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Abstract. East Africa frequently experiences extreme hy-
drological events, such as droughts and floods, underscor-
ing the urgent need for improved hydrological simulations
to enhance prediction accuracy and mitigate losses. A ma-
jor challenge lies in the limited quality of precipitation data
and constraints on model capabilities. To address these chal-
lenges, the upper and middle Tana River basin, character-
ized by its sensitivity to drought, vulnerability to flood-
ing, and data availability, was selected as a case study.
We performed convection-permitting (CP) regional climate
simulations using the Weather Research and Forecasting
(WRF) model and conducted hydrological simulations with a
lake–reservoir-integrated WRF Hydrological modeling sys-
tem (WRF-Hydro) driven by the CPWRF outputs. Our re-
sults show that the CPWRF-simulated precipitation outper-
forms ERA5 when benchmarked against Integrated Multi-

satellite Retrievals for GPM (Global Precipitation Measure-
ment) (IMERG), with evident bias reduction in seasonal pre-
cipitation mainly over the Mount Kenya region and with a
probability of light rainfall (1–15 mmd−1) during the dry
season. Improved precipitation enhances the hydrological
simulation, significantly reducing false peak occurrences and
increasing the Nash–Sutcliffe efficiency (NSE) by 0.53 in
the calibrated lake-integrated WRF-Hydro model (LakeCal)
driven by CPWRF output compared to ERA5-driven simula-
tions. Additionally, the lake–reservoir module increases the
sensitivity of river discharge to spin-up time and affects dis-
charge through lake–reservoir-related parameters, although
adjustments to the parameters (i.e., the runoff infiltration rate,
Manning’s roughness coefficient, and the groundwater com-
ponent) have minimal effects on discharge, particularly dur-
ing the dry season. The inclusion of the lake–reservoir mod-
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ule effectively reduces the model-data bias in WRF-Hydro
simulations, particularly for the dry-season flow and peak
flow, resulting in an NSE increase of 1.67 between Lake-
Cal and LakeNan (model without the lake–reservoir mod-
ule). Notably, 24 % of the NSE improvement is attributed to
CPWRF and 76 % is attributed to the lake–reservoir module.
These findings highlight the enhanced capability of hydro-
logical modeling when combining CPWRF simulations with
the lake–reservoir module, providing a valuable tool for im-
proving flood and drought predictability in data-scarce re-
gions like East Africa.

1 Introduction

The credibility of hydrological simulations in data-scarce re-
gions is challenged by the limited quality of precipitation
data (e.g., incomplete, unreliable, and poor in situ coverage)
and the constrained capacity of the hydrological model given
the underlay’s complexities. To make well-informed deci-
sions concerning flood/drought adaptation and loss mitiga-
tion, elected officials, planners, and the public require rel-
atively reliable information on flood and drought forecasts,
which rely on skilled hydrological simulations. This issue
could be particularly acute in drought-/flood-prone and vul-
nerable areas such as East Africa. The economy and popula-
tion in East Africa mainly depend on rain-fed agriculture and
pastoralism, which suffer from frequent droughts and floods
(Taye and Dyer, 2024). For example, the drought of 2022
triggered an exceptional food security crisis in Ethiopia, So-
malia, and Kenya, pushing more than 20 million people into
extreme hunger (NASA, 2022). Similarly, the flood in 2023
here killed more than 100 people and displaced over 700 000
(NASA, 2024). The highlighted risk in East Africa requires
effective hydrological simulation for better hydrological ex-
treme forecasts, thus supporting effective water resource
planning and management and aiding informed decision-
making and loss mitigation for officials, planners, and the
public.

Obtaining even the present-day precipitation, especially in
mountainous regions, is challenging due to poor in situ cover-
age and incomplete or unreliable records. Such data scarcity
even complicates the evaluation of model output (Li et al.,
2017). This issue is only further exacerbated as grid spac-
ing is decreased to kilometer scales. Gridded precipitation
production tried to be an alternative to address some of the
data scarcity issues. These gridded products include merged
data such as Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) (Funk et al., 2015), reanaly-
sis data like ERA-Interim (Dee et al., 2011), and satellite-
based data involving the Tropical Rainfall Measuring Mis-
sion (TRMM) (Adjei et al., 2015) and Integrated Multi-
satellite Retrievals for GPM (Global Precipitation Measure-
ment) (IMERG) (Dezfuli et al., 2017). However, these prod-

ucts present uncertainties, such as the false detection of pre-
cipitation events and biases of precipitation amounts (Bitew
and Gebremichael, 2011; Ma et al., 2018; Dezfuli et al.,
2017), which limit their suitability for hydrometeorological
application. These uncertainties are particularly pronounced
in mountainous regions (Li et al., 2018; Maranan et al.,
2020; Zandler et al., 2019). Also, precipitation from coarse-
resolution global climate models has its limitations (Mon-
sieurs et al., 2018; Kad et al., 2023), primarily due to the
model configuration, such as resolution and parameteriza-
tion, which is crucial for a more realistic representation of
processes (Kad et al., 2023; Tao et al., 2020).

Dynamical downscaling models offer a promising tool
for generating precipitation patterns with realistic regional
detail. They can capture refined-scale features such as to-
pography and local processes that influence orographic ef-
fects (Kad and Ha, 2023; Tao et al., 2020). The study by
Kerandi et al. (2017) highlights the importance of using
higher-resolution models for more accurate climate features.
The Weather Research and Forecasting (WRF) model with a
refined resolution of 25 km captures the temporal variabil-
ity on interannual to annual scales, and the spatial distri-
bution of precipitation in the Tana River basin is more ef-
fectively represented than the coarser 50 km resolution. In-
deed, at relatively coarse resolution (such as> 20 km resolu-
tion), regional climate models (RCMs) generally struggle to
adequately represent precipitation and exhibit uncertainties
when compared to reanalysis data, rain gauges, and satel-
lite observations (Biskop et al., 2012; Ji and Kang, 2013). A
refined horizontal resolution can significantly improve pre-
cipitation simulation over equatorial East Africa (Pohl et al.,
2011).

Convection-permitting regional climate models
(CPRCMs; typically with a resolution of < 5 km) pro-
vide an explicit representation of convection, allowing
for capturing local-scale precipitation extremes. This is a
clear advantage over coarser resolutions (Kendon et al.,
2021; Schwartz, 2014; Weusthoff et al., 2010). The added
value of CPRCMs compared to the parameterized regional
climate models includes improved representations of the
intensity distribution (Tucker et al., 2022; Berthou et al.,
2019), diurnal cycle (Stratton et al., 2018), and storm size
and duration (Crook et al., 2019). It is noteworthy that
CPRCMs better capture surface heterogeneities and produce
more realistic climate simulations over mountainous regions
(Kawase et al., 2013; Rasmussen et al., 2014). Furthermore,
CPRCMs show increased performance over Africa (Tucker
et al., 2022) in presenting rainy events, diurnal cycle, and
peak time for the Lake Victoria basin of East Africa (van
Lipzig et al., 2023), as well as sub-daily rainfall intensity
distribution, especially that related to convective rainfall in
the tropics (Folwell et al., 2022). Therefore, CPRCM holds
promise for generating more realistic precipitation with
regional details in East Africa.
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Atmospheric–hydrological modeling is a common ap-
proach for simulating and predicting climate extremes such
as floods and droughts. While regional climate model (RCM)
outputs are often directly used in hydrological studies, they
may introduce inconsistency due to mismatches in spatial
and temporal scales or biases in the simulated atmospheric
processes (Chen et al., 2011; Teutschbein and Seibert, 2012).
A better approach would be to couple atmospheric and hy-
drological modeling systems to ensure physical consistency.
A coupling of the Weather Research and Forecasting (WRF)
model and the WRF Hydrological modeling system (WRF-
Hydro; Gochis et al., 2018) shows advantages in hydrology
simulations and forecasting hydrological extremes globally
(e.g., Kerandi et al., 2018; Li et al., 2017), including urban
flood prediction over the Dallas–Fort Worth area of North
America (Nearing et al., 2024) and drought estimation in
South Korea (Alavoine and Grenier, 2023). In Africa, WRF-
Hydro has also proven useful for discharge simulations in
the Ouémé River of West Africa (Quenum et al., 2022) and
the Tana River basin (Kerandi et al., 2018). Kerandi’s study
demonstrated minimal differences in precipitation between
the stand-alone and fully coupled models, which suggests
that precipitation recycling and land–atmosphere feedback
have a limited impact on soil moisture and discharge in the
Tana River basin. Similar findings have been observed in
other regions, such as the Crati River basin in southern Italy
(Senatore et al., 2015) and the United Arab Emirates (Wehbe
et al., 2019).

