KIT | KIT-Bibliothek | Impressum | Datenschutz

Learning World Models With Hierarchical Temporal Abstractions: A Probabilistic Perspective

Shaj Kumar, Vaisakh ORCID iD icon 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Machines that can replicate human intelligence with type 2~\parencite{daniel2017thinking} reasoning capabilities should be able to reason at multiple levels of spatio-temporal abstractions and scales using internal world models~\parencite{friston2008hierarchical,lecun2022path}. Devising formalisms to develop such internal world models, which accurately reflect the causal hierarchies inherent in the dynamics of the real world, is a critical research challenge in the domains of artificial intelligence and machine learning. This thesis identifies several limitations with the prevalent use of state space models (SSMs) as internal world models and propose two new probabilistic formalisms namely Hidden-Parameter SSMs and Multi-Time Scale SSMs to address these drawbacks. The structure of graphical models in both formalisms facilitates scalable exact probabilistic inference using belief propagation, as well as end-to-end learning via backpropagation through time. This approach permits the development of scalable, adaptive hierarchical world models capable of representing nonstationary dynamics across multiple temporal abstractions and scales. ... mehr


Volltext §
DOI: 10.5445/IR/1000186610
Veröffentlicht am 12.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Hochschulschrift
Publikationsdatum 12.11.2025
Sprache Englisch
Identifikator KITopen-ID: 1000186610
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xvii, 127 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Anthropomatik und Robotik (IAR)
Prüfungsdatum 19.11.2024
Schlagwörter World Models; Bayesian Brain; Deep Learning; Graphical Models; Robotics
Referent/Betreuer Neumann, Gerhard
Kersting, Kristian
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page