
Operations Research Perspectives 15 (2025) 100362

A
2

Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

Customer order scheduling in a permutation flow shop environment
Julius Hoffmann a,b ,∗, Janis S. Neufeld b,c , Udo Buscher b
a Institute for Operations Research, Discrete Optimization and Logistics, Karlsruhe Institute of Technology, Kaiserstr. 89, Karlsruhe, 76133, Germany
b Faculty of Business and Economics, Chair for Industrial Management, TU Dresden, Helmholtzstr. 10, Dresden, 01069, Germany
c Chair of Operations Management, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany

A R T I C L E I N F O

Dataset link: https://github.com/Julius2627/C
OSP_Flow_Shop

Keywords:
Machine scheduling
Customer order scheduling
Iterated greedy algorithm
Metaheuristics
Flow shop

 A B S T R A C T

Various recent scheduling literature has studied the so called customer order scheduling problem. In this class
of scheduling problems, there are multiple customer orders, and each of them consists of several jobs. The
order finishes and is ready to be shipped when the last job of the order finishes. In this paper, we consider
the customer order scheduling problem in a permutation flow shop environment with 𝑚 machines. There are
𝑛 orders and each order has 𝑜 jobs. The objective is to minimize the total completion time of the orders. We
present multiple problem properties and a MINLP formulation of the problem. Furthermore, four heuristics
which follow the Iterated Greedy Algorithm are developed. In a computational experiment, we evaluated the
four heuristics on their practicability. They showed good results in short calculation time when compared with
the MINLP solution from a solver. Afterwards, we compared the four heuristics with each other for different
problem sizes.
1. Introduction

In most real-world cases, a customer orders not one but multiple
desired products. This applies to both the B2B and B2C sectors. To
save on transportation costs, the manufacturer collects the products of
a customer order and sends them all at once rather than sending each
product individually. For the case that the customer needs all products
together for further processing, this also comes along with lower ware-
housing costs for the customer, as prematurely arrived products must
be stored until the further products of the order arrive. However, the
described aspect is disregarded in classic scheduling problems, where
each job is treated individually. Consequently, recent papers examine
the so-called customer order scheduling problem (COSP). In this class
of scheduling problems, each job to schedule belongs to a predefined
customer order. A customer order finishes when each of the jobs has
finished [1].

The principle of the COSP is not limited to the production context
but can be transferred to other disciplines, e.g., to computational
work (see [2] for explanation) or mobile communication. In the latter
application area, a message consists of multiple packages which can
be sent independently via the communication network to the receiver.
The message is sent completely when all packages have arrived at the
receiver.

The COSP has been studied for different problem settings and
objective functions. A notation for the so-called assembly scheduling

∗ Corresponding author at: Institute for Operations Research, Discrete Optimization and Logistics, Karlsruhe Institute of Technology, Kaiserstr. 89, Karlsruhe,
76133, Germany.

E-mail addresses: julius.hoffmann@kit.edu (J. Hoffmann), janis.neufeld@ovgu.de (J.S. Neufeld), udo.buscher@tu-dresden.de (U. Buscher).

problem, for which the COSP is a special case, is presented by Framinan
et al. [3]. In general, assembly scheduling problems consider a machine
environment where at some point in the production process, all parts
of a product are assembled. Depending on the concrete problem con-
figuration, the product is finished after the assembly or needs further
processing steps. The notation 𝛼1 → 𝛼2 in the machine field of the
classical three-field scheduling notation indicates that an assembly
scheduling problem is considered. According to this notation, 𝛼1 is
the machine environment prior the assembly and 𝛼2 the following ma-
chine environment. The COSP is a subclass of the assembly scheduling
problem, where no further production step occurs after the assembly,
i.e., 𝛼2 = 0 and hence, is represented as 𝛼1 → 0 in the machine field
of the classical three-field scheduling notation, i.e., 𝛼1 → 0|𝛽|𝛾. We
are adopting the notation in this paper. Even though, the flow shop
machine environment is prominent in scheduling research, literature
about this machine environment for the COSP is sparse. To the best
of our knowledge, this paper is the first that addresses the problem
𝐹𝑚 → 0|𝑝𝑟𝑚𝑢|

∑

𝐶𝑖, i.e., minimizing the total completion time in a
𝑚-machine permutation flow shop environment for the COSP.

In recent years, the iterated greedy algorithm (IGA) has been used
in various papers to solve different kinds of flow shop scheduling
problems. It showed promising results when applied to a permutation
based solution representation, which is common for the flow shop ma-
chine environment [4]. However, as the length of the job permutation
https://doi.org/10.1016/j.orp.2025.100362
Received 4 July 2025; Received in revised form 30 October 2025; Accepted 31 Oct
vailable online 3 November 2025
214-7160/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
ober 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/orp
https://www.elsevier.com/locate/orp
https://orcid.org/0000-0002-7107-4213
https://orcid.org/0000-0003-0753-0517
https://orcid.org/0000-0003-4711-2184
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
https://github.com/Julius2627/COSP_Flow_Shop
mailto:julius.hoffmann@kit.edu
mailto:janis.neufeld@ovgu.de
mailto:udo.buscher@tu-dresden.de
https://doi.org/10.1016/j.orp.2025.100362
https://doi.org/10.1016/j.orp.2025.100362
http://creativecommons.org/licenses/by/4.0/

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
increases, disadvantages arise with the IGA, as the objective function of
(partial) solutions has to be calculated frequently during each iteration.
This occurs in particular at the COSP in a flow shop environment, since
the length of the job permutation depends on the number of orders and
the number of jobs per order.

In this paper we address this issue and investigate the problem
𝐹𝑚 → 0|𝑝𝑟𝑚𝑢|

∑

𝐶𝑖. This includes the presentation of four variants of
the IGA which solve this problem efficiently. To be more specific, the
contributions of this study are the following:

• We identify and point out a new problem configuration of the
COSP, and derive properties of the problem which are mandatory
for the program formulation and the IGAs.

• We formulate a MINLP of the problem configuration.
• We develop four IGAs for the problem which take the special
problem structure into account. One is modifying the job permu-
tation as a whole, while the others modify the job permutation
of each order separately and subsequently merge these smaller
permutations.

• The presented algorithms are evaluated in computational experi-
ments.

• Based on the experimental results, we give suggestions for ap-
propriate solution strategies for different problem sizes of 𝐹𝑚 →

0|𝑝𝑟𝑚𝑢|
∑

𝐶𝑖.

The remainder of this article is structured as follows. Section 2
gives an overview about literature related to the COSP, the flow shop
machine environment, and the IGA and its applications. In Section 3
we define the studied problem configuration and the notation which is
used in the paper. Furthermore, we present the relevant problem prop-
erties. The developed IGAs are described in Section 4 and evaluated
in the computational experiment of Section 5. Section 6 concludes the
results of the study and notes possibilities of future research.

2. Literature review

In this section we present related literature which addresses the
COSP in general, the COSP in machine settings which are similar to
the machine environment considered in this paper, and the application
of the IGA for different scheduling problems.

One of the earliest publications about the COSP is the paper from
Wagneur and Sriskandarajah [5]. They studied the COSP in the ded-
icated machine environment, where each order has one job on each
machine. However, the problem is not called COSP in the mentioned
paper, but open shop with jobs overlap. This points out that the COSP in
the dedicated machine environment can be considered as an open shop,
where the restriction that a job cannot be processed simultaneously by
the machines is removed. Note that an order corresponds to a job in
this open shop environment and a job to a task.

Wagneur and Sriskandarajah [5] studied the complexity of some
regular performance measures in the dedicated machine environment
and showed that the makespan and the maximum lateness can be
solved in polynomial time in this machine environment. Furthermore,
they stated proofs that the problems of minimizing the total tardiness,
the number of late jobs, and the total completion time are NP-hard,
even if there are only two machines. However, as shown in [6], the
proof for the last mentioned problem was not correct. The complexity of
the problem remained open until Roemer proved that 𝐷𝑃 2 → 0||

∑

𝐶𝑖
is indeed NP-hard [7].

The dedicated machine environment was further investigated by Le-
ung et al. [8]. They first showed an interesting property of this machine
environment, namely that there exists always an optimal schedule for
𝐷𝑃𝑚 → 0||

∑

𝑓𝑖
(

𝐶𝑖
)

, where 𝑓𝑖
(

𝐶𝑖
) is increasing in 𝐶𝑖 for each 𝑖, where

each order is processed in the same sequence on each machine. This
property significantly facilitated the handling of problem solving for
objective functions such as ∑𝐶 , ∑ 𝑇 , and ∑𝑈 as a schedule could be
𝑖 𝑖 𝑖

2
represented by a sequence of order IDs. The authors used this insight
to describe six heuristics, including the Shortest Total Processing Time
first heuristic, the Earliest Completion Time first heuristic and a Tabu
Search heuristic, to solve the problem 𝐷𝑃𝑚 → 0||

∑

𝐶𝑖.
As it is one of the most prominent objective functions in the schedul-

ing literature, the total completion time in connection with the COSP
was also examined in other papers. Yang and Posner [9] investigated
the total completion time of the COSP in a parallel machine envi-
ronment with identical machines. They stated that for the problem
𝑃𝑚 → 0||

∑

𝐶𝑖 there exists an optimal schedule, where the jobs of
an order which are scheduled on the same machine, are processed
consecutively. Furthermore, they presented two heuristics for 𝑃 2 →
0||

∑

𝐶𝑖 and one for 𝑃𝑚 → 0||
∑

𝐶𝑖. The unrelated parallel machine
environment with the product type splitting property was examined
by Xu et al. [10]. After establishing some optimality properties and a
programming formulation, the authors presented three heuristics for
this problem. More recently, the dedicated machine environment has
once again been the subject of research in [1,11], where different
heuristic approaches were studied.

There are various further problem configurations of the COSP stud-
ied in the literature, e.g., 𝐷𝑃𝑚 → 0||

∑

𝑇𝑖 in [12–14], 𝐷𝑃𝑚 →
0|𝑟𝑖|

∑

𝑤𝑖𝑈𝑖 in [15], 𝐷𝑃𝑚 → 0|𝑆𝑇𝑠𝑑 |𝐶𝑚𝑎𝑥 in [16], 𝐷𝑃𝑚 → 0|𝑆𝑇𝑠𝑑 |
∑

𝐶𝑖
in [17], and 𝑃𝑚 → 0|𝑏𝑎𝑡𝑐ℎ|

∑

𝑤𝑖𝐶𝑖 in [18]. Robust solution approaches
for the COSP with scenario-dependent problem parameters were stud-
ied in [19,20]. A stochastic version of the COSP where orders arrive
dynamically and their inter-arrival times form a Poisson process has
been investigated by Zhao et al. in [21]. Furthermore, Lin et al. [22]
consider the COSP with one machine, sequence independent setup
times and the objective of minimizing a linear combination of total
tardiness and total holding costs, i.e., 1 → 0|𝑆𝑇𝑛𝑠𝑑 |𝛼

∑

𝐻𝐶𝑖+(1−𝛼)
∑

𝑇𝑖.
More recently, the COSP with a serial-batch machine was investigated
in [23]. Furthermore, Hsu and Liu [24] studied the COSP for different
performance indicators in order to reduce the stock level of finished
goods in the job shop environment. The interested reader is referred to
the review paper from Framinan et al. for an overview of configurations
of the COSP [3].

Even though the problem 𝐹𝑚 → 0|𝑝𝑟𝑚𝑢|
∑

𝐶𝑖 has not been studied
before, related problems can be found in the literature. The minimiza-
tion of the makespan and the total completion time of the COSP in
a flow shop environment with exactly two machines was studied by
Yang [25]. The author derived problem properties and developed a
modification of Johnson’s Algorithm to solve the problem. However,
the study is limited to the two machine case. Chen et al. [26] studied
manufacturing synchronization in a hybrid flow shop environment with
dynamically arriving orders. The objective is to minimize the sum
of the longest waiting durations of the orders. As the orders arrive
dynamically and are unknown until they arrive, their solution algo-
rithm consists of a periodic scheduling policy together with a modified
genetic algorithm.

The distributed permutation flow shop problem in accordance with
the COSP for minimizing the makespan over all factories, i.e., 𝐷𝐹 →
0|𝑝𝑟𝑚𝑢|𝐶𝑚𝑎𝑥, is addressed by Meng et al. [27]. Here, all jobs of an
order have to be processed in the same factory, but it is not required
that all jobs of an order are processed consecutively. Their developed
heuristics are considering both, assigning the orders to the factories and
scheduling the jobs inside the factories. Even though the problem con-
figuration seems similar to our considered problem, the implication of
the customer order constraint in Meng et al. is different. Jobs belonging
to the same order must be processed in the same factory. However,
since the objective in Meng et al. is to minimize the makespan, i.e., the
maximum completion time of all orders and hence, also of all jobs
(

𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖∈𝐼{𝐶𝑖} = 𝑚𝑎𝑥𝑖∈𝐼,𝑗∈𝐽𝑖{𝐶𝑖𝑗}
)

, the sequencing problem inside
a single factory becomes independent of the customer order constraint
if the order is fixedly assigned to a factory. Therefore, the customer
order constraint is more relevant for the assignment of jobs to a facility
than for the actual sequencing task. Further studies which consider a

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
Table 1
Selected COSP literature.
 Reference Considered Problem Model Exact alg. Heuristic
 Erel and Ghosh [31] 1 → 0|𝑆𝑇𝑛𝑠𝑑 |

∑

𝐶𝑖 x (DP)
 Lin et al. [22] 1 → 0|𝑆𝑇𝑛𝑠𝑑 |𝛼

∑

𝐻𝐶𝑖 + (1 − 𝛼)
∑

𝑇𝑖 x (B&B) x (SA)
 Liu et al. [23] 1 → 0|𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑡, 𝑆𝑇𝑛𝑠𝑑 |

∑

(𝛼𝑖𝑗𝐸𝑖𝑗 + 𝛽𝑖𝑇𝑖) x x (GA)
 Roemer [7] 𝐷𝑃 2 → 0||

∑

𝐶𝑖
 Sung and Yoon [2] 𝐷𝑃 2 → 0||

∑

𝑤𝑖𝐶𝑖 x
 Wagneur and 𝐷𝑃𝑚 → 0||𝐶𝑚𝑎𝑥∕𝐿𝑚𝑎𝑥∕

∑

𝐶𝑖∕
∑

𝑇𝑖∕
∑

𝑈𝑖 x
 Sriskandarajah [5]
 Leung et al. [8] 𝐷𝑃𝑚 → 0||

∑

𝐶𝑖 x (TS)
 Framinan and 𝐷𝑃𝑚 → 0||

∑

𝐶𝑖 x
 Perez-Gonzalez [1]
 Hoffmann et al. [11] 𝐷𝑃𝑚 → 0||

∑

𝐶𝑖 x x (IGA)
 Lee [12] 𝐷𝑃𝑚 → 0||

∑

𝑇𝑖 x (B&B) x
 Framinan and 𝐷𝑃𝑚 → 0||

∑

𝑇𝑖 x x (Math.)
 Perez-Gonzalez [13]
 Braga-Santos et al. [14] 𝐷𝑃𝑚 → 0||

∑

𝑇𝑖 x x
 Hoffmann et al. [32] 𝐷𝑃𝑚 → 0||

∑
(
∑

𝐸𝑖𝑗 + 𝑚𝑇𝑖
)

x x (IGA)
 Wu et al. [33] 𝐷𝑃𝑚 → 0||

∑

𝐶𝑖 , 𝑇𝑚𝑎𝑥 x (B&B) x (IGA, PSO)
 Wu et al. [34] 𝐷𝑃𝑚 → 0|𝑟𝑖|

∑

𝑤𝑖𝐶𝑖 x (B&B) x (IGA)
 Lin et al. [15] 𝐷𝑃𝑚 → 0|𝑟𝑖|

∑

𝑤𝑖𝑈𝑖 x (B&B) x (ABC)
 Prata et al. [16] 𝐷𝑃𝑚 → 0|𝑆𝑇𝑠𝑑 |𝐶𝑚𝑎𝑥 x x (Math.)
 Prata et al. [17] 𝐷𝑃𝑚 → 0|𝑆𝑇𝑠𝑑 |

∑

𝐶𝑖 x x (DE)
 Li et al. [19] 𝐷𝑃𝑚 → 0|𝑟𝑖 , 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜|max𝑠∈{1,2}{

∑

𝑤𝑖𝑈
(𝑠)
𝑖 } x (B&B) x (GA)

 Yang and Posner [9] 𝑃𝑚 → 0||
∑

𝐶𝑖 x
 Shi et al. [18] 𝑃𝑚 → 0|𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑡|𝐶𝑚𝑎𝑥∕

∑

𝑤𝑖𝐶𝑖 x (x) x (DE)
 Xu et al. [10] 𝑅𝑚 → 0|𝑠𝑝𝑙𝑖𝑡|

∑

𝐶𝑖 x x
 Yang [25] 𝐹2 → 0||𝐶𝑚𝑎𝑥∕

∑

𝐶𝑖 (x) x
 Çetinkaya and Yozgat [35] 𝐹2 → 0|𝑆𝑇𝑛𝑠𝑑 , 𝑝𝑟𝑚𝑢, 𝑙𝑠|

∑

𝐶𝑖 x x
 Meng et al. [27] 𝐷𝐹 → 0|𝑝𝑟𝑚𝑢|𝐶𝑚𝑎𝑥 x x (VNS, ABC, IGA)
 This paper 𝐹𝑚 → 0|𝑝𝑟𝑚𝑢|

∑

𝐶𝑖 x x (IGA)
distributed permutation flow shop environment and include a customer
order constraint can be found in [28–30].