Although WRF-Hydro shows potential, its application in
East Africa requires refinement through the implementation
of more comprehensive hydrological processes. Numerous
reservoirs have been constructed in East Africa (Palmieri
et al., 2003), altering the magnitude and timing of natural
streamflow. These reservoirs typically attenuate and delay
flows during the rainy season, while they release water dur-
ing the dry season (Zajac et al., 2017; Hanasaki et al., 2006).
Incorporating lake–reservoir processes in hydrological sim-
ulation is essential for creating reliable models in regions
with lakes (Hanasaki et al., 2006; Lehner et al., 2011). How-
ever, only a few hydrological simulations over East Africa
are related to lakes (Oludhe et al., 2013; Naabil et al., 2017;
Siderius et al., 2018), and even fewer studies have examined
the impact of reservoirs in this region, particularly in cases
where meteorological and hydrological models are coupled.
Naabil et al. (2017) used WRF-Hydro with the dam wa-
ter balance model for dam level simulation and water re-
source assessment in the Tono dam basin but did not in-
clude the reservoir module in the WRF-Hydro system, limit-
ing the accurate capture of the dam’s impact on discharge and
other hydrological variables. Therefore, hydrological model-
ing coupled with its lake–reservoir module is required for re-
liable flood and drought simulations over East Africa. While
the WRF-Hydro system, integrated with the lake–reservoir
module, shows promise for simulating the water balance af-
fected by reservoirs (Maingi and Marsh, 2002), its use in East

Africa, especially in large river basins like the Tana River, re-
mains limited.

The Tana River basin in East Africa is ideal for enhanced
hydrological modeling due to its proneness and vulnerability
to droughts and floods, as well as the availability of obser-
vational data. These discharge records provide a benchmark
for simulations despite some uncertainties. The basin sup-
ports vital ecosystem services for Kenya, including drink-
ing water supply, hydroelectric power generation, agricul-
ture, and biodiversity, and is home to over 8 million peo-
ple (Lange et al., 2015). However, the region is observed
to be at risk of drought and flooding, which are likely ex-
acerbated by climate change (Kenya Climate Change Case
Study, 2024). Droughts occur approximately every 5 years,
causing shortages of water for drinking, irrigation, and fish-
ing (Bonekamp et al., 2018). The 2018 flood overflowed the
riverbanks, damaging crops, homes, and infrastructure; dis-
placing thousands of people; and contributing to outbreaks
of waterborne diseases such as cholera (Kiptum et al., 2024).
Robust hydrological modeling in the Tana River basin is es-
sential for accurate predictions of extreme events and prac-
tical risk assessment. Using the Tana River basin as a case
study, our research aims to address some of the issues re-
lated to flood and drought risk mitigation, through a more
comprehensive hydrological simulation with a convection-
permitting WRF model and lake–reservoir-integrated WRF-
Hydro system. We target the following sub-objectives: (1) to
improve climate output (particularly focusing on precipita-
tion) through convection-permitting (CP) WRF simulation
(CPWRF) and using the enhanced precipitation representa-
tion to advance the hydrological simulation, (2) to explore
the potential of the lake–reservoir module to improve hydro-
logical simulation skill, and (3) to build an enhanced WRF-
Hydro system and investigate the contribution of (1) the CP-
WRF simulation and (2) the lake–reservoir module to hydro-
logical simulation improvement. The research aims to im-
prove hydrological models, which helps to better water re-
source management and risk mitigation, and supports sus-
tainable practices in regions vulnerable to water-related dam-
age.

2 Study area and data

The Tana River basin, located in the tropics, exhibits dual
peaks in precipitation due to the biannual migration of the
Intertropical Convergence Zone (ITCZ). The spatial distribu-
tion of precipitation is profoundly modulated by the basin’s
varied topography and atmospheric deep convection (Kad et
al., 2023; Johnston et al., 2018), which results in a gradient
condition ranging from arid in the lowlands to semi-humid
in the highlands and coastal areas (Knoop et al., 2012).
The precipitation pattern is also influenced by the El Niño–
Southern Oscillation (Otieno and Anyah, 2013; Anyah and
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Figure 1. Study basin location in East Africa. (a) The WRF domain
with a resolution of 5 km (shown with the white frame) and the lo-
cation of the inner region (a black frame) used as the domain of
the WRF-Hydro simulation. (b) A zoomed-in view of the inner area
showing topography, two major mountains, and the basin boundary.
(c) Drainage map of the upper and middle Tana River basin, includ-
ing the discharge stations, lake–reservoir water level stations, and
stream orders for hydrological modeling in the WRF-Hydro model
system.

Semazzi, 2006), Indian Ocean Dipole (IOD) (Williams and
Funk, 2011), and rising atmospheric CO2 (Kad et al., 2023).

Our study focuses on the upper and middle Tana River
basin (TRB), covering an area of 32 865 km2 upstream of the
city of Garissa (1.25° S–0.50° N and 36.50–39.75° E). This
region includes famous mountain ranges, such as the Mount
Kenya massif and the Aberdare Range, alongside plain sur-
faces (Fig. 1b). The region is characterized by a complex
interplay of mountainous terrain and a flat surface, with el-
evation ranging from 34 to in excess of 4800 m (Fig. 1a).
To analyze and evaluate the spatial distribution of precipi-
tation concerning the topography, we classified the terrain
into mountainous regions above 1600 m and plains below
1600 m. There are five reservoirs in the basin along the Tana
River, including Masinga, Kamburu, Gitaru, Kindaruma, and
Kiambere from the upstream to downstream (Table 1 and
Fig. 1c). These five lakes are between Garissa station up-
stream and Rukanga downstream. It is important to note that
the lakes do not affect the streamflow at Rukanga, but they
do impact the discharge at Garissa.

Here, we used the global satellite product of
GPM_3IMERGDF (GPM IMERG precipitation version
6 at daily temporal resolution and 0.1°× 0.1° spatial

resolution) (Huffman et al., 2020) for CPWRF precipi-
tation evaluation, downloaded from the NASA website
(https://gpm.nasa.gov/data-access/downloads/gpm, last
access: 28 April 2023). These climate data cover the period
2010–2014. Discharge observations during 2011–2014 at
two stations in the TRB (Garissa and Rukanga), obtained
from the Water Resources Authority of Kenya (WRA), are
used for WRF-Hydro model discharge sensitivity analysis
and calibration (Fig. 1).

3 Methodology

3.1 WRF domain design for convection-permitting
modeling

To obtain convection-permitting regional climate model sim-
ulations, we used the Advanced Research WRF (WRF-
ARW) model version 4.4 (Skamarock et al., 2019) with the
designed domain of 5 km spatial resolution (Fig. 1). The lat-
eral boundaries were forced with the 6-hourly ERA5 reanal-
ysis with a spatial resolution of 0.25° (Hersbach et al., 2020).
The model was set with 50 vertical levels up to 10 hPa. The
convection parameterization was turned off for the CPWRF
simulation, the Mellor–Yamada–Nakanishi–Niino Level 2.5
(MYNN2.5) scheme (Nakanishi and Niino, 2006) was used
for the planetary boundary layer, the Rapid Radiative Trans-
fer Model (RRTM) scheme was used for longwave radia-
tion (Mlawer et al., 1997), and the Dudhia shortwave scheme
was used for shortwave radiation (Dudhia, 1989). The Noah-
Multiparameterization land surface model (Noah-MP LSM;
Yang et al., 2011) was used for the land surface scheme.

The model runs from 1 January 2010 to 31 December
2014. Typically, WRF simulations require a spin-up of about
1 month, which should ideally be excluded from precipita-
tion evaluation. However, given the limited length of simu-
lated precipitation, the subsequent analysis is based on the
full precipitation simulation from January 2010 to December
2014.

3.2 Sensitivity analysis and calibration strategy for
WRF-Hydro modeling

3.2.1 WRF-Hydro modeling and preliminary
calibration

For hydrological modeling, the WRF-Hydro system version
5.3 (Gochis et al., 2018) was employed in an offline mode,
driven by the CPWRF atmospheric data within a domain at
5 km resolution with 90× 50 pixels over the TRB (Fig. 1).
The sub-grid routing processes were executed at a 500 m
grid spacing, and surface physiographic files were generated
by ArcGIS 10.6 (Sampson and Gochis, 2015). The physio-
graphic files included high-resolution terrain grids (that spec-
ified the topography), channel grids, flow direction, stream
order (for channel routing), a groundwater basin mask, and
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Table 1. Lakes in the upper and middle Tana River basin (TRB).

Name Water level Water depth (m) Area (km2) Operating date
(max / min; unit: m)

Kamburu 1007 / 996 1007 11.7 1974
Kindaruma 781 / 775 7811 2.1 1981
Masinga 1058 / 1035 1058 111.6 1981
Gitaru 925 / 917 9255 2.7 1978
Kiambere 702 / 681 702 23.2 1981

the position of stream gauging stations. The first five stream
orders and gauging stations are shown in Fig. 1c. We acti-
vated the saturated subsurface overflow routing, surface over-
land flow routing, channel routing, and baseflow modules.
The overland flow routing and channel routing were calcu-
lated by a 2-D diffusive wave formulation (Julien et al., 1995)
and a 1-D variable time-stepping diffusive wave formulation,
respectively.

The model involves the five lake–reservoir systems using a
level-pool lake–reservoir module, which calculates both ori-
fice and weir outflow. Fluxes into a lake–reservoir object oc-
cur when the channel network intersects a lake–reservoir ob-
ject. The level-pool scheme tracks water elevation over time,
and water exits the lake–reservoir system through either weir
overflow (Outfloww) or orifice-controlled flow (Outflowo), as
described by Eqs. (1) and (2).

Outfloww =

{
CwLh

3/2, h > hmax

0, h≤ hmax,
(1)

where h is the water elevation (m), hmax is the maximum
height before the weir begins to spill (m), Cw is the weir
coefficient, and L is the length of the weir (m).

