A{]]

Karlsruher Institut fur Technologie

Bachelor thesis

Engineering Asynchronous Label
Propagation for Multilevel Graph

Partitioning
Samuel Gil

Date: 1. Februar 2024

Supervisors: Prof. Dr. Peter Sanders

M.Sc. Daniel Seemaier
M.Sc. Tim Niklas Uhl

Institute of Theoretical Informatics, Algorithm Engineering
Department of Informatics
Karlsruhe Institute of Technology

Abstract

Partitioning large graphs efficiently is becoming more important over the years, as the net-
works to be processed keep growing. Multilevel graph partitioning (MGP) is the most
successful graph partitioning paradigm for processing large graphs. For extremely large
graphs, the memory available in a single machine might not be sufficient for a MGP parti-
tioner. This is where distributed MGP schemes, that make use of multiple compute nodes,
come into play. In this work we explore the impact of asynchronous label exchanges during
the coarsening phase. Our first algorithm, called ThreadedLP, uses threads to overlap
communication and computation, while the second, called MQLP, uses a message queue
for enabling interleaving of communication and computation. We performed experiments
for both algorithms, using real-world and randomly generated graphs. ThreadedLP per-
forms similarly to dKaMinPar and improves on the strong scalability of the twitter-2010
graph. MOLP performs significantly worse than dKaMinPar, and produces worse results
due to more imbalanced cluster weights.

Effiziente Graph Partitionierer fiir groe Graphen werden immer relevanter, da die be-
trachteten Netzwerke immer weiter wachsen. Multilevel Graph Partitionierung (MGP)
hat sich als das erfolgreichste Paradigma zur Partitionierung von groen Graphen her-
ausgestellt. Fiir extrem riesige Graphen kann es passieren, dass der verfiigbare Haupt-
speicher einer einzelnen Maschine nicht ausreicht, um eine Partitionierung durch einen
MGP Partitionierer zu berechnen. In diesem Fall werden verteilte MGP Ansitze benotigt,
die Partitioinierungen mit Hilfe mehrerer Rechner bestimmen. In dieser Arbeit unter-
suchen wir die Auswirkungen von asynchronem Label Austausch wéhrend der Coarsening
Phase. Der erste Algorithmus, genannt ThreadedLP, verwendet Threads um Kommu-
nikation und Berechnung zu iiberlappen, wihrend der zweite Algorithmus, namens MQLP
eine Message Queue benutzt um die Verschrinkung von Kommunikation und Berechnung
zu ermoglichen. Wir haben die beiden Algorithmen auf Echtwelt- und zufillig gener-
ierten Graphen getestet. ThreadedLP weist dhnliche Laufzeiten und Qualititen wie
dKaMinPar auf und verbessert die Skalierbarkeit des Algorithmus fiir den twitter-2010
Graphen. Fiir den MQLP Algorithmus sehen wir erheblich schlechtere Laufzeiten und
schlechtere Cuts durch imbalanciertere Cluster Gewichte.

Hiermit versichere ich, dass ich diese Arbeit selbstindig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wortlich oder inhaltlich {ibernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts fiir Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils giiltigen Fassung beachtet
habe.

Ort, den Datum

Contents

Multilevel Graph Partitioning|.,
Coarsening| Lo e e e e e e e e e
Initial Partittioning|o o L
Uncoarsening|

2.2 Machine Model and Input Format|

2.3 Collective MPI Operations|

31

(3.2 Distributed Multilevel Graph Partitioningl

[3.3 Daistributed Deep-Multilevel Graph Partitioning|

[3.4 Streaming Graph Partittoning| o000,

37

Message Queue|
[3.8 Applications|

Label Propagation Clustering Using Threading|

%)

Experimental Evaluation of Threaded LP|

51

Experimental Setup| Lo

[5.2 Strong Scaling Experiments|

[5.3 Weak Scaling Experibments|

11
12
12
12
12
13
13
14
15

17
17
18

23
23
23
23
24
27

vil

6 Message Queue Label Propagation Clustering|

nclusion

[A—Additional Plots for MQLP]
[Bibliography]

31
31
31

a1
41
41
42
42
42
43
44

49
49

51
53

1 Introduction

Graphs are a powerful abstraction tool for modelling relations between objects. They are
widely used in different fields, for representing social networks, road networks, web graphs
and more. As networks, and therefore graphs, grow in size, graph partitioning becomes
critical to reduce complexity, improve performance or enable parallel processing, when
working with these graphs. However, the graph partitioning problem is NP-hard. Therefore
we generally only expect to design polynomial time algorithms for approximations of the
problem. The multilevel paradigm describes a group of algorithms attempting to compute
such approximations, while providing a good trade-off between quality and compute time.

For extremely large graphs, the memory available in a single machine may not be sufficient
for the computation of a graph partition using the multilevel paradigm. Because of this,
distributed memory graph partitioners become essential in order to handle these cases.

In this thesis we present two algorithms that are based on the dKkaMinPar [21] graph par-
titioner, which is a distributed deep-multilevel graph partitioner (DDMGP). In particular,
we have developed two approaches to size-constrained label propagation clustering algo-
rithms. We will refer to the first one as ThreadedLP, since it uses an extra thread to asyn-
chronously perform the label communication while proceeding with the label computation.
This is done to save time by using available resources not needed by the other thread. We
will call the second algorithm Message Queue Label Propagation (MQLP). MQLP performs
the label communication by using a message queue, that buffers messages until a threshold
is surpassed. At which point the messages are sent to their targets. By manipulating the
threshold, we are able to perform an arbitrary amount of computation before communicat-
ing. Thus we aim to improve the performance of the clustering algorithm, by converging
to a small enough clustering more quickly or improve the quality of the clustering.

1.1 Structure of Thesis

We organize this thesis by first presenting some general definitions and concepts required
throughout the thesis, in Chapter 2] In Chapter 3] we provide an overview of related works
and introduce the multilevel graph partitioning paradigm, as well as a rough description
of ParHIP and dKaMinPar, which are two algorithms closely related to the ones newly
presented here. We will also describe the concept and motivation of a message queue in
Section Then we present and evaluate our first algorithm ThreadedLP, which is a
version performing the MPI label communication asynchronously using an extra thread, in

CHAPTER 1. INTRODUCTION

Chapter 4] and [5] In Chapter [6] and [7] we present and evaluate our second algorithm MQLP,
which makes use of a message queue [22]]. Finally we conclude in Chapter [§]

2 Fundamentals

We base our algorithms on the dKkaMinPar [21] algorithm. Which is the reason why we
will derive our definitions from the terminology used by dKaMinPar [21]. We will begin
by providing some definitions and explaining fundamental concepts required to understand
this topic.

2.1 General Definitions

Let G = (V, E, c,w) be an undirected, simple graph, as seen in Figure with the vertex
set V. ={0,...,n— 1}, edge set E C {{u,v} | u,v € V}, vertex weights ¢ : V' — N,
edge weights w : E — Nsg, n = |V| and m = |E|. We also define the weights of
sets, induced by the weight functions, as follows: c(V') = Y ., c(v) and w(E') =
Yoeemw(e). N(v) = {u| {v,u} € E} isthe set of neighbors of v. An isolated vertex v is
a vertex, that has no neighbors, i.e., N(v) = (). For an arbitrary subset V' C V, we define
the naturally induced subgraph G[V'] .= G’ = (V', E’') with E' = {e = {u,v} | e € E and
u,v € V'}. The goal of the DDMGP is to compute a k-block partition IT .= {V;, ..., V}} of
the input graph, i.e., ViU.. .UV, =V, V;NV; = @ fori # j and |II| = k. Figure[2.1|shows
a 3-block partition of an example graph. The balance constraint is defined as ¢(V;) <
Linax = max{(1 + 5)0(1‘;), LX) + max, c(v)} for each i € {1,...,k} for an imbalance
parameter . A vertex u € V; that has a neighbor in V}, i # 7, is called a boundary vertex.
A clustering C .= {CY, ..., C,} is a partition of V, with an arbitrary number of blocks. The
algorithms we use to compute such a clustering are label propagation algorithms. Label
propagation algorithms use an objective function, such as cut minimization, in order to
compute the labels of nodes. The goal of cut minimization is to minimze the total weight
of all cut edges e € Ejj, i.e, minimize cut(Il) == >, _; w(Ey;), where E;; = {{u,v} |
u € V;and v € V;}. We also extend this definition to the more specific case, that the
partition is a clustering. We refer to the inter-cluster edge weight of a clustering as the
cut weight of a clustering, i.e., cut(C) = >, _; w(E;;), where Ej; = {{u,v} [u € C;
and v € C;}. A label l; is a value assigned to a vertex v;, that represents a cluster. We
will use I; = label(v;) = label(C;) =: ¢; to refer to the label of a vertex v; € Cj,
withi € {0,...,n — 1} and j € {1,...,¢}. The ¢;-cluster neighborhood of a node v is
defined as N;(v) := {u € N(v) | label(u) = ¢;}. Since we present distributed algorithms,
we also define owned and unowned clusters. A cluster is always represented by a vertex
repr(C;) = v, = ¢;, withz € {0,...,n — 1}. An owned cluster is a cluster for which

2 Fundamentals

Figure 2.2: Graph contraction of Fig. [2.1
The contracted graph has a ver-
tex for each vertex-set of the in-
put partition. The weight of a
vertex in the graph contraction
equals the sum of the weights
of vertices from that set. The
weight of an edge equals the
sum of the weights of edges
between the vertices inside the
corresponding vertex-sets.

Figure 2.1: Graph partition with k¥ = 3 of an
undirected, simple graph. Vi, Va5, V3
are the sets of vertices the graph is
partitioned into. These sets of ver-
tices share a common color if they
belong to the same set. The weight
of a vertex is depicted inside its ver-
tex. The weight of an edge is de-
picted next to its edge. This par-
ticular partition has a cut weight of
cut(Vi, Vo, V3) = 3, as can be seen
more easily in Fig.[2.2]

the label ¢; = [; corresponds to a vertex v, that is owned. Similarly, an unowned cluster
corresponds to an unowned vertex. A vertex is owned by a processing element (PE), if
it is in the subset V' C V that was assigned to the PE. A cluster contraction is a graph,
that contracted each cluster into a vertex representing that cluster, or the operation that
achieves this. Contraction in general, refers to the operation or result of an operation, that
replaces multiple objects with a single object, e.g., during vertex contraction, two vertices
are combined into one. The resulting vertex of this vertex contraction is referred to as the
vertex contraction of the original vertices. Figure [2.2] shows the contraction of the graph
partition seen in Figure [2.1]

2.2 Machine Model and Input Format

Figure 2.3: Graph representation of Fig. split and distributed to two PEs. If a PE owns both
directed edges corresponding to an undirected edge, the edge is drawn as an undirected
edge to reduce cluttering. The ghost vertices are drawn outside the PE boundaries to
differentiate between ghost vertices and local vertices.

2.2 Machine Model and Input Format

The experiments performed in this thesis make use of N compute nodes with P PEs each.
The input graph is given with a (usually balanced) 1D vertex partition. Each PE is given a
subgraph G[V;] of the input graph with consecutive vertices V;. An undirected edge {u, v}
is represented by two directed edges (u,v), (v,u), which are stored on the PEs owning
the respective tail vertices. Vertices adjacent to vertices owned by other PEs are called
interface vertices and are replicated as ghost vertices (i.e., without outgoing edges) on
those PEs. [21] Figure shows such a PE partition. Because we construct a ghost vertex
for each tail vertex of an edge, that is not owned, the maximum number of ghost vertices
is limited by the number of edges of the graph representation. Note that, since we use a
simple undirected graph as the input, the total number of edges of the input graph is limited
by @, which means that the total number of edges of the graph representation is limited
by n(n — 1).

The vertices are initially assigned to their own clusters. Each PE holds local representations
of the clusters of owned and ghost vertices. A local cluster representation is referred to as
a local cluster. From the point of view of any PE, any other PE is called a remote PE. A
cluster representation on a remote PE is called a remote cluster.

2.3 Collective MPI Operations

We will present some of the MPI communication operations used by us. The tables illus-
trating the send and receive buffers of each PE show the contents to be sent by a row to a

2 Fundamentals

column or received on a row by a column.

Allreduce

Table 2.1: State

on PEs Table 2.2: State on PEs after Table 2.3: Result of additive allreduce

before receiving the val- i
allre- ues for reduction .operatlon
duce Receive Buffers Receive Buffers
Send Buffers PE[A[B]C PE[| A |B]C
PE[A[B]|C AT alb o Allatbte
A | a B B ||a+tb+c
B | b C Cllat+tb+c
C | c

The allreduce function takes an operation and a value as an argument. Table [2.1| shows the
initial state of the send buffers. The values are collected on the PE with rank 0O, as seen in
Table[2.2] which computes the result. The result is computed by reducing the set of values
using the provided operation. It then returns the value to all PEs. The state of the receive
buffers after the allreduce operation is shown in Table [2.3]

Alltoallv

Table 2.5: State of the receive buffers of the

Table 2.4: State on PEs before alltoallv PEs after alltoallv

Send Buffers i
PE[A | B | C PE | AR | : f; [C
A [a0,al] | [a2,a3] | [a4, a5, ab] a0.a ¢
B[B0,01,59 | 3] | (4,09 s T
C [c0] [[c1, 2] C [[ad, ab,a6] | o4 b5] | [c1, 2]

During an alltoallv operation, buffers of elements are exchanged by the processes. Each
process specifies how many elements it sends and and receives from each process. The
buffers are then sent to their target process and put into a receive buffer. Table [2.4] shows
the send buffers before an alltoallv operation and Table 2.5 shows the corresponding state
of the receive buffers afterwards.