Xiong et al. [36] studied a problem which they called the precast
supply chain scheduling problem in the context of the COSP. Jobs
of orders had to pass through exact 9 stages, some of which could
process only one job at a time (sequential stages) and the others
could process multiple jobs simultaneously (parallel stages). The last
stage was transportation, which was executed at an exact integer hour.
Consequently, the jobs of an order were already gathered after the
second last stage. The derived properties and algorithms based largely
on the findings of an analysis of real world data, which made particular
reductions and algorithm decision rules reasonable. Even if they pro-
vided interesting results, the transferability to our general case is very
limited due to this approach. Another closely related recent paper is
the study from Çetinkaya and Yozgat [35]. They investigated the COSP
in a two machine flow shop environment with lot streaming, where the
same products ordered by the different customers have to be processed
consecutively. After providing some proofs for problem properties and
a mathematical programming model, the authors presented an effective
heuristic with four phases.

We provide an overview of the different configurations of the COSP
which were considered in the literature in Table 1. Note that not all
mentioned papers are listed in the table as the respective problem
configurations do not match well with the classical three-field schedul-
ing notation, are not defined as COSP or because the respective paper
is only a revisitation of an earlier paper. As shown in the table, the
literature lacks a paper that addresses the 𝑚-machine permutation flow
shop environment, even though it is a prominent setting in scheduling
literature. We chose the objective of minimizing the total completion
time because it is one of the classical objectives in scheduling research,
which is also shown in Table 1.

Besides the considered problem configuration, we also present the
investigated solution approaches of the papers. An ‘x’ in the model-
column indicates that a mathematical program that can be solved by
a solver is given in the respective paper. If the authors developed an
algorithm that can solve the respective problem guaranteed optimally,
we mark it in the column Exact alg. Furthermore, we indicate if the
3
algorithm follows a general framework, e.g., Branch-and-Bound (B&B)
or Dynamic Programming (DP). Note that the exact algorithms in
Yang [25] and Shi et al. [18] run in polynomial time but solve the
problems 𝐹2 → 0||𝐶𝑚𝑎𝑥 and 𝑃𝑚 → 0|𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑡|𝐶𝑚𝑎𝑥 respectively. In
the last column, Heuristics, we indicate if heuristic solution approaches
were developed. We also show if one or all of the developed heuristics
follow a predefined framework, such as Simulated Annealing (SA),
Genetic Algorithm (GA), Tabu Search (TS), IGA, Particle Swarm Opti-
mization (PSO), Artificial Bee Colony (ABC), Differential Evolution (DE)
or Variable Neighborhood Search (VNS), or are a Matheuristic (Math.).

As most scheduling problems are NP-hard, much scheduling re-
search focuses on generating effective heuristics for solving the ad-
dressed problem, which can also be seen by the presented literature.
A heuristic that attained much attention in recent years is the IGA.
In a systematic literature review, Zhao et al. [4] present 137 papers
which study the IGA for flow shop scheduling which shows their good
performance for this machine environment. Another reason for choos-
ing the IGA in our study is its adaptability. In the basic framework,
the IGA consists of five (or four) steps, i.e., initialization, local search
which is non-compulsory, destruction, construction and acceptance.
Each step is a function that can be designed in various ways. The
last four mentioned steps are repeated until a termination condition
is met [4].

In addition to flow shop scheduling problems, the IGA has also been
applied in the context of the COSP. Wu et al. [33] used an IGA to
solve 𝐷𝑃𝑚 → 0||

∑

𝐶𝑖, 𝑇𝑚𝑎𝑥, where it outperformed other algorithms,
e.g., a particle swarm optimization algorithm, while it was applied
in [34] for the problem 𝐷𝑃𝑚 → 0|𝑟𝑖|

∑

𝑤𝑖𝐶𝑖. Furthermore, Hoffmann
et al. [11] developed an IGA, which showed good performance for
the basic configuration of the COSP, i.e., 𝐷𝑃𝑚 → 0||

∑

𝐶𝑖. More
recently, multiple IGAs which have an additional refinement step were
developed in [32] for the problem 𝐷𝑃𝑚 → 0||

∑
(
∑

𝐸𝑖𝑗 + 𝑚𝑇𝑖
)

.
The schedules which are modified by the IGAs in the first three men-

tioned papers of the last paragraph were represented by a sequence of
orders. Consequently, the position of a job on a machine corresponded
to the position of the order in the sequence. This is reasonable as by
the mentioned proposition from Leung et al. [8], there exists an optimal

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
Table 2
Notation.
 Parameters
 𝑛 number of customer orders
 𝑚 number of machines
 𝑜 number of jobs per order
 𝑝𝑖𝑗𝑘 processing time of job 𝑗 of order 𝑖 on 𝑘
 𝑇𝑃𝑖𝑗 total processing time of job 𝑗 of order 𝑖
 Decision variables
 𝑥𝑖𝑗ℎ binary decision variable that becomes 1 if
 job 𝑗 of order 𝑖 is at position ℎ on all
 machines, and 0 otherwise
 𝐶𝑖 completion time of order 𝑖
 𝐶𝑖𝑗𝑘 completion time of job 𝑗 of order 𝑖 on 𝑘
 Notation for the algorithms
 𝑑, 𝑑1, 𝑑2 destruction sizes
 𝑦, 𝑧, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥, 𝑑𝑚𝑎𝑥1, 𝑑𝑚𝑎𝑥2 algorithm parameters
 𝜋, 𝜋𝑑 , 𝜋𝑛⋅𝑜−𝑑 sequence of jobs
 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 sequence of orders
 𝜋𝑗𝑜𝑏𝑠,𝑖, 𝜋′

𝑗𝑜𝑏𝑠,𝑖, 𝜋∗
𝑗𝑜𝑏𝑠,𝑖, 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑖, 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖 job sequence of order 𝑖

 𝜋𝑗𝑜𝑏𝑠, 𝜋′
𝑗𝑜𝑏𝑠, 𝜋∗

𝑗𝑜𝑏𝑠, 𝜋𝑗𝑜𝑏𝑠∶𝑑 , 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑 set of job sequences of the orders
 𝛱 , 𝛱 ′, 𝛱 ′′ , 𝛱∗ feasible schedule
 𝐹 (⋅) objective function value
 𝐶𝑚𝑎𝑥(⋅) makespan of the job sequence

schedule for various problem configurations in the dedicated machine
environment, where each order is processed in the same sequence on
each machine, and the length of the sequence is the number of orders.
However, this schedule representation is not applicable for the flow
shop environment. At the same time, a schedule representation as a
sequence of all jobs of all orders is computationally intensive when used
in an IGA due to the length of the sequence. We will address this issue
in the following sections.

3. Problem description

3.1. Problem definition

In the following, we define the considered problem formally. There
are 𝑛 orders where each order consists of exactly 𝑜 jobs. Each of the
jobs has to be processed on all machines and the machine sequence is
the same for each job. We denote the number of machines with 𝑚 and
the numeration of the machines is equivalent to the machine sequence
of production. As we consider a permutation flow shop, all jobs have to
be processed in the same sequence on all machines which means a job
cannot pass another job between the machines and preemptions are not
allowed. Furthermore, simultaneous production of one job on multiple
machines is prohibited. Job 𝑗 of order 𝑖 on machine 𝑘 has a processing
time 𝑝𝑖𝑗𝑘 and, based on the schedule, a completion time 𝐶𝑖𝑗𝑘. By setting
the respective processing times to zero, it is possible to generalize the
problem to the case where not all orders have the same number of jobs,
and where not all jobs have to be processed on each machine. Note
that in the latter case, the jobs still cannot pass each other in the shop
since we still consider a permutation flow shop. Release dates and setup
times are not considered. The completion time of order 𝑖 is defined by
the completion time of the last scheduled job of this order on the last
machine, i.e., 𝐶𝑖 = max1≤𝑗≤𝑜{𝐶𝑖𝑗𝑚}. The objective is to minimize the
sum of completion times of all orders. An overview of the used notation
in this paper can be found in Table 2.

For the purpose of clarity, a feasible schedule for an exemplary
problem instance is given next. In this instance, there are 2 machines, 2
orders and 3 jobs per order, i.e., 𝑚 = 2, 𝑛 = 2 and 𝑜 = 3. The processing
times of this instance are stated in Table 3. Here, 𝑂𝑖 represents order 𝑖,
𝐽𝑗 job 𝑗 of the corresponding order, and 𝑀𝑘 machine 𝑘.

A feasible solution of this problem is the schedule with the job
sequence {(1, 1), (2, 1), (2, 2), (2, 3), (1, 2), (1, 3)} where for a job (𝑖, 𝑗), 𝑖 is
the order number and 𝑗 the job of the order. As can be seen by (1,1)
4
Table 3
Processing times of the exemplary problem instance.
 𝑝𝑖𝑗𝑘 𝐽1 𝐽2 𝐽3
 𝑀1 𝑀2 𝑀1 𝑀2 𝑀1 𝑀2
 𝑂1 2 3 5 3 6 2
 𝑂2 3 4 3 3 4 2

and the following jobs of order 2, the jobs of a single order do not have
to be processed one after another. The Gantt chart of this schedule can
be found in Fig. 1. The job and order numbers of the jobs are labeled
as well as some of the completion times.

By this example we also introduce the terms forced and unforced idle
times as well as non-delay schedule. As can be seen in Fig. 1, there are
idle times between some jobs, e.g., between (2, 3) and (1, 2) on machine
2. However, these idle times are forced by the flow shop property
according to which a job can only be processed on the next machine if
it is finished on the current machine. In contrast, unforced idle times
are actively inserted by the decision maker and occur if a machine is
kept idle despite a job is waiting before the machine for processing.
If a schedule has no unforced idle times, the schedule is called non-
delay (see [37] for further explanation). An example for an unforced
idle time for the problem instance and job sequence above would be the
following. Job (2, 3) could start at time 13 on machine 2, despite being
finished at time 12 on machine 1 and the previously scheduled job (2, 2)
finished at time 12 on machine 2. The remaining operations are as in
Fig. 1. Consequently, machine 2 would be kept idle for one time unit
even though job (2, 3) would wait before the machine for processing.

3.2. Problem properties

We are presenting some important problem properties in the follow-
ing.

Proposition 1. The problem 𝐹𝑚 → 0|𝑝𝑟𝑚𝑢|
∑

𝐶𝑖 is NP-hard, even for
the two machine case.

Proof. The proof follows the ideas of a proof presented in [25].
Garey et al. [38] proved that the problem 𝐹2||

∑

𝐶𝑖 is NP-hard. A well
known property of 𝐹2||

∑

𝐶𝑖 is that there exists always an optimal
solution where the jobs are processed in the same sequence on each
machine [39]. As a result, 𝐹2|𝑝𝑟𝑚𝑢|

∑

𝐶𝑖 and hence, 𝐹𝑚|𝑝𝑟𝑚𝑢|
∑

𝐶𝑖, are
also NP-hard. For the case 𝑜 = 1, i.e., each order includes just one job,
the problem 𝐹2 → 0|𝑝𝑟𝑚𝑢|

∑

𝐶𝑖 is equal to 𝐹2|𝑝𝑟𝑚𝑢|
∑

𝐶𝑖. Therefore,
𝐹2 → 0|𝑝𝑟𝑚𝑢|

∑

𝐶𝑖 and hence, 𝐹𝑚 → 0|𝑝𝑟𝑚𝑢|
∑

𝐶𝑖, are also NP-hard.

Lemma 2. There exists an optimal schedule for each instance of 𝐹𝑚 →

0|𝑝𝑟𝑚𝑢|
∑

𝐶𝑖 without unforced idle times, i.e., one of the non-delay sched-
ules is optimal.

Proof. Inserting an unforced idle time in front of a job cannot reduce
the completion time of this job and, due to the permutation schedule
requirement, not of any other following job. The completion times of
the previously scheduled jobs are not affected by the idle time. Since
𝐶𝑖 = max1≤𝑗≤𝑜{𝐶𝑖𝑗𝑚}, the completion time of any order cannot be
reduced either and therefore, no smaller total completion time of the
orders can be found.

Remark 1. Note that there are problem instances with multiple
optimal solutions, and some of these optimal solutions may contain
unforced idle times.

Lemma 3. There are instances of the problem 𝐹𝑚 → 0|𝑝𝑟𝑚𝑢|
∑

𝐶𝑖 where
it is not possible to schedule all jobs of an order consecutively to obtain an
optimal solution. This even applies to the problem size 𝑛 = 2, 𝑜 = 2, 𝑚 = 2.

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
Fig. 1. Gantt chart of the example.
Table 4
Processing times of the counter example.
 𝑝𝑖𝑗𝑘 𝐽1 𝐽2
 𝑀1 𝑀2 𝑀1 𝑀2
 𝑂1 10 11 7 2
 𝑂2 11 17 1 17

Table 5
Total completion times of the sequences where the jobs
of an order are scheduled consecutively.
 Job sequence Total completion time
 {(1, 1), (1, 2), (2, 1), (2, 2)} 85
 {(1, 1), (1, 2), (2, 2), (2, 1)} 80
 {(1, 2), (1, 1), (2, 1), (2, 2)} 90
 {(1, 2), (1, 1), (2, 2), (2, 1)} 90
 {(2, 1), (2, 2), (1, 1), (1, 2)} 103
 {(2, 1), (2, 2), (1, 2), (1, 1)} 103
 {(2, 2), (2, 1), (1, 1), (1, 2)} 83
 {(2, 2), (2, 1), (1, 2), (1, 1)} 83

Proof. This property can be shown by the counter example with the
processing times given in Table 4.

The job sequence with the lowest total completion time is {(2, 2),
(1, 2), (1, 1), (2, 1)} where 𝑖 represents the order and 𝑗 the job of the
order in (𝑖, 𝑗). The corresponding total completion time is 79. The
total completion times of the sequences where all jobs of an order are
scheduled consecutively are given in Table 5.

This counter example proves the Lemma since there exists an in-
stance where there is no optimal schedule where the jobs of each order
are scheduled consecutively.

Remark 2. A further reduction of the problem size 𝑛 = 2, 𝑜 = 2, 𝑚 = 2
is not in the scope of this research. As mentioned, 𝑜 = 1 would result in
the problem 𝐹𝑚|𝑝𝑟𝑚𝑢|

∑

𝐶𝑖 which is well studied. If 𝑛 = 1, the problem
becomes the well known problem 𝐹𝑚|𝑝𝑟𝑚𝑢|𝐶𝑚𝑎𝑥. In the case 𝑚 = 1, we
get the problem 1 → 0|𝑝𝑟𝑚𝑢|

∑

𝐶𝑖, which can be solved by an extension
of the SPT-rule to the customer order case [31].

