KIT | KIT-Bibliothek | Impressum | Datenschutz

Steering the luminescence of donor–acceptor materials by regioisomerism of triazole linkers

Holzhauer, Laura 1; Francener, Carolina; Elsing, David ORCID iD icon 2; Danos, Andrew; Fuhr, Olaf ORCID iD icon 2,3; Jung, Nicole ORCID iD icon 1,3,4; Wenzel, Wolfgang 2; Monkman, Andrew P.; Bräse, Stefan ORCID iD icon 1,4; Kozlowska, Mariana ORCID iD icon 2; Puttock, Emma V. 1,4
1 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
4 Institut für Organische Chemie (IOC), Karlsruher Institut für Technologie (KIT)

Abstract:

We examine the impact of triazole connectivity on the photophysical properties of donor–acceptor emitters. In these systems, the electron donor is connected either to the triazole’s nitrogen atom (N1, ‘‘N-connected’’) or carbon atom (C4, ‘‘C-connected’’), giving rise to regioisomeric pairs with distinct excited-state behaviours. Donor strength and triazole orientation together govern energy levels, chargetransfer character, and delayed emission pathways. N-connected derivatives exhibit higher singlet energies and lower triplet energies compared to their C-connected ounterparts, resulting in consistently larger DEST values. These trends are attributed to disrupted donor–acceptor conjugation through the nitrogen linkage, thereby rendering the acceptor less electron-deficient in the N-connected series. Most compounds favour room-temperature phosphorescence (RTP) due to large singlet–triplet energy gaps ((ΔE$_{ST}$ > 0.4 eV)), while phenoxazine C-connected (PXZ-C) uniquely exhibits thermally activated delayed fluorescence (TADF), attributed to its small ΔE$_{ST}$ of 0.1 eV. Computational studies support these experimental trends, showing that the lowest triplet state is predominantly localised on the qui noxaline acceptor. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186590
Veröffentlicht am 07.11.2025
Originalveröffentlichung
DOI: 10.1039/d5qm00572h
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische und Chemische Systeme (IBCS)
Institut für Nanotechnologie (INT)
Institut für Organische Chemie (IOC)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.12.2025
Sprache Englisch
Identifikator ISSN: 2052-1537
KITopen-ID: 1000186590
HGF-Programm 43.32.01 (POF IV, LK 01) Molecular Materials Basis for Optics & Photonics
Weitere HGF-Programme 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Materials Chemistry Frontiers
Verlag Royal Society of Chemistry (RSC)
Band 9
Heft 24
Seiten 3505–3515
Vorab online veröffentlicht am 24.10.2025
Nachgewiesen in Dimensions
Scopus
Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page