Operations Research Perspectives 15 (2025) 100362

journal homepage: www.elsevier.com/locate/orp

Contents lists available at ScienceDirect

Operations Research Perspectives

=

Operations
Research

Perspectives

Customer order scheduling in a permutation flow shop environment

Julius Hoffmann "%, Janis S. Neufeld >, Udo Buscher "

2 Institute for Operations Research, Discrete Optimization and Logistics, Karlsruhe Institute of Technology, Kaiserstr. 89, Karlsruhe, 76133, Germany
b Faculty of Business and Economics, Chair for Industrial Management, TU Dresden, Helmholtzstr. 10, Dresden, 01069, Germany

7

¢ Chair of Operations Management, Otto-von-Guericke-Universitdt Magdeburg, Universitdtsplat

2, Magdeburg, 39106, Germany

ARTICLE INFO ABSTRACT

Dataset link: https://github.com/Julius2627,/C
OSP_Flow_Shop

Keywords:

Machine scheduling
Customer order scheduling
Iterated greedy algorithm
Metaheuristics

Flow shop

Various recent scheduling literature has studied the so called customer order scheduling problem. In this class
of scheduling problems, there are multiple customer orders, and each of them consists of several jobs. The
order finishes and is ready to be shipped when the last job of the order finishes. In this paper, we consider
the customer order scheduling problem in a permutation flow shop environment with m machines. There are
n orders and each order has o jobs. The objective is to minimize the total completion time of the orders. We
present multiple problem properties and a MINLP formulation of the problem. Furthermore, four heuristics
which follow the Iterated Greedy Algorithm are developed. In a computational experiment, we evaluated the
four heuristics on their practicability. They showed good results in short calculation time when compared with

the MINLP solution from a solver. Afterwards, we compared the four heuristics with each other for different

problem sizes.

1. Introduction

In most real-world cases, a customer orders not one but multiple
desired products. This applies to both the B2B and B2C sectors. To
save on transportation costs, the manufacturer collects the products of
a customer order and sends them all at once rather than sending each
product individually. For the case that the customer needs all products
together for further processing, this also comes along with lower ware-
housing costs for the customer, as prematurely arrived products must
be stored until the further products of the order arrive. However, the
described aspect is disregarded in classic scheduling problems, where
each job is treated individually. Consequently, recent papers examine
the so-called customer order scheduling problem (COSP). In this class
of scheduling problems, each job to schedule belongs to a predefined
customer order. A customer order finishes when each of the jobs has
finished [1].

The principle of the COSP is not limited to the production context
but can be transferred to other disciplines, e.g., to computational
work (see [2] for explanation) or mobile communication. In the latter
application area, a message consists of multiple packages which can
be sent independently via the communication network to the receiver.
The message is sent completely when all packages have arrived at the
receiver.

The COSP has been studied for different problem settings and
objective functions. A notation for the so-called assembly scheduling

problem, for which the COSP is a special case, is presented by Framinan
et al. [3]. In general, assembly scheduling problems consider a machine
environment where at some point in the production process, all parts
of a product are assembled. Depending on the concrete problem con-
figuration, the product is finished after the assembly or needs further
processing steps. The notation «; — a, in the machine field of the
classical three-field scheduling notation indicates that an assembly
scheduling problem is considered. According to this notation, a; is
the machine environment prior the assembly and «, the following ma-
chine environment. The COSP is a subclass of the assembly scheduling
problem, where no further production step occurs after the assembly,
i.e., ¢ = 0 and hence, is represented as a; — 0 in the machine field
of the classical three-field scheduling notation, i.e., a; — 0|8]y. We
are adopting the notation in this paper. Even though, the flow shop
machine environment is prominent in scheduling research, literature
about this machine environment for the COSP is sparse. To the best
of our knowledge, this paper is the first that addresses the problem
Fm - O|prmu| Y. C;, i.e., minimizing the total completion time in a
m-machine permutation flow shop environment for the COSP.

In recent years, the iterated greedy algorithm (IGA) has been used
in various papers to solve different kinds of flow shop scheduling
problems. It showed promising results when applied to a permutation
based solution representation, which is common for the flow shop ma-
chine environment [4]. However, as the length of the job permutation
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increases, disadvantages arise with the IGA, as the objective function of
(partial) solutions has to be calculated frequently during each iteration.
This occurs in particular at the COSP in a flow shop environment, since
the length of the job permutation depends on the number of orders and
the number of jobs per order.

In this paper we address this issue and investigate the problem
Fm — O|prmu| Y, C;. This includes the presentation of four variants of
the IGA which solve this problem efficiently. To be more specific, the
contributions of this study are the following:

We identify and point out a new problem configuration of the
COSP, and derive properties of the problem which are mandatory
for the program formulation and the IGAs.

We formulate a MINLP of the problem configuration.

We develop four IGAs for the problem which take the special
problem structure into account. One is modifying the job permu-
tation as a whole, while the others modify the job permutation
of each order separately and subsequently merge these smaller
permutations.

The presented algorithms are evaluated in computational experi-
ments.

Based on the experimental results, we give suggestions for ap-
propriate solution strategies for different problem sizes of Fm —
O|prmu| Y. C;.

The remainder of this article is structured as follows. Section 2
gives an overview about literature related to the COSP, the flow shop
machine environment, and the IGA and its applications. In Section 3
we define the studied problem configuration and the notation which is
used in the paper. Furthermore, we present the relevant problem prop-
erties. The developed IGAs are described in Section 4 and evaluated
in the computational experiment of Section 5. Section 6 concludes the
results of the study and notes possibilities of future research.

2. Literature review

In this section we present related literature which addresses the
COSP in general, the COSP in machine settings which are similar to
the machine environment considered in this paper, and the application
of the IGA for different scheduling problems.

One of the earliest publications about the COSP is the paper from
Wagneur and Sriskandarajah [5]. They studied the COSP in the ded-
icated machine environment, where each order has one job on each
machine. However, the problem is not called COSP in the mentioned
paper, but open shop with jobs overlap. This points out that the COSP in
the dedicated machine environment can be considered as an open shop,
where the restriction that a job cannot be processed simultaneously by
the machines is removed. Note that an order corresponds to a job in
this open shop environment and a job to a task.

Wagneur and Sriskandarajah [5] studied the complexity of some
regular performance measures in the dedicated machine environment
and showed that the makespan and the maximum lateness can be
solved in polynomial time in this machine environment. Furthermore,
they stated proofs that the problems of minimizing the total tardiness,
the number of late jobs, and the total completion time are NP-hard,
even if there are only two machines. However, as shown in [6], the
proof for the last mentioned problem was not correct. The complexity of
the problem remained open until Roemer proved that DP2 — 0|| Y C;
is indeed NP-hard [7].

The dedicated machine environment was further investigated by Le-
ung et al. [8]. They first showed an interesting property of this machine
environment, namely that there exists always an optimal schedule for
DPm - 0| Y, f; (C;), where f; (C;) is increasing in C; for each i, where
each order is processed in the same sequence on each machine. This
property significantly facilitated the handling of problem solving for
objective functions such as ), C;, ' T;, and ) U; as a schedule could be
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represented by a sequence of order IDs. The authors used this insight
to describe six heuristics, including the Shortest Total Processing Time
first heuristic, the Earliest Completion Time first heuristic and a Tabu
Search heuristic, to solve the problem DPm — 0| ) C;.

As it is one of the most prominent objective functions in the schedul-
ing literature, the total completion time in connection with the COSP
was also examined in other papers. Yang and Posner [9] investigated
the total completion time of the COSP in a parallel machine envi-
ronment with identical machines. They stated that for the problem
Pm — 0|| X C; there exists an optimal schedule, where the jobs of
an order which are scheduled on the same machine, are processed
consecutively. Furthermore, they presented two heuristics for P2 —
0|l X C; and one for Pm — 0|| Y. C;. The unrelated parallel machine
environment with the product type splitting property was examined
by Xu et al. [10]. After establishing some optimality properties and a
programming formulation, the authors presented three heuristics for
this problem. More recently, the dedicated machine environment has
once again been the subject of research in [1,11], where different
heuristic approaches were studied.

There are various further problem configurations of the COSP stud-
ied in the literature, e.g., DPm — O|| X T; in [12-14], DPm —
0|l ¥ w,U; in [15], DPm — 0|ST,;|C, in [16], DPm — 0|ST,4| X.C;
in [17]1, and Pm — O|batch| Y, w;C; in [18]. Robust solution approaches
for the COSP with scenario-dependent problem parameters were stud-
ied in [19,20]. A stochastic version of the COSP where orders arrive
dynamically and their inter-arrival times form a Poisson process has
been investigated by Zhao et al. in [21]. Furthermore, Lin et al. [22]
consider the COSP with one machine, sequence independent setup
times and the objective of minimizing a linear combination of total
tardiness and total holding costs, i.e., 1 = 0|ST,;la > HC;+(1—a) Y. T;.
More recently, the COSP with a serial-batch machine was investigated
in [23]. Furthermore, Hsu and Liu [24] studied the COSP for different
performance indicators in order to reduce the stock level of finished
goods in the job shop environment. The interested reader is referred to
the review paper from Framinan et al. for an overview of configurations
of the COSP [3].

Even though the problem Fm — O|prmu| Y, C; has not been studied
before, related problems can be found in the literature. The minimiza-
tion of the makespan and the total completion time of the COSP in
a flow shop environment with exactly two machines was studied by
Yang [25]. The author derived problem properties and developed a
modification of Johnson’s Algorithm to solve the problem. However,
the study is limited to the two machine case. Chen et al. [26] studied
manufacturing synchronization in a hybrid flow shop environment with
dynamically arriving orders. The objective is to minimize the sum
of the longest waiting durations of the orders. As the orders arrive
dynamically and are unknown until they arrive, their solution algo-
rithm consists of a periodic scheduling policy together with a modified
genetic algorithm.

