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Abstract
We introduce a parallel adaptive space-time discontinuous Galerkin method for the
linear transport equation, where the transport vector is determined from Darcy’s law
for porous media flow. Given the permeability distribution, in the first step the pres-
sure head and the flux is computed by a mixed approximation of the linear porous
media problem. Then, for a given initial pollution distribution the linear transport is
approximated by an adaptive DG space-time discretization on a truncated space-time
cylinder which turns out to be very efficient since the adaptively refined region is
transported with the pollution distribution. The full linear system in space and time
is solved with a parallel multigrid method where the stopping criterium for the linear
solver is controlled by the convergence of a linear goal functional. Finally we apply
this method to solve the inverse problem to reconstruct the initial pollution distribution
from measurements of the outflow.

Keywords Space-time methods · Discontinuous Galerkin discretization · Linear
transport in porous media

Mathematics Subject Classification 65M60

1 Introduction

The numerical approximation of transport in porous media is a very classical appli-
cation in geosciences which has been studied for many decades. The first challenge is
the appropriate approximation of the flux determined by Darcy’s law for porous media
flow, which yields a second order linear elliptic equation for the pressure head depend-
ing on the permeability of the material. Here, the simple approximation with standard
finite elements is not appropriate, since in this case the corresponding discontinuous
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flux approximation is not volume preserving. So, in the first step it is required, e.g.,
to use a mixed method for the pressure head and the flux, so that one gets a conform-
ing flux approximation in the Hilbert space H(div). This is then appropriate for the
next step, the linear transport of a pollution density along this flux. The linear trans-
port problem is hyperbolic, and finite volume and discontinuous Galerkin methods in
space combined with suitable time-stepping methods are now well established (see,
e.g., Bear and Bachmat (2012) for an overview of modeling aspects, the textbooks
(Di Pietro and Ern 2011; Ern and Guermond 2021; Hesthaven and Warburton 2007)
for numerical methods, and Flemisch et al. (2011); Bastian et al. (2021) for parallel
software).

Recently, space-time discretizations for the transport problem were developed for
two reasons. In standard porous media applications the pollution distribution is locally
in space but transported in time, so that reasonable adaptivity strategies also require
to be time-dependent. More complex are inverse problems which aim to recover the
initial distribution of the pollution density from measurements at the outflow (see,
e.g., the overview in Becker and Rannacher (2001)). The established solution method
by gradient descent requires solving the adjoint problem backward in time, where the
right-hand side of the adjoint problem relies on the solution of the forward problem
in space and time. Adaptive space-time methods for parabolic optimization problems
where introduced in Meidner and Vexler (2007), and meanwhile this is also applied
to hyperbolic applications (see, e.g., Besier and Rannacher (2012)).

In thisworkwe summerize our recent results on space-timemethods andwe demon-
strate how this applies to classical problems in porous media. The article is organized
as follows. We will start with summarizing the standard approach realized in our par-
allel finite element software system M++ (Baumgarten and Wieners 2021), where the
Darcy equation is solved with Raviart-Thomas finite elements of lowest order and
then using DG in space (without adaptivity) together with different established time
stepping methods for the linear transport problem. Then, in Sect. 3 we derive a weak
variational formulation in space and time which builds the basis for the discontinuous
Galerkin method introduced in Sect. 4, where we present the extension to the adaptive
space-timeDGmethod introduced in Corallo et al. (2023) for general linear hyperbolic
Friedrichs systems and specified in Wieners (2023) for linear transport. Now we com-
bine this with the space-time multigrid method introduced first for a Petrov-Galerkin
method in time in Dörfler et al. (2016) and extended to a DGmethod in time in Dörfler
et al. (2019). In addition, we show that this can be realized on a truncated space-time
mesh analyzed in Ernesti and Wieners (2019), which turns out to be very efficient for
practical applications where the initial conditions and the measurements are local in
space.