2.3 Collective MPI Operations

Table 2.7: Send buffer layout (as it would be for a generic

alltoallv)
Table 2.6: Grid layout for Send Buffers
sparse alltoallv
with 4 PEs PE] A [B | € |D
ATB A [a0,al] | [a2,a3] | [a4,ab,ab] | [aT]
c D B || [b0, b1, b2] (3] [b4, bS] [b6]
C [c0] I [cl, 2] [c3]
D [dO] I [d1, d2] [d3]
Table 2.8: State of the receive buffers of the PEs after first alltoallv
Receive Buffers
PE || A \ B | ¢ | D
A || [a0,al,a2,a3] | [b0,b1,b2,b3] 0] [d0]
B I 0 I I
C || [a4, a5, a6, aT] [b4, b5, b6] [cl,e2,¢e3] | [d1,d2,d3]
D I I I I

Table 2.9: State of the receive buffers of the PEs after second alltoallv

Receive Buffers
PE[A | B | C | D
A [a0, al] b0, b1, b2] [c0] [d0]
B || [a2,a3] [63] [[
C || [a4,a5,a6] | [b4,05] | [cl,¢2] | [d1,d2]
D [aT] [b6] [c3] [d3]

Sparse Alltoallv

Sparse alltoallv is a modification to the generic alltoallv operation provided by MPI. Sparse
alltoallv performs two alltoallv operations to replace the generic alltoallv. For it, the PEs
are arranged in a grid, as shown in Table It reroutes the messages by first sending all
buffers to the rows of their target using an alltoallv and then performing another alltoallv
operation to send the buffers to their actual target. In our example all messages to PE A
and B are routed to PE A first, and all messages to PE C and D are rerouted to PE C. This
way, each PE only has O(y/P) communication partners instead of O(P), which reduces
the total number of messages sent from O(P?) to O(P). Table shows the messages
to be sent to each PE. Table and Table depict the receive buffers after the first and
second alltoallv respectively. Figure [2.4] illustrates how the messages are pathed through
the network.

2 Fundamentals

11 First Alltoallv
= Second Alltoallvy

Figure 2.4: The sparse alltoallv communication paths. The PEs are labelled from A-D and posi-
tioned according to the grid layout. Direct diagonal communication paths are removed
and each PE only has /P communication partners per alltoallv operation.

3 Related Work

Graph partitioning is a highly researched problem. Over the years, multilevel graph par-
titioning (MGP) has proven to be the most successful approach with significant increases
to performance and quality compared to single level partitioners. Distributed memory ap-
proaches allow for much larger graphs to be processed, but often lead to much lower qual-
ity. For further reading on the graph partitioning problem, the reader is referred to overview

papers [2][3][4].

3.1 Multilevel Graph Partitioning

Multilevel graph partitioning is an approach, that consists of a coarsening, initial parti-
tioning and uncoarsening phase. During coarsening multiple levels of coarser graphs are
constructed. The coarsest graph is partitioned during the initital partitioning phase. This
initial partition is then refined by subsequently projecting the partition onto the next finer
level and improving it. We will provide an overview of the MGP paradigm while putting
some partitioners into the context.

3.1.1 Coarsening

During coarsening, a hierarchy of successively coarser graphs is created by repeatedly
computing a clustering C = {C},...,C,} on the input graph and then contracting the
clustering by substituting each cluster by a vertex representing that cluster in the coarser
graph G'. le., the coarser graph’s set of vertices is defined as V' = {¢ = repr(C;) |
C; € C}. The coarser graph’s edges are created by contracting the inter-cluster edges, so
that the edge set of the coarser graph is given by £’ = {e’ = {¢;,¢;} | ¢;,¢; € V' and
de = {u,v} € E :u € C;and v € C;}. In order to accurately represent the finer graph,
the weights of the coarser graph’s edges and vertices are calculated. By doing this, it is
possible to compute more balanced partitions. The weight of the new vertices is given by
the total weight of a cluster’s vertices, i.e., ¢(¢;) = ¢(C;), with i € {1,...,¢}. And the
weight of a new edge w’(¢’) is given by the total weight of the edges contracted into the
edge ¢/. This way, a hierarchy of coarse graphs is generated until the coarsest graph is
small enough. A coarse graph is considered small enough, if its number of vertices is less
or equal to Ck, for a contraction limit C' and number of blocks k. There are also other

3 Related Work

Figure 3.1: The marked vertex in the middle is the currently processed vertex. The gain for a move
to V7 is 0, the gain for a move to V5 is 1 and the gain for a move to V3 is —1. Since we
maximize the gain, this means that the vertex will be put into V5.

coarsening strategies [6][8][20] besides contraction based approaches, which we will not
be covering here.

Matching

One widely used clustering method is matching based clustering, which selects certain
edges as part of the matching and subsequently contracts the graph by replacing the match-
ing edges with a vertex. This selection was usually done by iterating over the nodes in
a random order and matching the heaviest edge in the neighborhood [28]. However, it
has been found, that there are actually more advanced rating functions, that lead to better
results [L1][20]. PT-Scotch [3] is a distributed parallel matching and bisection based
algorithm.

ParMETIS is a fast and high quality partitioner for irregular graphs, that provides multiple
different matching-based coarsening strategies, as well as multiple refinement and initial
partitioning algorithms for the MGP scheme [14].

Matching based schemes work well on meshes but struggle to compute balanced partitions
on complex graphs and star-like structures. This is due to the fact that matchings usually
leave the neighbors of high-degree vertices unmatched, which means that they do not get
contracted for that level [4]].

Label Propagation

Label propagation [18]][19][21] is another method commonly used for graph partitioning,
due to its simplicity and efficiency. It improves upon matching based approaches in terms of
quality and performance when processing complex graphs while producing similar results

10

3.1 Multilevel Graph Partitioning

for meshes. It is initialized by assigning a label to each vertex. Label propagation then
iterates over the vertices and computes a new label assignment for the current vertex, by
looking at the labels in its neighborhood and choosing the label with the highest gain.
Figure [3.1]shows a vertex that is currently assigned to the vertex-set V; and will be moved
to V5. In our case the new label is chosen by maximizing the cut weight between the
current vertex v and vertices with the same label ¢;, i.e., the new label is the ¢;, for which
w(N;(v)) = max{w(N;(v))} with N;(v) = {u | v € N(v) and label(u) = ¢;}. By
maximizing the intra-cluster edge weight, we minimize the weight of the inter-cluster cut.
If there are multiple labels that meet this condition, the label is chosen randomly. Label
propagation terminates when the label assignments converge, i.e., there are no more label
changes to be made. Since this procedure does not always converge, we limit the number of
iterations to maxIterations € {3,5}. Examples for partitioners using label propagation
are ParHIP [18], dKkaMinPar [21] and Xt raPuLP [23], which implements a multiple
constraint and objective version. As opposed to the other two, it is a single level partitioner,
which reports a higher performance than ParMETIS [14] and ParHIP [18]], but also a
much higher cut (up to 5x).

Active Set Strategy

Meyerhenke and Staudt [24] have used the active set strategy in their parallel label prop-
agation algorithm for community detection in large graphs. They report extremely fast
running times and reasonable quality. The active set strategy starts by declaring every ver-
tex as active. The Label propagation using the active set strategy, then iterates over each
active vertex. When a node has been processed, it is deactivated. If the node has changed
its label, its neighbors are activated. This way, vertices in a neighborhood that did not
change, do not get processed again. This is useful, since these vertices do not need to be
rechecked, since the new label would most likely still be the same. The only way the la-
bel would change is if we were previously unable to move to a cluster, because it was too
heavy and chose another cluster instead. If the cluster, that was our first choice lightened
up sufficiently in the meantime, we would then add the vertex to this cluster, even though
no label was changed in the neighborhood. Using the active set strategy therefore reduces
unnecessary computation and optimizes the vertex traversal.

3.1.2 Initial Partitioning

After coarsening, an initial partition with £ blocks is computed on the coarsest graph. The
two main strategies for computing an initial partition are recursive bipartitioning and direct
k-way partitioning.

For bipartitioning, the graph is first split into two parts. The resulting partition is recursively
processed by dividing each subgraph into two parts again. This is repeated until the initial
graph is split into £ blocks of vertices. Some partitioners strengthen the requirements of

11

3 Related Work

this procedure by not only computing two parts, but also ensuring that the two parts are of
equal size. This is referred to as bisection.

For direct k-way partitioning, the k blocks are computed directly without bipartitioning the
graph recursively [1]].

3.1.3 Uncoarsening

The computed partition is then recursively projected onto the next finer graph and refined
using local search algorithms [4]], in order to get a more optimal partitioning in regards to
the objective function. If necessary, the graph partition is balanced to meet the requirements
of the balance constraint, before resuming the computation of the next level.

3.2 Distributed Multilevel Graph Partitioning

Compared to shared-memory partitioners, distributed-memory partitioners generally dis-
play slower running times and worse quality [9]. Nevertheless distributed graph partition-
ers are still useful for handling large instances, some of which do not fit into the memory of
a single machine. At the start the input graph is split into subgraphs, which are distributed
to the PEs. The PEs then each perform coarsening, while communicating changes to their
neighboring PEs at designated times. Afterwards, the subgraphs are recombined in order
to compute an initial partition. The resulting partition is then projected onto the finer levels
while refining and balancing whenever necessary.

3.3 Distributed Deep-Multilevel Graph Partitioning

Deep MGP is a version of MGP, that continues coarsening until the coarsest graph has only
n' < 2C vertices left. In contrast to the generic MGP break condition, deep MGP’s break
condition is independent of %, and therefore an initial partition can be efficiently computed
even for large k. Deep MGP does this by uncoarsening while recursively computing bipar-
titions. When the finest graph, for which n’ < kC' is still given, is reached, the computed
bipartition corresponds to the initial partitioning of the coarsest graph of MGP. [10] [21]

3.4 Streaming Graph Partitioning

Streaming algorithms partition the graph while reading the input graph. They read vertices
and their neighborhood and assign them to their blocks solely based on that knowledge.
This means that the partitioner only requires memory proportional to O(n), since the edges

12

3.5 ParHIP

do not need to be saved. Another consequence is, that they do not know the context of the
whole graph while computing sections of the graph. This leads to very fast partitionings,
which are even faster than MGP, but with much worse quality. [4]]

3.5 ParHIP

As mentioned earlier, ParHIP [18] is a parallel label propagation MGP algorithm. In par-
ticular, it uses size-constrained label propagation, which was first proposed by Meyerhenke
et al. [17]. Size-constrained label propagation differs from generic label propagation in the
fact, that an additional constraint is added for the cluster weights. During the label propaga-
tion, an upper bound W = 50(;) with &' := min{k, %} is defined as the maximum vertex
weight of a cluster, i.e., ¢(C;) < W withi € {1,...,¢} [21]. By adhering to this condition,
we get a more balanced clustering, which improves the quality of the coarsening [[17]. In
practice, the size-constraint is relaxed and only enforced locally during coarsening. The
size-constraint of the blocks is only really enforced later during refinement.

ParHIP improves the performance of the size-constrained label propagation, by overlap-
ping the communication of computed labels with the computation of the next labels. It
does so by using non-blocking send and receive operations in combination with a specific
version of OpenMPI, that provides an implementation of progress threads. This allows the
Isend and Irecv operations to be progressed asynchronously. When comparing the results
to ParMETIS, ParHIP reports improvements to both the cut and the performance, when
computing complex networks [[18]].

3.6 dKaMinPar

The dKaMinPar [21] algorithm is a DDMGP. It uses size-constrained label propagation
during coarsening and refinement. During coarsening the maximum cluster weight used by
dKaMinPar is defined as W := ¢“Y2 with &' := min{k, '5l}. Recall, that is the num-
ber of blocks and C' is the contraction limit. We will focus on the clustering phase, since
both our algorithms are applied there. However, we will start by providing some general
information to how dkKkaMinPar functions.

When dKaMinPar is run on P PEs, the input graph G is split into P subgraphs G;[V}]
withi € {1,..., P} and each subgraph G;[V;] is assigned to the corresponding PE . In ad-
dition to the vertices owned by a PE, an additional ghost vertex is stored for each adjacent
interface vertex. Iterating over vertices in increasing degree order, leads to a better result
quality and performance [18]]. To make use of this fact, the vertices are stored in exponen-
tially spaced degree buckets and the graph is rearranged accordingly [21]]. During Coars-
ening, dKaMinPar performs three iterations. Each iteration is divided into max{8, %8
batches [21], that are processed sequentially. By default, dKkaMinPar randomizes the or-

der the vertices are handled in. However, in order to compare dKkaMinPar to MQLP, we

13

3 Related Work

use an implementation in which the vertices are iterated sequentially without randomiza-
tion.

For each batch, the new label assignments for owned vertices are computed, by maximiz-
ing the gain of a vertex move. The gain of a move is defined as the corresponding change
to the intra-cluster cut. After the label computation, the new weights of the clusters are
computed by exchanging the total weight added to clusters during the batch. If the clusters
are overweight, each PE reverts an amount of weight proportional to its part of the weight
exceeding the limit. Then the new labels of interface vertices are communicated to neigh-
boring PEs and applied there. Finally, the procedure ends by clustering isolated nodes of
the current batch. This is done by repeatedly adding isolated nodes to one cluster, until the
cluster is full and then repeating that step with a new cluster.