The distributed permutation flow shop problem in accordance with
the COSP for minimizing the makespan over all factories, i.e., DF —
0|prmu|C,,,,, is addressed by Meng et al. [27]. Here, all jobs of an
order have to be processed in the same factory, but it is not required
that all jobs of an order are processed consecutively. Their developed
heuristics are considering both, assigning the orders to the factories and
scheduling the jobs inside the factories. Even though the problem con-
figuration seems similar to our considered problem, the implication of
the customer order constraint in Meng et al. is different. Jobs belonging
to the same order must be processed in the same factory. However,
since the objective in Meng et al. is to minimize the makespan, i.e., the
maximum completion time of all orders and hence, also of all jobs

Coax = max;e{C;} = maxiey jey, {C,-j}), the sequencing problem inside
a single factory becomes independent of the customer order constraint
if the order is fixedly assigned to a factory. Therefore, the customer
order constraint is more relevant for the assignment of jobs to a facility
than for the actual sequencing task. Further studies which consider a
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Table 1

Selected COSP literature.
Reference Considered Problem Model Exact alg. Heuristic
Erel and Ghosh [31] 1-0[8T,, X C, x (DP)
Lin et al. [22] 1-0|ST,,la Y HC,+(1-a) X T, x (B&B) x (SA)
Liu et al. [23] 1 — Olbatch, incompt, ST, 4| ¥(a;; E;; + fT;) X x (GA)
Roemer [7] DP2- 0|l X C;
Sung and Yoon [2] DP2 - 0| Y w,C; X
Wagneur and DPm = 0||Cpps/Lyax/ X Ci/ 2T,/ XU, X
Sriskandarajah [5]
Leung et al. [8] DPm - 0|| Y, C; x (TS)
Framinan and DPm - 0|| Y C; X
Perez-Gonzalez [1]
Hoffmann et al. [11] DPm - 0|| X C; X x (IGA)
Lee [12] DPm—0|| X T, x (B&B) X
Framinan and DPm—0|| X T, X x (Math.)
Perez-Gonzalez [13]
Braga-Santos et al. [14] DPm —0|| YT, X X
Hoffmann et al. [32] DPm - 0| Y (X E,; +mT;) X x (IGA)
Wu et al. [33] DPm = 0[] X C;. Tyos x (B&B) x (IGA, PSO)
Wu et al. [34] DPm — 0|r,] ¥ w,C, x (B&B) x (IGA)
Lin et al. [15] DPm - 0|r,| Y w,U; x (B&B) x (ABC)
Prata et al. [16] DPm — 0|ST,;|C,,0x X x (Math.)
Prata et al. [17] DPm - 0|ST,,| X C; X x (DE)
Li et al. [19] DPm = O|r,;, scenario| max,c(, 0 { X w, U} x (B&B) x (GA)
Yang and Posner [9] Pm - 0]| X C, X
Shi et al. [18] Pm — Ol|batch, incompt|C,,,./ Y, w,C; X ) x (DE)
Xu et al. [10] Rm = 0lsplit| ¥, C; X X
Yang [25] F2 - 0]|Cpor/ X C; (x) X
Cetinkaya and Yozgat [35] F2 - 0|ST,,,, prmu,ls| Y C; X X
Meng et al. [27] DF — O|prmu|C,,,, X x (VNS, ABC, IGA)
This paper Fm — O|prmu| 3, C; X x (IGA)

distributed permutation flow shop environment and include a customer
order constraint can be found in [28-30].

Xiong et al. [36] studied a problem which they called the precast
supply chain scheduling problem in the context of the COSP. Jobs
of orders had to pass through exact 9 stages, some of which could
process only one job at a time (sequential stages) and the others
could process multiple jobs simultaneously (parallel stages). The last
stage was transportation, which was executed at an exact integer hour.
Consequently, the jobs of an order were already gathered after the
second last stage. The derived properties and algorithms based largely
on the findings of an analysis of real world data, which made particular
reductions and algorithm decision rules reasonable. Even if they pro-
vided interesting results, the transferability to our general case is very
limited due to this approach. Another closely related recent paper is
the study from Cetinkaya and Yozgat [35]. They investigated the COSP
in a two machine flow shop environment with lot streaming, where the
same products ordered by the different customers have to be processed
consecutively. After providing some proofs for problem properties and
a mathematical programming model, the authors presented an effective
heuristic with four phases.

We provide an overview of the different configurations of the COSP
which were considered in the literature in Table 1. Note that not all
mentioned papers are listed in the table as the respective problem
configurations do not match well with the classical three-field schedul-
ing notation, are not defined as COSP or because the respective paper
is only a revisitation of an earlier paper. As shown in the table, the
literature lacks a paper that addresses the m-machine permutation flow
shop environment, even though it is a prominent setting in scheduling
literature. We chose the objective of minimizing the total completion
time because it is one of the classical objectives in scheduling research,
which is also shown in Table 1.

Besides the considered problem configuration, we also present the
investigated solution approaches of the papers. An ‘x’ in the model-
column indicates that a mathematical program that can be solved by
a solver is given in the respective paper. If the authors developed an
algorithm that can solve the respective problem guaranteed optimally,
we mark it in the column Exact alg. Furthermore, we indicate if the

algorithm follows a general framework, e.g., Branch-and-Bound (B&B)
or Dynamic Programming (DP). Note that the exact algorithms in
Yang [25] and Shi et al. [18] run in polynomial time but solve the
problems F2 — 0||C,,,,, and Pm — O|batch, incompt|C,,,, respectively. In
the last column, Heuristics, we indicate if heuristic solution approaches
were developed. We also show if one or all of the developed heuristics
follow a predefined framework, such as Simulated Annealing (SA),
Genetic Algorithm (GA), Tabu Search (TS), IGA, Particle Swarm Opti-
mization (PSO), Artificial Bee Colony (ABC), Differential Evolution (DE)
or Variable Neighborhood Search (VNS), or are a Matheuristic (Math.).

As most scheduling problems are NP-hard, much scheduling re-
search focuses on generating effective heuristics for solving the ad-
dressed problem, which can also be seen by the presented literature.
A heuristic that attained much attention in recent years is the IGA.
In a systematic literature review, Zhao et al. [4] present 137 papers
which study the IGA for flow shop scheduling which shows their good
performance for this machine environment. Another reason for choos-
ing the IGA in our study is its adaptability. In the basic framework,
the IGA consists of five (or four) steps, i.e., initialization, local search
which is non-compulsory, destruction, construction and acceptance.
Each step is a function that can be designed in various ways. The
last four mentioned steps are repeated until a termination condition
is met [4].

In addition to flow shop scheduling problems, the IGA has also been
applied in the context of the COSP. Wu et al. [33] used an IGA to
solve DPm — 0|| Y. C;,T,,,., Where it outperformed other algorithms,
e.g., a particle swarm optimization algorithm, while it was applied
in [34] for the problem DPm — 0|r;| ¥ w;C;. Furthermore, Hoffmann
et al. [11] developed an IGA, which showed good performance for
the basic configuration of the COSP, i.e., DPm — 0|| Y C;. More
recently, multiple IGAs which have an additional refinement step were
developed in [32] for the problem DPm — 0|| Y (X E;; + mT;).

The schedules which are modified by the IGAs in the first three men-
tioned papers of the last paragraph were represented by a sequence of
orders. Consequently, the position of a job on a machine corresponded
to the position of the order in the sequence. This is reasonable as by
the mentioned proposition from Leung et al. [8], there exists an optimal
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Table 2 Table 3

Notation. Processing times of the exemplary problem instance.
Parameters Dijk J J, Jy
n number of customer orders M, M, M, M, M, M,
m numl;er oi fnzchmes . o, 2 3 5 3 6 9
0 number of jobs per order . o, 3 4 3 3 4 9
Pijk processing time of job j of order i on k
TP; total processing time of job j of order i

Decision variables

Xijn binary decision variable that becomes 1 if
job j of order i is at position A on all
machines, and 0 otherwise

G completion time of order i

Cijk completion time of job j of order i on k

Notation for the algorithms

d, dy, d, destruction sizes
Vs 2y dyins Apax> Apaxt> Apaxa algorithm parameters
s B> Tno—d sequence of jobs
'
Torders> opders? Torders:d> Torders:n—d sequence of orders

job sequence of order i

Tiobs> Tiops> Tropss Fjobs:d> Tjobs:o-d set of job sequences of the orders
m, ', n", m feasible schedule

F() objective function value

Cmax(.) makespan of the job sequence

’ N
Tjobs.is jopsi> Fjovsi> Fiobs:di> Fjobs:o—d.i

schedule for various problem configurations in the dedicated machine
environment, where each order is processed in the same sequence on
each machine, and the length of the sequence is the number of orders.
However, this schedule representation is not applicable for the flow
shop environment. At the same time, a schedule representation as a
sequence of all jobs of all orders is computationally intensive when used
in an IGA due to the length of the sequence. We will address this issue
in the following sections.

3. Problem description
3.1. Problem definition

In the following, we define the considered problem formally. There
are n orders where each order consists of exactly o jobs. Each of the
jobs has to be processed on all machines and the machine sequence is
the same for each job. We denote the number of machines with m and
the numeration of the machines is equivalent to the machine sequence
of production. As we consider a permutation flow shop, all jobs have to
be processed in the same sequence on all machines which means a job
cannot pass another job between the machines and preemptions are not
allowed. Furthermore, simultaneous production of one job on multiple
machines is prohibited. Job j of order i on machine k has a processing
time p;;, and, based on the schedule, a completion time C;;,. By setting
the respective processing times to zero, it is possible to generalize the
problem to the case where not all orders have the same number of jobs,
and where not all jobs have to be processed on each machine. Note
that in the latter case, the jobs still cannot pass each other in the shop
since we still consider a permutation flow shop. Release dates and setup
times are not considered. The completion time of order i is defined by
the completion time of the last scheduled job of this order on the last
machine, ie., C; = max,c;,{C;;,}. The objective is to minimize the
sum of completion times of all orders. An overview of the used notation
in this paper can be found in Table 2.

For the purpose of clarity, a feasible schedule for an exemplary
problem instance is given next. In this instance, there are 2 machines, 2
orders and 3 jobs per order, i.e., m = 2, n = 2 and o = 3. The processing
times of this instance are stated in Table 3. Here, O, represents order i,
J; job j of the corresponding order, and M, machine k.

A feasible solution of this problem is the schedule with the job
sequence {(1,1),(2,1),(2,2),(2,3),(1,2),(1,3)} where for a job (i, ), i is
the order number and j the job of the order. As can be seen by (1,1)

and the following jobs of order 2, the jobs of a single order do not have
to be processed one after another. The Gantt chart of this schedule can
be found in Fig. 1. The job and order numbers of the jobs are labeled
as well as some of the completion times.