The efficiency of the adaptive method is demonstrated for a typical porous media
setting with impermeable obstacles in Sect. 5, and the parallel performance of the
adaptivemultigridmethod is demonstrated for a large-scale example. Finally, in Sect. 6
we show that the space-time discretization forward and backward in time is well
suited for an inverse problem where we recover the position of the pollution source
by measuring the outflow.
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Fig. 1 Flux vector q = −κ∇ p
for water seeping into the
groundwater

2 An application for transport in porousmedia

We start with an illustrative example in 2D. Let � ⊂ (0, 1)2 be a simplified configu-
ration (cf. Fig. 1) modeling top earth layers of sand with permeability distribution

κ : � −→ (κmin, κmax) ⊂ (0,∞) .

In this configuration (0, 1)2\� are impermeable stones and rocks. The surfacewhere it
is raining is denoted by�top = (0, 1)×{1} ⊂ ∂�, and let�bottom = [0, 1]×{0} ⊂ ∂�

be the groundwater level. In the first step, we compute the flux vector q : � −→ R
2

by solving the Darcy equation, i.e., depending on Dirichlet and Neumann data pD and
gN we have to determine the pressure head p : � −→ R

−∇ · κ∇ p=0 in �, p= pD on �D=�bottom , −κ∇ p=gN on �N=∂� \ �D .

This defines the flux vector q = −κ∇ p, and in direction of the outer normal vector n
the inflow boundary �in = {

x ∈ ∂� : n(x) · q(x) < 0
}
.

In the second step, the pollution density u : (0, T ) × � −→ R is transported along
the flux vector q solving

∂t u(t, x) + div(u(t, x)q(x)) = 0 , (t, x) ∈ (0, T ) × �

with initial distribution u(0, x) = u0(x) for x ∈ � at t = 0 and inflow boundary
condition u(t, x) = uin(t, x) for (t, x) ∈ (0, T ) × �in.

In our example we simply use κ ≡ 1, pD = 0 on �bottom, gN = 1 on �top and
gN = 0 on ∂� \ (�top ∪ �bottom), and we only consider uin = 0. We obtain p ≥ 0
in � by monotonicity principle (Knabner and Angermann 2021, Thm. 8.21) and thus
(n · q)u ≥ 0 on (0, T ) × �bottom.

We start with u0(x) = B(x − z) for a bubble function with B(d) = 0 for |d| > r0
and the source position z ∈ �, where d = x − z. The solution depending on the
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Fig. 2 Distribution of the pollution density uz(t) at t = 0 and then along the transport for t > 0. This
example is included in the tutorial of our parallel finite element software system M++ (Baumgarten and
Wieners 2021)

source position is denoted by uz. For the simulation in Fig. 2 the source position is
z = (0.5, 0.8025)
 and B(d) = max

{
0, 100 − 1600|d|}.

3 Modeling transport in porousmedia

Let � ⊂ R
d (d = 2 or 3) be a bounded domain in space with Lipschitz boundary ∂�

and outer normal vector n. In general, the permeability can be anisotropic, i.e., it is a
symmetric tensor, and we assume that κ is uniformly positive definite and bounded.
The flux vector q is determined by the difference of the pressure head p at two points
x0, x1 ∈ �: for any smooth curve γ : [0, 1] −→ � from x0 = γ (0) to x1 = γ (1) we
have

p(x1) − p(x0) = −
∫ 1

0
κ(γ (s))−1q(γ (s)) · γ̇ (s)ds .