Outflowo = CoSo
√

2gh, (2)

where Co is the orifice coefficient, So is the orifice area (m2),
and g is the acceleration of gravity (ms−2).

For sensitivity analysis and model optimization, we ini-
tially calibrated the WRF-Hydro system without the lake–
reservoir system (with the lake–reservoir module inactive).
Two key hydrological parameters, REFKDT and MannN,
were tuned using the auto-calibration Parameter Estimation
Tool (PEST; http://www.pesthomepage.org, last access: 23
August 2025). The optimization is performed by maximiz-
ing the accuracy of the discharge simulation, indicated by the
Nash–Sutcliffe efficiency (NSE) coefficient (Nash and Sut-
cliffe, 1970) of simulated discharge against the observation at
Garissa. The calibrated WRF-Hydro model without the lake–
reservoir system is referred to as LakeNan in the following
analysis.

3.2.2 Experiments designed for sensitivity analysis in
WRF-Hydro modeling with the lake–reservoir
module

To optimize WRF-Hydro modeling over the TRB, we facil-
itated a comprehensive sensitivity analysis, involving spin-
up time, hydrological parameters, groundwater components,
and lake–reservoir-related parameters. Groundwater compo-
nent tuning focuses on the parameter GWBASEWCTRT
(an option for groundwater mode). Hydrological parame-
ters include the Manning roughness parameter (MannN) and
runoff infiltration coefficients (REFKDT). Lake–reservoir-
related parameters cover the elevation of the maximum lake–
reservoir height (LkMxE; unit: m), weir elevation (WeirE;
unit: m), weir coefficient (WeirC; ranging from 0 to 1), weir
length (WeirL; unit: m), orifice area (OrificeA; unit: m2), ori-
fice coefficient (OrificeC; ranging from 0 to 1), orifice ele-
vation (OrificeE; unit: m), and lake–reservoir module area
(LkArea; unit: m2).

For sensitivity analysis of specific parameters, a set of ex-
periments were conducted. In each experiment, only the pa-
rameter of interest was changed, while all others were kept
at their defaults (Table 2). The defaults of lake–reservoir-
related parameters were obtained from the WRF-Hydro GIS
pre-processing toolkit (Gochis et al., 2018), while the oth-
ers were derived from the preliminary calibrated WRF-
Hydro system without the lake–reservoir module (LakeNan,
Sect. 3.2.1).

Sensitivity to spin-up time

To obtain a stable hydrological simulation, spin-up time is
required. Insufficient spin-up for initialization can introduce
unnecessary uncertainties, potentially compromising the ac-
curacy of subsequent sensitivity analyses and hydrological
modeling assessments. Previous studies have demonstrated
that spin-up time influences initial conditions such as the soil
moisture content, surface water, the lake–reservoir module
water level, and groundwater, which potentially influences
the fidelity of model simulations (Ajami et al., 2014a, b;
Bonekamp et al., 2018; Seck et al., 2015), subsequently af-
fecting the result of subsequent sensitivity analyses and the
performance of the hydrological simulation. For example,
groundwater simulation may require more than 10 years of
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Table 2. The default values for sensitivity experiments.

Group Parameters The default value

Spin-up Spin-up time restart with a 10-year spin-up time, using the initial condition from a
10-year simulation covering January 2005 to December 2014

Hydrological parameters REFKDT 5
MannN for the 10 stream orders: 0.55, 0.35, 0.15, 0.1, 0.07, 0.05, 0.04, 0.03,

0.02, 0.01

Groundwater GWBASEWCTRT GWBASESWCRT_Sink for sensitivity tests of spin-up and hydrological
parameters; GWBASESWCRT_Passthrough for sensitivity tests of lake–
reservoir-related parameters and the subsequent calibration

Lake–reservoir-related LkMxE 995, 778, 1074, 917, 690
parameters WeirE 990.5, 775.9, 1067.9, 915.3, 689.1

WeirC 0.4, 0.4, 0.4, 0.4, 0.4
WeirL 10, 10, 10, 10, 10
OrificeA 1, 1, 1, 1, 1
OrificeC 0.1, 0.1, 0.1, 0.1, 0.1
OrificeE 965, 764, 1033.3, 905.7, 644.3
LkArea 11.7, 2.1, 111.6, 2.7, 23.2

The default values for REFKDT and MannN are from the preliminary calibration of the LakeNan model (WRF-Hydro system without the lake–reservoir module).
The MannN value is different for each stream order from 1 to 10. The values are listed in order for the five reservoirs of Kamburu, Kindaruma, Masinga, Gitaru,
and Kiambere, respectively, obtained from the WRF-Hydro GIS pre-processing toolkit. The parameter GWBASEWCTRT is used to configure the groundwater
component, involving two options in our experiments. One option creates a sink at the bottom of the soil column, where water draining from the soil exits the
system. The other option bypasses the bucket model, directly transferring all drainage from the bottom of the soil column into the channel. These two options are
referred to as GWBASEWCTRT_Sink and GWBASEWCTRT_Passthrough, respectively, throughout the paper.

spin-up to reach stability (Ajami et al., 2014b). Since the
shortest spin-up time likely depends on the quality of the
model input (especially soil data) and local conditions, the
impact of spin-up time needs to be assessed on a case-by-case
basis. Therefore, we first investigated the sensitivity of spin-
up time to identify the shortest duration required for achiev-
ing model stability and ensuring computational efficiency.

In our study, we conduct experiments of 17 different spin-
up times (Table 3) to examine their impacts on peak flow
and average discharge in the TRB, for both WRF-Hydro sys-
tems with the lake–reservoir module (LakeRaw) and without
it (LakeNan). To analyze the sensitivity of peak flow, we ini-
tialized the simulations on the observed Peak-Flow (the max-
imum observed daily discharge at Garissa station over 2010–
2014, which occurred on 26 November 2011) day with vary-
ing spin-up times ranging from 1 d to 12 years. In the spin-up
experiments, the restart date precedes 1 January 2010, which
is not available in the WRF drivers. Therefore, we use data
from 2010 as a substitute for the driving climate of each pre-
ceding year (i.e., 2000, 2001, . . ., 2009). In all LakeRaw ex-
periments, the parameters are set as their defaults, as shown
in Table 2.

The initialization time for one model to reach equilib-
rium was calculated as the duration required for the temporal
changes in the model output variable to decrease to a spe-
cific threshold value (Cosgrove et al., 2003). In our study,
this threshold value was set as half the standard deviation of
the last experiments (i.e., 9-, 10-, 11-, and 12-year spin-up

Table 3. Overview of the 17 spin-up time experiments.

Experiment name Restart date Spin-up time

1d spin-up 25 November 2011 1 d
3m spin-up 26 August 2011 3 months
6m spin-up 26 May 2011 6 months
9m spin-up 26 February 2011 9 months
1y spin-up 26 November 2010 1 year
15m spin-up 26 August 2010 15 months
18m spin-up 26 May 2010 18 months
2y spin-up 26 February 2010 21 months
3y spin-up 1 January 2009 3 years
4y spin-up 1 January 2008 4 years
5y spin-up 1 January 2007 5 years
6y spin-up 1 January 2006 6 years
7y spin-up 1 January 2005 7 years
8y spin-up 1 January 2004 8 years
9y spin-up 1 January 2003 9 years
10y spin-up 1 January 2002 10 years
11y spin-up 1 January 2001 11 years
12y spin-up 1 January 2000 12 years

experiments) for a specific variable. The temporal changes
were measured as the difference in the variable between the
two adjacent experiments.

Hydrol. Earth Syst. Sci., 29, 4109–4132, 2025 https://doi.org/10.5194/hess-29-4109-2025



L. Zhang et al.: Enhanced hydrological modeling with the WRF-Hydro lake–reservoir module 4115

Table 4. Sensitivity analysis (SA) experiments designed for RE-
FKDT.

Experiments for REFKDT SA Value

REFKDT_1 0.02× default
REFKDT_2 0.13× default
REFKDT_3 0.24× default
REFKDT_4 0.35× default
REFKDT_5 0.46× default
REFKDT_6 0.56× default
REFKDT_7 0.67× default
REFKDT_8 0.78× default
REFKDT_9 0.89× default
REFKDT_10 1× default

Note that the default is obtained from the WRF-Hydro GIS
pre-processing toolkit. × indicates multiplication.

Sensitivity to hydrological parameters

The parameters of MannN and REFKDT have been demon-
strated to influence the simulated river discharge significantly
(Ryu et al., 2017; Yucel et al., 2015), which were selected for
the sensitivity test. For each test, the parameter values range
from the minimum to the maximum, generating 10 values
with nearly equal intervals and resulting in 10 experiments
(Table 4). For MannN, which must be larger than 0, the min-
imum scaling is set to 0.1 instead of 0.

Sensitivity to the groundwater component

We investigate the sensitivity of groundwater components
through two experiments by tuning the parameter GW-
BASEWCTRT, which involves two options in our study. One
option creates a sink at the bottom of the soil column where
water draining from the soil exits the system into this sink,
while the other bypasses the bucket model, directly transfer-
ring all water draining from the bottom of the soil column
into the channel. These two options are referred to as GW-
BASEWCTRT_Sink and GWBASEWCTRT_Passthrough in
this study, respectively.