By this example we also introduce the terms forced and unforced idle
times as well as non-delay schedule. As can be seen in Fig. 1, there are
idle times between some jobs, e.g., between (2, 3) and (1, 2) on machine
2. However, these idle times are forced by the flow shop property
according to which a job can only be processed on the next machine if
it is finished on the current machine. In contrast, unforced idle times
are actively inserted by the decision maker and occur if a machine is
kept idle despite a job is waiting before the machine for processing.
If a schedule has no unforced idle times, the schedule is called non-
delay (see [37] for further explanation). An example for an unforced
idle time for the problem instance and job sequence above would be the
following. Job (2,3) could start at time 13 on machine 2, despite being
finished at time 12 on machine 1 and the previously scheduled job (2,2)
finished at time 12 on machine 2. The remaining operations are as in
Fig. 1. Consequently, machine 2 would be kept idle for one time unit
even though job (2,3) would wait before the machine for processing.

3.2. Problem properties

We are presenting some important problem properties in the follow-
ing.

Proposition 1. The problem Fm — O|prmu| Y, C; is NP-hard, even for
the two machine case.

Proof. The proof follows the ideas of a proof presented in [25].
Garey et al. [38] proved that the problem F2|| Y C; is NP-hard. A well
known property of F2||Y C; is that there exists always an optimal
solution where the jobs are processed in the same sequence on each
machine [39]. As a result, F2|prmu| Y, C; and hence, Fm|prmu| Y, C;, are
also NP-hard. For the case o = 1, i.e., each order includes just one job,
the problem F2 — O|prmu| Y, C; is equal to F2|prmu| Y C;. Therefore,
F2 - 0O|prmu| Y. C; and hence, Fm — 0|prmu| Y. C;, are also NP-hard.

Lemma 2. There exists an optimal schedule for each instance of Fm —
O|prmu| Y, C; without unforced idle times, i.e., one of the non-delay sched-
ules is optimal.

Proof. Inserting an unforced idle time in front of a job cannot reduce
the completion time of this job and, due to the permutation schedule
requirement, not of any other following job. The completion times of
the previously scheduled jobs are not affected by the idle time. Since
C; = max ¢, {Cj,}, the completion time of any order cannot be
reduced either and therefore, no smaller total completion time of the
orders can be found.

Remark 1. Note that there are problem instances with multiple
optimal solutions, and some of these optimal solutions may contain
unforced idle times.

Lemma 3. There are instances of the problem Fm — 0|prmu| Y, C; where
it is not possible to schedule all jobs of an order consecutively to obtain an
optimal solution. This even applies to the problem size n =2, 0 =2, m = 2.
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(Ca31) (C2) (Ciz2 = Ch)
Machine
2 (1,2) (1,3)
1 (12) (1,3)
. | \
0 10 12 14 16 18 20 22 24 Tilme

Fig. 1. Gantt chart of the example.

Table 4
Processing times of the counter example.
Pijk Ji J>
M, M, M, M,
0, 10 11 7 2
0, 11 17 1 17
Table 5

Total completion times of the sequences where the jobs
of an order are scheduled consecutively.

Job sequence Total completion time

{(1,1),(1,2),(2,1),(2,2)} 85
{(1,1),(1,2),(2,2),(2, 1)} 80
{(1,2),(1,1),(2,1),(2,2)} 90
{(1,2),(1,1),(2,2),(2, 1)} 90
{(2,1),(2,2),(1,1),(1,2)} 103
{(2,1),(2,2),(1,2),(1, 1)} 103
{(2,2).2. 1. (1,1),(1,2)} 83
{(2.2),(2,1),(1,2),(1, 1)} 83

Proof. This property can be shown by the counter example with the
processing times given in Table 4.

The job sequence with the lowest total completion time is {(2,2),
(1,2),(1,1),(2,1)} where i represents the order and j the job of the
order in (i,j). The corresponding total completion time is 79. The
total completion times of the sequences where all jobs of an order are
scheduled consecutively are given in Table 5.

This counter example proves the Lemma since there exists an in-
stance where there is no optimal schedule where the jobs of each order
are scheduled consecutively.

Remark 2. A further reduction of the problem size n =2,0=2, m=2
is not in the scope of this research. As mentioned, o = 1 would result in
the problem Fm|prmu| Y, C; which is well studied. If n = 1, the problem
becomes the well known problem Fm|prmu|C,,,,. In the case m = 1, we
get the problem 1 — O|prmu| Y, C;, which can be solved by an extension
of the SPT-rule to the customer order case [31].

Lemmas 2 and 3 give important implications for the representation
of a complete schedule /7 in this study: a solution or complete schedule
IT is represented by a sequence of all jobs of all orders and unforced
idle times are not considered. An example for this was given earlier
in Section 3.1. The solution representation is used in the proposed
algorithms and in the MINLP formulation. For the MINLP, we use the
already introduced decision variables C;;, and C;. Furthermore, we use
the binary decision variable x;;, which indicates if job j from order i
is in position 4 on each machine (see Table 2).

n
minimize: Z C (€))
i=1

subject to:

n-o

N xp=1Vi=1l..mj=1,..0 2
h=1

iixijhzl\?’hzl,...,n-o 3

i=1 j=1

n [ n o
Z inj(h—l) -Cijk < Z injh . (Cijk —p,-jk) YV h=2,....,n-0

i=1 j=1 i=1 j=1

4

Ciiem) SCijp —pipp Yi=1,,m j=1,...,0; k=2,....m (5)

n o
0< Z injl ’ (Cijl _pijl) (6)
1

i=1 j=
Cin<CVi=1,..nj=1,..0 7)

jm =
X €0;1}Vi=1,....n j=1,...,0, h=1,....n-0 8

The objective of minimizing the total completion time is defined in
Eq. (1). By Egs. (2) and (3) it is guaranteed that each job of each order is
assigned to exactly one sequence position and vice versa. Eq. (4) defines
for each machine that a job in position 2—1 has to be finished before the
processing of the following job (in position 4) can start. Furthermore,
it is guaranteed by Eq. (5) that a job cannot be processed on machine
k until processing has finished on the previous machine k — 1. As there
is no x;;, and C;;, defined, Eq. (6) gives the starting condition for the
first machine and position. The definition of the completion time of an
order C; can be found in Eq. (7) and the definition of the binarity of
Xi;5 in Eq. (8).

4. Algorithm description

As the problem is NP-hard and the number of jobs increases with
both, increasing n and o, we developed four heuristics for this problem.
The heuristics are based on a variant of the IGA which is presented
in [11] and is called IGN in the respective paper.

Initial solution

Each of the heuristics generates an initial solution with a function
we call MultipleNEH. The function has two parts and the pseudocode of
the function can be found in Algorithm 1. First, the NEH heuristic [40]
is applied to the jobs of each order separately. For the example in
Section 3.1, this means that the jobs of the first order are sorted first
and then the jobs of the other order, each time without considering
the jobs of the other order in the shop. The NEH heuristic is applied
in the following way. For each order, the jobs are sorted in ascending
sequence of their total production time TP; = ¥,_, p;;- The first two
jobs from the sorted list are selected and brought into the sequence
that generates the lowest makespan when only these two jobs are in
the shop. Subsequently, the next job of the sorted list is inserted into
every possible position of the existing job sequence and is saved at the
position for which the minimum makespan results. This is repeated
until all jobs of the order are placed. An exemplary job sequence
Tiops,1 = {(1,1),(1,2),(1,3)} for the jobs of order 1 of the example in
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(C™ ™ (Tjobs,1))

I I \

Machine
2 (1,1) (1,2) (1,3)
1| (1,1) (1,2) (1,3)

0 2 4 6 8

10 12 14 16 Time

Fig. 2. Gantt chart for the job sequence of a single order.

Algorithm 1 MultipleNEH function

1: procedure MurtirLENEH
2: Tjohs < {}

3 for i < 1 to ndo

4 for j < 1 to o do

5 TP« Xt Pujk

6: end for

7: Sort the jobs in ascending order of TP in list
8 ”/ubs,i e {}

9: Insert job at position 1 of list in 7, ;

10: for a < 2 to o do

11: for b < len(n,, )+ 1 to 1 do

12: Tjops,ip < inSert job at position a of list in z;,,,; at position b
13: end for

14: Tjobsi < Tjopsip With minimum C™*(z;,; )
15: end for

16: insert z;,,; in 7,

17: end for

18: for i — 1 to n do

19: G = max <o { Cijn (7o)}

20: end for

21: Sort the orders in ascending order of C"** in list
22: Torders < 1}

23: Insert order at position 1 of list in x,,,,,,

24: for a < 2 to n do

25: for b « len(x,,4,.,) + 1 to 1 do

26: Torders» < insert order at position a of list in z,,,,,, at position b
27: Ty < ”orders,b’ ”jobx

28: end for

29: Torders < Torders,y With minimum F(z,)

30: end for

31: II < r

orders> % jobs
32: return 11, @, o, 7 jops
33: end procedure

Section 3.1 is given in Fig. 2. We also marked the makespan of 7,
in the figure.

After generating the job sequences for each order, we generate an
order sequence r,,,,,, in the second part of MultipleNEH. By this it is
determined which job sequence of a single order x;,,; is processed in
which position of the complete schedule I7. First, the orders are sorted
in ascending sequence of the makespan of their job sequences. In the
next step, the first two orders from the resulting list are selected and
their job sequences are brought into the sequence which minimizes
the total completion time of the orders. Note, that the jobs of an
order are still being processed consecutively, and it is only determined
whether z;,,;; is before z;,, ; or vice versa. Subsequently, the next
order from the list is chosen and the corresponding job sequence
is placed in each position of the job sequences and is saved at the
position for which the minimum total completion time resulted. This
repeats until the job sequences of all orders are placed. The result
of the second part of MultipleNEH is a sequence of orders =g,
which represents the positions of the job sequences of the orders
in the resulting schedule. Together with the job sequences of the

single orders 7, = {7 yps 15 Tjobs2s - » Fjobs o} WE CAN generate a com-
plete schedule /1. For example, with 7,.,,,, = {2,1} and 7,

{Zjops,1> Tjons2} = ({1 D, (1,2),(1,3)},{(2,2),(2,1),(2,3)}} we get the
schedule IT = {(2,2),(2,1),(2,3),(1,1),(1,2),(1,3)}. The schedule can be
found in Fig. 3. The total completion time of this schedule is F(IT) =

Y CUT) =25+ 12=37.