If the pressure head is smooth, this results for the limit x1 −→ x0 into the material
law q = −κ∇ p. In the following, our discretization is based on the weak formulation:
testing with smooth vector fields φ : � −→ R

d with n · φ = 0 on �N, integrating by
parts and inserting the Dirichlet boundary values results into

∫

�

(
p divφ − κ−1q · φ

)
dx =

∫

�D

pDn · φ da . (1a)

Flux preserving requires for all inner subdomains K ⊂ � where the outer normal nK

exists almost everywhere on ∂K

∫

∂K
q · nK da = 0 ,

so that we obtain, integrating by parts, for all smooth test functions ψ : � −→ Rwith
ψ = 0 on �D and inserting the Neumann data

∫

�

div qψ dx =
∫

�N

gNψ da . (1b)
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Together, (1) yields a saddle point formulation for (p,q) ∈ L2(�)×H(div,�) of the
elliptic Darcy equation.

For the transport of the pollution density u we define the time interval I = (0, T )

and the space-time cylinder Q = (0, T ) × �. Flux preserving for the linear flux
function f(u) = uq requires for all convex subdomains K ⊂ � and all time intervals
(t1, t2) ⊂ I

∫

K
u(t1) dx =

∫

K
u(t2) dx +

∫ t2

t1

∫

∂K
f(u) · nK da dt .

If the pollution density and the flux are smooth, this yields ∂t u + div(uq) = 0 in Q.
In the following, our discretization is based on the weak space-time formulation.

Using smooth test functions ϕ : Q −→ R with ϕ(T ) = 0 and ϕ = 0 on I × ∂� \ �in,
integrating by parts and inserting the initial data and the inflow boundary values results
into

∫

Q
u
(
∂tϕ + q · ∇ϕ

)
d(t, x) =

∫ T

0

∫

�in

n · q uinϕ da dt −
∫

�

u0ϕ(0) dx . (2)

4 Approximating transport in porousmedia

For h ∈ H ⊂ (0, h0) let �h = ⋃
K∈Kh

K be meshes where the elements K ⊂ �,
K ∈ Kh are open triangles/tetrahedra. Let F ∈ FK be the faces of the element K ,
and we set Fh = ⋃

K∈Kh
FK , so that ∂�h = ⋃

F∈Fh
F is the skeleton in space and

� = �h ∪ ∂�h .
We assume that the meshes are compatible with the different boundary parts of the
models, so that�D = ⋃

F∈Fh∩�D
F . For every cell K ∈ Kh and inner face F ∈ FK ∩�

the neighboring cell is denoted by KF ∈ Kh and is determined by F = ∂K ∩ ∂KF .
Approximating the Darcy equation we use Raviart-Thomas elements

Wh = {
(ph,qh) ∈ L2(�) × H(div,�) : ph |K ∈ P0(K ) for all K ∈ Kh and

qh |K ∈ P1(K )d such that nF · qh |F ∈ P0(F) for all F ∈ FK
}
,

and compute (ph,qh) ∈ Wh with
∫
F n · qh da = ∫

F gN da for F ∈ Fh ∩ �N solving

∫

�

(
κ−1qh · φh − ph divφh − div qh ψh

)
dx = −

∫

�D

pDn · φh da

for all (ψh,φh) ∈ Wh with n · φh = 0 on �N.
For the discontinuous Galerkin method in space approximating the transport equa-

tion we define the discrete flux fh(vh) = vh qh with the conforming approximation of
the flux vector qh in H(div,�). For the construction of the upwind flux, we observe
that qh · nK is constant on every face F (since we use lowest-order Raviart-Thomas
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elements). For discontinuous functions in space

Sh = {
vh ∈ L2(�) : vh,K = vh |K ∈ P(K ) for all K ∈ Kh

}

which are polynomials in every cell K we observe for vh, wh ∈ Sh

(
div fh(vh), wh

)
�h

=
∑

K∈Kh

(
−(

fh(vh,K ),∇wh,K
)
K +

∑

F∈FK

(
fh(vh,K ) · nK , wh,K

)
F

)
.

