr), where w is the number
of queue instances and r is the length of the range. The
d-RA (d-randomized load balancer) by Haas et al. [11]
samples d > 1 data structure instances for each opera-
tion, selecting the least-loaded for pushes and the most-
loaded for pops. However, von Geijer et al. [24] demon-
strate that this balancing scheme can lead to increasing
rank errors with growing queue sizes. They propose
the d-CBO (d-Choice Balanced Operations), which bal-
ances using dedicated push and pop counters per queue
instance. A push operation samples d > 2 instances and
chooses the one with the fewest prior pushes. Symmet-
rically, a pop operation samples d instances and chooses
the one with the fewest prior pops. Interestingly, this
scheme stabilizes the rank errors empirically. Concur-
rent bags [22] impose no ordering on the elements, thus
can be viewed as the most extreme version of relaxed
FIFO queues.

Henzinger et al. [12] introduce the Quantitative
Relazation framework to specify and analyze semantics
of relaxed concurrent data structures. However, the
framework is not applicable to randomized algorithms
where the rank errors are not bounded.

4 The MultiFIFO. The MultiQueue [19, 27, 26]
is a state-of-the-art relaxed concurrent priority queue.

It consists of an array of ¢ - p sequential priority
queues, each protected by an mutual exclusion lock,
where ¢ > 2 is the queue factor. The operations are
handled asymmetrically: An insertion randomly selects
and locks a single queue to insert the new element.
A deletion uses the power of two choices principle by
randomly sampling two queues, and locking the one
containing the element with the highest priority to
perform the deletion. If a thread fails to acquire a lock
during either operation, it retries the operation.

Despite employing locks, the MultiQueue is prob-
abilistically wait-free, meaning that all operations of
all threads make progress within a bounded number of

steps in expectation. To improve the performance of
the MultiQueue, Williams et al. [27] propose the con-
cept of stickiness, where threads reuse the same two
queues for s (the stickiness period) consecutive opera-
tions. For details on the MultiQueue, we refer to the
original paper [27, 26].

A promising approach to creating a relaxed FIFO
queue is to adapt the MultiQueue. For this adaptation,
which we call the MultiFIFO, we replace the sequential
priority queues with in-place ring buffers and tag each
element with its insertion timestamp. The pop opera-
tion randomly samples two ring buffers, compares their
head elements, and removes the one with the earlier
timestamp.

Due to the similarity to the MultiQueue, the Multi-
FIFO inherits many of its desirable properties, such as
probabilistic wait-freedom [26], linear (in p) expected
rank errors of 2cp — 1+ % (see [25]), and rank errors
in O(plog p) with high probability. Both operations are
in O(1) in expectation, since finding an unlocked ring
buffer takes constant time in expectation (see [26]) and
the time for the actual operations on the ring buffers is
constant.

5 The BlockFIFO. In this section, we present
the BlockFIFO, a bounded, lock-free, relaxed concur-
rent FIFO queue. We begin by outlining its basic de-
sign, then analyze its practical limitations and present
several key improvements.

pop window -~ push window -

Figure 5.1: Schematic diagram of the BlockFIFO with
block size C' = 4 and window size w = 3, represented as
a linear array. The colored area represents the “active”
part of the array. Slots with stronger colors contain
elements. The line pattern indicates that a slot is
emptied and not used again.

5.1 Basic Design. Conceptually, the Block-
FIFO is an infinite array of blocks, where each block
is a small, fixed-size buffer of size C', which holds the
actual elements. For the sake of simplicity, we present
the data structure assuming an infinite, linear memory
layout. We show a practical, lock-free implementation
based on ring buffers in Appendix A.

A block can be in one of three states: unclaimed,
claimed, or closed. An unclaimed block is empty and
can be claimed for a push operation by any thread, after
which it becomes claimed. No other thread may claim
a claimed block or insert elements into it. Once all



Algorithm 1: Pseudocode for the push and
pop operations. The pop operation returns the
deleted element or L if the queue was empty.

Function push(e)
z < currentPushWindow ()
k < lastClaimedBlock()
while —pushToBlock(z, k, e) do
while —(k < claimNewBlock(z)) do
L L z + advancePushWindow (z)

Function pop()
z +— currentPopWindow ()
k < lastPopBlock()
while (e «+ popFromBlock(k)) = L do
repeat
z < advancePopWindow ()
if k < findPopBlock(z) then
break
if isEmpty() then return L

return e

elements have been popped from a block, it is closed
and can no longer be used. The push window and the
pop window are the ranges of blocks that are currently
available for push and pop operations, respectively. The
window size w (the number of blocks in each window) is
linear in the number of threads p, resulting in w = B -p
blocks, where B > 1 is the block factor. Initially, all
blocks are unclaimed and the pop window is positioned
directly behind the push window. Figure 5.1 shows the
BlockFIFO with C' = 4 and w = 3 schematically.