IGA-string algorithm

Our first heuristic is a straight forward approach by applying the
IGA to the complete job sequence 7. We call this heuristic IGA-String
as the functions of the IGA modify solely the sequence of all jobs of
all orders, i.e. one string of jobs. We refer to Algorithm 2 for the
pseudocode of this heuristic.

Algorithm 2 General procedure of IGA-String

1: procedure IGA-STRING(d,,,;,, d 0> ¥ Z)
2 IT « MultipleNEH()
d«<d,,
IT < MultipleInsertion(Il, z,d,d,,;,)
T <11
while time limit not exceeded do
gy Rpo_q < Destruction(I,d)
n « Construction(r,, @, ,_;)
' < MultipleInsertion(Il' , z,d.d,,,)
10: IT*, IT,d < Acceptance(IT*, IT, IT ,d, d,;,, d,..» ¥)
11: end while
12: return IT*, F(IT*)
13: end procedure

© PN T AW

After generating a first feasible schedule with MultipleNEH, the
destruction size d is set to d,,;, in IGA-String. During MultipleInsertion,
z- dLJ times a single job is taken out of the job sequence and placed
in each position of the job sequence. Each time, the job is saved at
the position for which the minimum total completion time resulted.
Note that it is not possible to choose the same job multiple times per
execution of MultipleInsertion. The pseudocode of this function is given
in Algorithm 3. Subsequently, the obtained schedule is saved as the best
found schedule I7*.

The following procedure is repeated until a given time limit is
exceeded. In Destruction, d random jobs are taken out of the job
sequence and are stored in r,;. The remaining jobs are stored in the
partial schedule r,.,_, in the same sequence as they appear in IT.
Subsequently, a new schedule IT’ is generated by Construction. First, the
jobs in 7z, are sorted in ascending order by their total production time
TP; = Y, p;jx- Then, the jobs in the sorted string z, are reinserted
one after another at the position in z,., ;, which minimizes the total
order completion time of the job sequence. The pseudocodes of the
Destruction and Construction function can be found in Algorithm 4 and
Algorithm 5 respectively.

After applying the local search function Multiplelnsertion to the
schedule IT’, the resulting schedule is evaluated by the function Accep-
tance (see Algorithm 6 for the pseudocode). This function determines
the schedule IT as well as the destruction size d for the next iteration,
and checks if a new best solution was found. The schedule IT’ is
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Fig. 3. Gantt chart of the schedule IT = {(2,2),(2,1),(2,3),(1, 1),(1,2),(1,3)}.

Algorithm 3 Multiple insertion in IGA-String

Algorithm 6 Acceptance in IGA-String

1: procedure MurtipLeINserTION(!T, z, d, d,,;,)
2: 1T copy € n

3: fora«—lto[z-di do

4: take a random %b out of I1,,,, and insert it in list
5: end for

6: for a < 1 to {z-dino

7: p < job at posi'gon a of list

8: 7« II\p

9: for b—n-otol do

10: 7, < insert p in z at position b
11: end for

12: II < 7, with minimum F(z,)

13: end for

14: return 17

15: end procedure

Algorithm 4 Destruction in IGA-String

1: procedure Destruction(/1, d)
2: Tpod>Tq < 11, {}
for a < 1 to d do
take a random job out of r,, , and append it to z,
end for
return z;, 7,., 4

3
4
5:
6 -
7: end procedure

Algorithm 5 Construction in IGA-String

1: procedure CoNsTRUCTION(7,, 7,,,_4)

for a < 1 to len(r,) do

3 (i, j) « my(a)

4 TP, < Z;(nzlpi/k

5: end for

6: Sort the jobs in ascending order of TP in =,
7

8

9

> job at position a in 7,

while 0 < len(z,;) do
p < my(l)

: for a < len(n,,_;)+1 to 1 do
10: r, < insert p in =, ,_, at position a
11: end for
12: remove p from r,
13: Tpoq < T, With minimum F(z,)
14: end while
15: n « Tpod
16:  return IT'

17: end procedure

accepted as the new schedule for the next iteration if F(IT') < F(IT)
and as the new best found schedule if F(IT') < F(II*). Furthermore,
if FUT') < F(), d is set to d
max 1S MOt reached, ie., d < d,,,.
IT’ can also be taken as the schedule for the next iteration for the case
F(II') > F(IT), but only if g < exp(—y- Zuin . FID-FUD) 415145 where ¢

. d D), R
is a random number between 0 and 1, drawn each iteration.

min» Otherwise d is increased by 1 if the

upper limit 4, A constructed schedule

1: procedure Acceptance(IT*, IT, IT . d, d s Apa> V)
2:  if FUI') < F(I) then

3 d, I <d,,, I

4 if F(T') < F(IT*) then
5: m* < Ir

6: end if

7: else if F(IT') = F(IT) then
8 <1

9: if d <d,,, then

10: d—d+1

11: end if

12:  else ,
13: if g < exp(-y- % . %) then
14: < Ir

15: end if

16: if d < d,,, then

17: de—d+1

18: end if

19: end if

20: return [7*,11,d

21: end procedure

Table 6
Schedule representation in tabular form.

Order number Job sequence

2 2.2)
1 1,1

2.1
1,2)

2.3)
(1,3)

IGA-matrix algorithms in general

The downside of IGA-String is the high computational effort for
each iteration as the whole job sequence IT is modified. This could
result in an inappropriate exploration of the solution space in a given
time limit. Consequently, with most of their functions, the other three
heuristics are not modifying the complete sequence of all jobs of all
orders but only the job sequences of each single order z;,,,; and the
sequence of orders x4, individually. This is done by applying two
destruction, construction and local search functions per iteration, one
combination for modifying z,,,; and one for modifying #,,,,,. The re-
sulting schedule after these functions is a job sequence where the jobs of
each order are scheduled consecutively. Note, that this also applies for
the resulting schedule of the function MultipleNEH. Since this schedule
can be written in tabular form, where in a row, the job sequence of a
single order is defined, and the row number indicates the position of the
job sequence of an order in the complete schedule, the three heuristics
are named IGA-Matrix. An example for this way of representing the
schedule is given in Table 6 for the example schedule from the begin-
ning of this section, i.e., IT = {(2,2),(2,1),(2,3),(1,1),(1,2),(1,3)}. The
idea of considering the job sequences of the orders separately is similar
to the concept of group scheduling [41,42].

The main differences between the three IGA-Matrix algorithms are
the following. IGA-Matrix1 and IGA-Matrix2 are using two acceptance
functions. The first one evaluates the job sequences of the single orders
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Tjons» the second one the order sequence 7., This is based on
the idea that we first want to find appropriate job sequences of the
single orders, independent of the jobs of the other orders, and then
adjust the sequence of these job sequences accordingly. Furthermore,
due to Lemma 3, there are optimal schedules where the jobs of an
order are not scheduled consecutively. Consequently, IGA-Matrix2 and
IGA-Matrix3 are using an additional local search function for further
refinement, where jobs of an order are scheduled actively between jobs
of another order.

IGA-Matrix1 algorithm

Algorithm 7 General procedure of IGA-Matrix1

1: procedure IGA-MATRIX1(d i, 451> Dpax2s V> 2)

2: I, Ty gorss Tjops < MultipleN EH()

3: dy,dy, IT* —d, 1, d,in IT

4 Tiops < MultipleInsertionJ obs(x;,yg, 2, dy, d,)

5: Tiops < Tjobs

6: 11, Zorgors < MultiplelnsertionOrder(mypgors, 7, Z > dyiy)
7: if F(IT) < F(II*) then

8 I < I1

9 end if

10: while time limit not exceeded do

11: Tjobs:d> Fjobs:o—d < Destructiond obs(m;,,, dy)

12: lr;m « Constructiond 0bs(7 . 4 7 jops:0-a)

13: ”;abx « MultipleInsertianJobs(Jr;abA_, z,dy,d,,;,)

14: T s Wjobss Ay = AceT obs(r, 7, T jopss dys iy V)
15: I = 7o gorss 7

16: if F(IT) < F(II*) then

17: m <1

18: end if

19: Torders:ds Rorders:n—a < DestructionOrder(r,, .., d»)

20: ﬂ;rdm < ConstructionOrder(Zyrgers: 4> Torders:n-d»> 7 ops)
21: 1, ﬂ;rde” - MultipleInsertionOrder(n;rdm, Jr;:‘ObJ, z,dy,d,,;,)
22: IT*, Zppgorss dy — AccOrder\(IL IT* T, 70, . Toprgorss Aos Gi Ao ¥)

23: end while
24: return IT*, F(IT*)
25: end procedure

Next, we are describing the three IGA-Matrix functions in detail.
The pseudocode of IGA-Matrixl can be found in Algorithm 7. After
generating a first schedule as well as job sequences of the single orders
and an order sequence with MulitpleNEH, the destruction size for
the job sequences d, is set to d,,,, and the destruction size for the
order sequence d, to d,,;,. The destruction size d, decreases over the
iterations, while d, behaves similarly to d in IGA-String. As a result,
the modification of the job sequences of single orders is prioritized
in the first iterations, while the order sequence can be adjusted to
comparatively constant job sequences in later iterations. Furthermore,
the generated schedule is marked as the best found schedule.