3.7 Message Queue

Asynchronously communicating introduces a new problem regarding the performance of
MPI communication. Sending many small messages leads to performance deterioration
due to cumulative communication startup overheads. A solution for this is message aggre-
gation in order to reduce the number of messages sent. This also makes better use of the
available network bandwith, while introducing additional latencies to send operations. [26]]
Naively implementing asynchronous message aggregation is error prone and may even lead
to worse performance. To combat this, a message queue is used, that handles the MPI com-
munication and provides functions, that allows us to simplify the problem. [27]]

Message queues encapsulate and abstract from the MPI communication procedures and
provide easy to use functions communicating in a distributed memory setting. Posting
messages to the message queue stores them in a local buffer, until a threshold is reached
before sending them as one aggregated message. This reduces startup overheads, which
can pose a problem to scalability when sending many small messages. The received mes-
sages can be accessed by polling the message queue, to check for and read any received
messages. Additionally rerouting procedures defined by the message queue, or its user can
further reduce communication startup overheads.

The message queue used by us is implemented by Uhl [22][27] and allows for messages
of arbitrary size to be posted to the message queue. Self defined aggregation and deag-
gregation functions enable the user to store any message in an arbitrary way. By setting
the thresholds at which the buffers are flushed, the user can fine tune the granularity of the
communication. Usually only the global threshold is set. This way, all local buffers are
flushed when the combined size surpasses the threshold. By doing this, it is ensured, that
even buffers with very few entries are sent and not starved for a long time. The message
queue implementation also enables the user to define a cleanup procedure, which is per-
formed before sending the contents of a buffer. This can be useful when new messages are
added to the buffer, that invalidate previous messages.

For further reading on the message queue concept, we refer the reader to the following pa-

14

3.8 Applications

per [22] and additional papers cited by the unpublished manuscript by Uhl [27]: [25][26].

3.8 Applications

Recently Merkel et al. [[16] have tried to apply graph partitioning as a preprocessing stage
to graph neural networks (GNNs). In their paper, they state distributed GNN training as a
promising solution for the memory and processing power requirements for computing large
graphs, which often times are not available on single machines. They report improvements
to performance due to the fact, that the preprocessing cost can be amortized by faster GNN

training times. Additionally computing a graph partition reduces memory overheads of
GNN training.

15

3 Related Work

16

4 Label Propagation Clustering
Using Threading

This is the first algorithm we present, called ThreadedLP. We will first describe the
general idea in Section 4.1/ and then get into more detail in Section 4.2

4.1 Overview

Due to the outstanding results, that ParHIP [18] could record, we try an approach, that
overlaps the label communication with the computation of the next batch. As mentioned
earlier, ParHIP has a similar approach that makes use of OpenMPI progress threads to
speed up the non blocking MPI calls. Since OpenMPI discontinued the support of progress
threads, we tried using Intel’s progress thread implementation. Due to a common issue
with the Intel progress thread feature, which we encountered, we were unable to reproduce
the exact same strategy, that is used by ParHIP. Instead, we manually spawn a thread for
concurrency.

This algorithm is based on the original synchronous LP clustering of dKaMinPar and
makes use of asynchonicity by splitting the procedure into communication and computa-
tion parts, which are executed by two asynchronous threads.

However this algorithm does not execute fully asynchronously. Instead one computation
and one communication block is performed simultaneously per step. In particular, the first
computation and and the last communication blocks are performed separately, whereas for
the rest, the communication block corresponding to the computation block performed in
the previous step is executed simultaneously to the next computation step. We do this by
spawning an extra thread, so that the computation and communication parts each have an
own thread to make progress.

By interleaving the communication of labels and and the computation of new labels in this
way, we aim to make use of potential idle resources and reduce the overhead created by
the need to wait for certain resources to finish a request. For example we intend to make
progress for the label computation, while waiting for MPI messages to be routed to their
targets.

17

4 Label Propagation Clustering Using Threading

4.2 Implementation

A pseudocode for ThreadedLP is shown in Algorithm[I}] ThreadedLP has a structure
similar to the label propagation clustering algorithm defined in dKaMinPar. The main
difference lies in the utilization of an additional thread in order to allow simultaneous ex-
ecution of label computation and label communication. During label propagation, there
are essentially two phases. One is the actual label propagation and the other is the weight
handling for the size-constraint. Although we only asynchronize the first phase, we cannot
directly use the weight handling procedure used by dkaMinPar. The reason for this is
that we compute new labels without having completed the process for the first batch of
nodes. By buffering some data from the previous computation, we are able to adapt the
weight handling procedure to ThreadedLP. We will start with the description of the la-
bel propagation phase and will afterwards explain how we manage the size-constraint.

Label Propagation

We perform max Iterations iterations and split the nodes into max{8, %8 chunks, as seen

in Algorithm E], 1. 2-3. Just like dKaMinPar-Fast, we choose maxzlterations = 3,
since this has proven to be a sufficient number of iterations for a fast algorithm, with a fairly
good quality. This is due to the fact that label propagation based clustering contraction ag-
gressively contracts the graph, e.g., the first contraction already shrinks the graph by orders
of magnitude [18]. In 1l. 4-6 the very first step is performed, during which we compute
the first chunk’s labels and synchronize and enforce the modified cluster’s weights. Unlike
dKaMinPar, we do not fully process the chunks before continuing with the next chunk.
Instead we make use of an extra thread and interleave the computation of the next chunk
with the current chunk’s computation. We will call a step, that does this an inner step. In
1. 14-18 such an inner step is processed.

This procedure therefore leaves us with a separate computation step in the beginning and a
separate communication step at the end, i.e., for the first chunk we do not have any commu-
nication and when communicating the last chunk’s labels, we do not have any computation
to do. To decrease the overhead caused by these isolated parts, we also overlap the first
chunk’s computation with the communication of the previous iteration’s last chunk, for
later iterations. In 1l. 8-12, we perform the first step of the second or third iteration. We
treat this as an inner step, by keeping the last chunk as the previous chunk. By doing
so, we reduce the maximum number of isolated parts to exactly two. However we cannot
overlap the first computation with any communication and the last communication with
any computation. As a result, we only need to perform one extra step when compared to
dKaMinPar. We should mention, that the total number of computations and communica-
tions stays the same. The main difference lies in the fact, that we delay the communication
for the previously computed chunk minimally and start working on the unsynchronized

18

4.2 Implementation

Algorithm 1: ThreadedLP(G, P): Label Propagation on P PEs
Input: G = (V,E), W

Output: clustering C := {C,...,Cy} of G

numMoves[] .= Array(numChunks)

for iteration < maxlterations do

By, ..., B. = SplitiIntoChunks(V, numChunks)

if iteration is first iteration then

numM oves|0] = ComputeLabels(B;)
ControlClusterWeights(5;)

else

T = Thread(numM oves|0] = ComputeLabels(B))
total Moves += ExchangeLabels(B,, numM oves|c — 1])
JoinThread(7")

ControlClusterWeights(5;)

HandleLabels(B,.)

fori =1 to (numChunks - 1) do

T = Thread(numM oves|i] = ComputeLabels(B5;))
total Moves += ExchangeLabels(B;_1, numMoves[i — 1])
JoinThread(1")

ControlClusterWeights(5;)

HandleLabels(B;_1)

if iteration is last iteration then

total M oves += ExchangeLabels(B.., numMoves[c — 1))

HandleLabels(B,.)
if totalMoves == 0 then
| break

return computed cluster

data. We just accept this potential source of worse quality. However, a much higher num-
ber of ghost nodes compared to local nodes can lead to significantly worse quality, since
we repeatedly end up working on a much higher percentage of outdated data (only ghost
nodes may have outdated labels).

Let us take a look at an inner step, i.e., a step in which both computation and communi-
cation is performed (neither the first nor the last step). In Algorithm [T} 11. 8-12 and 1L
14-18 such an inner step is processed. We first spawn a new thread and assign the label
computation to it. We then concurrently perform the label communication for the previ-
ously computed labels. After waiting for both threads to finish their parts, we continue by
synchronizing the weights of clusters we just modified during label computation. Lastly
we apply the labels we just received during label communication. In Algorithm 1] 11.20-21,
we perform the very last step of our clustering, i.e., we exchange and handle the labels of

19

4 Label Propagation Clustering Using Threading

the very last chunk.

In 1I. 22-23, we define a break condition for our iteration. If no node moves have been
performed during an iteration, we stop the clustering and return our result. As a sidenote,
we do not need to handle the labels of the last iteration if we terminate the clustering func-
tion before reaching the last iteration. This is because we already know that no nodes
have been moved, thus there are no label messages to process. To clarify what we execute
asynchronously, we will take a closer look at the computation and communication parts.

Label Computation

We initialize our program with the parameter MPI_THREAD_FUNNELED, so only our
base thread is allowed to utilize MPI calls. We do this, because we only need one thread
to perform communication at a time and the use of a more powerful mode like for example
MPI_THREAD_MULTIPLE is not necessary and would lead to higher communication
overheads due to synchronization. This is why we assign the label computation to our
newly spawned thread as seen in Algorithm [I] 1. 8,14. During this part, we iterate over
the chunk’s nodes in the order that they are provided in. Exactly like in dKaMinPar,
our nodes are placed in exponentially spaced degree buckets and then stored in a roughly
increasing degree order induced by the bucket assignments. For each node v, first the new
cluster assignment is calculated. This is done by looking at the labels [; = label(u;) of
nodes u; in the neighborhood N (v), i.e., u; € N(v). A rating map is then constructed
by accumulating the edge weights w(e;) of edges e; = (v, u;) with the same labels /;,
i.e., rating(c;) = w(N;(v)) is calculated for each cluster label ¢; in the neighborhood.
This rating map is then used to choose the cluster with the highest gain, by maximizing
the difference rating(c;) — rating(label(v)), i.e., maximizing the difference between the
potential and the current cluster’s ratings. By maximizing the rating, we maximize the
intra-cluster weight, and thereby reduce the cut. If we choose to change the label of a node
v to a cluster’s label ¢;, we need to check whether the node move is legal. A node move is
legal if the resulting cluster is compliant to the size-constraint, i.e., if it is not overweight.
For example, when adding a node v to a cluster C' \ {v}, the combined weight should
be less or equal to the maximum cluster weight: ¢(C') < W. The gain mentioned here
refers to the change to the overall intra-cluster weight. Therefore we choose the cluster
that has the highest cut cut({{v}, N;(v)}) between the processed node v and its neighbors
N;(v) in the cluster C, with the label ¢;, among the legal clusters. While performing these
node moves we count the number of moves performed, which we return at the end. Before
returning, we also cluster the isolated nodes by greedily adding them to a new cluster while
maintaining the size-constraint. We do not add these label assignments to our number of
node moves, since these nodes’ labels never need to be communicated to neighboring PEs.

20

4.2 Implementation

Figure 4.1: Label-Message

Label Message
Fields Size
Owner NodelID | 32-bit
ClusterID 64-bit

Label Communication

The label communication part performed concurrently to the next label computation takes
the number of moves that was counted during the corresponding computation part and uses
an allreduce operation to check whether there have been any node moves globally. If there
have been no changes to label assignments, we return with the result. Otherwise, we collect
all new label assignments of our interface nodes and put them in buffers for each adjacent
PE. We then exchange the labels with those PEs using a sparse-alltoall operation. The
received labels are then stored in a buffer for later message handling.

Label Handling

HandleLabels is a function that handles the messages received during the ExchangeLabels
function. For each received message m = [ownerNodel D, clusterl D] (as depicted in
Figure 1)), we apply the label to our ghost node that corresponds to the owner Nodel D
sent to us. We do this by first calculating the ID of our ghost node, by first determining
its true NodelD, called globalNodelD, and then finding the corresponding local node. We
then move the found ghost node into the cluster C; with ¢; = clusterID. If we have
not received the weight change of the ghost node during the weight handling procedure
described in the next section, we manually subtract the weight of the node from its old
cluster and add its weight to the new cluster.

Cluster Weight Handling

In order to globally retain the size-constraint, we need to periodically synchronize and cor-
rect the weights of clusters. This algorithm reproduces the same logic used by dKkaMinPar.
To make it usable in ThreadedLP, we buffer a map from the previous weight handling
step, that tracks which clusters’s weights have been synchronized. This is necessary be-
cause we do not synchronize the weights of all clusters, but instead each PE only synchro-
nizes the weights of clusters it has made a change to. Therefore the PE does not get updates
to clusters of ghost nodes, that have not been modified by it and are not owned. While han-
dling received labels, the receiving PE searches the map for the received clusterID. If it is
not found, that means that the weight of the cluster with that clusterID has not been syn-
chronized. In this case, the PE subtracts the weight of the ghost node from the old cluster

21

4 Label Propagation Clustering Using Threading

weight
to be newly
reverted | added

max cluster
weight

weight

Figure 4.2: State of owned cluster after accumulating weight changes from remote PEs.

and adds it to the new cluster.

