KIT | KIT-Bibliothek | Impressum | Datenschutz

Wheat yield forecasts with seasonal climate models and long short-term memory networks

Zachow, Maximilian; Ofori-Ampofo, Stella; Kunstmann, Harald 1,2; Kuzu, Rıdvan Salih; Zhu, Xiao Xiang; Asseng, Senthold
1 Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMKIFU), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT)

Abstract:

The potential of seasonal climate forecasts (SCFs) within machine learning models to forecast crop yields remains unexplored. We propose a workflow for integrating SCF data into a long short-term memory (LSTM) network to forecast wheat yield at the county level across the Great Plains in the United States. Each month, past predictors were filled with observations and future weather predictors were forecasted using the seasonal climate model of the European Centre for Medium-Range Weather Forecasts (SCF approach). This approach was benchmarked with the truncate approach that only used observed predictors. Using all observed predictors at harvest, the model achieved an R2 of 0.46, an NRMSE of 0.24, and an MSE of 0.46 t/ha on the test set. The SCF approach and truncate approach performed poorly from January to March. The SCF approach outperformed the truncate approach in April and May. At the beginning of May, three months before harvest, the SCF approach achieved an MSE of 0.6 t/ha, improving the truncate approach by 10 %. In June, the SCF approach further improved but did
not outperform the truncate approach. Predictor importance analysis revealed the critical role of SCF data at the beginning of May for the latter half of May. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186689
Veröffentlicht am 11.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung (IMK)
Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMKIFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 0168-1699, 1872-7107
KITopen-ID: 1000186689
HGF-Programm 12.11.33 (POF IV, LK 01) Regional Climate and Hydrological Cycle
Erschienen in Computers and Electronics in Agriculture
Verlag Elsevier
Band 239
Heft B
Seiten 110965
Nachgewiesen in Scopus
OpenAlex
Web of Science
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page