KIT | KIT-Bibliothek | Impressum | Datenschutz

Field spectroscopy and machine learning successfully predict grassland forage quality and quantity across climate zones

Männer, Florian A. ; Muro, Javier; Dubovyk, Olena; Ferner, Jessica; Guuroh, Reginald Tang; Knox, Nichola M.; Schmidtlein, Sebastian ORCID iD icon 1; Linstädter, Anja
1 Institut für Geographie und Geoökologie (IFGG), Karlsruher Institut für Technologie (KIT)

Abstract:

Grasslands cover one-third of Earth’s land surface and are essential for livestock forage provision. Monitoring forage biomass and quality is key for sustainable management. Hyperspectral remote sensing and field spectroscopy is promising, but global models often fail across biomes. We compiled data from temperate, humid tropical, and dry subtropical grasslands in Europe and Africa, spanning local growing seasons and management gradients. Using machine-learning models, we assessed the performance and transferability of global and regional predictions for forage quality (metabolizable energy), and quantity (aboveground biomass), and their combined proxy (metabolizable energy yield). Random forest regression performed best for metabolizable energy (nRMSE = 0.108, R$^2$ = 0.68), aboveground biomass (nRMSE = 0.145, R2 = 0.53), and metabolizable energy yield (nRMSE = 0.153, R$^2$ = 0.58). Neural networks showed highest global-to-regional transferability (nRMSE as low as 0.083), while globally trained partial least squares models outperformed regional ones (ΔnRMSE: 0.211 to 0.037). Forage quality was pre-
dicted most accurately, likely due to consistent variation in plant functional traits and strong spectral correlations. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186688
Veröffentlicht am 11.11.2025
Originalveröffentlichung
DOI: 10.1016/j.ecoinf.2025.103426
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Geographie und Geoökologie (IFGG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 1574-9541, 1878-0512
KITopen-ID: 1000186688
Erschienen in Ecological Informatics
Verlag Elsevier
Band 92
Seiten 103426
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page