The weight handling procedure uses multiple sparse-alltoall operations to exchange weights.
First, it accumulates the total locally caused weight change of each cluster on the PE and
stores it in the map. Each PE then sends the weight deltas of unowned clusters to the own-
ing PEs. These PEs aggregate the received weight deltas of each cluster and send the total
weight of the cluster back to the PEs that sent a part of the total delta. Figure d.2]shows the
weight of a cluster after aggregating the weight deltas. Each PE then calculates its contri-
bution to the part of the total delta, that does not fit in the cluster due to the size-constraint
as the amount of weight that has to be reverted from that cluster. For example, let’s say
each node has a weight of 1. If one PE added a weight of 10 and another added a weight
of 20, but only 6 fit into the cluster. The total weight over the maximum is then 24. So the
first PE has to revert 8 nodes and the other PE has to revert 16 nodes, as the first PE only
added a third of the weight. That amount added to the maximum cluster weight is then set
as the new cluster weight of the cluster. Note, that the local cluster is now overweight by
the part of the weight, that has to be reverted. Finally each PE iterates over its nodes once
while checking for nodes that are inside an overweight cluster. When such a node is found,
the node is reverted to its old cluster, i.e., the label is set to the node’s old label and the
weights of involved clusters are adjusted accordingly.

22

5 Experimental Evaluation of
Threaded LP

In this chapter we will be exploring the performance and quality of ThreadedLP in com-
parison to the default label propagation algorithm of dKkaMinPar, which we will refer to
as dKkaMinPar-LP. We implemented ThreadedLP in C++ and compiled it using g++-
13.1.0. We use InteIMPI 2021.9.0 as our parallelization library and growt [[15] for hash
tables. We use generic C++ threads for our asynchronization. The plots presented here are
generated using the open source library Plotly [[13]].

5.1 Experimental Setup

We run the experiments on two benchmark sets to evaluate our weak and strong scaling
capabilities. The instances used are listed in Section[5.1.2]

5.1.1 Environment

We perform our experiments on the SuperMUC-NG high performance computing cluster,
which is part of the Leibnitz Supercomputing Centre (LRZ). We make use of the thin
compute nodes, i.e., compute nodes with 96GB of memory. Each compute node provides
48 cores, consisting of two Intel Xeon Platinum 8174 24C 3.1GHz CPUs. The processors
are connected by an Intel Omni-Path network architecture to allow for low communication
latency and high throughput. We only make use of 32 of the 48 processors, since the
graph generator, KaGen, requires the number of processes to be a power of two. The cores
support hyperthreading, which we enable for our experiments.

5.1.2 Instances

For all our experiments, we compute the same number of 8 blocks. We do not expect
different values of k to make a difference in our comparison of the two algorithms, since
we only look at coarsening, during which different k£ values only change the maximum
cluster weight. We perform strong and weak scaling experiments, scaling the number of
compute nodes up from 8 to 32 and finally 128 compute nodes with 32 processes each, i.e.,

23

5 Experimental Evaluation of Threaded LP

Table 5.1: Strong scaling graphs, with their number of nodes and edges and their
number of isolated nodes 7, minimum degree greater than 0, average and
maximum degree. The parameters used to generate the graphs are: (kro-
necker;N=18;M=22), (rgg2d;N=27;M=32), (rhg;N=26;M=30;gamma=3.0) and
(rmat;N=20;M=24;a=0.1;b=0.2;c=0.3). Note, that the upper case N and M mean, that
the graph will be generated with roughly 2N nodes and 2M edges.

Graphs Used in our Strong Scaling Experiments

Type Name n m ‘ n; min(d > 0) ‘ avg(d) ‘ max(J)
arabic-2005 22744080 | 553903073 | 199 ; 1 |48.7075| 575628
enwiki-2013 4206785 901939728 | 3462 ; 1 |43.7102 | 432260
enwiki-2018 5616717 | 117244295 | 8012 ; 1 |41.7483 | 248444
RealWorld | nlpkkt240 27993600 | 373239376 | 0 ; 4 | 26.6661 27
sk-2005 50636 154 | 1810063330 | 95 ; 1 | 71.4929 | 8563820
twitter-2010 41652230 | 1202513046 | 0 ; 1 | 57.7406 | 2997487
webbase-2001 | 118142155 | 854809761 | 2587710 ; 1 | 14.4709 | 816127
kronecker 262 144 4194045 | 0 ; 10 | 31.998 62
rgg2d 134217728 | 4295089192 | 0 ; 13 | 64.0018 111

Generated
rthg 67108864 | 1056616051 | O ; 1]31.4896 | 148178
rmat 1048576 16769729 | 13976 ; 1 | 31.9857 13669

on 256, 1028 and 4 096 processes.

We consider real world graphs and graphs generated by the KaGen [7]][12] graph generator.
The graph data provided in Table [5.1] and Table [5.2] describes the actual graph or graph
family. Recall, that the graph representation used for the label propagation is a directed
graph, where the edges have been duplicated in order to have one edge for each direction
and the PEs also hold additional ghost nodes for unowned nodes. This means, that the
total number of nodes that have to be loaded in memory is the number of nodes n plus
the number of ghost nodes g, i.e., total_nodes := n + g, and the number of edges is
total_edges := 2 x m.

We will call a system setup of a specific number of compute nodes an execution mode. We
refer to the combination of a graph with an execution mode as an instance. We perform
strong scaling experiments for 33 instances and 12 experiments for weak scaling.

5.2 Strong Scaling Experiments

We perform our strong scaling experiments on the system described above. We test how
our algorithm scales on the fixed graphs, when scaling the number of compute nodes and
therefore the number of processors.

Since our focus lies on improving the label propagation during the coarsening phase, will

24

5.2 Strong Scaling Experiments

Table 5.2: Weak scaling graph families, with their number of nodes and edges per compute node
and maximum degree per execution mode. The parameters used to generate the graphs

are:

(kronecker;N=18;M=22), (rgg2d;N=26;M=30), (rhg;N=26;M=30;gamma=3.0)

and (rmat;N=18;M=22;a=0.1;b=0.2;c=0.3). Note, that the upper case N and M mean,
that the graph will be generated with roughly 2N nodes and 2M edges per compute node.

Graphs Used in our Weak Scaling Experiments
max(d)
Type Name n per node m per node 8 Nodes ‘ 32 Nodes ‘ 128 Nodes
kronecker 262 144 4194304 64 67 66
rgg2d 67108864 | 1073741824 68 71 74
Generated
rhg 67108864 | 1073741824 | 127786 | 1638340 | 1203110
rmat 262 144 4194304 19321 37603 67420

Partitioning Time per Edge (Log Scale)

irregular graphs

Partitioning Time per Edge (Log Scale)

regular graphs

—e— arabic-2005 dKaMinPar-ThreadedLP kronecker dkaMinPar-ThreadedLP
o

kronecker dKaMinPar

—e— nlpkkt240 dKaMinPar-ThreadedLP
= nipkkt240 dKaMinPar

—e— rgg2d dKaMinPar-ThreadedLP
-=- rgg2d dKaMinPar

1
—e— enwiki-2013 dKaMinPar-ThreadedLP oon

--m- enwiki-2013 dKaMinPar
—e— enwiki-2018 dKaMinPar-ThreadedLP
-=-- enwiki-2018 dKaMinPar
—e— rhg dKaMinPar-ThreadedLP
--m-- rhg dKaMinPar
rmat dKaMinPar-ThreadedLP
rmat dkaMinPar
sk-2005 dKaMinPar-ThreadedLP
sk-2005 dKaMinPar
1n —e— twitter-2010 dKaMinPar-ThreadedLP

.\\1 =~ twitter-2010 dKaMinPar
2
3 4 s 2 R

webbase-2001 dKaMinPar-ThreadedLP [s————
7 %000

Partitioning Time per Edge [s]
Partitioning Time per Edge [s]

100p
webbase-2001 dKaMinPar

67893000

Figure 5.1: Strong scaling experiments’ partitioning times per edge for the irregular graphs (left)
and the regular graphs (right) over the number of cores; ThreadedLP (solid line),
dKaMinPar (dotted line)

evaluate the total partitioning times and the coarsening times separately. We will first take
a brief look at the total partitioning times. Looking at Figure we can see that our ap-
proach does not significantly improve or worsen the performance of the algorithm. More-
over, when putting this into the context of the results of the other execution modes, we do
not see any correlation between the type of the processed graph and the running times. De-
pending on the number of compute nodes used, we see 2-5 instances performing better, 2-4
instances performing the same, and 3-5 instances performing worse. Figure[5.2]shows the
coarsening times per edge of all graphs over the number of cores. Similarly to the total par-
titioning times, we see 4 instances performing better, 1-2 instances performing the same,
and 4-5 instances performing worse on the different execution modes. Note, that again,
the time differences are very small. When looking at the coarsening times of the different
numbers of compute nodes, we see a large diversity of plots both in the aspect of scalability

25

5 Experimental Evaluation of Threaded LP

Coarsening Times per Edge (Log Scale)
irregular graphs

Coarsening Time per Edge [s]

5
2\‘7‘
34 5 678900 3 a4

Number of Cores

—e— arabic-2005 dKaMinParThreadedLP
-#-- arabic-2005 dKaMinPar
—e— enwiki-2013 dKaMinPar-ThreadedLP
-u-- enwiki-2013 dKaMinPar
—e— enwiki-2018 dKaMinPar-ThreadedLP
--m-- enwiki-2018 dKaMinPar
—e— rhg dKaMinPar-ThreadedLP
-u-- rhg dKaMinPar
rmat dkaMinPar-ThreadedLP
rmat dkaMinPar
sk-2005 dKaMinPar-ThreadedLP
sk-2005 dKaMinPar
—e— twitter-2010 dKaMinPar-ThreadedLP
--m-- twitter-2010 dKaMinPar
webbase-2001 dKaMinPar-ThreadedLP
webbase-2001 dKaMinPar

Coarsening Time per Edge [s]

Coarsening Times per Edge (Log Scale)
regular graphs

100n

100p T

6789000

Number of Cores

kronecker dKaMinPar-ThreadedLP
kronecker dKaMinPar
—e— nlpkkt240 dKaMinPar-ThreadedLP
-=- nipkkt240 dKaMinPar
—e— rgg2d dKaMinPar-ThreadedLP
-~ rgg2d dKaMinPar

Figure 5.2: Strong scaling experiments’ coarsening times per edge for the irregular graphs (left)
and the regular graphs (right) over the number of cores; ThreadedLP (solid line),
dKaMinPar-LP (dotted line)

and relative performance. As seen in Figure the algorithm shows the same pattern of
scalability as dKkaMinPar-LP with the exception of twitter-2010, where ThreadedLP
initially displays slower coarsening times, but gets better on 128 compute nodes, being 4%
faster. ThreadedLP shows strong scalability for up to 32 compute nodes (1024 cores) for
the rmat, kronecker and arabic-2005 graph. It even shows scalability to 128 compute nodes
(4096 cores) for the rest (rgg2d, rhg, both enwiki graphs, nlpkkt240, sk-2005, twitter-2010
and webbase-2001). Figure [5.3|shows the difference between the coarsening times of the
two algorithms. The coarsening times values are shown in relation to the coarsening times
of dKaMinPar-LP. The greatest differences can be seen on 8 compute nodes, with the
ThreadedLP algorithm being about 15.2% faster on the enwiki-2018 instance and about
20.8% slower on the webbase-2001 instance. We can also see the increase of performance
on the twitter-2010 graph, that is a result of the better scalability of our algorithm.

As expected we see similar cuts being computed by the two algorithms. For most of the
instances (rgg2d, rhg, enwiki-2013, webbase-2001, twitter on 8 compute nodes), the cuts
after each level are almost identical. With "cut after each level" we refer to the cut weight
of the intermediate clusterings computed in one coarsening level. We see slightly higher
cuts on the rmat (by around .4%), kronecker (by around .3%) and arabic-2005 (up to 9.6%)
instances and unexpectedly even slightly lower cuts on enwiki-2018 (by up to 1.8%). Our
coarsening algorithm returns a solution of visibly lower quality on nlpkkt240 instances and
the twitter instances run on 32 and 128 compute nodes. The tendencies seem to increase
for some graphs when scaling the number of compute nodes up, i.e., enwiki-2018 starts
out with almost the same cut values on 8 compute nodes, but ThreadedLP shows no-
tably higher cuts on 128 compute nodes. Figure [5.5]shows the cuts for the webbase-2001
graph. The cuts of the initial partitions only differ by insignificant amounts. So do the final
cuts computed by the partitioner (after uncoarsening and refinement). Running the algo-
rithm on different numbers of compute nodes does not seem to significantly change the cut

26

5.3 Weak Scaling Experiments

Coarsening Time Ratio Relative to dKaMinPar Coarsening Time Ratio Relative to dKaMinPar
irregular graphs regular graphs

—e— arabic-2005 dKaMinPar-ThreadedLP
—e— enwiki-2013 dKaMinPar-ThreadedLP
—e— enwiki-2018 dKaMinPar-ThreadedLP
—e— rhg dKaMinPar-ThreadedLP

kronecker dKaMinPar-ThreadedLP
—e— nlpkkt240 dKaMinPar-ThreadedLP
—e— rgg2d dKaMinPar-ThreadedLP

12

r/
/
/
r/
/
/
/
/
/
/
/
.