Algorithm 1 gives high-level pseudocode of the push
and pop operations. When pushing an element, a thread
first tries to reuse the last block it claimed. The method
pushToBlock(z, k, e) appends the element e to block k,
failing if z is not the current push window or block k
is full. If it fails, the thread attempts to claim a new
block in the current push window (claimNewBlock(z)).
To find an unclaimed block, it linearly scans the push
window, starting from a random position. If there
is no unclaimed block, the thread advances the push
window by w blocks and retries the scan. The method
advancePushWindow (2) only advances the push window
if it is currently z, otherwise it returns the current push
window. Note that not all blocks have to be full for the
push window to advance.

When popping, a thread first tries to pop from
the same block it used for the last pop operation. If
the block is not closed, the block might still contain

elements and the pop window did not move past it. The
method popFromBlock(k) removes the head element
from block k, returning L if the block was already
empty. If the block is empty afterwards, it closes the
block.

To find a new block to pop from, the thread first
advances the pop window (advancePopWindow()) past
any leading closed blocks, while ensuring the window
does not overlap the push window. The thread then
scans the current pop window linearly for a non-closed
block, starting from a random block in the window z
(findPopBlock(z)). In case the pop window is empty
and cannot advance, the thread checks whether the push
window contains any elements. If it does, it advances
both windows by the full window width and retries
the operation. If the push window is also empty, the
queue is determined to be empty and the pop fails
(IsEmpty (D). Unlike pushes, different threads must be
allowed to pop from the same block.

5.2 Theoretical Properties.

Failed pops are linearizable. For a pop operation to
fail, the pop window must be positioned directly behind
the push window, all blocks in the pop window must
be closed, and the push window must be empty. After
checking these conditions, the thread verifies that the
push window did not move in the meantime. Since
no new elements can be inserted into closed blocks and
no elements can be deleted from the push window, the
queue must have been empty just after scanning the pop
window and finding only closed blocks.

Asymptotic Considerations. We do not have a com-
plete analysis of the BlockFIFO yet. However, the de-
sign is based on two principles: By using windows with
Q(p) blocks, threads can mostly work on “their” local
insertion and deletion buffer blocks. By using blocks
of size Q(p), expensive operations like moving windows
and searching for blocks can be amortized over Q(p) fast,
local, cache-efficient operations on local blocks. This
implies constant time operations at the price of rank er-
rors of size Q(p?); we view it as likely that this is also
an upper bound.

This reasoning breaks down when the queue is
almost empty. In that case expensive global operations
dominate. The BlockFIFO is designed for situations
where the queue is sufficiently full (Q(p?) elements)
most of the time.

5.3 Practical Improvements. Searching for a
new block to operate on can be expensive, especially
when only few suitable blocks are available. We there-
fore augment the data structure with a bitset, where a
bit indicates whether the corresponding block has been
closed. When a thread claims a new block for pushing, it



sets the corresponding bit to one. When a thread emp-
ties a block by popping from it, it sets the corresponding
bit to zero. The bitset improves the cache locality for
the block search, since the individual blocks do not need
to be inspected. Further, multiple bits can be inspected
simultaneously with SIMD (single instruction, multiple
data) techniques. Appendix B gives details about the
implementation of the bitset.

Another performance bottleneck in our design is the
contention when multiple threads pop elements from the
same block. To alleviate this, we employ a lookahead
window of w blocks in front of the current pop window.
A popping thread first searches for fresh blocks in
the pop window, i.e., blocks that have not yet been
popped from by other threads, analogously to the push
operation. If no fresh block is available, it searches for
one in the lookahead window, before considering non-
closed blocks in the push window. Since the pop window
can only advance when the first block in it is closed,
another promising approach is to bias the random block
selection towards the front of the pop window. While
this may increase the contention on the first blocks,
it facilitates faster advancement of the pop window to
make new blocks available faster. We did not investigate
this approach beyond preliminary experiments.

6 Evaluation. We evaluate and compare the
BlockFTIFO and MultiFIFO with state-of-the-art FIFO
queues across multiple workloads and different hardware
architectures. This includes micro-benchmarks and a
concurrent breadth-first search on various graphs.

6.1 Methodology. To measure the maximum
throughput, we design the following two micro-
benchmarks that aim to mimic practical workloads.

e Push-Pop: Each thread repeatedly performs al-
ternating push and pop operations for 5 seconds,
keeping the number of elements in the queue con-
stant. We choose a large enough capacity for the
bounded queues and pre-fill all queues with suffi-
ciently many elements to ensure that the queues
never run full or empty. We measure throughput
as the number of push—pop iterations per second.

e Producer-Consumer: Given a fixed number of
threads, some perform push operations, while the
other perform pop operations. We use the same
queue size and capacity as in the push-pop bench-
mark. Depending on the configuration, the number
of elements may grow or shrink, in extreme cases
the queues may even run full or empty. We mea-
sure the throughput as the minimum of push and
pop operations performed per second.