Sensitivity to lake–reservoir parameters

The Morris method (Morris, 1991) was employed to analyze
the sensitivity of the seven lake–reservoir-related parameters,
due to its low computational cost and ease of interpretation
(Wei, 2013). This method is widely used for global sensi-
tivity analysis in hydrological models, especially in compu-
tationally expensive models (Song et al., 2013; Wei, 2013).
In the study, the sensitivity analysis was simultaneously con-
ducted on the five lakes to reduce computational cost. In the
Morris experiment, the eight main lake–reservoir-related pa-
rameters of the five lakes were normalized to a range of 0–1
by subtracting the minimum value and dividing by the maxi-
mum minus the minimum (Table 5). Based on the eight nor-

Table 5. Sensitivity analysis (SA) experiments designed for MannN
of the first five stream orders.

Experiments for MannN SA Value

MannN_1 0.1× default
MannN_2 0.44× default
MannN_3 0.89× default
MannN_4 1.33× default
MannN_5 1.78× default
MannN_6 2.22× default
MannN_7 2.67× default
MannN_8 3.11× default
MannN_9 3.56× default
MannN_10 4.00× default

Note that the default is obtained from the WRF-Hydro GIS
pre-processing toolkit. × indicates multiplication.

malized values with a lower value of 0 and an upper value
of 1, we generated all samples for Morris screening. The
number of replications R, level p, and sample size N were
set as 10, 4, and 90 (i.e., 90 parameter sets for 90 runs), re-
spectively. For each sample, corresponding to a WRF-Hydro
simulation, the eight parameters for each lake–reservoir sys-
tem were inverse normalization. The other parameters were
kept as their defaults. Two metrics were generated to exam-
ine the sensitivity: order of importance (u∗ in Fig. 8) and
dependencies with other parameters (σ/u∗ in Fig. 8). The u∗

of a specific parameter with a higher value indicates greater
sensitivity. The large value of σ/u∗ indicates stronger depen-
dencies with other parameters.

We also compared the sensitivity of the simulated dis-
charge to lake–reservoir-related parameters across the five
lakes. To conserve computational resources, the tests were
based on the simulations from the calibration. For each test
of parameters related to one lake, more than 30 simulations
were conducted. Each simulation related to a given lake in-
volves seven parameters (LkMxE, WeirE, OrificeE, WeirC,
WeirL, OrificeC, and Dam_Length). In all simulations for a
given lake, the values of these seven parameters varied syn-
chronously, changing linearly from the minimum to the max-
imum, as shown in Table 6.

In the parameter setting, we make some rules to constrain
three parameters (i.e., LkMxE, WeirE, and OrificeE) to make
the simulation result reasonable: (1) LkMxE should be larger
than both WeirE and OrificeE, and (2) OrificeE was sug-
gested to be smaller than WeirE. To satisfy these constraints,
OrificeE is set to be below the minimum water level, WeirE
ranges from the OrificeE default value to the maximum wa-
ter level plus half the water depth, and LkMxE changes from
the maximum water level minus haft the depth to the maxi-
mum water level plus half the depth. Besides this, OrificeC
and WeirC should be kept between 0 and 1, which should be
a constant. The selection of maximum and minimum values,
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Table 6. Sensitivity analysis experiments designed for the eight
lake–reservoir-related parameters.

Parameters Value_min Value_max

OrificeC 0.01× default 10× default
WeirL 0.01× default 1.2× default
WeirC 0.001× default 0.25× default
OrificeA 0.001× default 1000× default
Dam_Length 0.001× default 20× default
LkMxE Wlmax−Wd× 0.5 Wlmax+Wd× 0.5
WeirE OrificeE_default Wlmax+Wd× 0.5
OrificeE Wlmin× 0.5 Wlmin

Note that Wlmax, Wlmin, Wd, and OrificeE_default indicate the max water
level, min water level, water depth, and OrificeE default value, respectively. The
default is obtained from the WRF-Hydro GIS pre-processing toolkit.

as well as the number of experiments, is flexible, as long as
they are reasonable and produce realistic simulations.

3.2.3 Final calibration for WRF-Hydro modeling with
the lake–reservoir module

Based on the sensitivity analysis, we developed a compre-
hensive calibration strategy for the WRF-Hydro system in-
corporating the lake–reservoir module. Building on the pre-
liminary calibration (Sect. 3.2.1), we re-tuned the lake–
reservoir-related parameter sets for the five lakes, respec-
tively. Of the lake–reservoir parameter sets, each was cali-
brated sequentially from upstream to downstream, with more
than 30 experimental iterations. Once the upstream lake was
calibrated, its parameters were fixed as optimized and we
proceeded to calibrate the parameters set for the next down-
stream lake. Subsequently, we focused on re-tuning RE-
FKDT and MannN, each subjected to 30 experimental it-
erations. The parameter sets for each iteration were gen-
erated according to Sect. 3.2.2. Throughout this process,
we achieved a well-calibrated lake-integrated WRF-Hydro
model (LakeCal) with an optimal parameter set, determined
by the best NSE value calculated over simulated discharge
from January 2011 to December 2014 against the observa-
tions at Garissa station. Typically, we would use the same
time series for discharge analysis as for the precipitation
evaluation (2010–2014). However, since WRF-Hydro re-
quires at least 1 year of spin-up, the discharge evaluation
excludes the first year, focusing instead on the period from
2011 to 2014.

3.3 Peak flow, dry-season flow, and rainy-season flow

To measure modeling performance, we obtained the flow
from the long rainy season of March–May (MAM), the short
rainy season of October–December (OND), and the dry sea-
son of January–February (JF) and June–September (JJAS),
as well as the peak flow. The maximum observed daily
discharge at Garissa station over 2010–2014 occurred on

26 November 2011 (844 m3 s−1) and is used as a peak flow
case (Peak-Flow) for our evaluation. Since the model cannot
capture the peak on the exact date, the simulated Peak-Flow
was set as the largest daily discharge during the 21 d period
centered around the observed Peak-Flow.

3.4 Evaluation of simulated precipitation from
CPWRF

To assess whether the CPWRF has advantages over their
driving forces (ERA5), added value (AV) proposed by Do-
sio et al. (2015) was applied, expressed as follows.

AV=
(XERA5−XIMERG)

2
− (XCPWRF−XIMERG)

2

max
(
(XERA5−XIMERG)2, (XCPWRF−XIMERG)2

) (3)

XERA5,XCPWRF, andXIMERG indicate precipitation from the
driving forces (ERA5), CPWRF simulation, and benchmark
(IMERG), respectively. The added value (AV) from CPWRF
is defined as the performance difference between itself and
the driving forces for precipitation in a specific region and
period. If the CPWRF adds value compared to the driving
forces from ERA5, AV is positive, whereas a negative AV
suggests no added value.

To fully evaluate the simulated precipitation by CPWRF,
we also employed Taylor diagrams (Taylor, 2001), which
present a concise statistical summary in terms of spatial cor-
relation (indicated by the correlation coefficient) and spa-
tial variance (indicated by the normalized standardized de-
viation). A higher spatial correlation and a spatial variance
closer to 1 indicate better simulation skills.

3.5 Attribution of hydrological model improvement to
convection-permitting WRF simulation and the
lake–reservoir module

To assess the contributions of CPWRF simulations and the
lake–reservoir module, we compared three models: (1) the
calibrated WRF-Hydro model without the lake–reservoir
module, driven by CPWRF output (LakeNan); (2) the well-
calibrated WRF-Hydro model integrated with the lake–
reservoir module, also driven by CPWRF output (LakeCal);
and (3) the well-calibrated WRF-Hydro simulation with the
lake–reservoir module, driven by ERA5 (LakeCal-ERA5).
We calculated the NSE value of simulated discharge against
observed data for each model. Next, we computed the NSE
increment between LakeCal relative to LakeNan, represent-
ing improvements due to CPWRF precipitation, and the in-
crement between LakeCal and LakeCal-ERA5, reflecting
the influence of the lake–reservoir module. The ratio of
the CPWRF precipitation-induced or lake–reservoir-module-
induced NSE increment to the total increment is provided as
the attribution of hydrological simulation improvements to
the CPWRF simulations or the lake–reservoir module.
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4 Results

4.1 WRF precipitation refinement

Using IMERG precipitation as a benchmark, we evaluated
the performance of CPWRF precipitation at a 5 km resolution
in the TRB, compared to the ERA5 reanalysis, which served
as the forcing for our CPWRF simulation. This evaluation
focused on seasonal precipitation averaged over 2010–2014
(Fig. 2) and daily precipitation distribution (Fig. 3). A Taylor
diagram (Taylor, 2001), with spatial correlation (r , correla-
tion coefficient) and spatial variance (normalized standard-
ized deviation), is also applied for evaluation (Fig. S2 in the
Supplement).

The CPWRF model captures the spatial pattern of precip-
itation and its seasonal variations over the TRB, as presented
in IMERG (Fig. 2 and Table 7). The spatial distribution of
the CPWRF simulation reveals that the precipitation is pri-
marily concentrated in mountainous regions, such as Mount
Kenya and the Aberdare Range, and surrounding areas (seen
in Fig. 1b), with significantly less precipitation in the plain
area (Fig. 2b, g, l, and q). The annual mean precipitation
is approximately 1500 mm in the mountainous areas com-
pared to less than 500 mm in the plain area (Table 7). Dur-
ing the rainy seasons (MAM and OND), total precipitation
is 976 mm over the mountainous area and 327 mm over the
plain area, in contrast to 417 and 33 mm during the dry sea-
son (JF and JJAS). This spatial and seasonal pattern is consis-
tent with that in IMERG data (Fig. 2a, f, k, and p), indicating
a distinct orographic and seasonal dominance.