2 rmat dKaMinPar-ThreadedLP 2
& S0 5k-2005 dKaMinPar-ThreadedLP &
e —e— twitter-2010 dKaMinPar-ThreadedLP 2
g 105 webbase-2001 dKaMinPar-ThreadedLP E
o o T
£, T g 1 -
5 T~ 5
& ./Q 8
S 095 8 1
[§] [}
0.9
0.95
0.85
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Number of Cores Number of Cores

Figure 5.3: Strong scaling experiments’ coarsening time ratios in relation to dKaMinPar-LP of
the irregular graphs (left) and the regular graphs (right) over the number of cores;
ThreadedLP (solid line), dKaMinPar-LP (dotted line)

Edge Cut Ratio Relative to dKaMinPar Edge Cut Ratio Relative to dKaMinPar
irregular graphs regular graphs
11
—e— arabic-2005 dKaMinPar-ThreadedLP 103 o kronecker dKaMinPar-ThreadedLP
—e— enwiki-2013 dkaMinPar-ThreadedLP \ —e— nipkkt240 dKaMinPar-ThreadedLP
—e— enwiki-2018 dKaMinPar-ThreadedLP \ —e— rgg2d dKaMinPar-ThreadedLP
—e— rhg dKaMinPar-ThreadedLP \
1.02
1.05 rmat dKaMinPar-ThreadedLP \

o sk-2005 dKaMinPar-ThreadedLP ° \ —

E —e— twitter-2010 dkaMinPar-ThreadedLP E \ f \\\\\\ L,

= 7 webbase-2001 dKaMinPar-ThreadedLP = L0l \ e

5 =1 \ >

© 1 — S— Y © / — T

S S \ —

! -\ — s \ o

i i 1 \ _—

/ -
0.95
0.99 /
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Number of Cores Number of Cores

Figure 5.4: The ratio of the final cuts for the irregular graphs (left) and the regular graphs (right)
in relation to dKaMinPar-LP; ThreadedLP (solid line), dKaMinPar-LP (dotted line)

computed.

In conclusion, ThreadedLP shows a better strong scalability on the twitter-2010 graph,
while displaying similar performance and quality to dKkaMinPar-LP.

5.3 Weak Scaling Experiments

For our weak scaling experiments, we use generated graphs, that grow proportionally to the
number of compute nodes used. As we did before, we will be focusing on the evaluation
of the coarsening phase.

We can see in Figure [5.6] and Figure [5.7] that the performance improves drastically in
the number of compute nodes, when compared to dKkaMinPar—-LP. On lower numbers of

27

5 Experimental Evaluation of Threaded LP

Figure 5.5: The cuts after each level and the initial partition as well as the final cut for the webbase-
2001 graph on 8 (left), 32 (middle) and 128 (right) compute nodes; ThreadedLP (blue
line), dKaMinPar-LP (red line)

compute nodes, ThreadedLP struggles to keep up with the performance of dKkaMinPar-LP,
only showing improvements on the communication-heavy rhg graph. With increasing num-
bers of compute nodes and therefore processors, the amount of communication performed
during label propagation increases, due to the higher number of ghost nodes (higher inter-
PE cut). We can see this effect in the coarsening times of the two algorithms. For 128
compute nodes the more communication efficient coarsening phase of ThreadedLP dis-
plays lower coarsening times on the kronecker, rthg and rmat graph when compared to
dKaMinPar-LP, while taking almost the same amount of time for rgg2d, as seen in Fig-
ure [5.8] According to our experiments, the communication amount on the rgg2d graph
instances increases to only 6 times the value on 8 compute nodes. Meanwhile, the other
graph instances show increases to 10 to 12 times the communication amounts. It is also
worth to mention, that the rmat graph does not scale for either algorithm. When looking at
the throughput, we can see that the number of edges handled per second stays almost the
same. In particular, it does not scale proportionally to the number of cores used.

Just like the strong-scaling experiments, the weak-scaling instances produce almost the
same cuts for both coarsening strategies, while not deteriorating when increasing the num-
ber of compute nodes. Figure[5.9]shows the cuts produced by each level, the initial partition
as well as the final cut. The increase in the computed cut as seen in the bottom -right plot
is to be expected, since the total number of edges increases when increasing the size of the
graph by scaling it up proportionally to the number of compute nodes.

In conclusion, ThreadedLP seems to show better results on the larger numbers of com-
pute nodes with higher amounts of communication (up to 7.6% faster, but 1.9% slower on
rgg2d). On 128 compute nodes it minimally improves upon the performance of dkaMinPar-LP,
while producing similar cuts.

28

5.3 Weak Scaling Experiments

Edges per Second of Partitioning Time per Edge (Log Scale) Edges per Second of Coarsening Time (Log Scale) per Edge

all graphs all graphs
i —e— KaGen-rhg dKaMinPar-ThreadedLP —e— KaGen-rhg dKaMinPar-ThreadedLP
2 --m- KaGen-rhg dKaMinPar -~ KaGen-rhg dkaMinPar
108 —e— kronecker dKaMinPar-ThreadedLP 2 —e— kronecker dKaMinPar-ThreadedLP
N --m-- kronecker dKaMinPar 108 --#-- kronecker dKaMinPar
—e— rgg2d dKaMinPar-ThreadedLP s —e— rgg2d dKaMinPar-ThreadedLP
° o
< 2 --m- rgg2d dKaMinPar < --m- rgg2d dKaMinPar
S 18 rmat dkaMinPar-ThreadedLP g 2 rmat dKaMinPar-ThreadedLP
o 5 rmat dKaMinPar N 1B rmat dKaMinPar
I} I3 .
a 2 g 5
] 3
& 100M > 2
S o
& s i

3

4 5 65789 2 R

1000

Number of Cores

3

4 5 6789 2 3 a4
1000

Number of Cores

Figure 5.6: Weak scaling experiments’ edges Figure 5.7: Weak scaling experiments’ edges

per second of partitioning time
(throughput) for all graphs over
the number of cores; ThreadedLP
(solid line), dKaMinPar-LP (dotted
line); the graphs are scaled so that,
that the number of nodes and edges
per core is kept relatively constant

Coarsening Time Ratio Relative to dKaMinPar

all graphs

1.25

per second of coarsening time
(throughput) for all graphs over
the number of cores; ThreadedLP
(solid line), dKaMinPar-LP (dotted
line); the graphs are scaled so that,
that the number of nodes and edges
per core is kept relatively constant

—e— KaGen-rhg dKaMinPar-ThreadedLP

—e— kronecker dKaMinPar-ThreadedLP

—e— rgg2d dKaMinPar-ThreadedLP
rmat dKaMinPar-ThreadedLP

1.2

5 = £
& £ &

Coarsening Time Ratio

\

o
©
&

o

1000 2000 3000 4000

Number of Cores

Figure 5.8: Weak scaling experiments’ coarsening time ratios relative to dKaMinPar-LP for all
graphs over the number of cores; ThreadedLP (solid line), dKaMinPar-LP (dotted
line); the graphs are scaled so that, that the number of nodes and edges per core is kept
relatively constant

29

5 Experimental Evaluation of Threaded LP

Post Level Cuts (Log Scale) Post Level Cuts (Log Scale)
KKKKKK T Number of Nodes = & KaGen-thg; Number of Nodes = 32

Post Level Cuts (Log Scale) Edge Cut Ratio Relative to dKaMinPar
KKKKKK s Number of Nodes = 128 all graphs

103

cae
102 e
100 \
1 \ \
N M
3
w \
0.98 \
100k
097
100
oy, e, loy, loy, loy Loy, oy 090
oy o, e ey ey v, - s

Edge Cut Ratio

1000 2000 3000 4000
Number of Cores

Figure 5.9: The cuts after each level and the initial partition as well as the final cut for the rhg graph

30

on 8 (top-left), 32 (top-right) and 128 (bottom-left) compute nodes; ThreadedLLP (blue
line), dKaMinPar-LP (red line); the plot on the bottom-right shows the ratio of the final
cuts of all graphs over the number of cores in relation to dKaMinPar-LP; ThreadedLP
(solid line), dKaMinPar-LP (dotted line)

6 Message Queue Label
Propagation Clustering

This is our second algorithm, which we call Message Queue Label Propagation (MQLP).
As we did for our previously presented algorithm, we will first provide the general idea in
Section [6.1]and then go into greater detail in Section [6.2]

6.1 Overview

This algorithm makes use of the message queue implemented by Uhl [22] to asynchronously
communicate labels and weight changes. In contrast to our first algorithm, we do not use
multithreading to separate the communication. Instead, we use two message queues, one
of which is used to communicate labels and the other is used for synchronizing the clus-
ter weights. The message queues use non-blocking MPI operations, which enables us to
continue our computation while waiting for the messages to reach their targets. These op-
erations are started when reaching a certain threshold in the number of messages posted
in the message queue. Until then, the messages are put into a buffer for each target PE,
that aggregates the messages. When the threshold is reached, the aggregated messages are
sent using an Isend operation. The receiving PEs repeatedly poll for new messages and
handle them when received. We will also be presenting a new strategy for approximating
the weight constraint, while allowing asynchronous processing.

The goal is to increase the performance by allowing further progress, while the message
queue sends messages. Additionally we expect to allow for lower cuts, due to more fre-
quent communication. We also hope to allow for decent scalability, but due to higher mem-
ory usage compared to dKkaMinPar, which stems from additional datastructures used, we
might not be able to compute graphs as large as those tested by dKaMinPar. Since the
additional datastructures are roughly proportional in size to the number of local nodes, we
do not expect this to be a big issue.

6.2 Implementation

Like ThreadedLP and dKaMinPar, the algorithm takes a graph G = (V| F), with
the nodes in V' being rearranged in increasing degree order, and computes a clustering

31

O o0 9 AN R WD =

T =
w N = O

14

6 Message Queue Label Propagation Clustering

Algorithm 2: MQLP(G, P): Label Propagation on P PEs
Input: G = (V,E)
Output: clustering C' := G’ = (V' E’) of G
MakeLabelMessageQueue
MakeWeightsMessageQueue
for iteration < maxlterations do
numMoves = 0
for each node v do
numM oves += PerformLLPForNode(v)
if weight message threshold surpassed then
‘ PostWeightMessages()
if should handle weights now then
| HandleWeights()
if should handle labels now then
‘ HandleMessages()
ClusterIsolatedNodes()
total Moves := Allreduce(+, numM oves)
if totalMoves == 0 then
\ break
FixOverweightClusters()
PrepareNextlteration
return computed cluster

C =G = (V,E') of G. The algorithm then performs label propagation for up to
maxlterations iterations. During this process, nodes are traversed in the order in which
they are stored. It shall be noted, that each node is traversed exactly once per iteration.
Algorithm 2] outlines the procedure used for clustering the graph.

Besides the label-message queue used for the communication of new labels, we use a sep-
arate weight-message queue, to allow the weight-messages to reach their target indepen-
dently from the current state of the label communication. Figure [6.1] describes the basic
way we use the message queues. We will now describe both message queues separately.

Label-Message Queue

The label-message queue places messages into the send buffer and separates them with a
sentinel element. Messages put into and read from the buffer, are wrapped in envelopes as
seen in Figure [06.4] that hold the message and meta information needed for the communi-
cation. Label-messages (Figure[6.2)) consist of the local ID of the node in question, and the

32

6.2 Implementation

@Vi_suél Par_adigm

perform
computation

post
message

anything to
gcommunicate?,

add the new send current
to the Message Queue yes
Message Queue
Buffer
Buffer

is
Queue Buffer full?,

poll Message
Queue for any messages in 4 handle the received
received Receive Buffer?, q messages

messages

all nodes no
iterated?
yes any unfinished no

communication?, [y iteration left

finish any yes no
communication

Stop

Figure 6.1: Flow chart modelling the usage of a message queue. Note, that the check whether the
message queue buffer is full, is basically checking whether the global threshold would
be exceeded by adding the newly posted messages.

label that the node is assigned. The use of sentinels allows the sender to encode the sender
and receiver into the envelopes, which enables the use of indirection during communica-
tion. We use the generic grid-indirection scheme defined in the message queue library used
by us [22]. This indirection scheme uses a grid to organize the PEs. It then divides the
communication into two steps. First the message to a target PE is sent to the corresponding
row, and then it is redirected from there. By using indirection, we reduce the total amount
of startup overhead required for the communications, by reducing the number of communi-
cation partners for each PE from O(P) to O(+/P). Each PE holds send buffers for each PE,
which in theory allows pre-send cleanup of deprecated labels. However we do not make
use of this, since the amount of times, the same node’s label is changed during an itera-
tion is negligible (this can only happen, when a node reverts its label, since nodes are only
traversed once per label propagation iteration). The buffers are flushed, when the global
buffer threshold is exceeded. The global buffer threshold is checked against the combined

33

6 Message Queue Label Propagation Clustering

Figure 6.3: Weight- Figure 6.4: Message Enve-
Figure 6.2: Label-Message Message lope
Label-Message Weight-Message Message Envelope
Fields Size Fields Size Fields Size
Owner NodelD | 32-bit Flag 2-bit Message | 2x 64-bit
ClusterID 64-bit ClusterID 62-bit Sender | 64-bit
Weight Delta | 64-bit Receiver | 64-bit

sizes of the send buffers to each target PE. This tuning parameter can be set manually, but
is generally computed dynamically to be proportional to the size of the local subgraph. The
dynamically calculated threshold is defined as 7" := min{80000, dynamicValue}, where:

[numLocal/(2 * numChunks)] for numLocal > numGhosts

dynamicValue =
Y { [numGhosts/(2 * numChunks) |

The numChunks used here is equal to the number of batches used by dKaMinPar and
ThreadedLP. The reason why we set the upper limit of the threshold to 80000 is that
some testing has shown this to be an efficient threshold, that makes good progress while
not significantly increasing the overheads. We make use of that by shrinking the threshold
down to this value whenever the dynamicValue would be larger than this. This basically
increases the quality of the algorithm due to faster updates, without having any significant
drawbacks.