Lemmas 2 and 3 give important implications for the representation
of a complete schedule 𝛱 in this study: a solution or complete schedule
𝛱 is represented by a sequence of all jobs of all orders and unforced
idle times are not considered. An example for this was given earlier
in Section 3.1. The solution representation is used in the proposed
algorithms and in the MINLP formulation. For the MINLP, we use the
already introduced decision variables 𝐶𝑖𝑗𝑘 and 𝐶𝑖. Furthermore, we use
the binary decision variable 𝑥𝑖𝑗ℎ which indicates if job 𝑗 from order 𝑖
is in position ℎ on each machine (see Table 2).

minimize:
𝑛
∑

𝑖=1
𝐶𝑖 (1)

subject to:
5
𝑛⋅𝑜
∑

ℎ=1
𝑥𝑖𝑗ℎ = 1 ∀ 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑜 (2)

𝑛
∑

𝑖=1

𝑜
∑

𝑗=1
𝑥𝑖𝑗ℎ = 1 ∀ ℎ = 1,… , 𝑛 ⋅ 𝑜 (3)

𝑛
∑

𝑖=1

𝑜
∑

𝑗=1
𝑥𝑖𝑗(ℎ−1) ⋅ 𝐶𝑖𝑗𝑘 ≤

𝑛
∑

𝑖=1

𝑜
∑

𝑗=1
𝑥𝑖𝑗ℎ ⋅

(

𝐶𝑖𝑗𝑘 − 𝑝𝑖𝑗𝑘
)

∀ ℎ = 2,… , 𝑛 ⋅ 𝑜;

𝑘 = 1,… , 𝑚

(4)

𝐶𝑖𝑗(𝑘−1) ≤ 𝐶𝑖𝑗𝑘 − 𝑝𝑖𝑗𝑘 ∀ 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑜; 𝑘 = 2,… , 𝑚 (5)

0 ≤
𝑛
∑

𝑖=1

𝑜
∑

𝑗=1
𝑥𝑖𝑗1 ⋅

(

𝐶𝑖𝑗1 − 𝑝𝑖𝑗1
)

(6)

𝐶𝑖𝑗𝑚 ≤ 𝐶𝑖 ∀ 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑜 (7)

𝑥𝑖𝑗ℎ ∈ {0; 1} ∀ 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑜; ℎ = 1,… , 𝑛 ⋅ 𝑜 (8)

The objective of minimizing the total completion time is defined in
Eq. (1). By Eqs. (2) and (3) it is guaranteed that each job of each order is
assigned to exactly one sequence position and vice versa. Eq. (4) defines
for each machine that a job in position ℎ−1 has to be finished before the
processing of the following job (in position ℎ) can start. Furthermore,
it is guaranteed by Eq. (5) that a job cannot be processed on machine
𝑘 until processing has finished on the previous machine 𝑘− 1. As there
is no 𝑥𝑖𝑗0 and 𝐶𝑖𝑗0 defined, Eq. (6) gives the starting condition for the
first machine and position. The definition of the completion time of an
order 𝐶𝑖 can be found in Eq. (7) and the definition of the binarity of
𝑥𝑖𝑗ℎ in Eq. (8).

4. Algorithm description

As the problem is NP-hard and the number of jobs increases with
both, increasing 𝑛 and 𝑜, we developed four heuristics for this problem.
The heuristics are based on a variant of the IGA which is presented
in [11] and is called IGN in the respective paper.

Initial solution
Each of the heuristics generates an initial solution with a function

we call MultipleNEH. The function has two parts and the pseudocode of
the function can be found in Algorithm 1. First, the NEH heuristic [40]
is applied to the jobs of each order separately. For the example in
Section 3.1, this means that the jobs of the first order are sorted first
and then the jobs of the other order, each time without considering
the jobs of the other order in the shop. The NEH heuristic is applied
in the following way. For each order, the jobs are sorted in ascending
sequence of their total production time 𝑇𝑃𝑖𝑗 =

∑𝑚
𝑘=1 𝑝𝑖𝑗𝑘. The first two

jobs from the sorted list are selected and brought into the sequence
that generates the lowest makespan when only these two jobs are in
the shop. Subsequently, the next job of the sorted list is inserted into
every possible position of the existing job sequence and is saved at the
position for which the minimum makespan results. This is repeated
until all jobs of the order are placed. An exemplary job sequence
𝜋 = {(1, 1), (1, 2), (1, 3)} for the jobs of order 1 of the example in
𝑗𝑜𝑏𝑠,1

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
Fig. 2. Gantt chart for the job sequence of a single order.
Algorithm 1 MultipleNEH function
1: procedure MultipleNEH
2: 𝜋𝑗𝑜𝑏𝑠 ← {}
3: for 𝑖 ← 1 to 𝑛 do
4: for 𝑗 ← 1 to 𝑜 do
5: 𝑇𝑃𝑖𝑗 ←

∑𝑚
𝑘=1 𝑝𝑖𝑗𝑘

6: end for
7: Sort the jobs in ascending order of 𝑇𝑃 in list
8: 𝜋𝑗𝑜𝑏𝑠,𝑖 ← {}
9: Insert job at position 1 of list in 𝜋𝑗𝑜𝑏𝑠,𝑖
10: for 𝑎 ← 2 to 𝑜 do
11: for 𝑏 ← 𝑙𝑒𝑛(𝜋𝑗𝑜𝑏𝑠,𝑖) + 1 to 1 do
12: 𝜋𝑗𝑜𝑏𝑠,𝑖,𝑏 ← insert job at position 𝑎 of list in 𝜋𝑗𝑜𝑏𝑠,𝑖 at position 𝑏
13: end for
14: 𝜋𝑗𝑜𝑏𝑠,𝑖 ← 𝜋𝑗𝑜𝑏𝑠,𝑖,𝑏 with minimum 𝐶𝑚𝑎𝑥(𝜋𝑗𝑜𝑏𝑠,𝑖,𝑏)
15: end for
16: insert 𝜋𝑗𝑜𝑏𝑠,𝑖 in 𝜋𝑗𝑜𝑏𝑠
17: end for
18: for 𝑖 ← 1 to 𝑛 do
19: 𝐶𝑚𝑎𝑥

𝑖 ← max1≤𝑗≤𝑜{𝐶𝑖𝑗𝑚(𝜋𝑗𝑜𝑏𝑠,𝑖)}
20: end for
21: Sort the orders in ascending order of 𝐶𝑚𝑎𝑥

𝑖 in list
22: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 ← {}
23: Insert order at position 1 of list in 𝜋𝑜𝑟𝑑𝑒𝑟𝑠
24: for 𝑎 ← 2 to 𝑛 do
25: for 𝑏 ← 𝑙𝑒𝑛(𝜋𝑜𝑟𝑑𝑒𝑟𝑠) + 1 to 1 do
26: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠,𝑏 ← insert order at position 𝑎 of list in 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 at position 𝑏
27: 𝜋𝑏 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠,𝑏, 𝜋𝑗𝑜𝑏𝑠
28: end for
29: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠,𝑏 with minimum 𝐹 (𝜋𝑏)
30: end for
31: 𝛱 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠
32: return 𝛱,𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠
33: end procedure

Section 3.1 is given in Fig. 2. We also marked the makespan of 𝜋𝑗𝑜𝑏𝑠,1
in the figure.

After generating the job sequences for each order, we generate an
order sequence 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 in the second part of MultipleNEH. By this it is
determined which job sequence of a single order 𝜋𝑗𝑜𝑏𝑠,𝑖 is processed in
which position of the complete schedule 𝛱 . First, the orders are sorted
in ascending sequence of the makespan of their job sequences. In the
next step, the first two orders from the resulting list are selected and
their job sequences are brought into the sequence which minimizes
the total completion time of the orders. Note, that the jobs of an
order are still being processed consecutively, and it is only determined
whether 𝜋𝑗𝑜𝑏𝑠,𝑖 is before 𝜋𝑗𝑜𝑏𝑠,𝑗 or vice versa. Subsequently, the next
order from the list is chosen and the corresponding job sequence
is placed in each position of the job sequences and is saved at the
position for which the minimum total completion time resulted. This
repeats until the job sequences of all orders are placed. The result
of the second part of MultipleNEH is a sequence of orders 𝜋𝑜𝑟𝑑𝑒𝑟𝑠
which represents the positions of the job sequences of the orders
in the resulting schedule. Together with the job sequences of the
6
single orders 𝜋𝑗𝑜𝑏𝑠 = {𝜋𝑗𝑜𝑏𝑠,1, 𝜋𝑗𝑜𝑏𝑠,2,… , 𝜋𝑗𝑜𝑏𝑠,𝑛} we can generate a com-
plete schedule 𝛱 . For example, with 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 = {2, 1} and 𝜋𝑗𝑜𝑏𝑠 =
{𝜋𝑗𝑜𝑏𝑠,1, 𝜋𝑗𝑜𝑏𝑠,2} = {{(1, 1), (1, 2), (1, 3)}, {(2, 2), (2, 1), (2, 3)}} we get the
schedule 𝛱 = {(2, 2), (2, 1), (2, 3), (1, 1), (1, 2), (1, 3)}. The schedule can be
found in Fig. 3. The total completion time of this schedule is 𝐹 (𝛱) =
∑𝑛

𝑖=1 𝐶𝑖(𝛱) = 25 + 12 = 37.

IGA-string algorithm
Our first heuristic is a straight forward approach by applying the

IGA to the complete job sequence 𝛱 . We call this heuristic IGA-String
as the functions of the IGA modify solely the sequence of all jobs of
all orders, i.e. one string of jobs. We refer to Algorithm 2 for the
pseudocode of this heuristic.

Algorithm 2 General procedure of IGA-String
1: procedure IGA-String(𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥, 𝑦, 𝑧)
2: 𝛱 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑁𝐸𝐻()
3: 𝑑 ← 𝑑𝑚𝑖𝑛
4: 𝛱 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝛱, 𝑧, 𝑑, 𝑑𝑚𝑖𝑛)
5: 𝛱∗ ← 𝛱
6: while time limit not exceeded do
7: 𝜋𝑑 , 𝜋𝑛⋅𝑜−𝑑 ← 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝛱, 𝑑)
8: 𝛱 ′

← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝜋𝑑 , 𝜋𝑛⋅𝑜−𝑑)
9: 𝛱 ′

← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝛱 ′ , 𝑧, 𝑑, 𝑑𝑚𝑖𝑛)
10: 𝛱∗,𝛱, 𝑑 ← 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒(𝛱∗,𝛱,𝛱 ′ , 𝑑, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥, 𝑦)
11: end while
12: return 𝛱∗, 𝐹 (𝛱∗)
13: end procedure

After generating a first feasible schedule with MultipleNEH, the
destruction size 𝑑 is set to 𝑑𝑚𝑖𝑛 in IGA-String. During MultipleInsertion,
⌊

𝑧 ⋅ 𝑑
𝑑𝑚𝑖𝑛

⌋

 times a single job is taken out of the job sequence and placed
in each position of the job sequence. Each time, the job is saved at
the position for which the minimum total completion time resulted.
Note that it is not possible to choose the same job multiple times per
execution of MultipleInsertion. The pseudocode of this function is given
in Algorithm 3. Subsequently, the obtained schedule is saved as the best
found schedule 𝛱∗.

The following procedure is repeated until a given time limit is
exceeded. In Destruction, 𝑑 random jobs are taken out of the job
sequence and are stored in 𝜋𝑑 . The remaining jobs are stored in the
partial schedule 𝜋𝑛⋅𝑜−𝑑 in the same sequence as they appear in 𝛱 .
Subsequently, a new schedule 𝛱 ′ is generated by Construction. First, the
jobs in 𝜋𝑑 are sorted in ascending order by their total production time
𝑇𝑃𝑖𝑗 =

∑𝑚
𝑘=1 𝑝𝑖𝑗𝑘. Then, the jobs in the sorted string 𝜋𝑑 are reinserted

one after another at the position in 𝜋𝑛⋅𝑜−𝑑 which minimizes the total
order completion time of the job sequence. The pseudocodes of the
Destruction and Construction function can be found in Algorithm 4 and
Algorithm 5 respectively.

After applying the local search function MultipleInsertion to the
schedule 𝛱 ′, the resulting schedule is evaluated by the function Accep-
tance (see Algorithm 6 for the pseudocode). This function determines
the schedule 𝛱 as well as the destruction size 𝑑 for the next iteration,
and checks if a new best solution was found. The schedule 𝛱 ′ is

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
Fig. 3. Gantt chart of the schedule 𝛱 = {(2, 2), (2, 1), (2, 3), (1, 1), (1, 2), (1, 3)}.
Algorithm 3 Multiple insertion in IGA-String
1: procedure MultipleInsertion(𝛱 , 𝑧, 𝑑, 𝑑𝑚𝑖𝑛)
2: 𝛱𝑐𝑜𝑝𝑦 ← 𝛱

3: for 𝑎 ← 1 to
⌊

𝑧 ⋅ 𝑑
𝑑𝑚𝑖𝑛

⌋

 do
4: take a random job out of 𝛱𝑐𝑜𝑝𝑦 and insert it in list
5: end for
6: for 𝑎 ← 1 to

⌊

𝑧 ⋅ 𝑑
𝑑𝑚𝑖𝑛

⌋

 do
7: 𝑝 ← job at position 𝑎 of list
8: 𝜋 ← 𝛱∖𝑝
9: for 𝑏 ← 𝑛 ⋅ 𝑜 to 1 do
10: 𝜋𝑏 ← insert 𝑝 in 𝜋 at position 𝑏
11: end for
12: 𝛱 ← 𝜋𝑏 with minimum 𝐹 (𝜋𝑏)
13: end for
14: return 𝛱
15: end procedure

Algorithm 4 Destruction in IGA-String
1: procedure Destruction(𝛱 , 𝑑)
2: 𝜋𝑛⋅𝑜−𝑑 , 𝜋𝑑 ← 𝛱, {}
3: for 𝑎 ← 1 to 𝑑 do
4: take a random job out of 𝜋𝑛⋅𝑜−𝑑 and append it to 𝜋𝑑
5: end for
6: return 𝜋𝑑 , 𝜋𝑛⋅𝑜−𝑑
7: end procedure

Algorithm 5 Construction in IGA-String
1: procedure Construction(𝜋𝑑 , 𝜋𝑛⋅𝑜−𝑑)
2: for 𝑎 ← 1 to 𝑙𝑒𝑛(𝜋𝑑) do
3: (𝑖, 𝑗) ← 𝜋𝑑 (𝑎) ⊳ job at position 𝑎 in 𝜋𝑑
4: 𝑇𝑃𝑖𝑗 ←

∑𝑚
𝑘=1 𝑝𝑖𝑗𝑘

5: end for
6: Sort the jobs in ascending order of 𝑇𝑃 in 𝜋𝑑
7: while 0 < 𝑙𝑒𝑛(𝜋𝑑) do
8: 𝑝 ← 𝜋𝑑 (1)
9: for 𝑎 ← 𝑙𝑒𝑛(𝜋𝑛⋅𝑜−𝑑) + 1 to 1 do
10: 𝜋𝑎 ← insert 𝑝 in 𝜋𝑛⋅𝑜−𝑑 at position 𝑎
11: end for
12: remove 𝑝 from 𝜋𝑑
13: 𝜋𝑛⋅𝑜−𝑑 ← 𝜋𝑎 with minimum 𝐹 (𝜋𝑎)
14: end while
15: 𝛱 ′

← 𝜋𝑛⋅𝑜−𝑑
16: return 𝛱 ′

17: end procedure

accepted as the new schedule for the next iteration if 𝐹 (𝛱 ′) ≤ 𝐹 (𝛱)
and as the new best found schedule if 𝐹 (𝛱 ′) < 𝐹 (𝛱∗). Furthermore,
if 𝐹 (𝛱 ′) < 𝐹 (𝛱), 𝑑 is set to 𝑑𝑚𝑖𝑛, otherwise 𝑑 is increased by 1 if the
upper limit 𝑑𝑚𝑎𝑥 is not reached, i.e., 𝑑 < 𝑑𝑚𝑎𝑥. A constructed schedule
𝛱 ′ can also be taken as the schedule for the next iteration for the case
𝐹 (𝛱 ′) > 𝐹 (𝛱), but only if 𝑞 ≤ 𝑒𝑥𝑝(−𝑦 ⋅ 𝑑𝑚𝑖𝑛

𝑑 ⋅ 𝐹 (𝛱 ′)−𝐹 (𝛱)
𝐹 (𝛱)) holds, where 𝑞

is a random number between 0 and 1, drawn each iteration.
7
Algorithm 6 Acceptance in IGA-String
1: procedure Acceptance(𝛱∗,𝛱,𝛱 ′ , 𝑑, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥, 𝑦)
2: if 𝐹 (𝛱 ′) < 𝐹 (𝛱) then
3: 𝑑,𝛱 ← 𝑑𝑚𝑖𝑛,𝛱

′

4: if 𝐹 (𝛱 ′) < 𝐹 (𝛱∗) then
5: 𝛱∗ ← 𝛱 ′

6: end if
7: else if 𝐹 (𝛱 ′) = 𝐹 (𝛱) then
8: 𝛱 ← 𝛱 ′

9: if 𝑑 < 𝑑𝑚𝑎𝑥 then
10: 𝑑 ← 𝑑 + 1
11: end if
12: else
13: if 𝑞 ≤ 𝑒𝑥𝑝(−𝑦 ⋅ 𝑑𝑚𝑖𝑛

𝑑
⋅ 𝐹 (𝛱 ′)−𝐹 (𝛱)

𝐹 (𝛱)
) then

14: 𝛱 ← 𝛱 ′

15: end if
16: if 𝑑 < 𝑑𝑚𝑎𝑥 then
17: 𝑑 ← 𝑑 + 1
18: end if
19: end if
20: return 𝛱∗,𝛱, 𝑑
21: end procedure

Table 6
Schedule representation in tabular form.
 Order number Job sequence
 2 (2, 2) (2, 1) (2, 3)
 1 (1, 1) (1, 2) (1, 3)

IGA-matrix algorithms in general
The downside of IGA-String is the high computational effort for

each iteration as the whole job sequence 𝛱 is modified. This could
result in an inappropriate exploration of the solution space in a given
time limit. Consequently, with most of their functions, the other three
heuristics are not modifying the complete sequence of all jobs of all
orders but only the job sequences of each single order 𝜋𝑗𝑜𝑏𝑠,𝑖 and the
sequence of orders 𝜋𝑜𝑟𝑑𝑒𝑟 individually. This is done by applying two
destruction, construction and local search functions per iteration, one
combination for modifying 𝜋𝑗𝑜𝑏𝑠,𝑖 and one for modifying 𝜋𝑜𝑟𝑑𝑒𝑟𝑠. The re-
sulting schedule after these functions is a job sequence where the jobs of
each order are scheduled consecutively. Note, that this also applies for
the resulting schedule of the function MultipleNEH. Since this schedule
can be written in tabular form, where in a row, the job sequence of a
single order is defined, and the row number indicates the position of the
job sequence of an order in the complete schedule, the three heuristics
are named IGA-Matrix. An example for this way of representing the
schedule is given in Table 6 for the example schedule from the begin-
ning of this section, i.e., 𝛱 = {(2, 2), (2, 1), (2, 3), (1, 1), (1, 2), (1, 3)}. The
idea of considering the job sequences of the orders separately is similar
to the concept of group scheduling [41,42].