Compared to ERA5, CPWRF precipitation generally
shows better performance, indicated by the Taylor diagram
(Fig. S1e and f in the Supplement) in terms of spatial corre-
lation (correlation coefficient) and spatial variance (normal-
ized standardized deviation), although the advantage is not
obvious. The median correlation coefficient of CPWRF pre-
cipitation against IMERG is 0.80, higher than ERA5’s value
of 0.66 (Fig. S1e). Similarly, the median normalized stan-
dardized deviation of CPWRF precipitation is 1.1, closer to
1 compared to ERA5’s value of 1.7 (Fig. S1f). The improved
performance of CPWRF is also evident from the model-data
bias comparison. The CPWRF simulation shows a smaller
area with large biases (exceeding 60 %) compared to ERA5.
During MAM, OND, JF, and JJAS, the areas with large bi-
ases are 618.2 km2 (1.9 %), 711.0 km2 (2.2 %), 680.0 km2

(2.1 %), and 3431.0 km2 (10.4 %), respectively. In contrast,
ERA5 shows corresponding areas of 1545.5 km2 (4.7 %),
1545.5 km2 (4.7 %), 10818.3 km2 (32.9 %), and 8500.1 km2

(25.9 %), respectively.
Spatially, the superior performance of CPWRF precipita-

tion compared to ERA5 merges in the mountainous regions,
mainly over Mount Kenya and its surroundings, as demon-
strated by the spatial distribution of the model-data bias
(Fig. 2d–e, i–j, n–o, and s–t) and AV (Fig. S2) result. Specif-
ically, the model-data bias from CPWRF is 210 mm (18 %) Ta
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Figure 2. Seasonal precipitation of March–May (MAM; long rainy season, a–c), October–December (OND; short rainy season, f–h),
January–February (JF; k–m), and June–August (JJAS; p–r) over the upper and middle stream of the Tana River basin (TRB), as well as
its bias (d–e, i–j, n–o, s–t). Data from IMERG (a, f, k, p), WRF (b, g, i, q), and ERA5 (c, h, m, r). IMERG compared to the bias of CPWRF
(d, i, n, s) and ERA5 (e, j, o, t). The seasonal precipitation (MAM, OND, JF, and JJAS) is calculated based on daily data (in March–May,
October–December, January–February, and June–August) over 2010–2014. The gray polygon indicates the boundary of the upper and middle
sections of the Tana River basin.

per year over the mountainous areas, whereas ERA5 shows
a bias of 681 mm (58 %) (Table 7). Additionally, over the
mountainous areas, CPWRF adds value to ERA5 (Fig. S2a–
e), with a positive AV of 0.14 averaged across the four sea-
sons and this area. Such improvement over the mountain-
ous areas is more pronounced in the JF season. The model-
data bias in the JF season is −5 mm (−5 %) from CPWRF
and 139 mm (152 %) from ERA5. In contrast, during MAM,
OND, and JJAS, the bias is 29 mm (7 %), 48 mm (10 %), and
138 mm (72 %) from CPWRF with values of 161 mm (37 %),
100 mm (22 %), and 281 mm (146 %) from ERA5. The im-
provement over the mountainous areas during the JF season
is highlighted in the Taylor diagram (Fig. S1c). The spatial
correlation or normalized standardized deviation, calculated
over the JF-averaged precipitation in the mountainous areas,

is 0.56 or 2.18 for CPWRF, in contrast with −0.14 or 5.46
for ERA5.

Also, the probability distribution of regionally averaged
daily precipitation from the CPWRF result exhibits better
alignment with the benchmark than from ERA5 (Fig. 3).
The CPWRF aligns more closely with IMERG for both
small (0–20 mmd−1) and extreme (> 20 mmd−1) rainfall
events compared to ERA5, as shown in Fig. 3 and Table 8.
The cumulative probability of the small (or extreme) rain-
fall is 0.991 (0.009) from CPWRF and 0.981 (0.019) from
IMERG, whereas it is 0.995 (0.005) from ERA5. Among
these, the better alignment of the probability of light rainfall
(1–15 mmd−1) between CPWRF and IMERG is pronounced
(Fig. 3 and Table 8). The probability of light rainfall is 0.255
from CPWRF and 0.242 from IMERG, whereas it is 0.489
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Figure 3. The distribution (a, c, e) and cumulative distribution (b,
d, f) of daily precipitation from CPWRF (blue), ERA5 (gray), and
IMERG (red, 2010–2014) over the whole period, dry season, and
rainy season. Daily precipitation distribution over the whole pe-
riod (a, b), dry season (c, d), and rainy season (e, f).

from ERA5. Consistently, CPWRF adds value to ERA5 over
the probability of light rainfall (Fig. S2f–k), with a positive
AV of 0.21 averaged across the basin during the four sea-
sons. The better alignment of light rainfall from CPWRF than
ERA5 is particularly evident during the dry season (Fig. 3).
The probability of 1–15 mmd−1 events during the dry sea-
son from CPWRF is 0.15 and 0.13 from IMERG, whereas it
is 0.32 from ERA5.

4.2 WRF-Hydro model optimization with the
lake–reservoir module

4.2.1 A preliminary investigation of the lake–reservoir
impact on discharge

To assess the impact of the lake–reservoir module on hydro-
logical simulation, we compared simulated discharges from

different WRF-Hydro modeling experiments against the ob-
servations. These experiments included WRF-Hydro with
the lake–reservoir module (LakeRaw) and without it (Lak-
eNan), as shown in Fig. 4. The evaluation results (includ-
ing the Kling–Gupta efficiency, KGE; bias; r2; and NSE)
from all these experiments are presented in Table S2 in the
Supplement. The WRF-Hydro model with the lake–reservoir
module (LakeRaw) improves discharge simulation compared
with that without it (LakeNan), even without model calibra-
tion. LakeRaw achieved an NSE of 0.01 and a bias of 40 %,
compared to−1.09 and−53 % from the LakeNan. The inclu-
sion of the lake–reservoir module addresses the underestima-
tion of dry-season flows. However, the lake–reservoir module
(in the LakeRaw) tends to induce overestimation, particularly
during February–March and August–September, contribut-
ing approximately 81 % of the annual average dry-season
flows. This overestimation in LakeRaw is likely due to un-
calibrated parameters, including spin-up time, the hydrolog-
ical parameters, the groundwater component, and the lake–
reservoir-related parameters. The hydrological parameters,
groundwater component, and lake–reservoir-related parame-
ters need to be further adjusted when the lake–reservoir sys-
tem is included in WRF-Hydro system. To enhance the per-
formance of WRF-Hydro modeling with the lake–reservoir
module, the sensitivity and optimization potential of these
parameters were investigated.

4.2.2 Spin-up time

In the LakeRaw simulation, the spin-up sensitivity is high-
lighted by the discharge during 2011–2014 from the 17 spin-
up experiments (Fig. 5 and Table 3). The simulated discharge
at the Garissa station, on the first day (26 November 2011,
the observed Peak-Flow day), differs between almost every
experiment. The simulated Peak-Flow at the Garissa station
decreases as the spin-up time gets shorter, which reaches
485 m3 s−1 in the 12-year spin-up experiment (“12y spin-up”
in Fig. 5a) but only 211 m3 s−1 in the 1 d spin-up experiment
(“1d spin-up”) from the LakeRaw simulation. The reduc-
tion in first-day discharge suggested that insufficient spin-up
time results in more runoff being allocated to soil moisture
and groundwater, which have not yet reached equilibrium.
In general, Peak-Flow runoff increases slightly with longer
spin-up times, up to the 6-year spin-up (Fig. 5b). Also, the
average discharge shows distinct sensitivity to different spin-
up times (Fig. 5d and e). The average discharge at Garissa
over the entire period, as well as during the rainy and dry
seasons from 2011–2014, shifted from an underestimation of
−49 %, −44 %, and −52 % in the 1 d spin-up experiment to
an overestimation of 21 %, 54 %, and 7 % in the 12-year spin-
up experiment. The LakeRaw simulation generally needs ap-
proximately 4 years for the annual discharge at Garissa to
stabilize (Fig. 5d and e).

The initial time differs spatially, with shorter spin-up in the
upstream area compared to the downstream area. In the Lak-
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Table 8. Cumulative distribution of daily precipitation regionally averaged over the TRB, from the CPWRF simulation, IMERG, and ERA5.

