KIT | KIT-Bibliothek | Impressum | Datenschutz

Exploring soil moisture dynamics and variability across scales and geological settings using gaussian mixture-long short-term memory networks

Bischof, Balazs 1; Klotz, Daniel; Gupta, Hoshin V.; Zehe, Erwin 2; Loritz, Ralf 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Wasser und Gewässerentwicklung (IWG), Karlsruher Institut für Technologie (KIT)

Abstract:

Soil moisture is a key variable for a range of hydrological and ecological processes, yet capturing its small-scale variability and preferential flow phenomena remains challenging. Recent advancements in deep learning have demonstrated potential in predicting hydrological variables, but conventional data-driven models often struggle to represent small-scale variability effectively. In this study, we integrate Long-Short Term Memory (LSTMs) networks and Gaussian Mixture Models (GMMs) to simulate soil moisture dynamics while explicitly quantifying its associated variability. Unlike deterministic approaches, our probabilistic framework accounts for nonlinear relationships between inputs and outputs while modeling the inherent small-scale variability in soil moisture. We apply this methodology to a comprehensive in-situ soil moisture dataset from the Attert experimental basin, where the experimental design incorporates three replicated soil moisture profiles at each location and depth within a 5-meter radius. These replications are fundamental to our probabilistic framework: they provide direct, co-located observations of the natural spread in soil moisture under identical boundary conditions, allowing the model to learn the statistical structure of small-scale variability. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186572
Veröffentlicht am 07.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wasser und Gewässerentwicklung (IWG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2026
Sprache Englisch
Identifikator ISSN: 0022-1694
KITopen-ID: 1000186572
Erschienen in Journal of Hydrology
Verlag Elsevier
Band 664
Heft Part A
Seiten 134364
Nachgewiesen in Dimensions
Scopus
Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page