The elements in the queue are 64-bit integers, since

this data type is supported by all implementations.?
Each experiment is repeated five times, and we report
the mean. The standard deviation is shown in plots as
errors bars where significant.

To measure the rank errors exhibited by a queue,
we take timestamps for each insertion and deletion.
After the benchmark, we reconstruct a global order of
operations, which we replay sequentially. While this
process is not perfectly accurate, we deem it sufficient
for our purposes.

The BlockFIFO, the MultiFIFO and all experi-
ments are implemented in standard C++420. Com-
petitors are implemented in C and C++, some using
non-standard extensions. All code is compiled with
GCC 14.2.0, using the flags -03 -DNDEBUG. We pin ex-
ecution threads to hardware threads to increase stabil-
ity and consistency across experiments. We use three
different machines (AMD, ARM, and Intel) for our bench-
marks. Details to the hardware of these machines can be
found in Table 6.1. All machines run Rocky Linux 9.5
with Linux kernel version 5.14. Unless specified oth-
erwise, we use machine AMD. The source code for our
implementation, including the data structures and the
benchmarks, is available online®.

6.2 Competitors. We compare the BlockFIFO
and MultiFIFO with the following implementations
of state-of-the-art competitors found in the literature.
While the main focus is on relaxed FIFO queues, we
also include strict FIFO queues for reference. Relaxed
FIFO queues are expected to outperform strict FIFO
queues in terms of throughput and scalability at the
cost of rank errors.

BF The BlockFIFO with configurable block factor B
and block size C.

MF The MultiFIFO with configurable queue factor ¢
and stickiness period s.

k-FIFO Implementation® of the k-FIFO [15, 10] with
configurable segment size k. The authors suggest a
segment size of k = p.

d-CBO Implementation® of the d-CBO [24] with con-
figurable number of sub-queues per thread c.

LCRQ Implementation” of the LCRQ [18].

2The k-FIFO implementation reserves some higher-order bits
for internal tagging, which are unavailable for data. This has no
practical implications on our experiments.
4https://zenodo.org/records/17293832
Shttps://github.com/cksystemsgroup/scal
Shttps://github.com/dcs-chalmers/semantic-relaxation-dcbo
"https:/ /zenodo.org/records /7337237


https://zenodo.org/records/17293832
https://github.com/cksystemsgroup/scal
https://github.com/dcs-chalmers/semantic-relaxation-dcbo
https://zenodo.org/records/7337237

Table 6.1: Hardware details of all machines used in experiments.

Max. Clock Freq. L1d/L2/L3 Cache?

CPU (ISA) Sockets/Cores/Threads
AMD  EPYC 9684X (x86-64) 1/96/192
ARM  Neoverse-N1 (ARMvS8.2-A) 1/80/80
Intel Xeon Gold 6138 (x86-64) 4/80/160

3.7GHz 32 KiB/1 MiB/1152 MiB
3.0 GHz 64 KiB,/1 MiB/-
3.7 GHz 32 KiB/1 MiB/27.5 MiB

FAAAQueue Implementation® of the FAAAQueue.

6.3 Micro-Benchmarks. Figure 6.1 shows the
throughput and quality of all competitors for a wide
range of parameter configurations on the push-pop
benchmark. The BlockFIFO and the MultiFIFO are
the only competitors where the throughput increases
significantly with higher degrees of relaxation. Con-
sequently, they achieve an order of magnitude higher
throughput than the next fastest competitor (the d-
CBO) at the cost of higher rank errors. With lower
thread counts (p = 4, p = 32), the BlockFIFO dom-
inates the MultiFIFO with higher throughput at sim-
ilar rank errors. However, with p = 192 threads, the
MultiFIFO achieves higher throughput than the Block-
FIFO for rank errors below 2000. With more relaxed
configurations, the throughput of the BlockFIFO scales
faster, outperforming the MultiFIFO significantly. The
d-CBO offers slightly lower rank errors than the highest-
quality configurations of the MultiFTFO and BlockFIFO
while achieving similar throughput. Unfortunately, the
throughput of the d-CBO barely increases with higher
degrees of relaxation. The k-FIFO is dominated by
other competitors on the entire Pareto-front. While
it exhibits similar quality to the d-CBO, it has sig-
nificantly lower throughput and also does not scale
well with higher degrees of relaxation. As expected,
the strict FIFO queues exhibit virtually no rank er-
rors. Their throughput is competitive with the highest-
quality configurations of the other competitors for low
thread counts, but is an order of magnitude slower for
192 threads.