Two local search functions, one for the job sequences and one for
the order sequence, are executed afterwards. In MultipleInsertionJobs,
z- d—{ times a job is taken out of the job sequence z;,,,; and is
reinserted into every possible position of the sequence. Each time it
is saved at the position for which the minimum makespan results. This
is repeated for the job sequence of each order. The resulting set of job
sequences ., is additionally marked as =7, ~afterwards. This set is
also used in the following local search function MultipleInsertionOrder.
Here, |z - d—z times an order is removed from the order sequence
Torders and stibsequently reinserted into every possible position of the
order sequence. The order sequence for which the minimum total order
completion time of the corresponding schedule, i.e., the schedule which
results from z;,,, and the respective z,,4,,,, is saved and used for the
next iteration each time. The pseudocodes of the two local search
functions can be found in Algorithms 8 and 9. The resulting schedule
from MultipleInsertionOrder I7 is compared with the schedule /7%, and

if F(IT) < F(IT*), the schedule IT is saved as best found schedule IT*.
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Algorithm 8 Multiple insertion of jobs in IGA-Matrix algorithms

1: procedure MULTIPLEINSERTIONJOBS(7Z o5 2, )5 i)
2: for i < 1 to n do
: Teopy < Tjobs.i
d
for a < 1 to lz—‘J do

opy and insert it in list

3
4
5: Take a random job out of =
6: end for
. d,
7 foraeltolz-d—‘Jdo
8
9

min

p < job at position a of list

. Tjobs.i,0 < ”jabs,,-\ll
10: for b <o to 1 do

11: Tjopsip < INS€rt p in ;o at position b
12: end for

13: Tjobsi < Fjopsip With minimum C"*(z;,; )
14: end for

15: end for

16: return r;

jobs
17: end procedure

Algorithm 9 Multiple insertion of orders in IGA-Matrix algorithms

min

1: procedure MULTIPLEINSERTIONORDER (%, g0r5> Zjopss Zs @25 Apin)

»

”copy < Torders

for a < 1 to [z-:—ZJ do

opy and insert it in list

3

4 take a random order out of r,
5: end for

6: fora<—1t0[z-dd—2 do

,

8

9

p < order at position a of list

Torders,0 ”arders\p
for b < n to 1 do

Tordersy < IDSEIt p in x4, o at position b
1L Iy < Zorgors b jobs
12: end for
13: Torders < Torders, With minimum F(I1,)
14: end for
15: I < Torders» ﬂjabs
16: return I1, r

orders
17: end procedure

Note that the comparison of IT and IT* is made as the resulting schedule
from the two local search functions might be worse than the previously
obtained schedule.

Algorithm 10 Destruction of job sequences in IGA-Matrix algorithms
d))

1: procedure DEsSTRUCTIONJOBS(7 ),
2: Tiobs:omd> Fjobs:a < (1> 1}
for a < 1 to n do
Tjobs:o—d.a> Fjobs:d.a <~ Tjobs.as {}
for b < 1 to d; do

3

4

5

6: take a random job out of z, and append it to z
7

8

9

obs:o—d,a jobs:d.a

end for
Append 7y 0_g.q4 1O Tjgp:omq ANA o4 1O Loy
end for
10: Yeturn 7jyp,. 4> Zjobs:o-d
11: end procedure

The subsequent procedure repeats until a given time limit is ex-
ceeded. In each iteration, the procedure starts with DestructionJobs
(see Algorithm 10). For each order, d, random jobs are taken out of
the corresponding job sequence z;,,; and are stored in z;,.,,. The
remaining jobs from the original job sequence are stored in 7;,,.,_4;
in the same sequence as they appear in z,, ;. The resulting sets of job

sequences are 7,;,., and z;,y,.,_, respectively. In ConstructionJobs (see

Algorithm 11), the jobs of each job sequence 7., ; are reinserted into
the corresponding 7;,,.,—4,;- For each order, the jobs in the correspond-

ing 7,54, are sorted in ascending sequence of their total production
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Algorithm 11 Construction of job sequences in IGA-Matrix algorithms

1: procedure CONSTRUCTIONJOBS(7 )y 45 % jops:o-a)

2 A, <{)

jobs
3 for i — 1 to n do
4 for a < 1 to len(x;,y.4;) do
5 (i, J) < Tjops:a,i(@)
6: TP; < X\ Pije
7: end for
8 Sort the jobs in ascending order of TP in z;,,.,;
9 while 0 < /en(z;,,.,,) do
10: D < Tjops:ai(1)
11: for a « len(w;y._4;) + 1 to 1 do
12: Tjobs:o—d,ia < INSETt p in 7y, 4, at position a
13: end for
14: remove p from 7., ,;
15: Tjobsio-di  Tjobs:o—da WIth mInIMuUm C" (5554 4)
16: end while
17: T iopsi  Tjobs:o—a,> and append 7, . to 7,
18: end for
19:  return 7

jobs

20: end procedure

time 7' P;;. Subsequently, the first job from z,,. ,; is inserted into every

possible position of z;,,.,_4; and saved at the position for which the

minimum makespan of z;,,,.,_,; resulted. This is repeated for each job

of the sorted z;,,., ;- The resulting job sequence z/ , . of each order is
:d, jobs,i

stored in 7’ , .
jobs

Algorithm 12 Acceptance of job sequences in IGA-Matrix algorithms

1: procedure AchOBs(zr;?DbS, ”j/'obs’ Tjobss A1 Ains ¥)
2 for i < 1 to n do
3 if C’””X(zr;.abs_i) < C™X(&;4;) then
!
4 Tjobs,i ”jobs,i
. ! s
5: if Cnex(r, ) < C"e¥(xt, ) then
® !
6 ”]"obs,i - ”jobs,i
7 end if
8 else if C’””X(zr;.obs_’.) = CM¥(7;yps ;) then
’
9 Tjobs,i ﬂjobs,i
s ’ «
10: if Crex(r )= C"eX(x?, ) then
. * 4
11: ”jabs,i - ”jab:,i
12: end if
13: else ,
CMX (. )=C" (X i)
14: if g <exp(—y- Jobsi 227y then
9% exp(-y )
’
15: Tjobsi < ﬂjobs,i
16: end if
17: end if
18: end for
19: if d, > d,;, then
20: dy «d -1
21: end if
22: return ”jobs’ Tjopss A1

23: end procedure

After applying MultiplelnsertionJobs to n;abs’ each job sequence
n}obs,i is compared with the corresponding job sequences z;,,,; and
% . in AccJobs (see Algorithm 12). If the makespan of the sequence

jobs,i
7' is smaller than the makespan of = the sequence ﬂjl‘obsi be-

jobs,i Jjobs,i>
comes the new z;,,.; and is used in the next iteration. Furthermore, if

the makespan of ”/"ohci is also smaller than or equal to the makespan of

ﬂ;obs ,» it also becomes the new ”;obs .- For the case that the makespan of
7 . ” ’ Y]
7 ops.i 1S equal to the makespan of 7, ;, T obsi replaces 7, ;, and if it is

5

also equal to the makespan of = _ replaces also this sequence.

/
) X jobs,i? ”ijS,I
If the makespan of T opsi 18 larger than the makespan of z;,,;, the
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sequence 7, ; is replaced by ”;obs,
Cmax(”;'ab&',)_Cmax(”jﬂbs,i)
Cmas(z

q < exp(=y- —

0 and 1, drawn each time. After evaluating the job sequence of each
order, d; is decreased by 1 if d,,;, has not already been reached. The
output of the function includes the job sequence z;,,, which is used
in the next iteration, and ”70[;.? which is used in the remainder of the
iteration for generating schedules with a given order sequence. In a

next step, the schedule I7, generated by n;‘o ~and 7, is compared

; if the following inequation is true:

), where ¢ is a random number between

bs orders>

with the best found schedule I7*, and if the total completion time of IT
is lower, the schedule I7 is marked as the best found schedule.

Algorithm 13 Destruction of order sequence in IGA-Matrix algorithms

1: procedure DeSTRUCTIONORDER(Z,, 40, @)
2 Torders:nd» Torders:d <~ Torderss {}

3 for a < 1 to d, do

4 take a random order out of z,,4,,,.,_, and append it to 7,,.,.,,.4
5: end for

6 TeLUIN 7y, gers: > Forders:n-d
7: end procedure

Algorithm 14 Construction of order sequence in IGA-Matrix algorithms

1: procedure CONSTRUCTIONORDER(Z,ors:ds Torders:n—ds %jobs)

2: Sort the orders of z,,,,,,., in ascending order of C"*(7;,,;) IN Zyyg0rs:4
3 while 0 < len(z,,4,,,.,) do
4 P < Torgers:a(l)
5 for a < len(x,,40y5.,—q) + 1 to 1 do
6: Tordersin-da < iNSErt p in z,. ..., at position a
7 Ta < orders:n—d.a» % jobs
8 end for
9: remove p from 7,,4,.s.4
10: Torders:n—d “~ Torders:n—d.a Wlth minimum F(’ra)
11: end while
/
12: ”W,jen < Torders:n—d

13:  return 7

orders

14: end procedure

Algorithm 15 Acceptance of order sequence in IGA-Matrix1

1: procedure AccORDERL(IT, IT*, IT', %, ;. . Torgers: Gos dins a2 ¥)
2 if F(IT') < F(II) then

3 Torderss 42 Ty gorss Ao

4 if F(II') < F(IT*) then

5: m <1

6: end if

7 else if F(IT') = F(IT) then

8 Torders <~ ﬂ:;rdyrs

9: if d, <d,,., then

10: dy —d, +1

11: end if

12: else ,

13: if g < exp(—y- d;—:" . %) then
14: Torders < ﬂ;mm

15: end if

16: if d, < d,,,, then

17: dy < dy+1

18: end if

19: end if

20: return IT*,7,,,,..,d,

21: end procedure

In the remaining part of the iteration, the sequence of orders is
modified. By DestructionOrder, d, orders are taken out of x,,,,,., and
are stored in 7,,4,,.4, While the other orders remain in their sequence
in 7,.40r5:n—q- The pseudocode of this function can be seen in Algorithm
13.

During ConstructionOrder (see Algorithm 14), the orders in 7z, 0.5 4
are initially sorted in ascending sequence according to the makespan
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of their job sequence. Afterwards, the first order of the sorted sequence
is reinserted into 7, 4,,s.,—q at each position, and is saved at the place
that generates the lowest total completion time for the corresponding
partial schedule 7, which results from the order sequence and the
corresponding job sequences. This is repeated for each order from

Torders:d*
After using the function MultipleInsertionOrder again, we obtain
the order sequence '’ and the corresponding schedule I7’. They

orders

are subsequently evaluated in AccOrderl. If F(IT') < F(II), d, is set to
dyyin @0 Ty, to #) which means that z/ , is used in the next
iteration. Furthermore, in the case F(II') < F(IT*), I’ is the new best
found schedule IT*. The order sequence z,,,,, is also set to / , _ if
F(IT'") = F(IT) but d, is increased by 1 in this case, if it has not already
reached d,,,. Similar to IGA-String, 7,,4,,, can also be set to z/_, if
FUT") > F(II), but only if ¢ < exp(-y - % . M) holds, where
q is a random number between 0 and 1, drawn each time. In addition,
if F(IT') > F(T) and if d, is smaller than d,,,,, d, is increased by 1.
The pseudocode of this acceptance function can be found in Algorithm
15. As for IGA-String, IGA-Matrix1 terminates after the time limit is
exceeded and the best found schedule I7* and its total completion time
are returned.

