KIT | KIT-Bibliothek | Impressum | Datenschutz

A Comparative Analysis of Multi-Modal Semantic Perception Tasks and Datasets for Mobile Robotics

Ohnemus, Lars 1; Pang, Hao 1; Zhou, Lei 1; Müller, Lukas ORCID iD icon 1; Furmans, Kai ORCID iD icon 1
1 Institut für Fördertechnik und Logistiksysteme (IFL), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Data is key for semantic perception tasks, such as object detection and semantic segmentation. This is particularly true for multi-modal perception, where different sensors such as LiDAR and camera are fused to improve overall performance. While many public datasets for mobile robotics and adjacent domains exist, a comprehensive comparison of these datasets is still lacking. To address this, and to provide the research community with an overview of the available datasets, this paper conducts a large-scale meta-analysis to identify and compare the most relevant datasets for multi-modal perception tasks in mobile robotics. We provide an evaluation of 31 different datasets across six different tasks, and summarize key challenges, opportunities, and future directions associated with datasets.


Zugehörige Institution(en) am KIT Institut für Fördertechnik und Logistiksysteme (IFL)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 17.08.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-2246-9
KITopen-ID: 1000186584
Erschienen in IEEE 21st International Conference on Automation Science and Engineering (CASE 2025)
Veranstaltung 21st IEEE International Conference on Automation Science and Engineering (CASE 2025), Los Angeles, CA, USA, 17.08.2025 – 21.08.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 2414–2421
Nachgewiesen in Dimensions
Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page