For subsequent experiments, we select three config-
urations (Quality, Balanced, and Fast) of implementa-
tions with tunable quality parameters that are Pareto-
optimal on the throughput-quality spectrum for the
push-pop benchmark with 192 threads on machine AMD.
The selected configurations are given in Table 6.2 and
additionally annotated in Figure 6.1. Detailed param-
eter tuning for the BlockFIFO and the MultiFIFO can
be found in Appendix C.

Figure 6.2 shows the throughput scaling behavior
of all competitors on the push-pop benchmark for all

8https://concurrencyfreaks.blogspot.com/2016,/11/
faaarrayqueue-mpme-lock-free-queue-part.html

Table 6.2: Selected configurations for configurable com-
petitors used in the experiments.

Competitor (Parameters) Q B F
BF (B,0) 1,7 1,63 1,511
MF (c, 5) 2,1 4,16 4,256
k-FIFO (k) p/2 4p
d-CBO (c) p/2  p 2p

machines. Unfortunately, the LCRQ and d-CBO imple-
mentations are not compatible with machine ARM, and
are therefore omitted. The balanced and fast configu-
rations of the BlockFTFO and MultiFIFO consistently
achieving higher throughput than the other competitors
for all thread counts, with the fast BlockFIFO being the
fastest. While the d-CBO also exhibits some scalabil-
ity, its fast configuration is an order of magnitude slower
than the fast BlockFIFO and MultiFIFO configurations.
The quality variants show similar performance to the
d-CBO with the highest thread count. The quality con-
figuration of the MultiQueue and the d-CBO behave al-
most identically due to their conceptual similarity. The
k-FIFO does not scale well, and—unsurprisingly—the
strict queues do not scale at all. The results are gen-
erally consistent across all machines, with the notable
exception of the BlockFIFO on the Intel machine. Here,
the quality and balanced configurations do not scale well
when using more than one NUMA node (p > 16). This
is probably due to the fact that all threads must access
blocks within the current windows. These blocks likely
reside on the same NUMA node, leading to high bus
contention. The MultiFIFO does not suffer from this
problem, since different threads can operate on differ-
ent sub-queues that may be located on different NUMA
nodes. Appendix E shows the quality scaling behav-
iour of all competitors on the push-pop benchmark for
machine AMD.

Figure 6.3 shows the producer-consumer benchmark
for different ratios of producers and consumers and dif-
ferent thread counts. Almost all competitors favor bal-
anced ratios of producers and consumers over extreme
imbalances, indicating that the performance of both
operations is similar. Similar to the push-pop bench-
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Figure 6.1: Various configurations of all competitors on the push-pop benchmark with different thread counts on
machine AMD. For the BlockFIFO, the block factor B ranges from 1 to 16 and the block size C' ranges from 7 to
2047. For the MultiFIFO, sub-queues per thread ¢ range from 2 to 8 and stickiness s ranges from 1 to 4096. For
the k-FIFO, segment size k ranges from %p to 64p. For the d-CBO, the sub-queue count ¢ ranges from ép to 8p.
For all ranges, we sample integer powers of two (minus one for the block size). Non-Pareto-optimal configurations
of the BlockFIFO and MultiFIFO are shown with low opacity. Configurations used in further experiments are
highlighted with circles and their name is annotated.
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Figure 6.2: Throughput on the push-pop benchmark with different thread counts on all machines.

mark, the balanced and fast variants of the BlockFIFO
and MultiFIFO generally outperform all other competi-
tors. Interestingly, the BlockFIFO still performs well in
consumer-heavy workloads, where the queue is likely to
run empty, which is a scenario that it is not designed for.
The MultiFIFO exhibits a bias towards producer-heavy
workloads, with an optimal ratio of around }—é. How-
ever, it has the most pronounced performance drops for
extreme ratios among all competitors. This is likely due
to the fact that queues are locked by one type of worker
for the majority of the time, while the other worker
type starves, as there is no progress guarantee for each
type of operation. The d-CBO is more stable across dif-
ferent ratios than the MultiFIFO for all thread counts
because it avoids locking by using lock-free sub-queues.
Both perform poorly with consumer-heavy workloads
due to triggering a costly emptiness-detection algorithm
that scans all sub-queues. The k-FIFO and the strict
competitors exhibit very stable performance across all
ratios, but they are consistently slower than the other
relaxed competitors.

Results of the producer-consumer benchmark on the
ARM and Intel machines are given in Appendix E.