Precipitation (mmd−1) Whole period Dry period Wet period

IMERG CPWRF ERA5 IMERG CPWRF ERA5 IMERG CPWRF ERA5

0–20 0.981 0.991 0.995 0.999 0.999 0.999 0.962 0.982 0.991
> 20 0.019 0.009 0.005 0.001 0.001 0.001 0.038 0.018 0.009
1–15 0.255 0.242 0.489 0.126 0.146 0.317 0.381 0.337 0.658

Figure 4. The simulated daily discharges from WRF-Hydro modeling without the lake–reservoir module (LakeNan, the gray line) and with
the lake–reservoir module using parameters from LakeNan (LakeRaw, the brown line) against the observations (the black line), as well as
the daily precipitation from the CPWRF simulation (Pcp_CPWRF, the blue bar).

eNan simulation, the initialization time of discharge metrics
(i.e., Peak-Flow, average discharge, rainy-season flow, and
dry-season flow) at Rukanga station upstream is less than
2 years, while at the downstream Garissa, it can extend to
3 years. The longer spin-up in the downstream area might be
ascribed to the larger drainage area, which requires a longer
convergence time compared to the upstream. The prolonga-
tion of spin-up time is more distinct in the simulation with the
lake–reservoir module than in the one without it. In the Lak-
eRaw simulation, the initialization time for discharge metrics
upstream (Rukanga station) remains under 2 years, while the
initialization time for Peak-Flow downstream (Garissa sta-

tion) extends to 6 years. This significant prolongation of spin-
up time indicates the lake–reservoir impact.

The lake–reservoir module seems to prolong the required
spin-up time for the downstream area (Fig. 5b). In addi-
tion to Peak-Flow, the spin-up time for the whole-period,
dry-season, and rainy-season flow is prolonged to 4 years
in the LakeRaw simulation, compared to 3, 0, and 3 years,
respectively, in the LakeNan simulation. The larger spin-up
difference in dry-season discharges between the LakeRaw
(3 years) and LakeNan (0 years) simulations demonstrates
a greater sensitivity of the dry season to the lake–reservoir
module, compared to the rainy season.
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Figure 5. Sensitivity analysis results from the 17 different spin-up experiments. (a) Simulated discharge with spin-ups (the colored lines)
ranging from 1 d (1d spin-up) to 12 years (12y spin-up) against the observation (Obs; the black line) for the LakeRaw module. The blue
bars indicate the daily precipitation from the convection-permitting WRF simulation. (b–e) Model-data bias of discharge at Garissa (b, d)
and Rukanga (c, e), with an increase in spin-up time, which is from LakeNan (WRF-Hydro simulation with the lake–reservoir module, solid
line) or LakeRaw (WRF-Hydro simulation without the lake–reservoir module using parameters from LakeNan, dashed line) over the entire
year (black line), rainy season (March–May and October–December, blue line), and dry season (January–February and June–September, red
line). The dot indicates the spin-up time required for LakeRaw (red) or LakeNan (gray) to reach equilibrium. Therein, Peak-Flow (Peakflow)
is the largest daily discharge over the 21 d centered around the observed peak (largest observed daily discharge over 2011–2014).

The water levels from the lake–reservoir-integrated model
show a consistent spin-up period of 4 years across nearly all
five lakes for the entire period, as well as during both the
rainy and dry seasons (Fig. S2). Although Kiambere (one of
the five lakes) exhibits a spin-up period of 3 years during the
rainy season (Fig. S2e), it can be considered nearly 4 years
due to the uncertainty in determining the spin-up time re-
quired for the stabilization of specific variables. Since the
lakes are interconnected, the stabilization time is governed
by the longest spin-up period. This may result in nearly the
same initialization time for all five lakes (Table 1).

4.2.3 Sensitivity analysis from hydrological parameters

The MannN parameter exhibits a substantial impact on the
peak flow, with lower values corresponding to higher dis-
charge peaks (Fig. 6a and Table S3 in the Supplement). As
the MannN scale decreases from 4 to 0.1, the average dis-
charge at Garissa increases from 294 to 297 m3 s−1 and Peak-
Flow increases from 975 to 1309 m3 s−1. In addition, the
smaller MannN value delays the arrival of peak flows, shift-
ing the Peak-Flow date from 6 December 2011 to 2 Decem-
ber 2011 – an advance of 4 d – as MannN decreases from
4 to 0.1. This effect is due to MannN representing channel

roughness, which influences both streamflow transit time and
volume.

Similarly, the REFKDT parameter also significantly im-
pacts peak discharge in response to heavy rain. An increase
in REFKDT generally results in decreased discharge (Fig. 6b
and Table S4 in the Supplement). Specifically, when the RE-
FKDT scaling factor changes from 0.02 (REFKDT equals
0.1) to 1 (REFKDT equals 5), Peak-Flow decreases from
7229 to 1092 m3 s−1. In the WRF-Hydro modeling system,
the REFKDT parameter governs surface infiltration by par-
titioning runoff into the surface and subsurface components
(Schaake et al., 1996). A higher REFKDT value allows more
water into the subsurface, thereby reducing surface runoff
and peak discharge.

However, both MannN and REFKDT have minimal effects
on alleviating the underestimation of dry-season flow shown
in the above WRF-Hydro simulations with the lake–reservoir
module (LakeRaw) (Fig. 4). The dry-season flow remains
largely unchanged despite variations in these two parameters.

4.2.4 Sensitivity analysis from groundwater
components

Overall, adjusting groundwater component options could
slightly alleviate the overestimation of dry-season flow

https://doi.org/10.5194/hess-29-4109-2025 Hydrol. Earth Syst. Sci., 29, 4109–4132, 2025



4122 L. Zhang et al.: Enhanced hydrological modeling with the WRF-Hydro lake–reservoir module

Figure 6. The simulated WRF-Hydro discharge at Garissa from January 2011 to June 2013 from the Manning roughness parameter (MannN)
and runoff infiltration coefficients (REFKDT) sensitivity tests against the observation (Obs). The MannN (or REFKDT) test consists of
10 simulations, with the MannN (or REFKDT) ranging from a scale of nearly 0 (or 0.02) in the MannN_1 (or REFKDT_1) experiment
to a scale of 4 (or 1) in MannN_10 (or REFKDT_10) with nearly equal intervals in between. Precipitation from the WRF simulation
(Pcp_CPWRF) is shown on the top.

(Fig. 7 and Table S5 in the Supplement). The dry-
season flows from the two experiments have large over-
estimations with a considerable bias of 122 (81 %) and
161 (107 %) m3 s−1, respectively. However, in the GW-
BASESWCRT_Passthrough experiment, the simulated dis-
charge fluctuation aligns better with the observation, com-
pared to the GWBASESWCRT_Sink experiment. The de-
termination coefficients (r2) of the simulated discharge
against the observation are 0.56 and 0.33 in the GWBAS-
ESWCRT_Passthrough and GWBASESWCRT_Sink exper-
iments, respectively. Besides, the discrepancies in the wave-
form in the GWBASESWCRT_Sink experiment cause an
earlier prediction of flood retreat. Given the relatively better
performance of the GWBASESWCRT_Passthrough experi-
ment, we selected the pass-through bucket module for the
subsequent sensitivity analysis and calibration experiment.

4.2.5 Sensitivity analysis from lake–reservoir-related
parameters

From the results of the Morris method (Fig. 8 and Ta-
ble S6), lake–reservoir-related parameters (i.e., LkMxE,
WeirE, WeirC WeirL, OrificeA, OrificeC, and OrificeE) show
a clear influence on the discharge at Garissa. The overestima-
tion of discharge was reduced in the best-performing simu-
lation with the largest NSE (represented by the red line in
Fig. 8a). Among the eight lake–reservoir-related parameters,

WeirE is the most sensitive, as indicated by its top sensitiv-
ity ranking (Fig. 8b). Modifying WeirE from its maximum
(maximum water level plus half the water depth) to its min-
imum (the default orifice elevation) in the LakeRaw model
with other parameters set at their defaults (Table S6) resulted
in the average discharge varying from 311 to 38 m3 s−1, with
the model-data bias varying from 19 % to less than −85 %.
This sensitivity is particularly pronounced during the dry sea-
son, with a bias difference of 244 m3 s−1 on average dur-
ing 2011–2014, corresponding to −163 % of the observed
values. This finding highlights that adjusting lake–reservoir-
related parameters can significantly reduce the overestima-
tion of dry-season flow, showing promise for improving the
model’s overall performance. Notably, the eight parameters
exhibit distinct interdependence, as indicated by the large
value of σ/u (> 0.5) (Fig. 8c), suggesting that parameter op-
timization should be conducted globally rather than locally.

Although adjusting lake–reservoir-related parameters can
alleviate the overestimation of dry-season flow, it induces
a new issue: a simultaneous decrease in rainy-season dis-
charge, leading to its underestimation. Modifying WeirE in
the LakeRaw model (keeping other parameters at their de-
fault settings) results in a shift in rainy-season flow from
a wet bias (52 m3 s−1, 19 %) to a dry bias (−197 m3 s−1,
−71 %). This bias change is also observed in Peak-Flow,
which varied from an overestimation of 165 m3 s−1 (20 %)
to an underestimation of −127 m3 s−1 (−16 %). Fortunately,
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Figure 7. The discharge evolution of the two experiments and the observation. One experiment creates a sink on the bottom of the soil
column, where water drains out of the system (GWBASESWCRT_Sink), while the other bypasses the bucket model and directly transfers
all flow from the bottom of the soil column into the channel (GWBASESWCRT_Passthrough). Precipitation from the CPWRF simulation
(Pcp_CPWRF) is shown on the top.

the rainy-season flow underestimation could be re-adjusted
by REFKDT or MannN, as well as Peak-Flow.