The main differences between the three IGA-Matrix algorithms are
the following. IGA-Matrix1 and IGA-Matrix2 are using two acceptance
functions. The first one evaluates the job sequences of the single orders

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
𝜋𝑗𝑜𝑏𝑠,𝑖, the second one the order sequence 𝜋𝑜𝑟𝑑𝑒𝑟𝑠. This is based on
the idea that we first want to find appropriate job sequences of the
single orders, independent of the jobs of the other orders, and then
adjust the sequence of these job sequences accordingly. Furthermore,
due to Lemma 3, there are optimal schedules where the jobs of an
order are not scheduled consecutively. Consequently, IGA-Matrix2 and
IGA-Matrix3 are using an additional local search function for further
refinement, where jobs of an order are scheduled actively between jobs
of another order.

IGA-Matrix1 algorithm
Algorithm 7 General procedure of IGA-Matrix1
1: procedure IGA-Matrix1(𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥1, 𝑑𝑚𝑎𝑥2, 𝑦, 𝑧)
2: 𝛱,𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑁𝐸𝐻()
3: 𝑑1, 𝑑2,𝛱∗ ← 𝑑𝑚𝑎𝑥1, 𝑑𝑚𝑖𝑛,𝛱
4: 𝜋𝑗𝑜𝑏𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋𝑗𝑜𝑏𝑠, 𝑧, 𝑑1, 𝑑𝑚𝑖𝑛)
5: 𝜋∗

𝑗𝑜𝑏𝑠 ← 𝜋𝑗𝑜𝑏𝑠
6: 𝛱,𝜋𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋∗

𝑗𝑜𝑏𝑠, 𝑧, 𝑑2, 𝑑𝑚𝑖𝑛)
7: if 𝐹 (𝛱) < 𝐹 (𝛱∗) then
8: 𝛱∗ ← 𝛱
9: end if
10: while time limit not exceeded do
11: 𝜋𝑗𝑜𝑏𝑠∶𝑑 , 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑 ← 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋𝑗𝑜𝑏𝑠, 𝑑1)
12: 𝜋′

𝑗𝑜𝑏𝑠 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋𝑗𝑜𝑏𝑠∶𝑑 , 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑)
13: 𝜋′

𝑗𝑜𝑏𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋′

𝑗𝑜𝑏𝑠, 𝑧, 𝑑1, 𝑑𝑚𝑖𝑛)
14: 𝜋∗

𝑗𝑜𝑏𝑠, 𝜋𝑗𝑜𝑏𝑠, 𝑑1 ← 𝐴𝑐𝑐𝐽𝑜𝑏𝑠(𝜋∗
𝑗𝑜𝑏𝑠, 𝜋

′

𝑗𝑜𝑏𝑠, 𝜋𝑗𝑜𝑏𝑠, 𝑑1, 𝑑𝑚𝑖𝑛, 𝑦)
15: 𝛱 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋∗

𝑗𝑜𝑏𝑠
16: if 𝐹 (𝛱) < 𝐹 (𝛱∗) then
17: 𝛱∗ ← 𝛱
18: end if
19: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 ← 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2)
20: 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 , 𝜋∗
𝑗𝑜𝑏𝑠)

21: 𝛱 ′ , 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
∗
𝑗𝑜𝑏𝑠, 𝑧, 𝑑2, 𝑑𝑚𝑖𝑛)

22: 𝛱∗, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2 ← 𝐴𝑐𝑐𝑂𝑟𝑑𝑒𝑟1(𝛱,𝛱∗,𝛱 ′ , 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥2, 𝑦)
23: end while
24: return 𝛱∗, 𝐹 (𝛱∗)
25: end procedure

Next, we are describing the three IGA-Matrix functions in detail.
The pseudocode of IGA-Matrix1 can be found in Algorithm 7. After
generating a first schedule as well as job sequences of the single orders
and an order sequence with MulitpleNEH, the destruction size for
the job sequences 𝑑1 is set to 𝑑𝑚𝑎𝑥1, and the destruction size for the
order sequence 𝑑2 to 𝑑𝑚𝑖𝑛. The destruction size 𝑑1 decreases over the
iterations, while 𝑑2 behaves similarly to 𝑑 in IGA-String. As a result,
the modification of the job sequences of single orders is prioritized
in the first iterations, while the order sequence can be adjusted to
comparatively constant job sequences in later iterations. Furthermore,
the generated schedule is marked as the best found schedule.

Two local search functions, one for the job sequences and one for
the order sequence, are executed afterwards. In MultipleInsertionJobs,
⌊

𝑧 ⋅ 𝑑1
𝑑𝑚𝑖𝑛

⌋

 times a job is taken out of the job sequence 𝜋𝑗𝑜𝑏𝑠,𝑖 and is
reinserted into every possible position of the sequence. Each time it
is saved at the position for which the minimum makespan results. This
is repeated for the job sequence of each order. The resulting set of job
sequences 𝜋𝑗𝑜𝑏𝑠 is additionally marked as 𝜋∗

𝑗𝑜𝑏𝑠 afterwards. This set is
also used in the following local search function MultipleInsertionOrder.
Here,

⌊

𝑧 ⋅ 𝑑2
𝑑𝑚𝑖𝑛

⌋

 times an order is removed from the order sequence
𝜋𝑜𝑟𝑑𝑒𝑟𝑠 and subsequently reinserted into every possible position of the
order sequence. The order sequence for which the minimum total order
completion time of the corresponding schedule, i.e., the schedule which
results from 𝜋𝑗𝑜𝑏𝑠 and the respective 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, is saved and used for the
next iteration each time. The pseudocodes of the two local search
functions can be found in Algorithms 8 and 9. The resulting schedule
from MultipleInsertionOrder 𝛱 is compared with the schedule 𝛱∗, and
if 𝐹 (𝛱) < 𝐹 (𝛱∗), the schedule 𝛱 is saved as best found schedule 𝛱∗.
8
Algorithm 8 Multiple insertion of jobs in IGA-Matrix algorithms
1: procedure MultipleInsertionJobs(𝜋𝑗𝑜𝑏𝑠, 𝑧, 𝑑1, 𝑑𝑚𝑖𝑛)
2: for 𝑖 ← 1 to 𝑛 do
3: 𝜋𝑐𝑜𝑝𝑦 ← 𝜋𝑗𝑜𝑏𝑠,𝑖
4: for 𝑎 ← 1 to

⌊

𝑧 ⋅ 𝑑1
𝑑𝑚𝑖𝑛

⌋

 do
5: Take a random job out of 𝜋𝑐𝑜𝑝𝑦 and insert it in list
6: end for
7: for 𝑎 ← 1 to

⌊

𝑧 ⋅ 𝑑1
𝑑𝑚𝑖𝑛

⌋

 do
8: 𝑝 ← job at position 𝑎 of list
9: 𝜋𝑗𝑜𝑏𝑠,𝑖,𝑂 ← 𝜋𝑗𝑜𝑏𝑠,𝑖∖𝑝
10: for 𝑏 ← 𝑜 to 1 do
11: 𝜋𝑗𝑜𝑏𝑠,𝑖,𝑏 ← insert 𝑝 in 𝜋𝑗𝑜𝑏𝑠,𝑖,𝑂 at position 𝑏
12: end for
13: 𝜋𝑗𝑜𝑏𝑠,𝑖 ← 𝜋𝑗𝑜𝑏𝑠,𝑖,𝑏 with minimum 𝐶𝑚𝑎𝑥(𝜋𝑗𝑜𝑏𝑠,𝑖,𝑏)
14: end for
15: end for
16: return 𝜋𝑗𝑜𝑏𝑠
17: end procedure

Algorithm 9 Multiple insertion of orders in IGA-Matrix algorithms
1: procedure MultipleInsertionOrder(𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠, 𝑧, 𝑑2, 𝑑𝑚𝑖𝑛)
2: 𝜋𝑐𝑜𝑝𝑦 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠
3: for 𝑎 ← 1 to

⌊

𝑧 ⋅ 𝑑2
𝑑𝑚𝑖𝑛

⌋

 do
4: take a random order out of 𝜋𝑐𝑜𝑝𝑦 and insert it in list
5: end for
6: for 𝑎 ← 1 to

⌊

𝑧 ⋅ 𝑑2
𝑑𝑚𝑖𝑛

⌋

 do
7: 𝑝 ← order at position 𝑎 of list
8: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠,𝑂 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∖𝑝
9: for 𝑏 ← 𝑛 to 1 do
10: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠,𝑏 ← insert 𝑝 in 𝜋𝑜𝑟𝑑𝑒𝑟𝑠,𝑂 at position 𝑏
11: 𝛱𝑏 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠,𝑏, 𝜋𝑗𝑜𝑏𝑠
12: end for
13: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠,𝑏 with minimum 𝐹 (𝛱𝑏)
14: end for
15: 𝛱 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠
16: return 𝛱,𝜋𝑜𝑟𝑑𝑒𝑟𝑠
17: end procedure

Note that the comparison of 𝛱 and 𝛱∗ is made as the resulting schedule
from the two local search functions might be worse than the previously
obtained schedule.

Algorithm 10 Destruction of job sequences in IGA-Matrix algorithms
1: procedure DestructionJobs(𝜋𝑗𝑜𝑏𝑠, 𝑑1)
2: 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑 , 𝜋𝑗𝑜𝑏𝑠∶𝑑 ← {}, {}
3: for 𝑎 ← 1 to 𝑛 do
4: 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑎, 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑎 ← 𝜋𝑗𝑜𝑏𝑠,𝑎, {}
5: for 𝑏 ← 1 to 𝑑1 do
6: take a random job out of 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑎 and append it to 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑎
7: end for
8: Append 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑎 to 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑 and 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑎 to 𝜋𝑗𝑜𝑏𝑠∶𝑑
9: end for
10: return 𝜋𝑗𝑜𝑏𝑠∶𝑑 , 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑
11: end procedure

The subsequent procedure repeats until a given time limit is ex-
ceeded. In each iteration, the procedure starts with DestructionJobs
(see Algorithm 10). For each order, 𝑑1 random jobs are taken out of
the corresponding job sequence 𝜋𝑗𝑜𝑏𝑠,𝑖 and are stored in 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑖. The
remaining jobs from the original job sequence are stored in 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖
in the same sequence as they appear in 𝜋𝑗𝑜𝑏𝑠,𝑖. The resulting sets of job
sequences are 𝜋𝑗𝑜𝑏𝑠∶𝑑 and 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑 respectively. In ConstructionJobs (see
Algorithm 11), the jobs of each job sequence 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑖 are reinserted into
the corresponding 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖. For each order, the jobs in the correspond-
ing 𝜋 are sorted in ascending sequence of their total production
𝑗𝑜𝑏𝑠∶𝑑,𝑖

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
Algorithm 11 Construction of job sequences in IGA-Matrix algorithms
1: procedure ConstructionJobs(𝜋𝑗𝑜𝑏𝑠∶𝑑 , 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑)
2: 𝜋′

𝑗𝑜𝑏𝑠 ← {}
3: for 𝑖 ← 1 to 𝑛 do
4: for 𝑎 ← 1 to 𝑙𝑒𝑛(𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑖) do
5: (𝑖, 𝑗) ← 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑖(𝑎)
6: 𝑇𝑃𝑖𝑗 ←

∑𝑚
𝑘=1 𝑝𝑖𝑗𝑘

7: end for
8: Sort the jobs in ascending order of 𝑇𝑃 in 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑖
9: while 0 < 𝑙𝑒𝑛(𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑖) do
10: 𝑝 ← 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑖(1)
11: for 𝑎 ← 𝑙𝑒𝑛(𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖) + 1 to 1 do
12: 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖,𝑎 ← insert 𝑝 in 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖 at position 𝑎
13: end for
14: remove 𝑝 from 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑖
15: 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖 ← 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖,𝑎 with minimum 𝐶𝑚𝑎𝑥(𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖,𝑎)
16: end while
17: 𝜋′

𝑗𝑜𝑏𝑠,𝑖 ← 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖, and append 𝜋′

𝑗𝑜𝑏𝑠,𝑖 to 𝜋
′

𝑗𝑜𝑏𝑠
18: end for
19: return 𝜋′

𝑗𝑜𝑏𝑠
20: end procedure

time 𝑇𝑃𝑖𝑗 . Subsequently, the first job from 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑖 is inserted into every
possible position of 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖 and saved at the position for which the
minimum makespan of 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑,𝑖 resulted. This is repeated for each job
of the sorted 𝜋𝑗𝑜𝑏𝑠∶𝑑,𝑖. The resulting job sequence 𝜋′

𝑗𝑜𝑏𝑠,𝑖 of each order is
stored in 𝜋′

𝑗𝑜𝑏𝑠.