6.4 Breadth-First Search. The single-source
shortest path problem (SSSP) is a fundamental and
well-known graph problem. On unweighted graphs, it
can be solved with a Breadth-First Search (BFS). A
straightforward BFS algorithm uses a FIFO queue to
store the nodes that are to be explored. A natural par-
allelization of this algorithm is then to use a concurrent

queue. Williams and Sanders [26] describe a parallel
SSSP algorithm for weighted graphs that employs a con-
current priority queue. The idea of the algorithm is to
allow the exploration of sub-optimal nodes, potentially
requiring the re-exploration of parts of the graph when
a shorter path to a node is found later. We adapt this
algorithm to unweighted graphs by using a concurrent
FIFO queue instead of a concurrent priority queue.

We evaluate the BFS on various real-world graphs
for strong scaling behaviour and on random graphs
(generated with KaGen [6]) for weak scaling behaviour.
The real-world graphs are the road networks of Europe
and the USA, the follower-relationships on Twitter [16],
cross-references in the English Wikipedia and the net-
work of .uk domains [3].2 Table 6.3 compares core char-
acteristics of these graphs. For the weak scaling exper-
iments, we use the following graph classes:

e RGG2D: Random geometric graph with points on the
2D plane.

e RHG: Random hyperbolic graph with a gamma of
v =2.1.
e GNM: Erdos-Rényi graph.

The number of nodes scales linearly with the number of
threads with a scaling factor of 216, resulting in n = 2'6p
nodes. The average vertex degree is set to 64.

9The road network graphs were obtained from https://
illwww.iti.kit.edu/resources/roadgraphs.php, the others from
https://law.di.unimi.it/datasets.php
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Figure 6.3: Throughput with different producer-consumer ratios at different thread counts.

Table 6.3: Number of nodes (n) and edges (m), as well
as average node degrees for all graph instances used for
strong scaling.

Name n/105 m/10% Avg. deg.
enwiki-2022 6.5 159.0 49.0
1ljournal-2008 5.4 79.0 29.5
twitter-2010 41.7 14684 70.5
uk-2005 39.5 9364 47.5
0SM Europe 173.8 348.0 4.0
0SM USA 23.9 28.9 2.4

Figure 6.4 shows the performance on the strong
scaling and weak scaling graphs. On the real-world
graphs, the BlockFIFO and MultiFTFO generally scale
well and achieve a speedup of up to 10 over the sequen-
tial BFS, except for the 0SM USA graph. The BlockFIFO
is consistently the best-performing queue for all thread
counts and graph instances. On the enwiki-2022,
ljournal-2008 and twitter graphs, the d-CBO also
has good scalability and competitive performance to
the MultiFIFO. Particularly on the road networks, no
competitor besides the BlockFIFO and the MultiFIFO
is able to substantially outperform the sequential BFS
even with 192 threads. The non-relaxed competitors do
not scale beyond 8 threads and are consistently slower
than all relaxed competitors.

The weak scaling graphs show similar results, ex-
cept for the RGG2D graph class, where the d-CBO out-
performs all other competitors for high thread counts.
On all other graphs, the BlockFIFO and the MultiFIFO
outperform the other competitors consistently. On the
RHG graph, the other competitors are slower than the se-
quential algorithm except for the d-CBO with the high-
est number of threads.

Figure 6.5 shows the extra work incurred by the
relaxed queues as the number of processed nodes divided
by the number of processed nodes in a sequential
BFS. Generally, the extra work is within one order of
magnitude of the sequential BFS. Since the throughput
of the relaxed queues is up to two orders of magnitude
higher than strict queues, this is a worthwhile trade-
off.  While the MultiFIFO often induces the most
extra work, the BlockFIFO is often competitive with
the strict FAAAQueue. The RGG2D graph is a notable
outlier, where both the BlockFIFO and MultiFIFO
induce significantly more extra work than the other
competitors. This aligns with the d-CBO outperforming
them on this graph, but explaining the discrepancy
requires further analysis.

In Appendix D, we show additional benchmarks for
a BFS benchmark with multiple source nodes, resulting
in significantly higher scalability. The BlockFIFO, the
MultiFIFO, and the d-CBO achieve a speedup of over
two orders of magnitude over the sequential execution.
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7 Conclusion and Future Work. With the
MultiFIFO and the BlockFIFO, we have introduced re-
laxed concurrent FIFOs that allow very high through-
put and scale with increased relaxation. In particular
the BlockFIFO still offers many opportunities for fur-
ther improvement. Besides giving a “proper” theoret-
ical analysis, we would like to (1) make them perform
better when almost empty and (2) avoid the quadratic
dependence of rank errors on the number of threads.

Problem (1) may be addressed by observing that,
with very few elements, we can remove any element and
we can insert a new element anywhere while respecting
the rank error bounds. One possibility is to allow over-
lapping push and pop windows and allow concurrent
insertions and deletions in the same block. However,
this approach makes emptiness detection more difficult.