IGA-Matrix2 algorithm

Our next heuristic IGA-Matrix2 is similar to IGA-Matrix1. However,
this algorithm uses the function LocalSearch3 additionally after the
initialization with MultipleNEH, and each time subsequent to Multi-
plelnsertionOrder. By this function, the jobs of each order are not
necessarily scheduled consecutively afterwards. The pseudocode of
IGA-Matrix2 can be found in Algorithm 16.

The input of the function LocalSearch3 is a schedule in which all
jobs of an order are processed consecutively. Starting with the order

Algorithm 16 General procedure of IGA-Matrix2

1: procedure IGA-MATRIX2(d ;> d a1 Amax2s Vs 2)

2: I, 7o gers> Wiops < MultipleN EH ()

3 dl’dZ “ dmaxl’dmin

4 IT* < Local Search3(I1, 7 yyqepss 7 jops)

5 Tjops < Multiplelnsertiond obs(z;yyg, 2, dy, dyyyy)

6: ”;Dbs < Tjobs

7 11,7, 40.s < MultipleInsertionOrder(z,, 0.5, ﬂ;()by, z,dy, d,yiy)

8 IT < LocalSearch3(I1, 7,4,y ”;;bs)

9: if F(IT) < F(IT*) then

10: T <« IT

11: end if

12: while time limit not exceeded do

13: Tjobs:ds Wjobs:o—d < Destructionlobs(ﬂjom, dy)

14: ﬁ;ohx « ConstructionJ 0bs(z;yps: 4 T jops:0—a)

15: ”/,'obs “«— MultipleInsertionJobs(fr;obS, z,dy,dyi)

16: ”7obs’ Tjops> d1 < ACC‘IObS(”;abs’ ﬂ;obs, Tjobss A1s Amins ¥)

17: II < ”ardem’”;(obs

18: if F(IT) < F(IT*) then

19: nm < n

20: end if

21 ”(/)rders:d’ Torders:n—d <~ Desrrucrianorder(”orders’ d2)

22: T gors < ConstructionOrder(Zo.gers: ds Torders: n—d» ”;obs)

23: ', zr;rdm “« MultipleInsertionOrder(ﬂ;rdm, ”;abx’ z,dy, d ;)

24: '« LocalSearch?:(ﬂ/,ir;rdm,ﬂ;abs)

25: %, %y gorsrdy  — AccOrder2(IT, 11,11, 11", Ir;rdm, Torders
d27 dmin’ dmuxZ’ )

26: end while

27: return IT*, F(IT*)

28: end procedure

10

Operations Research Perspectives 15 (2025) 100362

Algorithm 17 LocalSearch3 in IGA-Matrix algorithms

1: procedure LocALSEARCH3(IT, 7y gerss 7 jobs)
2 I <1

3 for a — nto 2 do

4 q,61,b — 7ypq0rs(a), 1,0

5 while §, =1 do

6: 51,b—0,b+1

7: D6y — Ty q(b), 1

8 while 6, =1 do

9: 6, <0
10: I1,,,; < swap job (g, p) with the preceding job in '
11: if F(Il,,,) < F(IT') then
12: n - I,
13: if b < o then

14: 5 <1

15: end if

16: if (¢, p) is not in the first position of IT " now then
17: 6y <1

18: end if

19: end if
20: end while
21: end while
22: end for
23: return IT'

24: end procedure

Algorithm 18 Acceptance of order sequence in IGA-Matrix2

1: procedure AccORDER2(IT, IT*, 1T, 11", 70, . . Toriorss dys Arpins Apasas ¥)

2: if F(IT') < F(II) then

3 Torders> d2’ - ”;rders’ dmm
4: else if F(IT') = F(IT) then
5: ﬂnrderx e ”(’)rdera

6: if d, <d,,., then

7: dy —d, +1

8: end if

9: else ,
10: if g <exp(-y- dd— . W) then
11: Torders < ﬂ;rdm

12: end if

13: if d, < d,,., then

14: dy —d, +1

15: end if

16: end if

17: if F(IT") < F(IT*) then
18: m <1

19: end if

20: return 1%, 7,.,,,...d,

21: end procedure

in the last position of the order sequence, the first scheduled job of
this order is swapped with the previously scheduled job. If the total
completion time of the generated schedule is not lower than the total
completion time of the former schedule, the former schedule is used
for further processing. Otherwise, the new schedule is saved, and it is
tested if a further improvement is possible by swapping the currently
considered job with its new preceding job. This is repeated until a new
obtained schedule does not have a lower total completion time or if
the considered job passes the first scheduled job of the whole schedule.
Subsequently, if swapping the job has improved the total completion
time of the schedule before the job was stopped, the next job of this
order in the corresponding job sequence z;,,; is swapped forwards
in the described way. This continues for an order until the first swap
of a job does not improve the schedule, or all jobs of an order were
considered. The procedure continues for all orders, except the first
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order in the order sequence z,,4,,- In Algorithm 17 the pseudocode
of this function can be found.

Since we obtain a further schedule IT” by LocalSearch3, there are
more solutions to evaluate and hence, the second acceptance function
of IGA-Matrix2 slightly differs from the second acceptance function
of IGA-Matrixl. We call this acceptance function AccOrder2 and the
pseudocode of this function is given in Algorithm 18. As in the ac-
ceptance function of IGA-Matrix1, if F(II') < F(II), d, is set to d,,;,
and 7,.e to 7, . . Note that IT" is the schedule resulting from
MultiplelnsertlonOrder and hence, is formed by the order sequence
”ér Jors @0d the job sequences n' obs? while IT is formed by z,,4,,, and

7 ..+ The order sequence nordm is also set to z/ , if F(II') = F(IT)
but d, is increased by 1 in this case if it has not already reached d,,,,,. If
F(IT") > F(II), d, is increased by 1 if it has not already reached d,, ;.

dyin  FUI')-F(I)
Furthermore, z,,,,,, is set to ”or ders if ¢ < exp(-y- . T)
holds, where ¢ is a random number between 0 and , drawn each

time. In contrast to the acceptance function of IGA-Matrixl, the best
found schedule IT* is compared to IT". Consequently, IT* is set to IT"”
if FUT'") < FUT*).

IGA-Matrix3 algorithm

Algorithm 19 General procedure of IGA-Matrix3

1: procedure IGA-MATRIX3(d,,,i,» dpaxi > Aaxas V> 2)

2: I, Ty gorss Tjops < Multiple N EH()
3 dy,dy < dpiys dpi
4: IT < LocalSearch3(I1, & gerss T jops)
5: T « I1
6: /m < MultipleInsertionJ obs(n ), 2. d, d,,;,)
7: n ﬂ'Wd”S « MulttheInserttonOrder(nMe,s,lr/obx,z, d,,d,;.,)
8: II' < Local Search3(I1 ,x' ” obs)
orders> T jobs
9: if F(IT') < FUT*) then
10: I I 7o Torgers o, ”/am orders
11: end if
12: while time limit not exceeded do
13: Tjobs:a> Tjobs:o-d Destructiond obs(x ;. dy)
14: T ops < Constructiond obs(%jops. 4 7 jops: o-a)
15: 7oy — MultipleTnsertionJ obs(x , . 2, dy, dyiy)
16: Torders:ds Forders:nd < DestructionOrder(r,, .., d»)
17: Mm « ConstructionOrder(7t,, . 4> Me,s:n,d,njm)
18: o ”ardm « MulltplelmertwnOrder(n'wdm jﬂbx,z, d,,d,;,)
19: IT' < Local Search3(Il', zrordm b)
jobs
20: I 11, orgerss Wiopss Ay dy — Acc(IT™, ', 1, ”m,m Zorders> 7 jops> % jobs>
dy, dys dyins gt s Aaxa» ¥)
21: end while
22: return IT*, F(IT*)

23: end procedure

The pseudocode of our last heuristic IGA-Matrix3 can be found in Al-
gorithm 19. In contrast to IGA-Matrix1 and IGA-Matrix2, IGA-Matrix3
is not evaluating 7,,,, independently from the generated schedule. This
means, it is not checked whether new job sequences of the orders
yield a lower makespan after MultipleInsertionJobs. Instead, they are
directly used for restructuring the order sequence. Therefore, AccJobs
is omitted, Acc is the only acceptance function in this algorithm, and no
T 1S created. In addition, some minor changes were made compared
to IGA-Matrix2 in order to adapt the algorithm to this strategy. After
initializing a first solution, d, is set to d,,;, and not d,,,,. In IGA-
Matrix3, d, behaves similarly to d,, i.e., set to d,,, if a better solution
was found in an iteration, or increased by 1 otherwise (if possible).
Furthermore, the schedule IT which is compared in the acceptance
function with the new created schedule of the iteration, is not generated
during the iteration, i.e., not after AccJobs. Instead, it is the outputted
schedule of the acceptance function of the previous iteration, or, to
start the iterating part of the algorithm, one of the schedules generated
by one of the previous LocalSearch3 functions. The part prior to the
iterations is realized in the following way. After setting d, and d, as de-
scribed, LocalSearch3 is applied to the schedule from the initialization
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function. The output is the updated schedule IT which is also marked as
the first best found solution IT*. Subsequently, MultipleInsertionJobs,
MultiplelnsertionOrder, and Localsearch3 are applied. The resulting
schedule 1T’ is compared with IT*, and hence, also with IT as it is the
same as IT*. If F(II') < F(IT*), IT* and IT are set to IT' and the job
and order sequences for further proceeding (7,5, 7y.4.r5) @re set to the
corresponding nj’.m and z/ . Afterwards, the iterating part begins.
Here, as mentioned, IGA- Matr1x3 is not using AccJobs and hence, the
destruction of the order sequence directly follows MultipleInsertion-
Jobs, i.e., after generating njf b of the iteration. Furthermore, as z* b
is not used in IGA-Matrix3, ”jobs replaces it as input in the respectlve
functions.