Weight-Message Queue

The weight-message queue also places a sentinel element between its messages, for the
same reasons stated previously. Differently to the label-message queue, we have two types
of messages that are sent in the weight-message queue, namely a weight-delta message
and a cluster-lock message. We differentiate between the two messages by setting a flag,
that signals the type of the message. The weight-delta message consists of the cluster
ID and the weight change of the corresponding cluster. The cluster-lock message simply
provides the cluster ID, so that the receiving PE can lock the cluster to disallow further
moves to it. Like for the label-message queue, the global buffer threshold is computed
dynamically. By default, the threshold is roughly set to a quarter of the value that is used
by the label-message queue, because some preliminary tests have shown the volume of
weight-messages to be significantly lower than the label-messages. If the threshold would
be larger than 80000, the threshold is set to 80000. So the weight global threshold is defined

34

6.2 Implementation

add node

Growing
Cluster

add node

Singleton
Cluster

receive lock
message

receive
lock message

! [cluster:

is full] 1
i

1
[cluster 1
weightis !
Locked lessthan | |remove

I
Cluster max weight]/l node :
I
'

add
node

entry/ lock
cluster

exit/ unlock

cluster

remove node

Figure 6.5: The states an unowned cluster can be in and the operations resulting in that state. The
dotted lines mark conditions that have to be met to use the path. Note, that a cluster can
be locked by completely filling it locally, or receiving a lock message due to it being
locked on the remote owning PE. This lock message can arrive independently from
the other operations. In particular, this means that the lock message can be received
after multiple additional nodes have been added. (Made with Visual Paradigm)

as 7' := min{80000, dynamicValue }, where:

[numLocal/(8 * numChunks)|] for numLocal > numGhosts

dynamicValue =
Y [numGhosts /(8 * numChunks) |

Size-Constraint Approximation

Due to the nature of the asynchronous processing and the use of two separate message
queues for weight- and label-messages, we cannot use the weight-constraint handling per-
formed by dKaMinPar. The reason is, that the weight handling used by dKkaMinPar
relies on the assumption, that a certain chunk of the nodes has been fully processed and the
weight handling has finished before continuing with the next chunk. However this can not
be assured by an asynchronous algorithm. Furthermore, naively using the weight handling
strategy used by dKkaMinPar, without adhering to the requirements, leads to worse per-
formance and deterioration of quality.

As a result, we instead relax the size-constraint by only locally enforcing it on the PEs,
similarly to ParHIP. Since this can lead to clusters with maximum sizes of P x W, i.e.,
the number of PEs times the maximum cluster weight, we introduce a "weight fixing" stage
after each iteration. However the weight fixing procedure used can only revert moves per-
formed during the iteration. It does not actually compute new cluster assignments. To
improve on this, we also add a cluster locking procedure, that locks clusters, that are full,
which prohibits further additions to the locked clusters. For unowned clusters, i.e., clus-
ters, whose representing node is owned by a remote PE, this lock is received when trying

35

6 Message Queue Label Propagation Clustering

to move a node into a full cluster or when performing a move that fully satiates the cluster
(i.e., the cluster is full after the move). Consequently, the impact of this method is heav-
ily dependent on the granularity of the weight communication. This leads to the need to
choose between better performance and better quality, since lower thresholds and therefore
more frequent communication leads to better weight approximation, but comes at the cost
of higher communication overheads. It is also worth to mention, that inserting the weight
fixing stage after each iteration requires synchronizing the processes at that point, which
further reduces the performance of the algorithm. Figure [6.5]shows the states an unowned
cluster can be in.

Label Propagation

First, the new labels of traversed nodes are determined by exploring the neighborhood N (v)
of the currently processed node v. As described in Section [24] the legal node move to a
cluster resulting in the highest gain is then chosen. In our case a node move is considered
legal, if the cluster does not become overweight due to the weight change and the cluster
is not locked already. There are two ways a cluster can become locked. Either by locally
moving a node into the cluster, which leads to it having the maximum cluster weight W,
or by receiving a lock message for an unowned cluster. In case that it is illegal, we do
not choose the cluster and keep looking in the rating map. When we have checked all
neighboring clusters, the change is applied, i.e., the label is changed and the weights of the
involved clusters are adjusted. For interface nodes, the new label is wrapped in a label-
message, that contains the ID of the node and the new label assignment, and is posted
in the label-message queue to the adjacent ghost nodes’ owners. Instead of posting the
weight changes of unowned clusters immediately to the weight-message queue, they are
buffered in a weightDeltaMap, as seen in Algorithm [3] that tracks the weight changes until
the weights are communicated. This allows us to aggregate multiple changes to the same
cluster, reducing the size of the messages sent. However, we check whether we know if
the cluster is locked. We can know this by either having received a lock message from
the owning PE, or by being the owning PE and tracking the true weight of the cluster.
Therefore we only send the lock message, if the receiving PE does not own the cluster (the
owning PE always is the first PE to lock its cluster). This way, if we are sending the new
label to an adjacent PE, that does not own the cluster, that PE immediately knows it is not
allowed to move nodes into that cluster.

Line 7 in Algorithm 2] checks, whether the global buffer threshold of the weight-message
queue has been surpassed. In that case, the buffered weight changes stored in the weight-
DeltaMap are posted in the weight-message queue, as seen in Algorithm 4] 11. 1-2. Since
we aggregated the messages manually before posting them, we do not actually surpass the
buffer threshold of the weight-message queue. This means, that the buffers are not auto-
matically flushed by the message queue. But since we do want the messages to be sent, we

36

O 00 N N N R W -

—_
(=]

6.2 Implementation

Algorithm 3: PerformLPForNode(v): Label Propagation for a Single Node
Input: NodelD v
Output: number of moves performed locally numM oves
numM oves = ComputeNewClusterForNode(v)
if old cluster is not owned then
\ add weight change to weightDeltaMap
if new cluster is not owned then
‘ add weight change to weightDeltaMap
if v is interface node then
post message to adjacent PE
if new cluster is locked then
\ post lock message to adjacent PE
return numMoves

manually flush the buffers after posting all messages, as seen in Algorithm [4]

Algorithm 4: PostWeightMessages(): Posting Weight Messages from weightDeltaMap

for each entry in weightDeltaMap do
‘ post weight-message to owning PE in MQ
FlushWeightsMessageQueueBuffers

We also define a weight handle threshold and a label handle threshold, which are by de-
fault set to 1, in order to immediately work on received messages. After performing said
amount of steps, 1.e., after processing one node, the weight handle and label handle proce-
dures are executed. As shown in 1l. 9-12 in Algorithm |2} the two procedures are handled
separately to allow different thresholds for them. Calling these procedures essentially polls
the corresponding message queue for received messages. We will now take a look at the
two message handling procedures.

Algorithm [5] shows the procedure for handling a weight-message. The weight-message
handling procedure has to process two types of messages. A weight-delta message m =
[clusterI D, delta] and a cluster-lock message m = |[clusterl D], as seen in Figure
The weight-message handler first checks the flag, to determine which type of message it
is processing. In the case, that it is a weight-delta message, the receiving PE applies the
weight change to the cluster, i.e., ¢(C,,)+ = delta with ¢,, = clusterID. The delta may
also be negative, e.g., if a few nodes have been removed from a cluster, the delta will be the
amount of weight subtracted from that cluster. If the cluster is then full or overweight, the
cluster is locked and the receiving PE replies to the sender with a cluster-lock message. If
the cluster was already locked, the weight is applied anyway and the cluster-lock response
is sent. As a sidenote, the PE receiving a weight-delta message is always the owner of the

37

O 00 N AN N R W N =

6 Message Queue Label Propagation Clustering

cluster. In the case of the cluster-lock message, the receiver locks the cluster corresponding
to the ID sent within the cluster-lock message. When creating a cluster-lock message, the
weight delta field is left empty. Cluster-lock messages are always sent from owning PEs
and received by non-owning PEs.

Algorithm 5: HandleWeights(): Weight-Message Handling

for each received message m do
switch m.messageType do
case cluster-lock message
| lock cluster
case weight-delta message
apply weight change to cluster
if cluster is overweight then
lock luster
send lock-message to message’s sender

The label-message handler shown in Algorithm [6] only processes label-messages m =
[owner Nodel D, label], the structure of which is also depicted in Figure It first con-
verts the received remote NodelD into the local NodelD, by applying the offset of the
NodelD due to the distance between the PEs. Then the label of the ghost node is changed to
the label received in the label-message. Additionally, the cluster weight changes created by
the node move are applied, i.e., the old cluster ¢; has a new weight of ¢(Cyq) = ¢(C;) —c(v)
and the new cluster ¢; has a weight of ¢(Cl,.,,) = ¢(C;) + ¢(v).

Algorithm 6: HandleMessages(): Label-Message Handling
for each received message m do

(node, cluster) :=m

move node to new cluster

After processing each node, we cluster the isolated nodes on each PE, i.e., nodes without
any edges. We do this by simply locally adding isolated nodes to a new cluster, until it is
full and then repeating this until all isolated nodes have been clustered. In Algorithm[2]1. 6
the number of local moves are accumulated for an iteration. This is later used in 1l. 13-14
to check whether a change has occurred during that iteration. If there were no node moves
during an iteration, the clustering is terminated regardless of the number of iterations per-
formed. To get the actual number of moves performed globally over all PEs, we use an
allreduce operation to sum up the local numbers of moves.

The FixOverweightClusters procedure seen in Algorithm[7juses synchronous sparse-alltoall

38

1
2
3
4
5
6
7
8
9

10
11
12
13

6.2 Implementation

communication operations in order to send the weights added to an unowned cluster, that
has been locked, to the owning PE. The owning PE then accumulates the added weights and
sends back the portion of the weight that each PE has to revert. It then applies the change of
the weight of the owned cluster, that the other PEs are going to create by reverting moves.
This removes redundant communication that would have been necessary otherwise. After
receiving the weights it has to remove, each PE traverses its nodes once, while looking
for nodes in overweight clusters, that have been added during the most recent iteration. If
such a node is found, the node move is reverted, i.e., the node is assigned its old label and
the weights of the clusters are adjusted. If this weight adjustment leads to the old cluster
becoming overweight, it is locked. Also, clusters that begin to meet the size-constraint due
to a weight change, are unlocked.

Algorithm 7: FixOverweightClusters(): Reverting Nodes from Overweight Clusters

for unowned locked clusters do
if added weight to cluster then
‘ send locally added cluster weight to owning PE
for received requests do
accumulate weight for each cluster
calculate the parts that each PE has to revert
send back how much weight needs to be reverted

remove reverted weight in owned clusters
for all nodes do
if node has not been moved then
‘ continue
if cluster of node is too heavy then
move node back to previous cluster
move node weight back to previous cluster
if previous cluster is full then
‘ lock previous cluster

39

6 Message Queue Label Propagation Clustering

40

7 Experimental Evaluation of
Message Queue LP

In this chapter we will be evaluating the performance and quality of MOLP in comparison
to the default label propagation algorithm defined in dKaMinPar, which we refer to as
dKaMinPar-LP. We implemented MQLP in C++ and compiled it using g++-13.1.0. We
use InteIMPI 2021.9.0 as our parallelization library and a combination of growt [15] and
Google Sparsehash dense hash map and dense hash set for hash tables. We use two types of
hash tables, because we build our implementation on a hybrid parallel code base that uses a
parallel hash table (growt), but do not use the thread parallelism for this work, hence we use
a sequential hash table. We also use a message queue framework provided by Uhl [22]][27]].
The plots presented here are generated using the open source library Plotly [[13]].

7.1 Experimental Setup

We run the experiments on the two benchmark sets we already used to evaluate our weak
and strong scaling capabilities of the ThreadedLP algorithm. Each instance is run with
a time limit of 20 minutes to save expensive computation time. Most of our instances
terminate during this time limit. For instances that exceed the time limit, the performance
is too bad anyway, i.e., dkaMinPar—LP finishes in much less time. The instances used
are listed in Section

7.1.1 Environment

We perform our experiments on the SuperMUC-NG high performance computing cluster,
which is part of the Leibnitz Supercomputing Centre (LRZ). We make use of the thin
compute nodes, i.e., compute nodes with 96GB of memory. Each compute node provides
48 cores, consisting of two Intel Xeon Platinum 8174 24C 3.1GHz CPUs. The processors
are connected by an Intel Omni-Path network architecture to allow for low communication
latency and high throughput. We only make use of 32 of the 48 processors, since the
graph generator, KaGen, requires the number of processes to be a power of two. For
these experiments we do not make use of the hyperthreading capabilites available on the
SuperMUC-NG compute nodes.

41

7 Experimental Evaluation of Message Queue LP

7.1.2 Tuning Parameters

We use the default values of our tuning parameters. As mentioned previously, the default
for the polling interval is set to 1, to always poll the message queue for new entries. The
global thresholds are set to:

T := min{80000, dynamicValue}, where:

[numLocal/(7y * numChunks)| for numLocal > numGhosts

dynamicValue :=
[numGhosts /(7 * numChunks) |

with v := 2 for the global threshold of the label message queue and v = 8 for the
global threshold of the weight message queue. The numLocal variable refers to the num-
ber of owned nodes, numGhosts is the number of locally tracked ghost nodes and num-
Chunks is the same value as the default number of Chunks used during an iteration of
dKaMinPar-LP.