For Problem (2), we consider guiding threads
to blocks more efficiently by augmenting the bitsets
with a hierarchical structure supporting efficient, low-
contention traversal. This might allow us to transition
to blocks whose size need not scale with the number of
threads.

We showed that relaxed FIFO queues offer a sim-
ple yet promising approach to parallel graph searches.
We intend to investigate their application in further do-
mains, and view a parallel version of the preflow-push al-
gorithm for the maximum-flow problem [9] as a promis-
ing candidate. Analyzing the connection between the
quality of a queue and the extra work incurred is another
interesting direction for future research, which may help
to select and tune the appropriate data structure for a
given application.

Finally, we find it interesting to look at adaptations
of the BlockFIFO for other architectures like GPUs or
distributed memory.
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A Lock-Free Ring Buffer Implementation.
Here, we describe the lock-free implementation of the
BlockFIFO using a fixed-size ring buffer. The blocks
are stored in a linear array A of size |A| = k-w for some
integer £k > 3. Each block consists of a header and
an array of C cells that store the elements. The block
header is represented as a single integer that encodes
an epoch, a pop counter, a push counter, and a bit to
indicate whether the block is claimed. The epoch is
a monotonically increasing integer that is incremented
whenever the block is closed. A block indez is an integer
that encodes both the position of a block in the array
and its epoch. Specifically, block index ¢ references block
Ali mod |A|] in epoch [i/|A]]. The block index i = —1
indicates an invalid block by convention. The push and
pop windows are represented as block indices to the
first block in the respective window. A block index
is walid if it is not —1 and the referenced block has
the same epoch as the block index. If the epoch of a
block index is smaller than the epoch of the referenced
block, the block is regarded as closed. FEach thread
maintains block indices to the blocks it last pushed into
and popped from, respectively. Pseudocode for the push
and pop operations is provided in Algorithm 2 and 3,
respectively.

To claim a block, a thread changes the block’s claim
bit from false to true. Inserting an element into a
claimed block involves three steps. First, the threads
reads the block header and checks that the block index
is valid and that the block is not full. Second, it
attempts to place the element into the cell indicated
by the push counter, checking that the cell was empty
(i.e., contained 1) prior to the operation. Third, the
thread attempts to commit the element by incrementing
the push counter in the header if the header remained
unchanged during the operation. If committing fails,
the operation is reverted by resetting the cell to L.

If any of the three steps fails, the thread attempts
to claim another random unclaimed block in the push
window. If the push window contains no unclaimed
blocks, the thread advances the push window by w
blocks, or, if the queue is full, the insertion fails.

When deleting an element from a non-empty block,
a thread first attempts to reserve the element. If
it was the last element in the block, it does so by
incrementing the epoch counter, thereby closing the
block. Otherwise, it does so by incrementing the block’s
pop counter. After reserving an element, the thread
atomically retrieves the element and replaces its cell
with L.

Crucially, an inserted element cannot be deleted
until it is committed: Deletions only consider cells with
indices within the block’s push and pop counters. Once

the element is inserted into its cell, no other thread
can advance the block’s push counter beyond the cell’s
index, since subsequent insertions into that cell would
fail. Moreover, if the push counter was already greater
than the cell’s index, then the pop counter must also
have been greater than the cell’s index; otherwise, the
cell would not have been empty when the element was
inserted. If a thread suspends after writing an element
to a cell but before committing it, only the cells up to
this cell can be used in later epochs. When the thread
resumes, it will either commit the element or revert the
operation, making all cells in the block available again.
As soon as a deleting thread reserves an element in a
block, no other thread can reserve the same element.
If a deleting thread suspends right after reserving an
element but before deleting it, the remaining elements
in the block can still be deleted and the block can still be
closed. Again, only the cells up to the reserved element
can be used in later epochs. When the thread resumes,
it will delete the element, making all cells in the block
available again.

A.1 Lock-Freedom. We sketch the main argu-
ment for lock-freedom, showing that within a bounded
number of steps, at least one thread is guaranteed to
complete its operation.

An inserting thread will, within a bounded number
of steps, either complete its operation, attempt to insert
an element into a claimed block, attempt to claim a
new block, or attempt to advance the push window.
When inserting an element succeeds, the operation
completes in a bounded number of steps. If inserting
an element into a claimed block fails, it attempts to
claim a new block. Since each block can be claimed at
most once per epoch, one inserting thread will, within a
bounded number of steps, either complete the insertion
(potentially failing) or successfully advance the push
window. Once the push window is advanced, all blocks
in the new push window are unclaimed. The pop
window cannot advance to these blocks before at least
one insertion into a block in the new push window is
completed. Since insertions never update the header or
place elements in the cells of a block claimed by other
threads, at least one thread must be able to complete
its operation within a bounded number of steps.