Lakes with larger surface areas appear to play a dominant
role in affecting discharge biases, as shown in Fig. S4 in
the Supplement. Adjusting parameters of larger lakes, such
as Masinga, Kamburu, and Kiambere, leads to greater vari-
ations, reflected in larger standard deviations, compared to
smaller lakes like Gitaru and Kindaruma. Among the five
lakes, Masinga (the largest, with an area of 111.6 km2) ex-
hibits the most significant impact on discharge, with standard
deviations of 21 % for Peak-Flow, 23.7 % for average dis-
charge, 19 % for rainy-season flow, and 34 % for dry-season
flow. In contrast, Kindaruma (the smallest, with an area of
2.1 km2) exhibits the least impact on discharge, with near-
zero standard deviations (0.1 %, 0.3 %, 0.2 %, and 0.6 %, re-
spectively).

4.2.6 The optimized results of WRF-Hydro modeling
with the lake–reservoir module

Based on the sensitivity analysis result, we conducted a cal-
ibration involving the parameters outlined above, and the re-
sults are shown in Fig. 9 and Table S2. Calibration of the
WRF-hydro modeling system with the lake–reservoir mod-
ule greatly improves the simulation of river discharges in the
TRB. The simulated discharge from LakeCal with an NSE
of 0.57 and a bias of 9 % is more consistent with the ob-
served flow process, compared to LakeRaw with an NSE of
0.01 and a bias of 40 %. The significant overestimation of
discharge in the LakeRaw (Sect. 4.2.1) model was notably
reduced through the calibration of the lake–reservoir mod-
ule, although a slight overestimation remains.

Notably, the modeling performance of the WRF-Hydro
simulation with the lake–reservoir module (LakeCal) is much
better than that without the lake–reservoir module (Lak-
eNan). The NSE and bias are −1.09 and −53 % in the
LakeNan simulation, compared to 0.57 and 9 % in the
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Figure 8. The Morris results, including simulated discharge from 90
experiments against the observation (a), the sensitivity ranking of
parameters (b), and their interdependence (c). The Nash–Sutcliffe
efficiency (NSE), the coefficient of determination (r2), bias (unit:
%), and the Kling–Gupta efficiency (KGE) are calculated based on
the best-simulated discharge at Garissa (red line, which corresponds
to the largest NSE) against the observations. u∗ donates the sensi-
tivity of a given parameter, with a higher value indicating greater
sensitivity. The large value of σ/u∗ indicates stronger dependencies
with other parameters.

LakeCal simulation. The improvement is particularly ev-
ident during dry-season flow and the Peak-Flow simula-
tion, despite a slight overestimation of dry-season flow. The
calibration of the WRF-Hydro modeling system with the
lake–reservoir module corrects the overestimation of dry-
season flow by 71 m3 s−1, reducing the dry-season flow from
271 m3 s−1(with a bias of 81 %) to 200.1 m3 s−1 (with a bias
of 34 %). Besides this, the deviation in Peak-Flow, indicated
by a bias of 174 % (144 m3 s−1), decreased in LakeCal to
a bias of 24 % (206 m3 s−1) in LakeRaw. Consistently, the
overestimation of the average discharge in the rainy-season
flow was reduced, with the bias changing from 22 % to−2 %.
Due to this improvement in dry-season flow, the Peak-Flow
simulation, and rainy-season flow, LakeCal better captures

seasonal variation than the other two models. The r2 is 0.75
in the LakeCal model, calculated over the simulated monthly
discharge against the observation, compared to 0.66 in the
LakeNan simulation. Furthermore, LakeCal could better cap-
ture the hydrograph shape during the rise and recession of
floods, as indicated by the improved r2 of 0.59, compared
to 0.30 in LakeNan and 0.33 in LakeRaw. For example, dur-
ing the MAM period in 2012 and 2013, the simulated onset
and recession times of flooding by LakeCal were closer to
the observation than those from the LakeRaw and LakeNan.
The earlier estimation of flood onset times in LakeRaw was
significantly alleviated in LakeCal. The better fit of the sim-
ulated discharge against the observation during flood rising
and falling times in the WRF-Hydro system with the lake–
reservoir module indicates a promising ability to accurately
forecast floods.

5 Discussion

5.1 Attribution of hydrological simulation
enhancement

The above skilled WRF-Hydro simulation of LakeCal
(Fig. 9) could be attributed to the integration of the CP-
WRF simulation and the inclusion of the lake–reservoir mod-
ule. To quantitatively assess the contributions from the CP-
WRF simulation and lake–reservoir module to discharge per-
formance, we compared three models (LakeNan, LakeCal,
and LakeCal-ERA5), and the results are presented in Figs. 9
and 10 and Table S2.

The well-calibrated lake–reservoir-integrated model
forced by CPWRF output (LakeCal) outperforms both the
no-lake–reservoir model driven by CPWRF output (Lak-
eNan) and the lake–reservoir-integrated model forced by
ERA5 (LakeCal-ERA5). Comparing LakeCal to LakeCal-
ERA5, the refined precipitation from CPWRF notably
enhances the WRF-Hydro modeling performance, particu-
larly in reducing the false peak simulation (Fig. 10a). The
simulation skill indicated by NSE rises from 0.04 (LakeCal-
ERA5) to 0.57 (the LakeCal) (Table S2), resulting in an
NSE increase of 0.53. Comparing the LakeCal to LakeNan,
the inclusion of the lake–reservoir module significantly
improves the WRF-Hydro performance, distinct in allevi-
ating the underestimation of the dry-season flow and the
overestimation of the peak flow. The NSE rises from −1.10
(LakeNan) to 0.57 (LakeCal), leading to an NSE increase of
1.67. Dividing the total increases in NSE, improvements in
hydrological simulation could be attributed as follows: 24 %
(an NSE increase of 0.53) to the precipitation simulated by
CPWRF and 76 % (an NSE increase of 1.67) to the inclusion
of the lake–reservoir module.
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Figure 9. The simulated discharges from three WRF-Hydro simulations against the observation. The three simulations include WRF-Hydro
without the lake–reservoir module (LakeNan in gray), WRF-Hydro with the lake–reservoir module based on parameters from LakeNan
(LakeRaw, in brown), and well-calibrated WRF-Hydro with the lake–reservoir module (LakeCal, in blue). Precipitation from the CPWRF
simulation (Pcp_CPWRF) is shown on the top.

5.2 Hydrological modeling improvement from CPWRF
precipitation

Dynamic downscaling at convection-permitting resolution
allows for a more accurate representation of precipitation
processes. The CPWRF simulation enhances local (e.g.,
mesoscale) processes and interactions between local and
large scales, especially over complex terrain (Kendon et al.,
2021; Guevara Luna et al., 2020; Schmidli et al., 2006; Schu-
macher et al., 2020; Li et al., 2020). As a result, CPWRF
potentially contributes to improving precipitation simulation
in our study (Sect. 4.1), especially reducing bias in seasonal
precipitation over mountainous areas and the probability of
light rainfall (1–15 mmd−1) in the dry season compared to
ERA5 (Fig. 3 and Table 8).

The improvement in the seasonal precipitation over moun-
tainous regions and rainfall probability can be supported by
the spatial distribution of the added value (AV) in seasonal
precipitation with respect to the driving forces (Fig. S2). The
CPWRF simulation adds consistent value to ERA5 over the

mountainous areas across all four seasons (MAM, OND, JF,
and JJAS). The area with positive AV is mainly over Mount
Kenya and its surrounding areas, with the positive AV be-
ing particularly distinct during the dry season. CPWRF also
adds value to ERA5 regarding the probability of light rain-
fall (Fig. S2f–k), as demonstrated in Sect. 4.1. The basin-
averaged AV of CPWRF over the probability of light pre-
cipitation events are 0.32, 0.26, 0.30, and 0.07 in MAM,
OND, JF, and JJAS, respectively. The positive AV of CPWRF
with respect to ERA5 over the extreme rainfall probability
also concentrates around Mount Kenya consistently across
all four seasons (Fig. S2l–p). Previous studies (Giorgi et al.,
2022) have demonstrated that the added value of CPWRF
simulations is influenced by various factors, including the
timescale, variables, regions, and uncertainty in the bench-
mark. Therefore, further in-depth research is required for a
more reliable AV assessment.

Due to the precipitation improvement from WRF, hydro-
logical simulation with CPWRF precipitation as a driving
force (LakeCal) showed significant improvements compared
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Figure 10. Precipitation from CPWRF (Pcp_CPWRF, solid line on the top) and ERA5 (Pcp_ERA5, dashed line on the top), as well as the
simulated daily discharge evolution from WRF-Hydro driven by CPWRF precipitation (Dis_CPWRF, solid line on the bottom, colored blue
in a and gray in b) and ERA5 precipitation (Dis_ERA5, dashed line on the bottom in both a and b) against the observation (dashed black
line). Results from the calibrated WRF-Hydro model with (a) and without (b) the lake–reservoir model. LakeCal-ERA5 or LakeCal indicates
the well-calibrated lake–reservoir-integrated WRF-Hydro simulation driven by ERA5 data or CPWRF output, while LakeNan-ERA5 or
LakeNan indicates WRF-Hydro simulation without the lake–reservoir module driven by ERA5 data or CPWRF output.

to simulations driven by ERA5 (LakeCal-ERA5) (Fig. 10a).
These improvements are particularly notable in reducing
false peak simulations, likely due to the reduction in the
overestimation of the probability of light rainfall. The en-
hancement in the peak flow simulation is also observed in
the WRF-Hydro model without the lake–reservoir module
(Fig. 10b).