This is approximated with the bilinear form

ah(vh, wh) =
∑

K∈Kh

(
− (

fh(vh,K ),∇wh,K
)
K +

∑

F∈FK

(
fupK ,F (vh) · nK , wh,K

)
F

)

by replacing fh(vh,K ) · nK with the upwind flux

fupK ,F (vh) =

⎧
⎪⎨

⎪⎩

fh(vh,K ) , F ∈ Fout
K

fh(vh,KF ) , F ∈ F in
K \ �in

0 , F ∈ F in
K ∩ �in

depending of the in- or outgoing flux on the faces, i.e.,

Fout
K = {

F ∈ FK : qh · nK ≥ 0 on F
}
, F in

K = {
F ∈ FK : qh · nK < 0 on F

}
.

The discontinuous Galerkin method in space is complemented by the full-upwind
discretization in time. For 0 = t0 < t1 < · · · < tN = T , we define time intervals
In,h = (tn−1, tn) and

Ih = (t0, t1) ∪ · · · ∪ (tN−1, tN ) ⊂ I = (0, T ) , ∂ Ih = {t0, t1, . . . , tN−1, tN } .

Combined with the mesh in space, we obtain a decomposition into space-time cells
R ∈ Rh = {

In,h × K : K ∈ Kh and n = 1, . . . , N
}
and

Qh = Ih × �h =
N⋃

n=1

Qn,h =
⋃

R∈Rh

R , Qn,h =
⋃

K∈Kh

In,h × K ⊂ In,h × � .

For vh, wh ∈ H1(Qh) we obtain after integration by parts in all intervals In,h

(
∂tvh, wh

)
Qh

=
N∑

n=1

(
− (

vn,h, ∂twn,h
)
Qn,h

+ (
vn,h(tn), wn,h(tn)

)
�

− (
vn,h(tn−1), wn,h(tn−1)

)
�

)
.
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With [wh]n = wn+1,h(tn)−wn,h(tn), n = 1, . . . , N −1 and [wh]N = −wN ,h(tN ) set

mh(vh, wh) =
N∑

n=1

(
− (

vn,h, ∂twn,h
)
Qn,h

− (
vn,h(tn), [wh]n

)
�

)
.

Together, we obtain in

Vh = {
vh ∈ L2(Q) : vn,h,K = vn,h |K ∈ P(In,h × K ) for K ∈ Kh and n = 1, . . . , N

}

the discrete bilinear form

bh(vh, wh) = mh(vh, wh) +
∫ T

0
ah(vh(t), wh(t)) dt , vh, wh ∈ Vh .

For every discrete finite element space Vh ⊂ Vh the space-time approximation uh ∈ Vh
is defined by solving the linear system

bh(uh, ϕh) =
∫ T

0

∫

�in

n · qh uh,inϕh d(t, a) −
∫

�

u0ϕh(0) dx , ϕh ∈ Vh . (3)

Well-posedness and convergence of the discrete approximation (3) are analyzed in
Wieners (2023). In particular, up to the difference qh−q the bilinear form is consistent
with the weak formulation (2): using smooth test functions ϕ : Q −→ Rwith ϕ(T ) =
0 and ϕ = 0 on I × ∂� \ �in we have for all vh ∈ Vh

bh(vh, ϕ) =
∫

Q
vh

(
∂tϕ + q · ∇ϕ

)
d(t, x) + data error approximating flux vector q.

In order to calibrate the accuracy in space and time, we assume

cref�t ≤ h , �t = max(tn − tn−1) , h = max diam(K ) ,

where cref > 0 is a reference velocity depending on the flux vector q.

5 Convergence tests for the space-time DGmethod

Now we test the approximation for the example in Sect. 1 with � ⊂ (0, 1)2 and the
time interval (0, T ) = (0, 2). In Fig. 1 the flux vector qh approximated with Raviart-
Thomas elements is shown. In this application, we have a bounded transport velocity
‖q‖∞ ≤ c < ∞, and we start with a local pollution source, so that u0(x) = 0 for
|x − z| ≥ r0. Thus, we get for the solution uz(t, x) = 0 for |x − z| ≥ r0 + ct .