A deleting thread will, within a bounded number of
steps, either complete its operation, attempt to reserve
an element to delete, attempt to close a block, or
attempt to advance the pop window. When reserving an
element succeeds, the operation completes in a bounded
number of steps. If reserving an element or closing a
block fails, it is retried until it succeeds or the block is
closed. However, the block header can be changed at
most C'+ 1 times by inserting threads before a deletion



Algorithm 2: Pseudocode for the push operation.

Result: true if the insertion succeeds; false if the queue is full
Data: pushBlock, the block index of the last block the thread inserted into
Input: Element to insert e

Function push(e)

p < load (pushWindow)

if pushBlock > p then

h < load (A[getPos (pushBlock)].header)

if h.epoch = getEpoch(pushBlock) A insertInBlock(h, pushBlock, e¢) then
if h.pushes = C — 1 then pushBlock() <+ —1

L return true

repeat
7 < random(0, w — 1)
for j < 0tow—1do > search random unclaimed block

i+ p+(r+j5 modw)

h < load (A[getPos (i)].header)

h* < toHeader (getEpoch(i), 0, 0, false)

h' < toHeader (getEpoch(i), 0, 0, true)

if h = h* A CAS(A[getPos(i)].header, h, h') then > block claimed
L if insertInBlock(h, i, ¢) then pushBlock < i; return true

if p 4+ w — load(popWindow) = |A| then > queue is full
| pushBlock <~ —1; return false

p < CAS (pushWindow, p, p + w) > advance push window
Function insertInBlock(h, i, €)
if CAS(A[getPos(i)].cells[h.pushes], L, ) then
h' + toHeader (h.epoch, 0, h.pushes + 1, true)
if CAS(A[getPos(i)].header, h, h’') then return true
AlgetPos (i)].cells[h.pushes] < L

return false




Algorithm 3: Pseudocode for the pop operation.

Result: The deleted element e, or L if the queue is empty.
Data: popBlock, the block index of the last block the thread deleted from

Function pop()

if popBlock # —1 then

h < load (A[getPos (popBlock)].header)

if h.epoch = getEpoch(popBlock) A reserveElement (h, popBlock) then
L return swap (A[getPos (popBlock)].cells[h.pops], L)

repeat
p < load (popWindow); q < load (pushWindow)
if p+w < g A Load(A[getPos(p)].header).epoch # getEpoch(p) then
L CAS (popWindow, p, p+ 1); continue > first block is closed

r < random (0, w — 1)
for j <~ 0tow—1do
i1+ p+(r+7 modw)
repeat

h < load (A[getPos (i)].header)

if h.epoch # getEpoch(i) then break

if reserveElement (h, popBlock) A h.pushes > 0 then

L popBlock < i; return swap (A[getPos (4)].cells[h.pops], L)

if p+ w = ¢ then > pop window is directly behind push window
pushWindowEmpty <« true
fori+qgtog+w—1do > scan push window for elements

h < load (A[getPos (i)].header)
if h.pushes > 0 then pushWindowEmpty < false; break

if pushWindowEmpty A ¢ = load (pushWindow) then return |
CAS (pushWindow, ¢, ¢ + w) > advance push window
B CAS (popWindow, p, p + w) > advance pop window

Function reserveElement (h, i)

if h.pops + 1 < h.pushes then > block has more than one elements
| R’ < toHeader (h.epoch, h.pops + 1, h.pushes, true)
else > block can be closed

| R’ toHeader (h.epoch+1, 0, 0, false)
| return CAS(A[getPos (i)].header, h, h')




successfully reserves an element or closes the block.
Since each block can be closed at most once per epoch,
one deleting thread will, within a bounded number of
steps, either complete its operation (potentially failing)
or successfully advance the pop window. Thus, if at
least one element is in the queue, after a bounded
number pop window advances, at least one block in the
pop window will contain an element. After a bounded
number of steps, at least one deleting thread will be able
to reserve an element in the pop window and complete
its operation.

B Bitset Details. The bitset is partitioned into
small atomic units. In order to prevent false sharing,
atomic units are aligned to cache lines. It is desirable
to establish the bitset as an arbiter of truth to actually
allow for avoiding potentially numerous block header
reads. This necessitates that the bitset must only
exhibit one-sided errors, where a bit may be set even if
the corresponding block does not contain any elements.
Some kind of one-sided error is unavoidable, as block
push/pop operations must be ordered in some way with
the corresponding bitset modifications. By choosing
the side of the errors like we have, it enables deleters
to concern themselves only with the set bits, which
they eventually reset over a bounded number of delete
operations. Blocks associated with unset bits are of no
concern to them. Additionally, it is necessary to bundle
an epoch with the bitset, which can be stored and
modified alongside each atomic unit. Without epochs,
deleters may create a two-sided error by resetting the
bit of a block that contained no elements when they
have started the operation, but has since been filled in
the subsequent epoch.