Algorithm 12 Acceptance of job sequences in IGA-Matrix algorithms
1: procedure AccJobs(𝜋∗

𝑗𝑜𝑏𝑠, 𝜋
′

𝑗𝑜𝑏𝑠, 𝜋𝑗𝑜𝑏𝑠, 𝑑1, 𝑑𝑚𝑖𝑛, 𝑦)
2: for 𝑖 ← 1 to 𝑛 do
3: if 𝐶𝑚𝑎𝑥(𝜋′

𝑗𝑜𝑏𝑠,𝑖) < 𝐶𝑚𝑎𝑥(𝜋𝑗𝑜𝑏𝑠,𝑖) then
4: 𝜋𝑗𝑜𝑏𝑠,𝑖 ← 𝜋′

𝑗𝑜𝑏𝑠,𝑖

5: if 𝐶𝑚𝑎𝑥(𝜋′

𝑗𝑜𝑏𝑠,𝑖) ≤ 𝐶𝑚𝑎𝑥(𝜋∗
𝑗𝑜𝑏𝑠,𝑖) then

6: 𝜋∗
𝑗𝑜𝑏𝑠,𝑖 ← 𝜋′

𝑗𝑜𝑏𝑠,𝑖
7: end if
8: else if 𝐶𝑚𝑎𝑥(𝜋′

𝑗𝑜𝑏𝑠,𝑖) = 𝐶𝑚𝑎𝑥(𝜋𝑗𝑜𝑏𝑠,𝑖) then
9: 𝜋𝑗𝑜𝑏𝑠,𝑖 ← 𝜋′

𝑗𝑜𝑏𝑠,𝑖

10: if 𝐶𝑚𝑎𝑥(𝜋′

𝑗𝑜𝑏𝑠,𝑖) = 𝐶𝑚𝑎𝑥(𝜋∗
𝑗𝑜𝑏𝑠,𝑖) then

11: 𝜋∗
𝑗𝑜𝑏𝑠,𝑖 ← 𝜋′

𝑗𝑜𝑏𝑠,𝑖
12: end if
13: else

14: if 𝑞 ≤ 𝑒𝑥𝑝(−𝑦 ⋅
𝐶𝑚𝑎𝑥(𝜋′𝑗𝑜𝑏𝑠,𝑖)−𝐶

𝑚𝑎𝑥(𝜋𝑗𝑜𝑏𝑠,𝑖)

𝐶𝑚𝑎𝑥(𝜋𝑗𝑜𝑏𝑠,𝑖)
) then

15: 𝜋𝑗𝑜𝑏𝑠,𝑖 ← 𝜋′

𝑗𝑜𝑏𝑠,𝑖
16: end if
17: end if
18: end for
19: if 𝑑1 > 𝑑𝑚𝑖𝑛 then
20: 𝑑1 ← 𝑑1 − 1
21: end if
22: return 𝜋∗

𝑗𝑜𝑏𝑠, 𝜋𝑗𝑜𝑏𝑠, 𝑑1
23: end procedure

After applying MultipleInsertionJobs to 𝜋′
𝑗𝑜𝑏𝑠, each job sequence

𝜋′
𝑗𝑜𝑏𝑠,𝑖 is compared with the corresponding job sequences 𝜋𝑗𝑜𝑏𝑠,𝑖 and

𝜋∗
𝑗𝑜𝑏𝑠,𝑖 in AccJobs (see Algorithm 12). If the makespan of the sequence

𝜋′
𝑗𝑜𝑏𝑠,𝑖 is smaller than the makespan of 𝜋𝑗𝑜𝑏𝑠,𝑖, the sequence 𝜋′

𝑗𝑜𝑏𝑠,𝑖 be-
comes the new 𝜋𝑗𝑜𝑏𝑠,𝑖 and is used in the next iteration. Furthermore, if
the makespan of 𝜋′

𝑗𝑜𝑏𝑠,𝑖 is also smaller than or equal to the makespan of
𝜋∗
𝑗𝑜𝑏𝑠,𝑖, it also becomes the new 𝜋∗

𝑗𝑜𝑏𝑠,𝑖. For the case that the makespan of
𝜋′
𝑗𝑜𝑏𝑠,𝑖 is equal to the makespan of 𝜋𝑗𝑜𝑏𝑠,𝑖, 𝜋′

𝑗𝑜𝑏𝑠,𝑖 replaces 𝜋𝑗𝑜𝑏𝑠,𝑖, and if it is
also equal to the makespan of 𝜋∗

𝑗𝑜𝑏𝑠,𝑖, 𝜋′
𝑗𝑜𝑏𝑠,𝑖 replaces also this sequence.

If the makespan of 𝜋′ is larger than the makespan of 𝜋 , the
𝑗𝑜𝑏𝑠,𝑖 𝑗𝑜𝑏𝑠,𝑖

9
sequence 𝜋𝑗𝑜𝑏𝑠,𝑖 is replaced by 𝜋′
𝑗𝑜𝑏𝑠,𝑖 if the following inequation is true:

𝑞 ≤ 𝑒𝑥𝑝(−𝑦⋅
𝐶𝑚𝑎𝑥(𝜋′𝑗𝑜𝑏𝑠,𝑖)−𝐶

𝑚𝑎𝑥(𝜋𝑗𝑜𝑏𝑠,𝑖)

𝐶𝑚𝑎𝑥(𝜋𝑗𝑜𝑏𝑠,𝑖)
), where 𝑞 is a random number between

0 and 1, drawn each time. After evaluating the job sequence of each
order, 𝑑1 is decreased by 1 if 𝑑𝑚𝑖𝑛 has not already been reached. The
output of the function includes the job sequence 𝜋𝑗𝑜𝑏𝑠 which is used
in the next iteration, and 𝜋∗

𝑗𝑜𝑏𝑠 which is used in the remainder of the
iteration for generating schedules with a given order sequence. In a
next step, the schedule 𝛱 , generated by 𝜋∗

𝑗𝑜𝑏𝑠 and 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, is compared
with the best found schedule 𝛱∗, and if the total completion time of 𝛱
is lower, the schedule 𝛱 is marked as the best found schedule.

Algorithm 13 Destruction of order sequence in IGA-Matrix algorithms
1: procedure DestructionOrder(𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2)
2: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, {}
3: for 𝑎 ← 1 to 𝑑2 do
4: take a random order out of 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 and append it to 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑
5: end for
6: return 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑
7: end procedure

Algorithm 14 Construction of order sequence in IGA-Matrix algorithms
1: procedure ConstructionOrder(𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 , 𝜋𝑗𝑜𝑏𝑠)
2: Sort the orders of 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 in ascending order of 𝐶𝑚𝑎𝑥(𝜋𝑗𝑜𝑏𝑠,𝑖) in 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑
3: while 0 < 𝑙𝑒𝑛(𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑) do
4: 𝑝 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 (1)
5: for 𝑎 ← 𝑙𝑒𝑛(𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑) + 1 to 1 do
6: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑,𝑎 ← insert 𝑝 in 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 at position 𝑎
7: 𝜋𝑎 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑,𝑎, 𝜋𝑗𝑜𝑏𝑠
8: end for
9: remove 𝑝 from 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑
10: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑,𝑎 with minimum 𝐹 (𝜋𝑎)
11: end while
12: 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑
13: return 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠
14: end procedure

Algorithm 15 Acceptance of order sequence in IGA-Matrix1
1: procedure AccOrder1(𝛱,𝛱∗,𝛱 ′ , 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥2, 𝑦)
2: if 𝐹 (𝛱 ′) < 𝐹 (𝛱) then
3: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2 ← 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑𝑚𝑖𝑛
4: if 𝐹 (𝛱 ′) < 𝐹 (𝛱∗) then
5: 𝛱∗ ← 𝛱 ′

6: end if
7: else if 𝐹 (𝛱 ′) = 𝐹 (𝛱) then
8: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠
9: if 𝑑2 < 𝑑𝑚𝑎𝑥2 then
10: 𝑑2 ← 𝑑2 + 1
11: end if
12: else
13: if 𝑞 ≤ 𝑒𝑥𝑝(−𝑦 ⋅ 𝑑𝑚𝑖𝑛

𝑑2
⋅ 𝐹 (𝛱 ′)−𝐹 (𝛱)

𝐹 (𝛱)
) then

14: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠
15: end if
16: if 𝑑2 < 𝑑𝑚𝑎𝑥2 then
17: 𝑑2 ← 𝑑2 + 1
18: end if
19: end if
20: return 𝛱∗, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2
21: end procedure

In the remaining part of the iteration, the sequence of orders is
modified. By DestructionOrder, 𝑑2 orders are taken out of 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 and
are stored in 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 , while the other orders remain in their sequence
in 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 . The pseudocode of this function can be seen in Algorithm
13.

During ConstructionOrder (see Algorithm 14), the orders in 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑
are initially sorted in ascending sequence according to the makespan

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
of their job sequence. Afterwards, the first order of the sorted sequence
is reinserted into 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 at each position, and is saved at the place
that generates the lowest total completion time for the corresponding
partial schedule 𝜋, which results from the order sequence and the
corresponding job sequences. This is repeated for each order from
𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 .

After using the function MultipleInsertionOrder again, we obtain
the order sequence 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 and the corresponding schedule 𝛱 ′. They
are subsequently evaluated in AccOrder1. If 𝐹 (𝛱 ′) < 𝐹 (𝛱), 𝑑2 is set to
𝑑𝑚𝑖𝑛 and 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 to 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 which means that 𝜋′
𝑜𝑟𝑑𝑒𝑟𝑠 is used in the next

iteration. Furthermore, in the case 𝐹 (𝛱 ′) < 𝐹 (𝛱∗), 𝛱 ′ is the new best
found schedule 𝛱∗. The order sequence 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 is also set to 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 if
𝐹 (𝛱 ′) = 𝐹 (𝛱) but 𝑑2 is increased by 1 in this case, if it has not already
reached 𝑑𝑚𝑎𝑥2. Similar to IGA-String, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 can also be set to 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 if
𝐹 (𝛱 ′) > 𝐹 (𝛱), but only if 𝑞 ≤ 𝑒𝑥𝑝(−𝑦 ⋅ 𝑑𝑚𝑖𝑛

𝑑2
⋅ 𝐹 (𝛱 ′)−𝐹 (𝛱)

𝐹 (𝛱)) holds, where
𝑞 is a random number between 0 and 1, drawn each time. In addition,
if 𝐹 (𝛱 ′) > 𝐹 (𝛱) and if 𝑑2 is smaller than 𝑑𝑚𝑎𝑥2, 𝑑2 is increased by 1.
The pseudocode of this acceptance function can be found in Algorithm
15. As for IGA-String, IGA-Matrix1 terminates after the time limit is
exceeded and the best found schedule 𝛱∗ and its total completion time
are returned.

IGA-Matrix2 algorithm
Our next heuristic IGA-Matrix2 is similar to IGA-Matrix1. However,

this algorithm uses the function LocalSearch3 additionally after the
initialization with MultipleNEH, and each time subsequent to Multi-
pleInsertionOrder. By this function, the jobs of each order are not
necessarily scheduled consecutively afterwards. The pseudocode of
IGA-Matrix2 can be found in Algorithm 16.

The input of the function LocalSearch3 is a schedule in which all
jobs of an order are processed consecutively. Starting with the order

Algorithm 16 General procedure of IGA-Matrix2
1: procedure IGA-Matrix2(𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥1, 𝑑𝑚𝑎𝑥2, 𝑦, 𝑧)
2: 𝛱,𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑁𝐸𝐻()
3: 𝑑1, 𝑑2 ← 𝑑𝑚𝑎𝑥1, 𝑑𝑚𝑖𝑛
4: 𝛱∗ ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ3(𝛱,𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠)
5: 𝜋𝑗𝑜𝑏𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋𝑗𝑜𝑏𝑠, 𝑧, 𝑑1, 𝑑𝑚𝑖𝑛)
6: 𝜋∗

𝑗𝑜𝑏𝑠 ← 𝜋𝑗𝑜𝑏𝑠
7: 𝛱,𝜋𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋∗

𝑗𝑜𝑏𝑠, 𝑧, 𝑑2, 𝑑𝑚𝑖𝑛)
8: 𝛱 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ3(𝛱,𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋∗

𝑗𝑜𝑏𝑠)
9: if 𝐹 (𝛱) < 𝐹 (𝛱∗) then
10: 𝛱∗ ← 𝛱
11: end if
12: while time limit not exceeded do
13: 𝜋𝑗𝑜𝑏𝑠∶𝑑 , 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑 ← 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋𝑗𝑜𝑏𝑠, 𝑑1)
14: 𝜋′

𝑗𝑜𝑏𝑠 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋𝑗𝑜𝑏𝑠∶𝑑 , 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑)
15: 𝜋′

𝑗𝑜𝑏𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋′

𝑗𝑜𝑏𝑠, 𝑧, 𝑑1, 𝑑𝑚𝑖𝑛)
16: 𝜋∗

𝑗𝑜𝑏𝑠, 𝜋𝑗𝑜𝑏𝑠, 𝑑1 ← 𝐴𝑐𝑐𝐽𝑜𝑏𝑠(𝜋∗
𝑗𝑜𝑏𝑠, 𝜋

′

𝑗𝑜𝑏𝑠, 𝜋𝑗𝑜𝑏𝑠, 𝑑1, 𝑑𝑚𝑖𝑛, 𝑦)
17: 𝛱 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋∗

𝑗𝑜𝑏𝑠
18: if 𝐹 (𝛱) < 𝐹 (𝛱∗) then
19: 𝛱∗ ← 𝛱
20: end if
21: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 ← 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2)
22: 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 , 𝜋∗
𝑗𝑜𝑏𝑠)

23: 𝛱 ′ , 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
∗
𝑗𝑜𝑏𝑠, 𝑧, 𝑑2, 𝑑𝑚𝑖𝑛)

24: 𝛱 ′′
← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ3(𝛱 ′ , 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
∗
𝑗𝑜𝑏𝑠)

25: 𝛱∗, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2 ← 𝐴𝑐𝑐𝑂𝑟𝑑𝑒𝑟2(𝛱,𝛱∗,𝛱 ′ ,𝛱 ′′ , 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠,
𝑑2, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥2, 𝑦)

26: end while
27: return 𝛱∗, 𝐹 (𝛱∗)
28: end procedure
10
Algorithm 17 LocalSearch3 in IGA-Matrix algorithms
1: procedure LocalSearch3(𝛱 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠)
2: 𝛱 ′

← 𝛱
3: for 𝑎 ← 𝑛 to 2 do
4: 𝑞, 𝛿1, 𝑏 ← 𝜋𝑜𝑟𝑑𝑒𝑟𝑠(𝑎), 1, 0
5: while 𝛿1 = 1 do
6: 𝛿1, 𝑏 ← 0, 𝑏 + 1
7: 𝑝, 𝛿2 ← 𝜋𝑗𝑜𝑏𝑠,𝑞(𝑏), 1
8: while 𝛿2 = 1 do
9: 𝛿2 ← 0
10: 𝛱𝑡𝑒𝑠𝑡 ← swap job (𝑞, 𝑝) with the preceding job in 𝛱 ′

11: if 𝐹 (𝛱𝑡𝑒𝑠𝑡) < 𝐹 (𝛱 ′) then
12: 𝛱 ′

← 𝛱𝑡𝑒𝑠𝑡
13: if 𝑏 < 𝑜 then
14: 𝛿1 ← 1
15: end if
16: if (𝑞, 𝑝) is not in the first position of 𝛱 ′ now then
17: 𝛿2 ← 1
18: end if
19: end if
20: end while
21: end while
22: end for
23: return 𝛱 ′

24: end procedure

Algorithm 18 Acceptance of order sequence in IGA-Matrix2
1: procedure AccOrder2(𝛱,𝛱∗,𝛱 ′ ,𝛱 ′′ , 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥2, 𝑦)
2: if 𝐹 (𝛱 ′) < 𝐹 (𝛱) then
3: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2 ← 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑𝑚𝑖𝑛
4: else if 𝐹 (𝛱 ′) = 𝐹 (𝛱) then
5: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠
6: if 𝑑2 < 𝑑𝑚𝑎𝑥2 then
7: 𝑑2 ← 𝑑2 + 1
8: end if
9: else
10: if 𝑞 ≤ 𝑒𝑥𝑝(−𝑦 ⋅ 𝑑𝑚𝑖𝑛

𝑑2
⋅ 𝐹 (𝛱 ′)−𝐹 (𝛱)

𝐹 (𝛱)
) then

11: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠
12: end if
13: if 𝑑2 < 𝑑𝑚𝑎𝑥2 then
14: 𝑑2 ← 𝑑2 + 1
15: end if
16: end if
17: if 𝐹 (𝛱 ′′) < 𝐹 (𝛱∗) then
18: 𝛱∗ ← 𝛱 ′′

19: end if
20: return 𝛱∗, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2
21: end procedure

in the last position of the order sequence, the first scheduled job of
this order is swapped with the previously scheduled job. If the total
completion time of the generated schedule is not lower than the total
completion time of the former schedule, the former schedule is used
for further processing. Otherwise, the new schedule is saved, and it is
tested if a further improvement is possible by swapping the currently
considered job with its new preceding job. This is repeated until a new
obtained schedule does not have a lower total completion time or if
the considered job passes the first scheduled job of the whole schedule.
Subsequently, if swapping the job has improved the total completion
time of the schedule before the job was stopped, the next job of this
order in the corresponding job sequence 𝜋𝑗𝑜𝑏𝑠,𝑖 is swapped forwards
in the described way. This continues for an order until the first swap
of a job does not improve the schedule, or all jobs of an order were
considered. The procedure continues for all orders, except the first

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
order in the order sequence 𝜋𝑜𝑟𝑑𝑒𝑟𝑠. In Algorithm 17 the pseudocode
of this function can be found.