5.3 Hydrological modeling improvement from the
lake–reservoir module

The lake–reservoir module is crucial for improving hydro-
logical simulations over the TRB in East Africa. Several
factors could contribute to overestimation issues presented
in the LakeRaw simulation, even with adequate spin-up
time, such as the groundwater component, key hydrological
parameters, and lake–reservoir-related parameters. Despite
some adjustments, the groundwater component (Sect. 4.2.4)
and key hydrological parameters (Sect. 4.2.3) have a lim-
ited ability to alleviate the overestimation of dry-season
flow in the lake–reservoir-integrated WRF-Hydro simula-
tion without calibration (LakeRaw). In contrast, tuning lake–
reservoir-related parameters could significantly influence
downstream discharge (Sect. 4.2.6). This underscores the
critical role of the lake–reservoir module in enhancing hydro-

logical simulations in data-scarce regions that contain lakes
or reservoirs.

Lakes and reservoirs play a crucial regulatory role, stor-
ing water during the rainy season (especially the peak flow
period) and releasing water during the dry season (Zajac et
al., 2017; Hanasaki et al., 2006). In our study, hydrological
simulations without the lake–reservoir module (LakeNan) in
the TRB, including five lakes, show significant underestima-
tion (−78 %) in dry-season flow and overestimation (24 %)
in Peak-Flow. The underestimation of dry-season flow and
overestimation of Peak-Flow are well-documented issues in
East Africa, as noted by Arnault et al. (2023). Previous stud-
ies demonstrated that enhancing reservoir hydrological pro-
cesses can improve simulation accuracy (Hanasaki et al.,
2006; Lehner et al., 2011) for basins with reservoirs or lakes.
Our results confirm that the well-calibrated lake–reservoir-
integrated WRF-Hydro system significantly reduces the un-
derestimation of dry-season flow and overestimation of peak
flow. The lake–reservoir module helps to adjust the dry-
season flow bias from −78 % in the LakeNan simulation to
34 % in LakeCal, despite some remaining positive bias. The
Peak-Flow bias in the lake–reservoir simulation decreased to
17 %, compared to a value of 24 % in the LakeNan simula-
tion.
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5.4 Uncertainties

Although the CPWRF simulation shows improved skill, ev-
ident in seasonal precipitation around Mount Kenya and the
probability of light rainfall during the dry season, it is no-
table that CPWRF still displays uncertainties. This uncer-
tainty involves wet biases in rainy seasons and dry biases
in dry seasons (Fig. 2 and Table 7), as well as the overes-
timation of the probability of little rainfall (0–20 mmd−1)
and the underestimation of the probability of extreme rain-
fall (> 20 mmd−1) (Fig. 5 and Table 8). Although seasonal
precipitation simulation from CPWRF exhibits an improve-
ment in mountainous areas compared to ERA5, it is slightly
degraded in the plain areas (Table S1 in the Supplement).
The uncertainty might come from the driving data of ERA5,
which could be observed with the same bias as the CPWRF
result. Good-quality forcing drivers could be further used
to improve the precipitation simulation in future work. Be-
sides this, the benchmark (IMERG) in the data-scarce area
presents challenges for precipitation evaluation. The uncer-
tainty from IMERG precipitation over East Africa (Dez-
fuli et al., 2017) may complicate precipitation evaluation. In
our study, the CPWRF simulation shows an underestimation
of extreme precipitation (i.e., 90th–100th quantiles) against
IMERG (Fig. 5b and f), while the simulated discharge from
LakeCal, driven by CPWRF precipitation, does not exhibit
the expected underestimation of extreme flow when com-
pared to observations (Fig. 10b). The absence of the under-
estimation of extreme flow suggests IMERG may overesti-
mate extreme precipitation compared to its actual represen-
tation. The overestimation of IMERG precipitation in Africa
has been demonstrated in previous research (Maranan et al.,
2020; Dezfuli et al., 2017), which could create the illusion
of underestimation from WRF. Such erroneous underestima-
tion of extreme precipitation from CPWRF was also indi-
cated by the general overestimation of extreme flow in the
LakeCal simulation (Fig. 10a and b). Therefore, we believe
that the potential advantages of the CPWRF simulation are
likely greater than what we have demonstrated by our result.
Future work could benefit from incorporating more reliable
observational data to enhance precipitation evaluation.

Different metrics (r , bias, and normalized standardized de-
viation) were used to provide a more comprehensive assess-
ment of the CPWRF’s performance, which may cause contra-
dictory or different evaluations of its skill. Each metric em-
phasizes different aspects of model performance and leads to
divergent conclusions about the model’s strengths or weak-
nesses. For instance, seasonal precipitation from the CPWRF
result exhibits apparent added value to the forcing data over
mountainous areas (Fig. S2a–e), which however is not dis-
tinct in the Taylor diagram (Fig. S1). This discrepancy arises
because the region with apparent added value is mainly cen-
tered on Mount Kenya, whereas the mountainous region in
the Taylor diagram analysis includes areas above 1600 m, ex-
tending beyond Mount Kenya. Therefore, further in-depth re-

search is needed to fully assess the performance of CPWRF
with these different metrics and explain the possible discrep-
ancy.

Also, uncertainty may exist in the sensitivity analysis of
the simulated peak flow to spin-up time, which was based on
a single event (the largest observed peak from 2010 to 2014)
at a specific discharge station (i.e., Garissa or Rukanga). The
conclusion, especially about the spin-up time required for
model stabilization, may vary when different regions or other
peak flow events are considered. For example, a WRF/WRF-
Hydro simulation (Li et al., 2020) exhibits that initialization
times needed for soil moisture stabilization differ for differ-
ent basins in western Norway. The varying spin-up periods
required for flow stabilization between the dry and rainy sea-
sons (Sect. 4.2.2 and Fig. 5d, e) indicate the possible sensitiv-
ity of peak flow to spin-up duration across different peak flow
events. The sensitivity of different regions and other peak
flow events to spin-up time will be further investigated.

Additionally, the hydrological model needs to be per-
fected, although the lake–reservoir module improves WRF-
Hydro simulation. The lake–reservoir module, expressed as
a water balance equation with a simple level-pool scheme,
could induce uncertainties in the hydrological simulation,
due to the insufficient physical mechanism and lack of con-
sideration for human activities and small tributaries in the
upstream of lakes. For example, it shows a limited skill in
simulating water levels (Fig. S5 and Table S6 in the Supple-
ment). In the LakeCal simulation, the water level deviation
can reach −191 m (−28 % of the observation averaged over
2011–2015) at Kiambere. Moreover, the water level fluctu-
ations between the simulation and observation show large
differences, with r2 of the simulated water level against the
observation of less than 0.25 for the five lakes. The ground-
water component can also cause uncertainties, as we used a
pass-through bucket module that transfers all flow from the
soil column into the channel without recharging groundwa-
ter. This approach might not present the intermittent ground-
water recharge from seasonal rainfall in the TRB (Taylor et
al., 2013). This leads to potential inaccuracies in simulating
groundwater processes and their interaction with surface wa-
ter in East Africa. Future work will focus on refining the
hydrological simulation over East Africa with an advanced
dynamical lake–reservoir module (Wang et al., 2019) and an
enhanced groundwater component.

6 Conclusion

In this study, we conducted seamless and consistent
meteorological–hydrological modeling to improve hydrolog-
ical simulation in East Africa, demonstrated through a case
study in the Tana River basin (TRB). The main findings are
as follows.

1. The refined precipitation from the CPWRF simulation
significantly improves the hydrological performance.
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Compared to ERA5-driven simulation (LakeCal-
ERA5), the CPWRF-driven WRF-Hydro simulation
(LakeCal) increases NSE by 0.53, contributing to a
24 % improvement in the hydrological simulation.
CPWRF outperforms ERA5 by reducing bias in
seasonal precipitation mainly over the Mount Kenya
region and in light rainfall (1–15 mmd−1) during the
dry season. The CPWRF-driven LakeCal simulation
effectively reduced false peak occurrences, compared
to ERA5-driven results (LakeCal-ERA5).

2. Integrating the lake–reservoir module in the WRF-
Hydro system reduces bias in dry-season flow and
peak flow, achieving an NSE improvement of 1.67
(from −1.10 to 0.57), contributing to a 76 % improve-
ment in hydrological simulation, compared to that with-
out the lake–reservoir module (LakeNan). The lake-
integrated model significantly affects discharge through
lake–reservoir-related parameters and increases the sen-
sitivity of discharge to spin-up time, particularly dur-
ing the dry-season flow. However, adjustments to key
parameters, such as runoff infiltration rates, Manning’s
roughness coefficient, and groundwater components,
have minimal impact on the dry-season flows.

Our study highlights the improved streamflow simulations
achieved by integrating a lake–reservoir module with CP-
WRF outputs in the WRF-Hydro modeling system, offering a
robust tool for hydrological modeling in data-scarce regions
like East Africa. This advancement lays the foundation for
more accurate flood and drought predictions, facilitating in-
formed water resource management, risk mitigation, and sus-
tainable environmental stewardship in regions vulnerable to
hydrological variability and change.
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