In our application we only observe the space-time solution at the outflow boundary
(0, T )×�bottom, so we do not need to compute uz(t, x) for dist(x, �bottom) > c(T −t).
Also for the reconstruction of the point source from the outflow data only the results
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Fig. 3 Space-time approximation uh on the truncated space-time cylinder Qtr of the solution uz for z =
(0.5, 0.8015)
 (with the initial value on top and the outflow on the left) shown in Fig. 2 at different time
steps

on the outflow boundary are required. So it is sufficient to evaluate uz on a truncated
space-time domain Qtr ⊂ (0, T ) × �, cf. Fig. 3.

Depending on the pollution density we define the goal functional

Gout(u)(t) =
∫

�bottom

n · f(u(t)) da ,

and we observe for the solution of the transport problem

∫

�

u0 dx =
∞∫

0

Gout(u)(t) dt ,

so that this quantity is a standard choice to test the reliability of the approximation.
For our convergence tests we now compare Gout(u) : [0, T ] −→ R for different
polynomial degrees in space and time. For the tests we use fixed time steps�t = T /N
for N ∈ N0 and tn = n�t .
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We start with the classical lowest-order approximation using finite volumes in space

Sp=0
h = {

vh ∈ L2(�) : vh,K = vh |K ∈ P0(K ) for all K ∈ Kh
}

and a discrete approximation of the initial value u0h ∈ Sp=0
h . Then, we determine by

the implicit Euler method for n = 1, . . . , N

unh ∈ Sp=0
h : (unh, vh)� + �t ah(u

n
h, vh) = (un−1

h , vh)� , vh ∈ Sp=0
h ,

since the implicit Euler method is preserving positivity and mass. Note that this is
equivalent to the space-time approximation (3) in

V p=0
h = {

vh ∈ L2(Q) : vh |R ∈ P0(R) for all R ∈ Rh
}
,

so that it can be computed parallel in time and on the truncated space-time cylinder.

Goal functional Gout(uh) for t ∈ [0, 2]
and finite volume approximation in Sp=0

h
with #Kh = 122 368 triangles in space
and Nm = 160 · 2m time steps
for m = 1, . . . , 7
using the implicit Euler method.

We observe convergence in time, but the resolution of the mesh is not sufficient:
comparing the finite volumemethod with the DG approximation of polynomial degree
p = 2 in space and implicit midpoint rule in time results in a far better approximation
of the solution, but the approximation is not strictly positive. Nevertheless, the error
in preserving positivity and mass of the implicit midpoint rule is very small for fine
discretizations.

Goal functional Gout(uh) for t ∈ [0, 2]
and DG approximation in Sp=2

h
with #Kh = 122 368 triangles in space
and Nm = 160 · 2m time steps
for m = 4, . . . , 7
using implicit midpoint rule.
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This clearly shows, that finite volume in space and implicit Euler in time are not
appropriate for approximating transport in porous media. Nevertheless, this approach
with higher order approximations is numerically quite expensive. So this is compared
with our space-time adaptive strategy. Therefore, we use the error indicator

η res,h =
( ∑

R∈Rh

η2res,R

)1/2

for R = (tn−1, tn) × K , n = 1, . . . , N , with

η res,R(uh)
2

= η res,n,K (uh)
2 + 2hK

∥∥∂t uh + div fh(uh)
∥∥2
R

+ 1

4

∥∥|qh · nK |1/2[uh]K ,F
∥∥2
In,h×∂K∩�

+∥∥|qh · n|−1/2(gin−fh(uh) · n)
∥∥In,h

× ∂K ∩ �2
in

and the local contributions

η res,1,K (uh)
2 = 1

2

∥∥u0 − uh(0)
∥∥2
K + 1

4

∥∥[uh]1
∥∥2
K , R = (0, t1) × K ,

η res,n,K (uh)
2 = 1

4

∥∥[uh]n−1
∥∥2
K + 1

4

∥∥[uh]n
∥∥2
K , R=(tn−1, tn) × K , 1<n<N ,

η res,N ,K (uh)
2 = 1

4

∥∥[uh]N−1
∥∥2
K , R = (tN−1, T ) × K .