Algorithm 20 Acceptance in IGA-Matrix3

1: procedure ACCUT* T T, Ty Fonderss % s Wabss A1 2 s At s
x> ¥)

2 if F(IT') < F(IT) then

3 dys dys Torderss Fjopss 1T = dyins dmin?”;,dgm’ ”}gby m

4 if F(UT') < F(IT*) then

5: o <1

6: end if

7:  else if F(II') = F(II) then

8 Torders> Tjopss 1 < ”wdm jnbs’H’

9: if d, <d,,,, then

10: d «d +1

11: end if

12: if d, <d,,., then

13: dy — dy+1

14: end if

15: else

16: if g <exp(-y- (dj;# . %) then

17: orderss Fjops> 1 — 7,1 70 jobs? g

18: end if

19: if d, <d,,,, then

20: dy —d +1

21: end if

22: if d, <d,,., then

23: dy —dy+1

24: end if

25: end if

26: return I1°, IT, oy jon, T jopss 1, da

27: end procedure

Next, we describe the acceptance function of IGA-Matrix3, called
Acc, in detail. By this function, the best found solution I7*, the de-
struction sizes d, and d, as well as I1, 7,,4,,; and ., for the next
iteration are selected. If a better solution was generated in the iteration,
ie, F(IT") < F(), I, .. and 7., are set to II', z/ ,  and

' obs? respectively. Furthermore, d; and d, are both set to d,,,. In case
F (II') < F(IT*), I’ is saved as the best found solution IT*. If F (H "
equals F(IT), IT, 7,40 and 7., are also set to I, z/ ,  and «’ obs?
respectively, but d, and d, are increased by 1 if they have not already
reached d,,,,, and d,,.,, respectively. The same applies for the two
destruction sizes if F(IT') is greater than F(IT). In this case, IT’ could
be accepted as new I1, and z,,4,,, and ;,,, could be set to z/ and
7 " obs? respectively, but only if ¢ < exp(—y- dnin__ . FUT)F(IT )) holds,

(d+dy)05 — F(ID)
where g is a random number between 0 and 1, drawn each time. The

pseudocode of Acc is given in Algorithm 20.

5. Computational experiments
5.1. Experimental setting

We evaluate the developed IGAs in computational experiments. As
there are no comparable state-of-the-art algorithms which take the
specific problem structure into account, the four IGAs are compared
with each other and the MINLP formulation from Section 3.2 solved
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by the Gurobi solver. We generated two testbeds which we named
Small testbed and Big testbed. The Small testbed includes problem
instances with n € {3,4,5}, 0 € {2,3,4} and m € {2,3,6}, and the Big
testbed problem instances with n € {10,20,50}, o € {2,5,10} and m €
{2,3,6}. For each possible combination of n, m and o in the respective
testbed, processing times of the jobs on the machines were randomly
drawn from a uniform distribution U°[1, 100]. We generated 10 problem
instances per problem size for the parameter setting and 20 separate
problem instances per problem size for the algorithm comparison.

We use the best found total completion time after given run times
as the comparison criterion for the solution methods. The time limit
of the IGAs is set to n - o - % - t sec with the time factor r set to
t = 0.12. Consequently, the time limit for the smallest instances with
{n,o,m} = {3,2,2} is 0.72 sec and for the largest problem instances
with {n,0,m} = {50, 10,6} the time limit is 180 sec. As each of the IGAs
contains random elements, each test instance was solved five times by
each IGA. For the solver we set the time limit to 10, 800 sec (= 3 hours).
However, the solver solved each problem instance only one time.

The relative percentage deviation (RPD) was calculated for each run
x by the formula:

F(Hx) - F(Hbest)

RPD, =
* F(Hbest)

- 100%, )
where F(II,) is the total completion time of the best found solution in
run x, and F(IT,,,) the total completion time of the best solution found
by any run of any tested solution method for the respective problem
instance.

The solution methods have been implemented in Python 3.10.9 and
the calculations run on an Intel(R) Xeon(R) CPU E5-2630 v2 processor
with 2.60 GHz and 384 GB memory. We used Gurobi 10.0.1 as the
solver for solving the MINLP from Section 3.2 with a maximum of 4
threads in parallel. The graphs were created with IBM SPSS Statistics
version 29.

Statistical tests regarding the significance of results were conducted
using IBM SPSS Statistics version 31. Note that prior the conduction of
a statistical test, the RPDs of the five repetitions of an IGA for a problem
instance were averaged.

5.2. Parameter setting

The four IGAs use multiple parameters, namely d,;,.d x> dnax1s
dpax2s v- 2. We follow the arguments from [11] and set d,;,, = 1,
dmax = |5 |5 dmax1 = ng and d,.; = |5 |- Note that the IGA-Matrix
algorithms use d,,,,, and d,,,,, but not d,,,,, while IGA-String uses d,,,,,
but not d,,,,, and d,,,,,. The parameter d,,, is used by all the IGAs.

The other parameters y and z were determined experimentally.
As pointed out in [11], the ranges of the parameters are 1 < z <
2 and 0 < y. We performed some pre-experiments and chose z €
{1,1.25,1.5,1.75,2} and y € {5000, 10000, 15000,20000} for further in-
vestigation. Each possible parameter combination was considered for
each IGA. As each of the 4 IGAs solved the 10 problem instances per
problem size 5 times, and there are 54 different problem sizes and 20
different parameter combinations, 4 - 10-5 - 54 -20 = 216,000 runs were
performed for the parameter setting.

The average RPDs for the different y-values and the average RPDs
for the different z-values are given in Table 7 for each IGA. We chose
the parameter value that led to the lowest average RPD for each IGA
and parameter. The final selection is shown in Table 8.

5.3. Algorithm evaluation

In Table 9 we give the results for the Small testbed. For each
problem size, it is indicated how many instances were solved confirmed
optimally (see column # Slvd. Opt.), and for each IGA the percentage
of runs were an optimal solution was found as well as the percentage
of instances were the IGA found an optimal solution at least one time.

12

Operations Research Perspectives 15 (2025) 100362

Table 7
Average RPDs in % of the investigated parameter values.

Value IGA-String IGA-Matrix1 IGA-Matrix2 IGA-Matrix3
5000 0.5935 0.7862 0.6837 0.6104
10000 0.5921 0.7860 0.6825 0.6157
4 15000 0.5984 0.7848 0.6854 0.6209
20000 0.5909 0.7881 0.6852 0.6220
1 0.6152 0.7898 0.6828 0.6058
1.25 0.6056 0.7861 0.6823 0.5996
z 1.5 0.5949 0.7858 0.6834 0.6219
1.75 0.5824 0.7836 0.6852 0.6152
2 0.5705 0.7861 0.6874 0.6437
Table 8
Chosen parameter values for each IGA.
Parameter IGA-String IGA-Matrix1 IGA-Matrix2 IGA-Matrix3
y 20000 15000 10000 5000
z 2 1.75 1.25 1.25

Both percentage values for the IGAs are relative to the instances which
were solved confirmed optimally by the solver. Note that the IGAs
solved each problem instance 5 times, while the solver solved each
instance only one time. Furthermore, the RPDs (in %) of the solution
methods are given.

As can be seen, the MINLP solver was able to find and confirm
the optimal solution for each of the instances with n = 3. The same
applies for the instances with o = 2. In total, 395 of the 540 instances,
i.e., approx. 73%, were solved confirmed optimally. However, the
solver could not confirm any optimal solution for the instances with
{n,0} = {5,4}, and as it has an average RPD larger than zero, it is
confirmed for multiple problem instances that they were not solved
optimally by the MINLP solver.

The best performing solution method (including the IGAs and the
MINLP solver) for the Small testbed was IGA-String with an average
RPD of 0.0575%. The result that IGA-String has a lower RPD than
each other considered solution method for this testbed is statistically
significant according to the one-sided Wilcoxon signed-rank test at a
significance level of « = 0.05. The heuristic could also find an optimal
solution for 98.99% of the confirmed optimally solved instances and
in 97.52% of the respective runs. But also the IGA-Matrix algorithms
showed a good performance by finding an optimal solution for over
57% of the confirmed optimally solved instances. Furthermore, if an
IGA-Matrix algorithm found an optimal solution for a confirmed op-
timally solved instance, it found an optimal solution in each run. And
even though the IGA-Matrix algorithms did not find an optimal solution
for about 40% of the confirmed optimally solved instances, the average
RPD values are still only 1.06% (IGA-Matrix1), 0.95% (IGA-Matrix2),
and 0.90% (IGA-Matrix3). We conclude by this that the four IGAs
are appropriate and reliable solution methods for solving small sized
problem instances of Fm — O|prmu| Y, C;.

As expected, the MINLP solver performed worse for larger prob-
lem instances. This applies for each problem size defining parameter,
i.e., number of orders, number of jobs per order, and number of
machines. Besides not confirming an optimal solution for the problem
instances with {n,0} = {5,4} after 3 h, the lowest determined gap
by the solver was 19.44%, and IGA-String and IGA-Matrix3 had a
lower average RPD for these instances. Furthermore, the average gap
determined by the solver was 27.95% and the highest gap 42.21% for
these instances. Consequently, we did not include the MINLP solver for
the Big testbed.