7.1.3 Instances

For all our experiments, we compute the same number of 8 blocks. We do not expect
different values of k to make a difference in our comparison of the two algorithms, since
we only look at coarsening, during which different £ values only change the maximum
cluster weight. We perform strong and weak scaling experiments, scaling the number of
compute nodes up from 8 to 32 and finally 128 compute nodes with 32 processes each, i.e.,
on 256, 1028 and 4 096 processes.

We use the instances we previously used to evaluate ThreadedLP, which are described

in Section

7.2 Strong Scaling Experiments

We will first evaluate our strong scaling capabilities. As we can see in Figure and Fig-
ure the algorithm performs worse than dKaMinPar—-LP by factors of 2 to roughly
106 (e.g., enwiki-2013 on 32 compute nodes) when comparing the coarsening times, as
seen in Figure The total partitioning times are up to 80 times the control value. The
only exceptions for this are the rgg2d and rhg graphs on 128 compute nodes, which per-
form slightly better than dKaMinPar—LP. Note, that the twitter-2010 executions are not
included, since they did not finish during the time limit. We have observed that some very
skewed graphs take a lot longer by using our message queue approach. This may be caused
by the fact, that our message queue does not regulate the amount of messages received.
This means, that in some unfortunate cases, where multiple PEs send messages to one PE,
the incoming messages can overwhelm the receiving PE. The only graphs for which MOLP
seems to scale are the two aforementioned plus nlpkkt240. Against our expectations, we

42

7.3 Weak Scaling Experiments

Partitioning Time per Edge (Log Scale) Partitioning Time per Edge (Log Scale)
irregular graphs regular graphs
2 2
—e— arabic-2005 dKaMinPar-MQLP kronecker dkaMinPar-MQLP
n /;l_{ --m- arabic-2005 dKaMinPar 1“ kronecker dKaMinPar
5 —e— enwiki-2013 dKaMinPar-MQLP K —— nlpkkt240 dKaMinPar-MQLP
, / --m- enwiki-2013 dKaMinPar 2 --m- nlpkkt240 dKaMinPar
v —e— enwiki-2018 dKaMinPar-MQLP 100n —s— rgg2d dKaMinPar-MQLP
100n o/ eeBe wiki-2018 dKaMinPar

s --®- rgg2d dKaMinPar

e —e— rhg dKaMinPar-MQLP
i - - o 0 O S ---=-® - thg dKaMinPar

rmat dKaMinPar-MQLP

rmat dKaMinPar
= 5k-2005 dKaMinPar-MQLP
e]
e e R L 5k-2005 dKaMinPar

Partitioning Time per Edge [s]
Partitioning Time per Edge [s]
5

—e— webbase-2001 dKaMinPar-MQLP
--m- webbase-2001 dKaMinPar

78 %000 2 3 4 34 5 6 7890

Number of Cores Number of Cores

Figure 7.1: Strong scaling experiments’ partitioning times per edge for the irregular graphs
(left) and the regular graphs (right) over the number of cores; MQLP (solid line),
dKaMinPar-LP (dotted line)

also see worse cuts for most of the instances, as seen in Figure However, with the ex-
ception of rhg, and rgg2d, where we compute the same cuts, most instances generate better
cuts during coarsening, which get worse after the initial partitioning step or after uncoarsen-
ing, due to our clusterings being less balanced than those computed by dKaMinPar—LP.
While dKaMinPar—-LP computes initial partitions with imbalances of only around 0.03,
we generate imbalances of 0.3 (sk-2005), 0.38 (enwiki-2018), 0.39(enwiki-2013), 0.45
(webbase-2001), 0.75 (kronecker) and 0.78 (rmat). In fact, while only a few graphs keep
the size-constraint (namely rgg2d, rhg and nlpkkt240, with imbalances of 0.27 to 0.29),
for most instances we compute clusterings violating the size-constraint by reaching cluster
weights of up to 26 * W (rmat on 128 compute nodes). Figure shows a few instances
illustrating this.

7.3 Weak Scaling Experiments

We will take a look at how our algorithm performs when scaling the size of the graph up
proportionally to the number of compute nodes, i.e., each processor core has roughly the
same number of nodes and edges for each execution mode.

Figure show the graphs’ throughputs relating to the coarsening times, plotted over the
number of cores used. The data for the kronecker graph and the rmat graph instances on
128 compute nodes are missing because they did not finish before the time limit of 20
minutes. But the drop in throughput from 8 compute nodes to 32 compute nodes already
shows that the algorithm does not scale at all for these graphs. The rgg2d and rhg graph
instances scale similarly to the dKaMinPar—LP algorithm. We can also see that the over-
all performance of MOLP is worse than that of dkaMinPar—LP for all graphs, as seen in
Figure For the kronecker graph, MQLP reaches times that are 55 times the time needed

43

7 Experimental Evaluation of Message Queue LP

Coarsening Times per Edge (Log Scale) Coarsening Times per Edge (Log Scale)
irregular graphs regular graphs

—e— arabic-2005 dKaMinPar-MQLP kronecker dKaMinPar-MQLP

2
1p
1 A --m- arabic-2005 dKaMinPar s kronecker dKaMinPar

s —e— enwiki-2013 dKaMinPar-MQLP i —e— nipkkt240 dKaMinPar-MQLP

, --m- enwiki-2013 dKaMinPar 100 ~-m-- nipkkt240 dKaMinPar
1o —e— enwiki-2018 dKaMinPar-MQLP n —e— rgg2d dKaMinPar-MQLP

n s

2018 dKaMinPar --®- rgg2d dKaMinPar

—e— rhg dKaMinPar-MQLP
--m- rthg dKaMinPar
rmat dKaMinPar-MQLP
rmat dKaMinPar
sk-2005 dKaMinPar-MQLP
k-2005 dKaMinPar
—e— webbase-2001 dKaMinPar-MQLP
--m- webbase-2001 dKaMinPar

Coarsening Time per Edge [s]
Coarsening Time per Edge [s]
»

[

if

100p 789 2 3 e 3 4 s 6789
1000 1000

Number of Cores Number of Cores

Figure 7.2: Strong scaling experiments’ coarsening times per edge for the irregular graphs
(left) and the regular graphs (right) over the number of cores; MQLP (solid line),
dKaMinPar-LP (dotted line)

by dKaMinPar-LP. As we can see in Figure the computed cuts are pretty much the
same as the cuts computed by dKaMinPar-LP. Again, the reason why there are missing
points for the kronecker and rmat graphs is that their experiments on 128 compute nodes
did not terminate before the time limit was reached. Taking a closer look at the top two
plots and the bottom-left plot in Figure we can see, that the cuts computed during the
coarsening phase are lower than the cuts computed by dKkaMinPar-LP for the kronecker
and rmat graphs. This time, we do not see the cuts getting significantly worse at the end,
even though we violate the size-constraint by up to 42 * W (kronecker) in this case. The
rgg2d and rhg instances produce the same cuts as dKkaMinPar-LP.

7.4 lterations

A possible improvement for the MQLP algorithm is the use of the active set strategy, by
performing the first iteration of the label propagation for each node and then performing
asynchronous computation, by considering active nodes sequentially. An active node looks
at the labels of its neighbors and computes its new label. After changing the label, the
node communicates the change if necessary (if it is adjacent to a ghost node) and becomes
inactive. Neighbors of that node get activated, if the node changed its label. This will
be repeated until a termination condition is fulfilled. Now to investigate, whether this
approach could yield an algorithm, which is an improvement to dKkaMinPar—-LP, we will
check how the MQLP algorithm performs in the separate iterations. We will take a look at
the times taken for the MQLP algorithm to perform the first iteration in comparison to:

a) the other iterations

b) the time taken for dKkaMinPar-LP to perform all three iterations

44

7.4 Iterations

Coarsening Time Ratio Relative to dKaMinPar

irregular graphs

—e— arabic-2005 dKaMinPar-MQLP
—e— enwiki-2013 dKaMinPar-MQLP
—e— enwiki-2018 dKaMinPar-MQLP
—e— rhg dKaMinPar-MQLP

rmat dKaMinPar-MQLP

sk-2005 dKaMinPar-MQLP
—e— webbase-2001 dKaMinPar-MQLP

Coarsening Time Ratio Relative to dKaMinPar
regular graphs

kronecker dKaMinPar-MQLP
—e— nipkkt240 dKaMinPar-MQLP
—e— rgg2d dKaMinPar-MQLP

Coarsening Time Ratio
Coarsening Time Ratio

HEER e I

0 1000

2000 3000 4000 0 2000 3000

Number of Cores Number of Cores

Figure 7.3: Strong scaling experiments’ coarsening time ratios relative to dKaMinPar-LP for the
irregular graphs (left) and the regular graphs (right) over the number of cores; MQLP
(solid line), dKaMinPar-LP (dotted line)

Edge Cut Ratio Relative to dKaMinPar

irregular graphs

Edge Cut Ratio Relative to dKaMinPar

regular graphs

2.2 —e— arabic-2005 dKaMinPar-MQLP 1.025 1. kronecker dKaMinPar-MQLP
—e— enwiki-2013 dKaMinPar-MQLP —e— nlpkkt240 dKaMinPar-MQLP
2 —e— enwiki-2018 dKaMinPar-MQLP —e— rgg2d dKaMinPar-MQLP
—e— rhg dKaMinPar-MQLP 1.02
rmat dKaMinPar-MQLP
o 18 sk-2005 dKaMinPar-MQLP o 1015
T —e— webbase-2001 dKaMinPar-MQLP s
2 . &
5 16 =1
o} [S
o v
= g /
3 14 bt /
1.005 /
I
12 /
1 A
1 i
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Number of Cores

Number of Cores

Figure 7.4: Ratio between the final cuts relative to dKaMinPar-LP for the irregular graphs (left)
and the regular graphs (right); MQLP (solid line), dKaMinPar-LP (dotted line)

a) MQLP’s First Iteration vs Following Iteratations

In Figure we see the combined iteration times for each instance. The numbers plot-
ted are the sums of the runtimes of the first iteration of each level [, i.e., Aty =
> Atiterationo, and the sums of the runtimes of the second and third iteration of each
level, i.e., Atrest =D Atieration1 T Aliteration2. We can see, that the times for the second
and third iterations are roughly 0.5 to 2 times as high as the first iteration depending on the
graph. This means, that an optimized algorithm, that would replace the second and third
iteration of MQLP, could in theory reach a speedup of 3 compared to MQLP. Obviously, this
speedup is not possible by only optimizing the second and third iteration.

45

7 Experimental Evaluation of Message Queue LP

chchch

Figure 7.5: The cuts after each level and the initial partition as well as the final cut for the enwiki-
2013-128 (left), nlpkkt240-128 (middle) and sk-2005-128 (right) instances; MQLP
(blue line), dKaMinPar-LP (red line)

b) MQLP’s First Iteration vs dKaMinPar-LP’s Full Clustering

For each instance, Figure[7.10| visualizes the time taken for the first iterations of each level
of MQLP in comparison to the time taken by dKkaMinPar—LP in order to compute the
whole clustering. As we can see, that for most instances the first iteration actually already
performs worse than all iterations of dKkaMinPar-LP combined. Exceptions to this are
the rgg2d and rhg graphs in the strong scaling experiments, which perform increasingly
better by the number of cores used. They start out displaying roughy the same times as their
counterparts and scale to taking roughly half of the time. This means, that an algorithm
optimizing only the second and third iteration could yield a better performing algorithm
for the rgg2d and rhg graphs. For the other instances, we would have to improve the first
iteration as well.

46

7.4 Iterations

Edges per Second of Coarsening Time (Log Scale) per Edge
all graphs.