The error indicator approximates the error u − uh in a suitable mesh-dependent DG
norm, see Wieners (2023) for details.

For the following test, we use the notation ηres,max(uh) = maxR ηres,R(uh) and
pR for the polynomial degree in the space-time cell R. We start with the solution
u0h ∈ V p=0

h , i.e., pR = 0 for all space-time cells R. Then, for k = 1, 2, 3 depending
on parameters 0 < θ0 < θ1 < 1 we increase the polynomial degree to pR + 1 for
all space-time cells R with ηres,R(uh) > θ1ηres,max(uh). The polynomial degree is
decreased to pR − 1, if ηres,R(uh) < θ0ηres,max(uh) and pR > 0.
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Table 1 Comparison of the adaptive space-time solution ukh with a reference solution urefh using DG in

space for p = 2 on 489472 triangles and N7 = 160 · 27 time steps with implicit midpoint rule

k 0 1 2 3

dim Vh 37,944,289 68,398,396 127,598,522 247,760,863
∥∥G(umh ) − G(urefh )

∥∥
L1(0,T )

0.1262 0.0570 0.0236 0.0146

Here, the goal functional Gout(uh) for the adaptive space-time approximations
in Table 1 and the reference solution is presented. This clearly shows that the
space-time adaptive approximation on the truncated space-time cylinder is very
accurate with far less degrees of freedom in space and time compared with a
classical time-stepping method. Nevertheless, one has to solve a very large linear
system, where we use a parallel full space-time multigrid method with adaptiv-
ity. This extends our parallel space-time multigrid methods introduced in Dörfler
et al. (2016, 2019) to the p-adaptive DG discretization for the refinement steps
k = 0, 1, 2, ... together with an integrated error control. This stops the multigrid
iteration uk,0h�max

, uk,1h�max
, uk,2h�max

, uk,3h�max
, uk,4h�max

, . . . when the finite element error of the

discretization is achieved, since it is not required to solve the linear system with full
arithmetic accuracy. Here this is tested heuristically, i.e., we choose a relative tolerance
εrel > 0 and stop the iteration if no further progress in the approximation of the goal
functional is achieved, i.e., if

∥∥Gout(u
k, j
h�max

) − Gout(u
k, j−1
h�max

)‖L1(0,T ) ≤ εrel‖Gout(u
k, j
h�max

)
∥∥
L1(0,T )

. (4)

Together, the parallel solution algorithm works as follows (see Table 2 for examples):

• refine themesh from level � = 0 up to �min, build the truncated space-time cylinder
Qtr

h on level �min and distribute Qtr
h non-overlapping onto the parallel process;

• determine and then distribute the parallel overlap required for the upwind flux;
• for � = �min, . . . , �max approximate the flux vector qh�

and then assemble in
parallel the finite elementmatrices for the linear system (3) for � = �min, . . . , �max;

• approximate u0h�max
∈ V p=0

h�max
using the parallel space-time linear multigrid method

with GMRES solver on the coarse level �min and using the stopping criterion (4);

• starting adaptivity, set u1,0h�max
= u0h�max

in V 0
h�max

= V p=0
h�max

;

• for k = 1, . . . , kmax adapt the discretization by increasing and decreasing the
polynomial degree depending on the space-time error indicator, prolongate uk−1

h�max

to the new discretization and then approximate ukh�max
∈ V k

h�max
using parallel

space-time multigrid solver starting with the prologation and using the stopping
criterion (4).
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Table 2 Two examples for the parallel adaptive multigrid solver on 128 processes for �max = 6 and on 512
processes for �max = 7 with 21+�max time steps: we use �min = 4, kmax = 2, and using Nmg multigrid
V -cycles with block-Gauss-Seidel smoothing on every processor (where all degrees of freedom per space-
time cell build a block). Here we use 10 smoothing steps on the levels � < �max and more smoothing
on the finest level � = �max. The Euclidean norm of the residual in R

dim Vh is denoted by |rh |2. For the
finest discretization with 3886260361 DoFs the solution is obtained in approximately one hour using six
adaptive multigrid steps on 512 parallel processes