The average RPDs of the IGAs for the different problem sizes of the
Big testbed are given in Table 10. The lowest average RPD for each
problem size is written bold. If the lowest RPD-value is statistically
significantly smaller than the RPD-value of each other IGA according
to the one-sided Wilcoxon signed-rank test (significance level of a =
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Table 9
Results for the Small testbed.
n o m MINLP IGA-String IGA-Matrix1 IGA-Matrix2 IGA-Matrix3
# Slvd. RPD % of % of RPD % of % of RPD % of % of RPD % of % of RPD
Opt. in % Runs  Inst. in % Runs  Inst. in % Runs  Inst. in % Runs  Inst. in %
2 20 0.0000 100 100 0.0000 95 95 0.0581 95 95 0.0581 95 95 0.0581
2 3 20 0.0000 100 100 0.0000 80 80 0.5397 80 80 0.4634 80 80 0.4634
6 20 0.0000 100 100 0.0000 50 50 0.9748 65 65 0.7133 60 60 0.8607
2 20 0.0000 100 100 0.0000 95 95 0.0588 95 95 0.0588 95 95 0.0588
3 3 3 20 0.0000 90 90 0.0626 45 45 1.2610 45 45 1.2450 45 45 1.2317
6 20 0.0000 99 100 0.0022 35 35 1.4436 35 35 1.4436 35 35 1.4436
2 20 0.0000 96 100 0.0209 90 90 0.4447 90 90 0.2741 90 90 0.2741
4 3 20 0.0000 100 100 0.0000 55 55 0.8537 55 55 0.8537 60 60 0.7382
6 20 0.0000 96 100 0.0674 10 10 1.9136 10 10 1.9150 15 15 1.8294
2 20 0.0000 100 100 0.0000 90 90 0.1216 90 90 0.1216 90 90 0.1216
2 3 20 0.0000 100 100 0.0000 45 45 0.8067 45 45 0.8067 45 45 0.8067
6 20 0.0000 95 95 0.0149 50 50 1.1491 50 50 1.0656 50 50 1.0656
2 20 0.0000 100 100 0.0000 75 75 0.1502 75 75 0.1502 75 75 0.1502
4 3 3 20 0.0000 98 100 0.0065 50 50 0.6130 50 50 0.6049 50 50 0.6049
6 20 0.0000 90 95 0.0692 5 5 22912 5 5 2.0519 5 5 2.0155
2 11 0.0000 100 100 0.0962 100 100 0.2657 100 100 0.2657 100 100 0.2657
4 3 3 0.1535 93.33 100 0.1826 0 0 1.2062 0 0 1.1743 0 0 1.0984
6 0 0.2308 - - 0.0306 - - 2.1703 - - 21031 - - 1.6967
2 20 0.0000 96 100 0.0143 65 65 0.4848 70 70 0.3155 70 70 0.2720
2 3 20 0.0000 99 100 0.0184 50 50 1.2990 55 55 0.7844 55 55 0.7844
6 20 0.0000 99 100 0.0065 15 15 1.6245 20 20 1.2887 20 20 1.2887
2 17 0.0000 96.47 100 0.0570 88.24 88.24 0.2927 88.24 88.24 0.1566 88.24 88.24 0.1566
5 3 3 4 0.0000 85 100 0.0716 25 25 1.3715 25 25 1.3027 25 25 1.3402
6 0 0.4431 - - 0.1246 - - 2.7055 - - 2.4401 - - 2.4044
2 0 0.3178 - - 0.1519 - - 0.2663 - - 0.2066 - - 0.2066
4 3 0 1.2104 - - 0.2416 - - 1.2704 - - 1.1790 - - 0.9828
6 0 1.7966 - - 0.3141 - - 3.1142 - - 2.4965 - - 2.0363
Total 395 0.1538 97.52 98.99 0.0575 57.47 57.47 1.0649 5899 58.99 0.9459 59.24 59.24 0.8983
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Fig. 4. Results of the IGAs for the Big testbed.

0.05), we marked the corresponding value with . Furthermore, Fig.
4(a) shows the average RPD of each IGA across all problem instances
of the Big testbed with 95% confidence intervals. As for the Small
testbed, IGA-Matrix3 had a lower average RPD than IGA-Matrix1 and
IGA-Matrix2 when the complete Big testbed is considered. This result
is statistically significant according to the one-sided Wilcoxon signed-
rank test at a significance level of ¢ = 0.05. From this we conclude
that it is generally advisable to use only one acceptance function at the
end of each iteration, so that the job sequences of each order and the
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order sequence are not evaluated separately. In contrast to the results
from the Small testbed, IGA-String had the highest average RPD for
the Big testbed. The result that IGA-String has a higher RPD than each
other IGA for the big testbed is statistically significant according to the
one-sided Wilcoxon signed-rank test at a significance level of a = 0.05.

An explanation for this is indicated by Fig. 4(b). In the respective
figure, the average RPDs with a 95% confidence interval for the IGAs
per number of orders is illustrated for the Big testbed. It can be seen that
IGA-String had the best performance for n = 10. However, for higher
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Table 10
Average RPDs in % of the IGAs for different problem sizes of the Big testbed.

n 0 m IGA-String IGA-Matrix1 IGA-Matrix2 IGA-Matrix3
2 0.1522 0.2177 0.1822 0.1847
2 3 0.25137 1.1948 0.6424 0.6285
6 0.3300" 1.8962 1.2979 1.2275
2 0.3642 0.1090 0.0740 0.0763
10 5 3 0.7840 0.5625 0.3967 0.25521
6 0.39911 2.0614 1.7858 1.2659
2 0.3056 0.1427 0.0436 0.0268"
10 3 0.6528 0.1714 0.1237 0.0774"
6 0.4579 1.3658 1.2084 0.7434
2 1.0672 0.0402 0.0410 0.0351
2 3 1.0767 0.2180 0.1533 0.1315
6 1.2952 0.9452 0.6124 0.5455"
2 1.0989 0.0265 0.0209 0.0221
20 5 3 0.9316 0.1216 0.1245 0.0989
6 0.6809 0.5025 0.3823 0.3520
2 0.7309 0.0567 0.0367 0.0430
10 3 0.9124 0.1155 0.1157 0.1387
6 0.9603 0.3900 0.3681 0.3518
2 0.8218 0.1401° 0.1795 0.1795
2 3 1.1086 0.2743 0.2985 0.2404
6 1.7349 0.5453 0.4856 0.4106"
2 1.0165 0.1206" 0.1717 0.1599
50 5 3 1.0541 0.1492F 0.2217 0.2421
6 1.1928 0.2817 0.3088 0.3883
2 0.7949 0.0732° 0.1363 0.1461
10 3 0.8215 0.0862" 0.1814 0.2088
6 1.0488 0.1865 0.2164 0.3800
Total 0.8165 0.4443 0.3633 0.3170

number of orders, the performance of IGA-String was notably worse
compared to the IGA-Matrix algorithms. We assume that this is due to
the higher computational effort per iteration that IGA-String has, since
this algorithm modifies the sequence of all jobs of all orders and not
partial sequences.

Furthermore, IGA-Matrix1 had the best performance for the highest
number of orders, i.e., n = 50. The result that IGA-Matrix1 has a
lower RPD than each other IGA for n = 50 is statistically significant
according to the one-sided Wilcoxon signed-rank test at a significance
level of a = 0.05. This finding can also be explained by the differences
in computational effort per iteration as IGA-Matrix] does not use
LocalSearch3 and hence, can perform more iterations until the given
time limit is reached. We explain the result for the different number of
jobs per order, see Fig. 4(c), in the same way. Here, the gap between
IGA-Matrix1 and the other IGA-Matrix algorithms narrows for a larger
number of jobs per order. However, for the highest number of jobs per
order (0=10), IGA-Matrix3 still had the lowest average RPD.

By Fig. 4(d), we give the average RPDs with a 95% confidence
interval for the IGAs per number of machines for the Big testbed. For
each IGA, the average RPD and the 95% confidence interval increase for
higher m. Our conclusion is that for a higher number of machines, the
solution quality of the IGAs becomes more volatile. Furthermore, we
make the following observation when we compare the IGAs with each
other. The gap between IGA-Matrix1 and IGA-Matrix2, the gap between
IGA-Matrix1 and IGA-Matrix3, as well as the gap between IGA-Matrix2
and IGA-Matrix3 widens for higher numbers of machines. Furthermore,
the gaps between IGA-String and each IGA-Matrix algorithm are no-
ticeably smaller for m = 6 than for m = 2, and for m = 6, IGA-String
performs even slightly better than IGA-Matrix1.

We conclude by this that IGA-String performs relatively better for
instances with a high number of machines. The same applies for IGA-
Matrix3 when it is compared with the other IGA-Matrix algorithms, and
for IGA-Matrix2 when it is compared with IGA-Matrixl. We explain
this result in the following way. For a higher number of machines, it
becomes more important that two consecutively scheduled jobs fit to
each other, i.e., that the forced idle times and waiting times between
the two jobs become low, as there are more machines where forced
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idle times and waiting times can occur. Consequently, it is advisable
to check more combinations of consecutively scheduled jobs. This
can be achieved by also considering schedules where the jobs of an
order are not scheduled consecutively, since this results in checking
more jobs of different orders for consecutive scheduling. In contrast
to IGA-Matrix2 and IGA-Matrix3, IGA-Matrix1 only considers schedules
where the jobs of an order are scheduled consecutively which explains
the corresponding result. The difference between IGA-Matrix2 and
IGA-Matrix3 is that IGA-Matrix3 does not evaluate the job and order
sequences independently of each other. We assume that this leads to
a stronger focus on the fit of the consecutively scheduled jobs in the
whole schedule instead of focusing on the fit of the jobs within the own
order. Meanwhile, IGA-String uses only one job sequence of all jobs
of all orders after the initialization function, and not the separate job
sequences of each order. By this it is more likely that jobs of different
orders are scheduled consecutively which leads to a broader search for
good fitting job combinations.

6. Conclusion

In this paper, we studied the minimization of the total completion
time of the COSP in the permutation flow shop environment. We
presented important problem properties and used these to give a MINLP
formulation of the problem. Furthermore, we developed four heuristics
for the problem which are based on the IGA. One of the heuristics,
IGA-String, modifies directly the job sequence of all jobs of all orders
after the initialization function, while the other three algorithms, called
IGA-Matrix algorithms, first modify the job sequences of each order
separately and afterwards the order sequence. IGA-Matrix2 and IGA-
Matrix3 additionally have the LocalSearch3 function by which the jobs
of an order are scheduled actively between jobs of another order.
Furthermore, IGA-Matrix1 and IGA-Matrix2 use two acceptance func-
tions for evaluating the job sequences of the single orders independent
from the order sequence, while IGA-Matrix3 uses only one acceptance
function.

We compared the developed IGAs with each other and the MINLP
solution from the Gurobi solver. For the instances which where con-
firmed optimally solved by the solver, IGA-String was able to find
an optimal solution in 97.52% of the runs. Each of the IGA-Matrix
algorithms found an optimal solution in over 57% of the runs for these
instances. This shows that the developed algorithms are reliable and
appropriate solution methods for the considered problem.

For larger problem instances, IGA-Matrix3 showed the best perfor-
mance, especially because IGA-String performed worse for a higher
number of orders, probably due to the high computational effort per
iteration. As IGA-Matrix3 performed better than the other two IGA-
Matrix algorithms for both, the Small and the Big testbed, we further-
more conclude that the job sequences of the single orders and the order
sequence shall not be evaluated independent of each other.

Future research may investigate the flow shop environment for
the COSP with further objective functions, e.g., the total tardiness,
and machine specifications, e.g., with limited intermediate storage.
Furthermore, as literature about the COSP continuously grows, this
problem class deserves a more general view by a systematic literature
review in which the key results of the different problem configurations
are summarized.
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