The search operation on each atomic unit can be
efficiently implemented using a fixed amount of instruc-
tions independently of the size of the atomic unit wu.
This implementation relies on the bitwise rotation and
count leading zeroes instructions commonly available on
CISC architectures.'® The search operation over the en-
tire bitset simply encompasses a linear iteration over all
atomic units, executing the atomic unit search opera-
tion on each until a desired bit is found.

This means that u is a tuning parameter, offering
a trade-off between reducing the contention on the
individual atomic units with a small v and allowing
more blocks to be checked in the same amount of
operations with large u. In practice, choosing u to
be minimal has shown to provide the best performance
until very high degrees of relaxation, where contention
becomes so low that the reduced operation count proves
more beneficial.

10For example ROR and LZCNT on x86.
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Figure C.1: MultiFIFO parameter tuning of the sub-
queues per thread ¢ and stickiness period s using the
push-pop benchmark. Stickiness ranges from 1 to 4096.
Annotated data points are configurations used in further
experiments.

C Parameter Tuning. We investigate the
trade-off between quality and performance offered by
different queues and their configurations and select spe-
cific configurations for further experiments. For this
purpose, we use the push-pop benchmark with the max-
imum of 192 threads on machine AMD to measure both
throughput and quality.

MultiFIFO. In Figure C.1, we compare different
configurations of the MultiFIFO. We vary the sub-
queues per thread ¢ between 2, 4 and 8 and the stickiness
period between 1 (which is equivalent to no sticking
behavior) and 4096, only considering values that are
a power of two.

The MultiFIFO plateaus relatively quickly with in-
creasing stickiness, offering no better performance at
continuously decreasing quality. Doubling the queues
per thread from 2 to 4 doubles the achievable perfor-
mance, however, further doubling the queues per thread
from 4 to 8 has no beneficial effect on either performance
or quality.

BlockFIFO. In Figure C.2 we compare different
configurations of the BlockFIFO. We tune the param-
eters B and C. Only powers of two are tested, with
B ranging from 1 to 16 and C ranging from 7 to 2047.
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Figure C.2: BlockFIFO parameter tuning of the blocks
per window per thread B and cells per block C' using
the push-pop benchmark. Annotated data points are
configurations used in further experiments. The gray
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number of cells in the windows (i.e., the product of B
and C is the same).

Notably, C' is always 2* — 1 in order to accommodate
for the 64-bit block header.

The BlockFTFO exhibits a peculiar vertical cluster-
ing of points around one level of quality as illustrated
by the dashed lines. This behavior can be sufficiently
explained by quality correlating to the amount of cells
per window, so the product of window size w and block
size C.'* For a fixed amount of cells per window a low B
and high C' appears optimal. Such a configuration min-
imizes the amount of potentially high-contention block
claim operations necessary to fill/empty an entire win-
dow, while maximizing the time that can be spent in
cache-friendly, typically low-contention inner-block op-
erations. Additionally, a low B minimizes the maximum
possible time spent looking for a valid block within a
window by minimizing the amount of blocks there are.

D Multi-Start BFS. On graph instances where
scalability is limited, more significant speedups can be
achieved by executing multiple searches concurrently

' There are always w less cells per window due to the block
headers, but that is irrelevant in practice.

within a single queue. We start searches from s nodes,
storing s distinct distance arrays and including the
associated source node index in the elements pushed to
the queues. This is reminiscent to the pre-computation
required for an A* with landmarks (ALT) search [8]
without weights.

As shown in Figure D.1, the scalability is vastly su-
perior to a single search being executed. Especially the
MultiFIFO and BlockFIFO benefit from the additional
work, achieving a speedup of two orders of magnitude
with the highest number of threads. While the d-CBO
outperformed the BlockFIFO and MultiFIFO on the
RGG2D graph on the standard BFS benchmark, this is
not the case for the multi-start BFS.

E Complete Benchmarks.

Quality. Figure E.1 shows the rank error behavior
of the relaxed competitors on the push-pop benchmark
for different thread counts. All competitors demon-
strate the expected linear scaling of rank errors for all
competitors.

Producer-Consumer on other Machines. The be-
havior is largely similar on the other machines, as seen
in Figure E.2. The BlockFIFO performance degrades on
the Intel machine, with a stark drop in performance for
producer-heavy workloads for the fast BlockFIFO that
is also similarly displayed by the fast MultiFIFO.

BFS with all competitors. Figure E.3 and Fig-
ure E.4 show the BFS benchmarks with all competitors
and configurations.
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