�max k dimWh dim Vh Nmg |rh |2 ‖Gout‖L1 ‖Gout‖L∞

6 0 2,941,056 228,288,512 7 0.0000002 0.99993 3.916

6 1 461,590,312 5 0.0000006 1.00880 10.593

6 2 616,774,443 4 0.0000092 1.00206 10.956

7 0 11,755,776 1,826,308,096 6 0.0000007 0.99985 5.071

7 1 3,188,987,351 7 0.0000365 1.00241 10.838

7 2 3,886,260,361 6 0.0000003 1.00074 11.052

6 Localization of the pollution source position

The reconstruction of the source position for the example in Sect. 1 is an established
inverse problem. For a given source position z ∈ �, the outflow on the bottom is
denoted by gz = uzn · q : (0, T ) × �bottom −→ R.

Nowwe assume thatwe do not know the source positionwhichwill be reconstructed
from data gdata : (0, T ) × �bottom −→ R for the outflow. We assume that the initial
distribution is given by the bubble function B which is calibrated bymass conservation,
i.e.,

∫

R2
B(x) dx =

∫ T

0

∫

�bottom

gdata(t, x) da dt .

The source position z is located by minimizing the quadratic functional

J (z) = 1

2

∫ T

0

∫

�bottom

(
uz(t, x)n(x) · q(x) − gdata(t, x)

)2 da dt (5)

subject to the solution of the transport equation

∂t uz + div(uzq) = 0 in (0, T ) × �, uz(0, x) = B(x − z) , x ∈ �,

uz(t, x) = 0 on (0, T ) × �in . (6)

Then we obtain for the derivative of the quadratic functional J at z in direction y

DJ(z)[y] = lim
δ−→0

1

δ

∫

�

uadz (0, x)
(
B(x − z − δy) − B(x − z)

)
dx ,
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where the gradient is evaluated by solving the linear adjoint problem backward in time

∂t u
ad
z + q · ∇uadz = 0 in (0, T ) × �, uadz (T , x) = 0 , x ∈ �,

uadz n · q = uzn · q − gdata on (0, T ) × �bottom ,

uadz n · q = 0 on (0, T ) × ∂� \ (�bottom ∪ �in) (7)

(see App. A for details).
To minimize J (·) we use a gradient descent method. Starting with a guess for the

source point z0 ∈ �, the source z is approximated by a gradient descent minimizing J .
Therefore, we select a fixed mesh in space and compute the approximation of the flux
vector first. Then we select a suitable time steps size and construct and distribute in
parallel the corresponding truncated space-time cylinder. Then we select the space-
time finite element space Vh for the transport equation, we assemble the two sparse
matrices Ah and Aad

h , and we construct the preconditioner for the forward and the
adjoint problem, since in every step of the gradient descent only the right-hand is
updated and we can use the same matrix.
Then, for k = 0, 1, 2, 3, ...

• compute the approximation of the forward problem uh,zk by assembling the right-
hand side depending on the zk and solving the linear system with matrix Ah

(starting for k > 0 the iterative linear solver with uh,zk−1 );
• compute the approximation of the adjoint problem uadh,zk

by assembling the right-
hand side depending on the forward problem uh,zk and solving the linear system
with matrix Aad

h (starting for k > 0 the iterative linear solver with uh,zadk−1
);

• approximate the gradient of the goal functional by finite differenceswith δk = 0.01
2k

,

i.e., for y = (1, 0)
 and y = (0, 1)
 we evaluate

DJδk (zk)[y] = 1

δk

∫

�

uadh,zk (0, x)
(
B(x − zk − δky) − B(x − zk)

)
dx ,

and then update the source location zk+1 = zk − αkDJδk (zk) with a suitable
damping parameter αk > 0;

• stop the iteration if the goal functional is sufficiently small.