Since we obtain a further schedule 𝛱 ′′ by LocalSearch3, there are
more solutions to evaluate and hence, the second acceptance function
of IGA-Matrix2 slightly differs from the second acceptance function
of IGA-Matrix1. We call this acceptance function AccOrder2 and the
pseudocode of this function is given in Algorithm 18. As in the ac-
ceptance function of IGA-Matrix1, if 𝐹 (𝛱 ′) < 𝐹 (𝛱), 𝑑2 is set to 𝑑𝑚𝑖𝑛
and 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 to 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠. Note that 𝛱 ′ is the schedule resulting from
MultipleInsertionOrder and hence, is formed by the order sequence
𝜋′
𝑜𝑟𝑑𝑒𝑟𝑠 and the job sequences 𝜋∗

𝑗𝑜𝑏𝑠, while 𝛱 is formed by 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 and
𝜋∗
𝑗𝑜𝑏𝑠. The order sequence 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 is also set to 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 if 𝐹 (𝛱 ′) = 𝐹 (𝛱)
but 𝑑2 is increased by 1 in this case if it has not already reached 𝑑𝑚𝑎𝑥2. If
𝐹 (𝛱 ′) > 𝐹 (𝛱), 𝑑2 is increased by 1 if it has not already reached 𝑑𝑚𝑎𝑥2.
Furthermore, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 is set to 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 if 𝑞 ≤ 𝑒𝑥𝑝(−𝑦 ⋅ 𝑑𝑚𝑖𝑛
𝑑2

⋅ 𝐹 (𝛱 ′)−𝐹 (𝛱)
𝐹 (𝛱))

holds, where 𝑞 is a random number between 0 and 1, drawn each
time. In contrast to the acceptance function of IGA-Matrix1, the best
found schedule 𝛱∗ is compared to 𝛱 ′′. Consequently, 𝛱∗ is set to 𝛱 ′′

if 𝐹 (𝛱 ′′) < 𝐹 (𝛱∗).

IGA-Matrix3 algorithm
Algorithm 19 General procedure of IGA-Matrix3
1: procedure IGA-Matrix3(𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥1, 𝑑𝑚𝑎𝑥2, 𝑦, 𝑧)
2: 𝛱,𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑁𝐸𝐻()
3: 𝑑1, 𝑑2 ← 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑖𝑛
4: 𝛱 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ3(𝛱,𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠)
5: 𝛱∗ ← 𝛱
6: 𝜋′

𝑗𝑜𝑏𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋𝑗𝑜𝑏𝑠, 𝑧, 𝑑1, 𝑑𝑚𝑖𝑛)
7: 𝛱 ′ , 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
′

𝑗𝑜𝑏𝑠, 𝑧, 𝑑2, 𝑑𝑚𝑖𝑛)
8: 𝛱 ′

← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ3(𝛱 ′ , 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
′

𝑗𝑜𝑏𝑠)
9: if 𝐹 (𝛱 ′) ≤ 𝐹 (𝛱∗) then
10: 𝛱∗,𝛱, 𝜋𝑗𝑜𝑏𝑠, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝛱 ′ ,𝛱 ′ , 𝜋′

𝑗𝑜𝑏𝑠, 𝜋
′

𝑜𝑟𝑑𝑒𝑟𝑠
11: end if
12: while time limit not exceeded do
13: 𝜋𝑗𝑜𝑏𝑠∶𝑑 , 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑 ← 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋𝑗𝑜𝑏𝑠, 𝑑1)
14: 𝜋′

𝑗𝑜𝑏𝑠 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋𝑗𝑜𝑏𝑠∶𝑑 , 𝜋𝑗𝑜𝑏𝑠∶𝑜−𝑑)
15: 𝜋′

𝑗𝑜𝑏𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐽𝑜𝑏𝑠(𝜋′

𝑗𝑜𝑏𝑠, 𝑧, 𝑑1, 𝑑𝑚𝑖𝑛)
16: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 ← 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝑑2)
17: 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑑 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠∶𝑛−𝑑 , 𝜋
′

𝑗𝑜𝑏𝑠)
18: 𝛱 ′ , 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑂𝑟𝑑𝑒𝑟(𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
′

𝑗𝑜𝑏𝑠, 𝑧, 𝑑2, 𝑑𝑚𝑖𝑛)
19: 𝛱 ′

← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ3(𝛱 ′ , 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
′

𝑗𝑜𝑏𝑠)
20: 𝛱∗,𝛱, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠, 𝑑1, 𝑑2 ← 𝐴𝑐𝑐(𝛱∗,𝛱 ′ ,𝛱, 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
′

𝑗𝑜𝑏𝑠, 𝜋𝑗𝑜𝑏𝑠,
𝑑1, 𝑑2, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥1, 𝑑𝑚𝑎𝑥2, 𝑦)

21: end while
22: return 𝛱∗, 𝐹 (𝛱∗)
23: end procedure

The pseudocode of our last heuristic IGA-Matrix3 can be found in Al-
gorithm 19. In contrast to IGA-Matrix1 and IGA-Matrix2, IGA-Matrix3
is not evaluating 𝜋𝑗𝑜𝑏𝑠 independently from the generated schedule. This
means, it is not checked whether new job sequences of the orders
yield a lower makespan after MultipleInsertionJobs. Instead, they are
directly used for restructuring the order sequence. Therefore, AccJobs
is omitted, Acc is the only acceptance function in this algorithm, and no
𝜋∗
𝑗𝑜𝑏𝑠 is created. In addition, some minor changes were made compared
to IGA-Matrix2 in order to adapt the algorithm to this strategy. After
initializing a first solution, 𝑑1 is set to 𝑑𝑚𝑖𝑛 and not 𝑑𝑚𝑎𝑥1. In IGA-
Matrix3, 𝑑1 behaves similarly to 𝑑2, i.e., set to 𝑑𝑚𝑖𝑛 if a better solution
was found in an iteration, or increased by 1 otherwise (if possible).
Furthermore, the schedule 𝛱 which is compared in the acceptance
function with the new created schedule of the iteration, is not generated
during the iteration, i.e., not after AccJobs. Instead, it is the outputted
schedule of the acceptance function of the previous iteration, or, to
start the iterating part of the algorithm, one of the schedules generated
by one of the previous LocalSearch3 functions. The part prior to the
iterations is realized in the following way. After setting 𝑑1 and 𝑑2 as de-
scribed, LocalSearch3 is applied to the schedule from the initialization
11
function. The output is the updated schedule 𝛱 which is also marked as
the first best found solution 𝛱∗. Subsequently, MultipleInsertionJobs,
MultipleInsertionOrder, and Localsearch3 are applied. The resulting
schedule 𝛱 ′ is compared with 𝛱∗, and hence, also with 𝛱 as it is the
same as 𝛱∗. If 𝐹 (𝛱 ′) ≤ 𝐹 (𝛱∗), 𝛱∗ and 𝛱 are set to 𝛱 ′ and the job
and order sequences for further proceeding (𝜋𝑗𝑜𝑏𝑠, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠) are set to the
corresponding 𝜋′

𝑗𝑜𝑏𝑠 and 𝜋′
𝑜𝑟𝑑𝑒𝑟𝑠. Afterwards, the iterating part begins.

Here, as mentioned, IGA-Matrix3 is not using AccJobs and hence, the
destruction of the order sequence directly follows MultipleInsertion-
Jobs, i.e., after generating 𝜋′

𝑗𝑜𝑏𝑠 of the iteration. Furthermore, as 𝜋∗
𝑗𝑜𝑏𝑠

is not used in IGA-Matrix3, 𝜋′
𝑗𝑜𝑏𝑠 replaces it as input in the respective

functions.

Algorithm 20 Acceptance in IGA-Matrix3
1: procedure Acc(𝛱∗,𝛱 ′ ,𝛱, 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
′

𝑗𝑜𝑏𝑠, 𝜋𝑗𝑜𝑏𝑠, 𝑑1, 𝑑2, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥1,
𝑑𝑚𝑎𝑥2, 𝑦)

2: if 𝐹 (𝛱 ′) < 𝐹 (𝛱) then
3: 𝑑1, 𝑑2, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠,𝛱 ← 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑖𝑛, 𝜋

′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
′

𝑗𝑜𝑏𝑠,𝛱
′

4: if 𝐹 (𝛱 ′) < 𝐹 (𝛱∗) then
5: 𝛱∗ ← 𝛱 ′

6: end if
7: else if 𝐹 (𝛱 ′) = 𝐹 (𝛱) then
8: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠,𝛱 ← 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
′

𝑗𝑜𝑏𝑠,𝛱
′

9: if 𝑑1 < 𝑑𝑚𝑎𝑥1 then
10: 𝑑1 ← 𝑑1 + 1
11: end if
12: if 𝑑2 < 𝑑𝑚𝑎𝑥2 then
13: 𝑑2 ← 𝑑2 + 1
14: end if
15: else
16: if 𝑞 ≤ 𝑒𝑥𝑝(−𝑦 ⋅ 𝑑𝑚𝑖𝑛

(𝑑1+𝑑2)⋅0.5
⋅ 𝐹 (𝛱 ′)−𝐹 (𝛱)

𝐹 (𝛱)
) then

17: 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠,𝛱 ← 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋
′

𝑗𝑜𝑏𝑠,𝛱
′

18: end if
19: if 𝑑1 < 𝑑𝑚𝑎𝑥1 then
20: 𝑑1 ← 𝑑1 + 1
21: end if
22: if 𝑑2 < 𝑑𝑚𝑎𝑥2 then
23: 𝑑2 ← 𝑑2 + 1
24: end if
25: end if
26: return 𝛱∗,𝛱, 𝜋𝑜𝑟𝑑𝑒𝑟𝑠, 𝜋𝑗𝑜𝑏𝑠, 𝑑1, 𝑑2
27: end procedure

Next, we describe the acceptance function of IGA-Matrix3, called
Acc, in detail. By this function, the best found solution 𝛱∗, the de-
struction sizes 𝑑1 and 𝑑2 as well as 𝛱 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 and 𝜋𝑗𝑜𝑏𝑠 for the next
iteration are selected. If a better solution was generated in the iteration,
i.e., 𝐹 (𝛱 ′) < 𝐹 (𝛱), 𝛱 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 and 𝜋𝑗𝑜𝑏𝑠 are set to 𝛱 ′, 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 and
𝜋′
𝑗𝑜𝑏𝑠, respectively. Furthermore, 𝑑1 and 𝑑2 are both set to 𝑑𝑚𝑖𝑛. In case

𝐹 (𝛱 ′) < 𝐹 (𝛱∗), 𝛱 ′ is saved as the best found solution 𝛱∗. If 𝐹 (𝛱 ′)
equals 𝐹 (𝛱), 𝛱 , 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 and 𝜋𝑗𝑜𝑏𝑠 are also set to 𝛱 ′, 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 and 𝜋′
𝑗𝑜𝑏𝑠,

respectively, but 𝑑1 and 𝑑2 are increased by 1 if they have not already
reached 𝑑𝑚𝑎𝑥1 and 𝑑𝑚𝑎𝑥2, respectively. The same applies for the two
destruction sizes if 𝐹 (𝛱 ′) is greater than 𝐹 (𝛱). In this case, 𝛱 ′ could
be accepted as new 𝛱 , and 𝜋𝑜𝑟𝑑𝑒𝑟𝑠 and 𝜋𝑗𝑜𝑏𝑠 could be set to 𝜋′

𝑜𝑟𝑑𝑒𝑟𝑠 and
𝜋′
𝑗𝑜𝑏𝑠, respectively, but only if 𝑞 ≤ 𝑒𝑥𝑝(−𝑦 ⋅ 𝑑𝑚𝑖𝑛

(𝑑1+𝑑2)⋅0.5
⋅ 𝐹 (𝛱 ′)−𝐹 (𝛱)

𝐹 (𝛱)) holds,
where 𝑞 is a random number between 0 and 1, drawn each time. The
pseudocode of Acc is given in Algorithm 20.

5. Computational experiments

5.1. Experimental setting

We evaluate the developed IGAs in computational experiments. As
there are no comparable state-of-the-art algorithms which take the
specific problem structure into account, the four IGAs are compared
with each other and the MINLP formulation from Section 3.2 solved

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
by the Gurobi solver. We generated two testbeds which we named
Small testbed and Big testbed. The Small testbed includes problem
instances with 𝑛 ∈ {3, 4, 5}, 𝑜 ∈ {2, 3, 4} and 𝑚 ∈ {2, 3, 6}, and the Big
testbed problem instances with 𝑛 ∈ {10, 20, 50}, 𝑜 ∈ {2, 5, 10} and 𝑚 ∈
{2, 3, 6}. For each possible combination of 𝑛, 𝑚 and 𝑜 in the respective
testbed, processing times of the jobs on the machines were randomly
drawn from a uniform distribution  [1, 100]. We generated 10 problem
instances per problem size for the parameter setting and 20 separate
problem instances per problem size for the algorithm comparison.

We use the best found total completion time after given run times
as the comparison criterion for the solution methods. The time limit
of the IGAs is set to 𝑛 ⋅ 𝑜 ⋅ 𝑚

2 ⋅ 𝑡 𝑠𝑒𝑐 with the time factor 𝑡 set to
𝑡 = 0.12. Consequently, the time limit for the smallest instances with
{𝑛, 𝑜, 𝑚} = {3, 2, 2} is 0.72 𝑠𝑒𝑐 and for the largest problem instances
with {𝑛, 𝑜, 𝑚} = {50, 10, 6} the time limit is 180 𝑠𝑒𝑐. As each of the IGAs
contains random elements, each test instance was solved five times by
each IGA. For the solver we set the time limit to 10, 800 𝑠𝑒𝑐 (= 3 ℎ𝑜𝑢𝑟𝑠).
However, the solver solved each problem instance only one time.

The relative percentage deviation (RPD) was calculated for each run
𝑥 by the formula:

𝑅𝑃𝐷𝑥 =
𝐹 (𝛱𝑥) − 𝐹 (𝛱𝑏𝑒𝑠𝑡)

𝐹 (𝛱𝑏𝑒𝑠𝑡)
⋅ 100%, (9)

where 𝐹 (𝛱𝑥) is the total completion time of the best found solution in
run 𝑥, and 𝐹 (𝛱𝑏𝑒𝑠𝑡) the total completion time of the best solution found
by any run of any tested solution method for the respective problem
instance.

The solution methods have been implemented in Python 3.10.9 and
the calculations run on an Intel(R) Xeon(R) CPU E5-2630 v2 processor
with 2.60 GHz and 384 GB memory. We used Gurobi 10.0.1 as the
solver for solving the MINLP from Section 3.2 with a maximum of 4
threads in parallel. The graphs were created with IBM SPSS Statistics
version 29.

Statistical tests regarding the significance of results were conducted
using IBM SPSS Statistics version 31. Note that prior the conduction of
a statistical test, the RPDs of the five repetitions of an IGA for a problem
instance were averaged.

5.2. Parameter setting

The four IGAs use multiple parameters, namely 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥, 𝑑𝑚𝑎𝑥1,
𝑑𝑚𝑎𝑥2, 𝑦, 𝑧. We follow the arguments from [11] and set 𝑑𝑚𝑖𝑛 = 1,
𝑑𝑚𝑎𝑥 =

⌊

𝑛⋅𝑜
2

⌋

, 𝑑𝑚𝑎𝑥1 =
⌊

𝑜
2

⌋

 and 𝑑𝑚𝑎𝑥2 =
⌊

𝑛
2

⌋

. Note that the IGA-Matrix
algorithms use 𝑑𝑚𝑎𝑥1 and 𝑑𝑚𝑎𝑥2 but not 𝑑𝑚𝑎𝑥, while IGA-String uses 𝑑𝑚𝑎𝑥
but not 𝑑𝑚𝑎𝑥1 and 𝑑𝑚𝑎𝑥2. The parameter 𝑑𝑚𝑖𝑛 is used by all the IGAs.

The other parameters 𝑦 and 𝑧 were determined experimentally.
As pointed out in [11], the ranges of the parameters are 1 ≤ 𝑧 ≤
2 and 0 < 𝑦. We performed some pre-experiments and chose 𝑧 ∈
{1, 1.25, 1.5, 1.75, 2} and 𝑦 ∈ {5000, 10000, 15000, 20000} for further in-
vestigation. Each possible parameter combination was considered for
each IGA. As each of the 4 IGAs solved the 10 problem instances per
problem size 5 times, and there are 54 different problem sizes and 20
different parameter combinations, 4 ⋅ 10 ⋅ 5 ⋅ 54 ⋅ 20 = 216, 000 runs were
performed for the parameter setting.