In our numerical tests the data are generated with z = (0.5, 0.8025)
, and we start
the iteration with the guess z0 = (0.5, 0.6875)
. The convergence of the method is
shown in Table 3, and the solutions uzk and the adjoints uadzk are illustrated in Fig. 4.

Conclusion and outlook

Wehave shown that our p-adaptive space-timediscontinuousGalerkinmethod approx-
imates classical applications in porous media very accurately, and that the parallel
distribution of the truncated space-time cylinder allows for an efficient load balancing
on many processors. Moreover, the space-time setting performs well for an inverse
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Fig. 4 Approximation of the solution and its adjoint on the truncated space-time cylinder for the first 5
steps of the gradient descent method

problem, where the adjoint solution backward in time depends on the forward prob-
lem in the full time interval. Here this is tested for a simplified configuration where
we identify only the position of the initial pollution distribution. For the more com-
plex problem to identify further parameters describing the initial pollution distribution
the same procedure can be used, but in general an additional regularization term is
required.

For the next steps in our research the adaptive space-time discretization will be
extended to applications in three space dimensions, and it will be combined with our
budgeted multilevel Monte Carlo method (Baumgarten et al. 2024) for the probabilis-
tic evaluation of the flux vector q, so that we can also approximate porous media
applications with uncertain permeability.

A Evaluation of the gradient DJ

Depending on the pollution source position z ∈ � we define Bz(x) = B(x − z) and
the forward operator F : � −→ L2(Q) solving the transport equation (6) by

∫

Q
F(z)

(
∂tϕ + q · ∇ϕ

)
d(t, x) = −

∫

�

Bzϕ(0) dx

for all smooth test functions ϕ : Q −→ Rwith ϕ(T ) = 0 and ϕ = 0 on (0, T )× ∂� \
�in. Then, we have F(z) = uz, which yields for the quadratic functional (5)

J (z) = 1

2

∥∥F(z)n · q − gdata
∥∥2

(0,T )×�bottom
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the derivative

DJ(z)[y] = (F(z)n · q − gdata,DF(z)[y]n · q)
(0,T )×�bottom

by inserting the derivative DF(z)[y] of the forward operator F(z) which is given by
the solution of

∫

Q
DF(z)[y](∂tϕ + q · ∇ϕ

)
d(t, x) = −

∫

�

DBz[y]ϕ(0) dx

for all test functions ϕ. Inserting uadz solving (7) yields

DJ(z)[y] = (
uadz ,DF(z)[y]n · q)

(0,T )×�bottom

= (
uadz ,DF(z)[y]n · q)

(0,T )×∂�

=
∫

Q
∇ · (

uadz DF(z)[y]q)
d(t, x)

=
∫

Q
∇ · (

uadz DF(z)[y]q)
d(t, x) +

∫

Q
∂t

(
uadz DF(z)[y]) d(t, x)

−
∫

�

(
uadz (T )DF(z)[y](T ) − uadz (0)DF(z)[y](0)) dx

=
∫

Q
uadz

(
∂tDF(z)[y] + q · ∇DF(z)[y]) d(t, x)

+
∫

Q

(
∂t u

ad
z + q · ∇uadz

)
DF(z)[y] d(t, x) +

∫

�

uadz (0)DBz[y] dx

=
∫

�

uadz (0)DBz[y] dx

if uadz and DF(z)[y] are sufficiently regular. For the gradient decent this is simply
approximated by

Dδ J (z)[y] = 1

δ

∫

�

uadz (0)
(
Bz+δy − Bz

)
dx .
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