The average RPDs for the different 𝑦-values and the average RPDs
for the different 𝑧-values are given in Table 7 for each IGA. We chose
the parameter value that led to the lowest average RPD for each IGA
and parameter. The final selection is shown in Table 8.

5.3. Algorithm evaluation

In Table 9 we give the results for the Small testbed. For each
problem size, it is indicated how many instances were solved confirmed
optimally (see column # Slvd. Opt.), and for each IGA the percentage
of runs were an optimal solution was found as well as the percentage
of instances were the IGA found an optimal solution at least one time.
12
Table 7
Average RPDs in % of the investigated parameter values.
 Value IGA-String IGA-Matrix1 IGA-Matrix2 IGA-Matrix3

𝑦

5000 0.5935 0.7862 0.6837 0.6104
 10000 0.5921 0.7860 0.6825 0.6157
 15000 0.5984 0.7848 0.6854 0.6209
 20000 0.5909 0.7881 0.6852 0.6220

𝑧

1 0.6152 0.7898 0.6828 0.6058
 1.25 0.6056 0.7861 0.6823 0.5996
 1.5 0.5949 0.7858 0.6834 0.6219
 1.75 0.5824 0.7836 0.6852 0.6152
 2 0.5705 0.7861 0.6874 0.6437

Table 8
Chosen parameter values for each IGA.
 Parameter IGA-String IGA-Matrix1 IGA-Matrix2 IGA-Matrix3
 𝑦 20000 15000 10000 5000
 𝑧 2 1.75 1.25 1.25

Both percentage values for the IGAs are relative to the instances which
were solved confirmed optimally by the solver. Note that the IGAs
solved each problem instance 5 times, while the solver solved each
instance only one time. Furthermore, the RPDs (in %) of the solution
methods are given.

As can be seen, the MINLP solver was able to find and confirm
the optimal solution for each of the instances with 𝑛 = 3. The same
applies for the instances with 𝑜 = 2. In total, 395 of the 540 instances,
i.e., approx. 73%, were solved confirmed optimally. However, the
solver could not confirm any optimal solution for the instances with
{𝑛, 𝑜} = {5, 4}, and as it has an average RPD larger than zero, it is
confirmed for multiple problem instances that they were not solved
optimally by the MINLP solver.

The best performing solution method (including the IGAs and the
MINLP solver) for the Small testbed was IGA-String with an average
RPD of 0.0575%. The result that IGA-String has a lower RPD than
each other considered solution method for this testbed is statistically
significant according to the one-sided Wilcoxon signed-rank test at a
significance level of 𝛼 = 0.05. The heuristic could also find an optimal
solution for 98.99% of the confirmed optimally solved instances and
in 97.52% of the respective runs. But also the IGA-Matrix algorithms
showed a good performance by finding an optimal solution for over
57% of the confirmed optimally solved instances. Furthermore, if an
IGA-Matrix algorithm found an optimal solution for a confirmed op-
timally solved instance, it found an optimal solution in each run. And
even though the IGA-Matrix algorithms did not find an optimal solution
for about 40% of the confirmed optimally solved instances, the average
RPD values are still only 1.06% (IGA-Matrix1), 0.95% (IGA-Matrix2),
and 0.90% (IGA-Matrix3). We conclude by this that the four IGAs
are appropriate and reliable solution methods for solving small sized
problem instances of 𝐹𝑚 → 0|𝑝𝑟𝑚𝑢|

∑

𝐶𝑖.
As expected, the MINLP solver performed worse for larger prob-

lem instances. This applies for each problem size defining parameter,
i.e., number of orders, number of jobs per order, and number of
machines. Besides not confirming an optimal solution for the problem
instances with {𝑛, 𝑜} = {5, 4} after 3 h, the lowest determined gap
by the solver was 19.44%, and IGA-String and IGA-Matrix3 had a
lower average RPD for these instances. Furthermore, the average gap
determined by the solver was 27.95% and the highest gap 42.21% for
these instances. Consequently, we did not include the MINLP solver for
the Big testbed.

The average RPDs of the IGAs for the different problem sizes of the
Big testbed are given in Table 10. The lowest average RPD for each
problem size is written bold. If the lowest RPD-value is statistically
significantly smaller than the RPD-value of each other IGA according
to the one-sided Wilcoxon signed-rank test (significance level of 𝛼 =

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
Table 9
Results for the Small testbed.
 𝑛 𝑜 𝑚 MINLP IGA-String IGA-Matrix1 IGA-Matrix2 IGA-Matrix3

 # Slvd. RPD % of % of RPD % of % of RPD % of % of RPD % of % of RPD
 Opt. in % Runs Inst. in % Runs Inst. in % Runs Inst. in % Runs Inst. in %

3

2
2 20 0.0000 100 100 0.0000 95 95 0.0581 95 95 0.0581 95 95 0.0581

 3 20 0.0000 100 100 0.0000 80 80 0.5397 80 80 0.4634 80 80 0.4634
 6 20 0.0000 100 100 0.0000 50 50 0.9748 65 65 0.7133 60 60 0.8607

3
2 20 0.0000 100 100 0.0000 95 95 0.0588 95 95 0.0588 95 95 0.0588

 3 20 0.0000 90 90 0.0626 45 45 1.2610 45 45 1.2450 45 45 1.2317
 6 20 0.0000 99 100 0.0022 35 35 1.4436 35 35 1.4436 35 35 1.4436

4
2 20 0.0000 96 100 0.0209 90 90 0.4447 90 90 0.2741 90 90 0.2741

 3 20 0.0000 100 100 0.0000 55 55 0.8537 55 55 0.8537 60 60 0.7382
 6 20 0.0000 96 100 0.0674 10 10 1.9136 10 10 1.9150 15 15 1.8294

4

2
2 20 0.0000 100 100 0.0000 90 90 0.1216 90 90 0.1216 90 90 0.1216

 3 20 0.0000 100 100 0.0000 45 45 0.8067 45 45 0.8067 45 45 0.8067
 6 20 0.0000 95 95 0.0149 50 50 1.1491 50 50 1.0656 50 50 1.0656

3
2 20 0.0000 100 100 0.0000 75 75 0.1502 75 75 0.1502 75 75 0.1502

 3 20 0.0000 98 100 0.0065 50 50 0.6130 50 50 0.6049 50 50 0.6049
 6 20 0.0000 90 95 0.0692 5 5 2.2912 5 5 2.0519 5 5 2.0155

4
2 11 0.0000 100 100 0.0962 100 100 0.2657 100 100 0.2657 100 100 0.2657

 3 3 0.1535 93.33 100 0.1826 0 0 1.2062 0 0 1.1743 0 0 1.0984
 6 0 0.2308 – – 0.0306 – – 2.1703 – – 2.1031 – – 1.6967

5

2
2 20 0.0000 96 100 0.0143 65 65 0.4848 70 70 0.3155 70 70 0.2720

 3 20 0.0000 99 100 0.0184 50 50 1.2990 55 55 0.7844 55 55 0.7844
 6 20 0.0000 99 100 0.0065 15 15 1.6245 20 20 1.2887 20 20 1.2887

3
2 17 0.0000 96.47 100 0.0570 88.24 88.24 0.2927 88.24 88.24 0.1566 88.24 88.24 0.1566

 3 4 0.0000 85 100 0.0716 25 25 1.3715 25 25 1.3027 25 25 1.3402
 6 0 0.4431 – – 0.1246 – – 2.7055 – – 2.4401 – – 2.4044

4
2 0 0.3178 – – 0.1519 – – 0.2663 – – 0.2066 – – 0.2066

 3 0 1.2104 – – 0.2416 – – 1.2704 – – 1.1790 – – 0.9828
 6 0 1.7966 – – 0.3141 – – 3.1142 – – 2.4965 – – 2.0363
 Total 395 0.1538 97.52 98.99 0.0575 57.47 57.47 1.0649 58.99 58.99 0.9459 59.24 59.24 0.8983

(a) Average RPDs of the IGAs for all
instances of the Big testbed

(b) Average RPDs per number of orders for the Big
testbed

(c) Average RPDs per number of jobs per order for
the Big testbed

(d) Average RPDs per number of machines for the
Big testbed

Fig. 4. Results of the IGAs for the Big testbed.
0.05), we marked the corresponding value with †. Furthermore, Fig.
4(a) shows the average RPD of each IGA across all problem instances
of the Big testbed with 95% confidence intervals. As for the Small
testbed, IGA-Matrix3 had a lower average RPD than IGA-Matrix1 and
IGA-Matrix2 when the complete Big testbed is considered. This result
is statistically significant according to the one-sided Wilcoxon signed-
rank test at a significance level of 𝛼 = 0.05. From this we conclude
that it is generally advisable to use only one acceptance function at the
end of each iteration, so that the job sequences of each order and the
13
order sequence are not evaluated separately. In contrast to the results
from the Small testbed, IGA-String had the highest average RPD for
the Big testbed. The result that IGA-String has a higher RPD than each
other IGA for the big testbed is statistically significant according to the
one-sided Wilcoxon signed-rank test at a significance level of 𝛼 = 0.05.

An explanation for this is indicated by Fig. 4(b). In the respective
figure, the average RPDs with a 95% confidence interval for the IGAs
per number of orders is illustrated for the Big testbed. It can be seen that
IGA-String had the best performance for 𝑛 = 10. However, for higher

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
Table 10
Average RPDs in % of the IGAs for different problem sizes of the Big testbed.
 𝑛 𝑜 𝑚 IGA-String IGA-Matrix1 IGA-Matrix2 IGA-Matrix3

10

2
2 0.1522 0.2177 0.1822 0.1847

 3 0.2513† 1.1948 0.6424 0.6285
 6 0.3300† 1.8962 1.2979 1.2275

5
2 0.3642 0.1090 0.0740 0.0763

 3 0.7840 0.5625 0.3967 0.2552†
 6 0.3991† 2.0614 1.7858 1.2659

10
2 0.3056 0.1427 0.0436 0.0268†

 3 0.6528 0.1714 0.1237 0.0774†
 6 0.4579 1.3658 1.2084 0.7434

20

2
2 1.0672 0.0402 0.0410 0.0351

 3 1.0767 0.2180 0.1533 0.1315
 6 1.2952 0.9452 0.6124 0.5455†

5
2 1.0989 0.0265 0.0209 0.0221

 3 0.9316 0.1216 0.1245 0.0989
 6 0.6809 0.5025 0.3823 0.3520

10
2 0.7309 0.0567 0.0367 0.0430

 3 0.9124 0.1155 0.1157 0.1387
 6 0.9603 0.3900 0.3681 0.3518

50

2
2 0.8218 0.1401† 0.1795 0.1795

 3 1.1086 0.2743 0.2985 0.2404
 6 1.7349 0.5453 0.4856 0.4106†

5
2 1.0165 0.1206† 0.1717 0.1599

 3 1.0541 0.1492† 0.2217 0.2421
 6 1.1928 0.2817 0.3088 0.3883

10
2 0.7949 0.0732† 0.1363 0.1461

 3 0.8215 0.0862† 0.1814 0.2088
 6 1.0488 0.1865 0.2164 0.3800
 Total 0.8165 0.4443 0.3633 0.3170

number of orders, the performance of IGA-String was notably worse
compared to the IGA-Matrix algorithms. We assume that this is due to
the higher computational effort per iteration that IGA-String has, since
this algorithm modifies the sequence of all jobs of all orders and not
partial sequences.

Furthermore, IGA-Matrix1 had the best performance for the highest
number of orders, i.e., 𝑛 = 50. The result that IGA-Matrix1 has a
lower RPD than each other IGA for 𝑛 = 50 is statistically significant
according to the one-sided Wilcoxon signed-rank test at a significance
level of 𝛼 = 0.05. This finding can also be explained by the differences
in computational effort per iteration as IGA-Matrix1 does not use
LocalSearch3 and hence, can perform more iterations until the given
time limit is reached. We explain the result for the different number of
jobs per order, see Fig. 4(c), in the same way. Here, the gap between
IGA-Matrix1 and the other IGA-Matrix algorithms narrows for a larger
number of jobs per order. However, for the highest number of jobs per
order (𝑜=10), IGA-Matrix3 still had the lowest average RPD.

By Fig. 4(d), we give the average RPDs with a 95% confidence
interval for the IGAs per number of machines for the Big testbed. For
each IGA, the average RPD and the 95% confidence interval increase for
higher 𝑚. Our conclusion is that for a higher number of machines, the
solution quality of the IGAs becomes more volatile. Furthermore, we
make the following observation when we compare the IGAs with each
other. The gap between IGA-Matrix1 and IGA-Matrix2, the gap between
IGA-Matrix1 and IGA-Matrix3, as well as the gap between IGA-Matrix2
and IGA-Matrix3 widens for higher numbers of machines. Furthermore,
the gaps between IGA-String and each IGA-Matrix algorithm are no-
ticeably smaller for 𝑚 = 6 than for 𝑚 = 2, and for 𝑚 = 6, IGA-String
performs even slightly better than IGA-Matrix1.

We conclude by this that IGA-String performs relatively better for
instances with a high number of machines. The same applies for IGA-
Matrix3 when it is compared with the other IGA-Matrix algorithms, and
for IGA-Matrix2 when it is compared with IGA-Matrix1. We explain
this result in the following way. For a higher number of machines, it
becomes more important that two consecutively scheduled jobs fit to
each other, i.e., that the forced idle times and waiting times between
the two jobs become low, as there are more machines where forced
14
idle times and waiting times can occur. Consequently, it is advisable
to check more combinations of consecutively scheduled jobs. This
can be achieved by also considering schedules where the jobs of an
order are not scheduled consecutively, since this results in checking
more jobs of different orders for consecutive scheduling. In contrast
to IGA-Matrix2 and IGA-Matrix3, IGA-Matrix1 only considers schedules
where the jobs of an order are scheduled consecutively which explains
the corresponding result. The difference between IGA-Matrix2 and
IGA-Matrix3 is that IGA-Matrix3 does not evaluate the job and order
sequences independently of each other. We assume that this leads to
a stronger focus on the fit of the consecutively scheduled jobs in the
whole schedule instead of focusing on the fit of the jobs within the own
order. Meanwhile, IGA-String uses only one job sequence of all jobs
of all orders after the initialization function, and not the separate job
sequences of each order. By this it is more likely that jobs of different
orders are scheduled consecutively which leads to a broader search for
good fitting job combinations.

6. Conclusion

In this paper, we studied the minimization of the total completion
time of the COSP in the permutation flow shop environment. We
presented important problem properties and used these to give a MINLP
formulation of the problem. Furthermore, we developed four heuristics
for the problem which are based on the IGA. One of the heuristics,
IGA-String, modifies directly the job sequence of all jobs of all orders
after the initialization function, while the other three algorithms, called
IGA-Matrix algorithms, first modify the job sequences of each order
separately and afterwards the order sequence. IGA-Matrix2 and IGA-
Matrix3 additionally have the LocalSearch3 function by which the jobs
of an order are scheduled actively between jobs of another order.
Furthermore, IGA-Matrix1 and IGA-Matrix2 use two acceptance func-
tions for evaluating the job sequences of the single orders independent
from the order sequence, while IGA-Matrix3 uses only one acceptance
function.

We compared the developed IGAs with each other and the MINLP
solution from the Gurobi solver. For the instances which where con-
firmed optimally solved by the solver, IGA-String was able to find
an optimal solution in 97.52% of the runs. Each of the IGA-Matrix
algorithms found an optimal solution in over 57% of the runs for these
instances. This shows that the developed algorithms are reliable and
appropriate solution methods for the considered problem.

For larger problem instances, IGA-Matrix3 showed the best perfor-
mance, especially because IGA-String performed worse for a higher
number of orders, probably due to the high computational effort per
iteration. As IGA-Matrix3 performed better than the other two IGA-
Matrix algorithms for both, the Small and the Big testbed, we further-
more conclude that the job sequences of the single orders and the order
sequence shall not be evaluated independent of each other.

Future research may investigate the flow shop environment for
the COSP with further objective functions, e.g., the total tardiness,
and machine specifications, e.g., with limited intermediate storage.
Furthermore, as literature about the COSP continuously grows, this
problem class deserves a more general view by a systematic literature
review in which the key results of the different problem configurations
are summarized.

CRediT authorship contribution statement

Julius Hoffmann: Writing – original draft, Visualization, Valida-
tion, Supervision, Software, Methodology, Investigation, Formal anal-
ysis, Data curation, Conceptualization. Janis S. Neufeld: Writing –
review & editing, Supervision, Methodology, Conceptualization. Udo
Buscher: Writing – review & editing, Supervision, Resources, Method-
ology, Conceptualization.

J. Hoffmann et al. Operations Research Perspectives 15 (2025) 100362
Declaration of competing interest

The authors report there are no competing interests to declare.

Data availability

The problem instances used for the computational experiments can
be found at https://github.com/Julius2627/COSP_Flow_Shop.

References

[1] Framinan JM, Perez-Gonzalez P. New approximate algorithms for the customer
order scheduling problem with total completion time objective. Comput Oper
Res 2017;78:181–92. http://dx.doi.org/10.1016/j.cor.2016.09.010.

[2] Sung CS, Yoon SH. Minimizing total weighted completion time at a pre-assembly
stage composed of two feeding machines. Int J Prod Econ 1998;54(3):247–55.
http://dx.doi.org/10.1016/S0925-5273(97)00151-5.

[3] Framinan JM, Perez-Gonzalez P, Fernandez-Viagas V. Deterministic assembly
scheduling problems: A review and classification of concurrent-type scheduling
models and solution procedures. European J Oper Res 2019;273(2):401–17.
http://dx.doi.org/10.1016/j.ejor.2018.04.033.

[4] Zhao Z, Zhou M, Liu S. Iterated greedy algorithms for flow-shop scheduling
problems: A tutorial. IEEE Trans Autom Sci Eng 2022;19(3):1941–59. http:
//dx.doi.org/10.1109/TASE.2021.3062994.

[5] Wagneur E, Sriskandarajah C. Openshops with jobs overlap. European J Oper
Res 1993;71(3):366–78. http://dx.doi.org/10.1016/0377-2217(93)90347-P.

[6] Leung JY-T, Li H, Pinedo M, Sriskandarajah C. Open shops with jobs overlap—-
revisited. European J Oper Res 2005;163(2):569–71. http://dx.doi.org/10.1016/
j.ejor.2003.11.023.

[7] Roemer TA. A note on the complexity of the concurrent open shop problem. J
Sched 2006;9(4):389–96. http://dx.doi.org/10.1007/s10951-006-7042-y.

[8] Leung JY-T, Li H, Pinedo M. Order scheduling in an environment with dedicated
resources in parallel. J Sched 2005;8(5):355–86. http://dx.doi.org/10.1007/
s10951-005-2860-x.

[9] Yang J, Posner ME. Scheduling parallel machines for the customer order problem.
J Sched 2005;8(1):49–74. http://dx.doi.org/10.1007/s10951-005-5315-5.

[10] Xu X, Ma Y, Zhou Z, Zhao Y. Customer order scheduling on unrelated par-
allel machines to minimize total completion time. IEEE Trans Autom Sci Eng
2015;12(1):244–57. http://dx.doi.org/10.1109/TASE.2013.2291899.

[11] Hoffmann J, Neufeld JS, Buscher U. Iterated greedy algorithms for
customer order scheduling with dedicated machines. IFAC-PapersOnLine
2022;55(10):1594–9. http://dx.doi.org/10.1016/j.ifacol.2022.09.618.

[12] Lee IS. Minimizing total tardiness for the order scheduling problem. Int J Prod
Econ 2013;144(1):128–34. http://dx.doi.org/10.1016/j.ijpe.2013.01.025.

[13] Framinan JM, Perez-Gonzalez P. Order scheduling with tardiness objective:
Improved approximate solutions. European J Oper Res 2018;266(3):840–50.
http://dx.doi.org/10.1016/j.ejor.2017.10.064.

[14] Braga-Santos SA, Barroso GC, Prata BdA. A size-reduction algorithm for the
order scheduling problem with total tardiness minimization. J Proj Manag
2022;7(3):167–76. http://dx.doi.org/10.5267/j.jpm.2022.1.001.

[15] Lin W-C, Xu J, Bai D, Chung I-H, Liu S-C, Wu C-C. Artificial bee
colony algorithms for the order scheduling with release dates. Soft Comput
2019;23(18):8677–88. http://dx.doi.org/10.1007/s00500-018-3466-5.

[16] Prata BDA, Rodrigues CD, Framinan JM. Customer order scheduling problem
to minimize makespan with sequence-dependent setup times. Comput Ind Eng
2021;151:106962. http://dx.doi.org/10.1016/j.cie.2020.106962.

[17] Prata BDA, Rodrigues CD, Framinan JM. A differential evolution algorithm
for the customer order scheduling problem with sequence-dependent setup
times. Expert Syst Appl 2022;189:116097. http://dx.doi.org/10.1016/j.eswa.
2021.116097.

[18] Shi Z, Huang Z, Shi L. Customer order scheduling on batch processing machines
with incompatible job families. Int J Prod Res 2018;56(1–2):795–808. http:
//dx.doi.org/10.1080/00207543.2017.1401247.

[19] Li L-Y, Xu J-Y, Cheng S-R, Zhang X, Lin W-C, Lin J-C, Wu Z-L, Wu C-C. A genetic
hyper-heuristic for an order scheduling problem with two scenario-dependent
parameters in a parallel-machine environment. Mathematics 2022;10(21):4146.
http://dx.doi.org/10.3390/math10214146.

[20] Wu C-C, Gupta JND, Lin W-C, Cheng S-R, Chiu Y-L, Chen J-H, Lee L-Y. Robust
scheduling of two-agent customer orders with scenario-dependent component
processing times and release dates. Mathematics 2022;10(9):1545. http://dx.doi.
org/10.3390/math10091545.
15
[21] Zhao Y, Kong X, Xu X, Xu E. Resource-controlled stochastic customer or-
der scheduling via particle swarm optimization with bound information. Ind
Manag Data Syst 2022;122(8):1882–908. http://dx.doi.org/10.1108/IMDS-02-
2022-0105.

[22] Lin W-C, Zhang X, Liu X, Hu K-X, Cheng S-R, Azzouz A, Wu C-C. Sequencing
single machine multiple-class customer order jobs using heuristics and improved
simulated annealing algorithms. RAIRO - Oper Res 2023;57(3):1417–41. http:
//dx.doi.org/10.1051/ro/2023056.

[23] Liu G, Xie Y, Wang H. Customer order scheduling on a serial-batch machine in
precast bridge construction. Comput Oper Res 2025;173:106871. http://dx.doi.
org/10.1016/j.cor.2024.106871.

[24] Hsu S-Y, Liu C-H. Improving the delivery efficiency of the customer order
scheduling problem in a job shop. Comput Ind Eng 2009;57(3):856–66. http:
//dx.doi.org/10.1016/j.cie.2009.02.015.

[25] Yang J. Customer order scheduling in a two machine flowshop. Manag Sci Financ
Eng 2011;17(1):95–116.

[26] Chen J, Wang M, Kong XTR, Huang GQ, Dai Q, Shi G. Manufacturing syn-
chronization in a hybrid flowshop with dynamic order arrivals. J Intell Manuf
2019;30(7):2659–68. http://dx.doi.org/10.1007/s10845-017-1295-5.

[27] Meng T, Pan Q-K, Wang L. A distributed permutation flowshop scheduling
problem with the customer order constraint. Knowl-Based Syst 2019;184:104894.
http://dx.doi.org/10.1016/j.knosys.2019.104894.

[28] Li W, Chen X, Li J, Sang H, Han Y, Du S. An improved iterated greedy algorithm
for distributed robotic flowshop scheduling with order constraints. Comput Ind
Eng 2022;164:107907. http://dx.doi.org/10.1016/j.cie.2021.107907.

[29] Yang S, Xu Z. The distributed assembly permutation flowshop schedul-
ing problem with flexible assembly and batch delivery. Int J Prod Res
2021;59(13):4053–71. http://dx.doi.org/10.1080/00207543.2020.1757174.

[30] Zhou X, Ling G, Yu J, Zhou T, Wang R. Balanced multi-objective evolution
algorithm for unmanned systems project scheduling with preventive maintenance
and order grouping constraints. Expert Syst Appl 2026;299:130006. http://dx.
doi.org/10.1016/j.eswa.2025.130006.

[31] Erel E, Ghosh JB. Customer order scheduling on a single machine with family
setup times: Complexity and algorithms. Appl Math Comput 2007;185(1):11–8.
http://dx.doi.org/10.1016/j.amc.2006.06.086.

[32] Hoffmann J, Neufeld JS, Buscher U. Minimizing the earliness–tardiness for the
customer order scheduling problem in a dedicated machine environment. J Sched
2024;27(6):525–43. http://dx.doi.org/10.1007/s10951-024-00814-z.

[33] Wu C-C, Liu S-C, Lin T-Y, Yang T-H, Chung I-H, Lin W-C. Bicriterion total
flowtime and maximum tardiness minimization for an order scheduling problem.
Comput Ind Eng 2018;117:152–63. http://dx.doi.org/10.1016/j.cie.2018.01.011.

[34] Wu C-C, Yang T-H, Zhang X, Kang C-C, Chung I-H, Lin W-C. Using heuristic
and iterative greedy algorithms for the total weighted completion time order
scheduling with release times. Swarm Evol Comput 2019;44:913–26. http://dx.
doi.org/10.1016/j.swevo.2018.10.003.

[35] Çetinkaya FC, Yozgat GB. Customer order scheduling with job-based processing
and lot streaming in a two-machine flow shop. Int J Industiral Eng Prod Res
2022;33(2). http://dx.doi.org/10.22068/ijiepr.33.2.11.

[36] Xiong F, Chen S, Ma Z, Li L. Approximate model and algorithms for precast
supply chain scheduling problem with time-dependent transportation times.
Int J Prod Res 2023;61(7):2057–85. http://dx.doi.org/10.1080/00207543.2022.
2057254.

[37] Pinedo ML. Deterministic models: Preliminaries. In: Scheduling. 3rd ed. New
York, NY: Springer New York; 2008, p. 13–33. http://dx.doi.org/10.1007/978-
0-387-78935-4_2.

[38] Garey MR, Johnson DS, Sethi R. The complexity of flowshop and jobshop
scheduling. Math Oper Res 1976;1(2):117–29. http://dx.doi.org/10.1287/moor.
1.2.117.

[39] Conway RW, Maxwell WL, Miller LW. Theory of scheduling. Reading, Mass.:
Addison-Wesley; 1967.

[40] Nawaz M, Enscore Jr. EE, Ham I. A heuristic algorithm for the m-machine, n-
job flow-shop sequencing problem. Omega 1983;11(1):91–5. http://dx.doi.org/
10.1016/0305-0483(83)90088-9.

[41] Neufeld JS, Gupta JND, Buscher U. Minimising makespan in flowshop
group scheduling with sequence-dependent family set-up times using inserted
idle times. Int J Prod Res 2015;53(6):1791–806. http://dx.doi.org/10.1080/
00207543.2014.961209.

[42] Neufeld JS, Gupta JND, Buscher U. A comprehensive review of flowshop group
scheduling literature. Comput Oper Res 2016;70:56–74. http://dx.doi.org/10.
1016/j.cor.2015.12.006.

https://github.com/Julius2627/COSP_Flow_Shop
http://dx.doi.org/10.1016/j.cor.2016.09.010
http://dx.doi.org/10.1016/S0925-5273(97)00151-5
http://dx.doi.org/10.1016/j.ejor.2018.04.033
http://dx.doi.org/10.1109/TASE.2021.3062994
http://dx.doi.org/10.1109/TASE.2021.3062994
http://dx.doi.org/10.1109/TASE.2021.3062994
http://dx.doi.org/10.1016/0377-2217(93)90347-P
http://dx.doi.org/10.1016/j.ejor.2003.11.023
http://dx.doi.org/10.1016/j.ejor.2003.11.023
http://dx.doi.org/10.1016/j.ejor.2003.11.023
http://dx.doi.org/10.1007/s10951-006-7042-y
http://dx.doi.org/10.1007/s10951-005-2860-x
http://dx.doi.org/10.1007/s10951-005-2860-x
http://dx.doi.org/10.1007/s10951-005-2860-x
http://dx.doi.org/10.1007/s10951-005-5315-5
http://dx.doi.org/10.1109/TASE.2013.2291899
http://dx.doi.org/10.1016/j.ifacol.2022.09.618
http://dx.doi.org/10.1016/j.ijpe.2013.01.025
http://dx.doi.org/10.1016/j.ejor.2017.10.064
http://dx.doi.org/10.5267/j.jpm.2022.1.001
http://dx.doi.org/10.1007/s00500-018-3466-5
http://dx.doi.org/10.1016/j.cie.2020.106962
http://dx.doi.org/10.1016/j.eswa.2021.116097
http://dx.doi.org/10.1016/j.eswa.2021.116097
http://dx.doi.org/10.1016/j.eswa.2021.116097
http://dx.doi.org/10.1080/00207543.2017.1401247
http://dx.doi.org/10.1080/00207543.2017.1401247
http://dx.doi.org/10.1080/00207543.2017.1401247
http://dx.doi.org/10.3390/math10214146
http://dx.doi.org/10.3390/math10091545
http://dx.doi.org/10.3390/math10091545
http://dx.doi.org/10.3390/math10091545
http://dx.doi.org/10.1108/IMDS-02-2022-0105
http://dx.doi.org/10.1108/IMDS-02-2022-0105
http://dx.doi.org/10.1108/IMDS-02-2022-0105
http://dx.doi.org/10.1051/ro/2023056
http://dx.doi.org/10.1051/ro/2023056
http://dx.doi.org/10.1051/ro/2023056
http://dx.doi.org/10.1016/j.cor.2024.106871
http://dx.doi.org/10.1016/j.cor.2024.106871
http://dx.doi.org/10.1016/j.cor.2024.106871
http://dx.doi.org/10.1016/j.cie.2009.02.015
http://dx.doi.org/10.1016/j.cie.2009.02.015
http://dx.doi.org/10.1016/j.cie.2009.02.015
http://refhub.elsevier.com/S2214-7160(25)00038-7/sb25
http://refhub.elsevier.com/S2214-7160(25)00038-7/sb25
http://refhub.elsevier.com/S2214-7160(25)00038-7/sb25
http://dx.doi.org/10.1007/s10845-017-1295-5
http://dx.doi.org/10.1016/j.knosys.2019.104894
http://dx.doi.org/10.1016/j.cie.2021.107907
http://dx.doi.org/10.1080/00207543.2020.1757174
http://dx.doi.org/10.1016/j.eswa.2025.130006
http://dx.doi.org/10.1016/j.eswa.2025.130006
http://dx.doi.org/10.1016/j.eswa.2025.130006
http://dx.doi.org/10.1016/j.amc.2006.06.086
http://dx.doi.org/10.1007/s10951-024-00814-z
http://dx.doi.org/10.1016/j.cie.2018.01.011
http://dx.doi.org/10.1016/j.swevo.2018.10.003
http://dx.doi.org/10.1016/j.swevo.2018.10.003
http://dx.doi.org/10.1016/j.swevo.2018.10.003
http://dx.doi.org/10.22068/ijiepr.33.2.11
http://dx.doi.org/10.1080/00207543.2022.2057254
http://dx.doi.org/10.1080/00207543.2022.2057254
http://dx.doi.org/10.1080/00207543.2022.2057254
http://dx.doi.org/10.1007/978-0-387-78935-4_2
http://dx.doi.org/10.1007/978-0-387-78935-4_2
http://dx.doi.org/10.1007/978-0-387-78935-4_2
http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.1287/moor.1.2.117
http://refhub.elsevier.com/S2214-7160(25)00038-7/sb39
http://refhub.elsevier.com/S2214-7160(25)00038-7/sb39
http://refhub.elsevier.com/S2214-7160(25)00038-7/sb39
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1080/00207543.2014.961209
http://dx.doi.org/10.1080/00207543.2014.961209
http://dx.doi.org/10.1080/00207543.2014.961209
http://dx.doi.org/10.1016/j.cor.2015.12.006
http://dx.doi.org/10.1016/j.cor.2015.12.006
http://dx.doi.org/10.1016/j.cor.2015.12.006

	Customer order scheduling in a permutation flow shop environment
	Introduction
	Literature Review
	Problem description
	Problem definition
	Problem properties

	Algorithm description
	Initial Solution
	IGA-String Algorithm
	IGA-Matrix Algorithms in general
	IGA-Matrix1 Algorithm
	IGA-Matrix2 Algorithm
	IGA-Matrix3 Algorithm

	Computational experiments
	Experimental setting
	Parameter setting
	Algorithm evaluation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