—e— kronecker dKaMinPar-MQLP
--®- kronecker dKaMinPar

108 —e— rgg2d dKaMinPar-MQLP
: --m- rgg2d dkaMinPar
2 —e— rhg dKaMinPar-MQLP
H "
-
] 18 thg dKaMinPar
g] rmat dKaMinPar-MQLP
g % rmat dKaMinPar
b
S 100M
Py
] + BN I I) ¥
=} [S —
fii ——
10M
s
2
Y \

Number of Cores

Figure 7.6: Weak scaling experiments’ edges Figure 7.7: Weak scaling

per second of coarsening time
(throughput) for all graphs over
the number of cores; MQLP (solid
line), dKaMinPar-LP (dotted line);
the graphs are scaled so that, that
the number of nodes and edges per
core is kept relatively constant

Post Level Cuts (Log Scale)
kronecker: Number of Nodes = 32

125m

1200

1151

S o

1054

1001

Level

Edge Cut Ratio

Coarsening Time Ratio Relative to dKaMinPar

all graphs
—e— kronecker dKaMinPar-MQLP
—e— rgg2d dKaMinPar-MQLP
50 —e— thg dKaMinPar-MQLP
rmat dKaMinPar-MQLP
°
2 40
2
P
E
F 30
o
£
c
S
9 20
5
3
o
10
0
o 1000 2000 3000 4000

Number of Cores

experiments’ ratio
of coarsening times relative to
dKaMinPar-LP for all graphs over
the number of cores; MQLP (solid
line), dKaMinPar-LP (dotted line);
the graphs are scaled so that, that
the number of nodes and edges per
core is kept relatively constant

Post Level Cuts (Log Scale)
rmat; Namber of Nodes = 32

—— dKaMinParMLP
125 —=— dKaMinPar
120M
115
10m

osm

/

1000 2000 3000 4000

Number of Cores

Figure 7.8: The cuts after each level and the initial partition as well as the final cut for
the kronecker-32 (top-left), rmat-32 (top-right) and rhg-128 (bottom-left) instances;
MQLP (blue line), dKaMinPar-LP (red line); the plot on the bottom-right shows the
cuts of all graphs over the number of cores; MQLP (solid line), dKaMinPar-LP (dotted
line); the points for 128 compute nodes of the kronecker and rmat graph are missing,
since they did not finish before the time limit

47

7 Experimental Evaluation of Message Queue LP

Iterations of MQLP (Log Scale)

irregular graphs

Time Taken for Iteration [s]

56 7 89,00

Iteration

—=— arabic-2005 Iteration 0
--#- arabic-2005 Rest
—8— enwiki-2013 lteration 0
--- enwiki-2013 Rest
—s— enwiki-2018 Iteration 0
--&- enwiki-2018 Rest
—=— rhg lteration 0
--- rhg Rest
rmat Iteration O
rmat Rest
5k-2005 Iteration 0
sk-2005 Rest
—s— webbase-2001 Iteration 0
--- webbase-2001 Rest

Iterations of MQLP (Log Scale)

all graphs

Time Taken for Iteration [s]

Iterations of MQLP (Log Scale)

regular graphs

Time Taken for Iteration [s]

Number of Cores

506078900

Iteration

—=— kronecker Iteration 0
--#- kronecker Rest
—=— rgg2d Iteration 0
--&- rgg2d Rest
—8— rhg Iteration 0
--#- thg Rest
rmat Iteration 0
rmat Rest

kronecker Iteration 0
kronecker Rest

—8— nipkkt240 Iteration 0
--#- nipkkt240 Rest
—8— rgg2d lteration 0

+- rgg2d Rest

Figure 7.9: Iteration times for MQLP of strong scaling irregular instances (left), regular instances
(right) and weak scaling instances (bottom) for all graphs over the number of cores;
first iteration (solid line), 2nd + 3rd iteration (dotted line)

Time Taken [s]

First Iteration of MQLP vs All 3 Iterations of dKaMinPar (Log Scale)

irregular graphs

56 7 89000

Number of Cores

Time Taken [s]

—e— arabic-2005 MQLP
--#- arabic-2005 dKaMinPar
—+— enwiki-2013 MQLP
--#- enwiki-2013 dKaMinPar
—e— enwiki-2018 MQLP
--#- enwiki-2018 dKaMinPar
—e— thg MQLP
--#- rhg dKaMinPar

rmat MQLP

rmat dKaMinPar

sk-2005 MQLP

sk-2005 dKaMinPar
—— webbase-2001 MQLP
--#- webbase-2001 dKaMinPar

Time Taken [s]

First Iteration of MQLP vs All 3 Iterations of dKaMinPar (Log Scale)

regular graphs

3

4

560789000

Number of Cores

First Iteration of MQLP vs All 3 Iterations of dKaMinPar (Log Scale)

all graphs

o

Now s o

—

oW os o

PEET, Je

3 4 5 6 7809

1000

Number of Cores

—e— kronecker MQLP
--- kronecker dKaMinPar
—e— rgg2d MQLP
--&- rgg2d dKaMinPar
—e— thg MQLP
--&- rhg dKaMinPar

rmat MQLP

rmat dKaMinPar

kronecker MQLP
kronecker dKaMinPar
—+— nipkkt240 MQLP
--#- nipkkt240 dKaMinPar
—+— rgg2d MQLP
--+- rgg2d dKaMinPar

Figure 7.10: Tteration times of strong scaling irregular instances (left), regular instances (right)
and weak scaling instances (bottom) for all graphs over the number of cores; MQLP’s

48

first iteration (solid line), all iteration of dKaMinPar-LP (dotted line)

8 Conclusion

Increasingly large graphs lead to the need of more scalable graph partitioners, that are able
to process them. One approach to doing this is through the concept of multilevel graph
partitioners. In the case of graphs that do not fit into the memory of a single machine,
distributed multilevel graph partitioners become essential. We attempted to improve upon
the performance of the commonly used label propagation algorithm. We designed and
evaluated two approaches that perform the computation of labels asynchronously to the
communication of new labels to the neighboring PEs.

Our first algorithm, called ThreadedLP, tries to do this by spawning an extra thread that
progresses the computation, while the main thread communicates previously computed la-
bels. It achieves similar quality and performance to dKkaMinPar-LP and shows improved
strong scalability on a very skewed graph (twitter-2010).

Our second algorithm, called MOLP, makes use of a message-queue framework, that en-
capsulates the MPI communication. The message queue is used to aggregate messages
and overlap communication and computation through the message queue’s internal use
of non-blocking MPI operations. As we expected, we manage to compute more sparse
clusterings during the coarsening phase. However we do not achieve this through more
frequent updates and better label assignments, but rather due to the much worse approx-
imation of the size-constraint, leading to highly imbalanced clusterings. The computed
imbalance leads to higher cuts in the initial partition or in the final partition. In extreme
cases, the algorithm also records coarsening times of up to roughly 100 times the amount
taken by dKkaMinPar-LP. For this algorithm, we only see weak and strong scalability for
the rgg2d and rhg graphs and strong scalability for the nlpkkt240 graph.

8.1 Future Work

We could probably improve the performance of ThreadedLP even further, by also asyn-
chronizing the communication in the cluster weight handling procedure. Also, the structure
of the algorithm suggests, that concurrently processing the handling of labels and cluster
weights should be possible, especially since the two procedures do not access the same
chunks simultaneously.

Regarding MQLP, we may be able to improve its quality by using only one message queue
and encoding the weight messages and label messages accordingly. By doing so, the weight
messages should be "closer" to the event that caused their communication. A nice sideef-

49

8 Conclusion

fect is, that such a message queue only uses one global threshold instead of two. This
means, that the weight and label messages get aggregated together and the messages can
be sent more quickly without deteriorating the quality. For example, assuming two scenar-
ios in which 20 weight messages and 20 label messages get posted in turns and an efficient
threshold is 10. Now in the first scenario, we use two message queues with that efficient
threshold, one for the label messages and one for the weight messages. The number of
messages that need to be posted until a message queue communicates for the first time, is
19. The next message queue would start sending immediately after posting one more mes-
sage, which also inefficiently makes use of the available bandwidth. Opposed to that, using
only one message queue for both types of messages would always send in intervals of 10
messages and the first time messages get sent is also at an earlier time stamp. Combining
this with the previously mentioned idea of using the active set strategy during the label
propagation phase, might be able to produce a competitive algorithm. On a different note,
using an indirection scheme that takes the distribution of the PEs to the different compute
nodes into consideration, i.e., favouring communication between PEs on the same compute
node and reducing the amount of communication between compute nodes, might increase
the performance as well.

50

A Additional Plots for MQLP

Edges per Second of Partitioning Time per Edge (Log Scale)
all graphs

—e— kronecker dKaMinPar-MQLP
--m-- kronecker dKaMinPar
—e— rgg2d dKaMinPar-MQLP
--#- rgg2d dKaMinPar

—e— rhg dKaMinPar-MQLP

E - rhg dkaMinPar
2 rmat dkaMinPar-MQLP
o 7 rmat dKaMinPar
g 100m
u 5
8
g 2) SSUUS S — b
2
oM =

3 4 5 67809 2 3 4
1000

Number of Cores

Figure A.1: Weak scaling experiments’ edges per second of partitioning time (throughput) for
all graphs over the number of cores; MQLP (solid line), dKaMinPar (dotted line); the
graphs are scaled so that, that the number of nodes and edges per core is kept relatively
constant

Post Level Cuts (Log Scale) Post Level Cuts (Log Scale)
arabic-2005; Number of Nodes = 128 enwiki-2018; Number of Nodes = 128

2 —e— dKaMinPar-MQLP 8oM —e— dKaMinPar-MQLP
5 —=— dKaMinPar 75M —=— dKaMinPar

4 70M

3

65M

Current Cut
Current Cut

Level 1 Level 2 Level 3 Initial Partititon Final Cut Level 1 Level 2 Initial Partititon Final Cut

Level Level

Figure A.2: The cuts after each level and the initial partition as well as the final cut for the arabic-
2005-128 instance (left) and enwiki-2018-128 instance (right); MQLP (blue line),
dKaMinPar (red line)

51

A Additional Plots for MQLP

Post Level Cuts (Log Scale)

kronecker; Number of Nodes = 128

—e— dKaMinPar-MQLP
—s— dKaMinPar

Current Cut

Level 1 Level 2 Initial Partititon Final Cut

Level

Figure A.3: The cuts after each level and the
kronecker-128 instance (left) and
dKaMinPar (red line)

Post Level Cuts (Log Scale)
rhg; Number of Nodes = 128

s
—e— dKaMinPar-MQLP
—=— dKaMinPar

2
100M

2
10M
5

2
M

Current Cut

2
100k
5

2
10k

5
Level 1 Level 2

Level 3 Level 4 Initial Partititon Final Cut

Level

Post Level Cuts (Log Scale)
rgg2d; Number of Nodes = 128

—e— dKaMinPar-MQLP
s —=#— dKaMinPar

Current Cut

2
Level 1 Level 2 Level 3 Initial Partititon Final Cut

Level

initial partition as well as the final cut for the
rgg2d-128 instance (right); MQLP (blue line),

Post Level Cuts (Log Scale)
rmat; Number of Nodes = 128

—e— dKaMinPar-MQLP
—=— dKaMinPar

Current Cut

12.5M

Level 1 Level 2 Level 3 Initial Partititon ~ Final Cut

Level

Figure A.4: The cuts after each level and the initial partition as well as the final cut for the rhg-128
instance (left) and rmat-128 instance (right); MQLP (blue line), dKaMinPar (red line)

Post Level Cuts (Log Scale)
webbase-2001; Number of Nodes = 128

100M

Current Cut

—e— dKaMinPar-MQLP
—=— dKaMinPar

Figure A.5: The cuts after each level and the initial partition as well as the final cut for the
webbase-2001-128 instance; MQLP (blue line), dKaMinPar (red line)

52

Bibliography

[1] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Engineer-
ing a direct k-way Hypergraph Partitioning Algorithm, pages 28—42. Society for
Industrial and Applied Mathematics, 2017.

[2] Charles-Edmond Bichot and Patrick Siarry. Graph partitioning. John Wiley & Sons,
2013.

[3] Aydin Bulug, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
Recent advances in graph partitioning. Springer, 2016.

[4] Umit Catalyiirek, Karen Devine, Marcelo Faraj, Lars Gottesbiiren, Tobias Heuer,
Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel
Seemaier, et al. More recent advances in (hyper) graph partitioning. ACM Computing
Surveys, 55(12):1-38, 2023.

[5] Cédric Chevalier and Francois Pellegrini. Pt-scotch: A tool for efficient parallel graph
ordering. Parallel computing, 34(6-8):318-331, 2008.

[6] Timothy A Davis, William W Hager, Scott P Kolodziej, and S Nuri Yeralan. Algo-
rithm 1003: Mongoose, a graph coarsening and partitioning library. ACM Transac-
tions on Mathematical Software (TOMS), 46(1):1-18, 2020.

[7] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and
Moritz von Looz. Communication-free massively distributed graph generation. In
2018 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2018, Vancouver, BC, Canada, May 21 — May 25, 2018, 2018.

[8] Michael S Gilbert, Seher Acer, Erik G Boman, Kamesh Madduri, and Sivasankaran
Rajamanickam. Performance-portable graph coarsening for efficient multilevel graph
analysis. In 2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 213-222. IEEE, 2021.

[9] Lars Gottesbiiren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Scalable
shared-memory hypergraph partitioning. In 2021 Proceedings of the Workshop on
Algorithm Engineering and Experiments (ALENEX), pages 16-30. SIAM, 2021.

[10] Lars Gottesbiiren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel
Seemaier. Deep Multilevel Graph Partitioning. In Petra Mutzel, Rasmus Pagh, and
Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms (ESA
2021), volume 204 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 48:1-48:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik.

53

Bibliography

[11] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. Engineering a scalable high
quality graph partitioner. In 2010 IEEE International Symposium on Parallel & Dis-
tributed Processing (IPDPS), pages 1-12. IEEE, 2010.

[12] Lorenz Hiibschle-Schneider and Peter Sanders. Linear work generation of R-MAT
graphs. Network Science, 8(4):543 — 550, 2020.

[13] Plotly Technologies Inc. Collaborative data science, 2015.

[14] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359-392,
1998.

[15] Tobias Maier, Peter Sanders, and Roman Dementiev. Concurrent hash tables: Fast and
general (?)! ACM Transactions on Parallel Computing (TOPC), 5(4):1-32, 2019.

[16] Nikolai Merkel, Daniel Stoll, Ruben Mayer, and Hans-Arno Jacobsen. An experimen-
tal comparison of partitioning strategies for distributed graph neural network training.
arXiv preprint arXiv:2308.15602, 2023.

[17] Henning Meyerhenke, Peter Sanders, and Christian Schulz. Partitioning complex net-
works via size-constrained clustering. In International Symposium on Experimental
Algorithms, pages 351-363. Springer, 2014.

[18] Henning Meyerhenke, Peter Sanders, and Christian Schulz. Parallel graph partition-
ing for complex networks. IEEE Transactions on Parallel and Distributed Systems,
28(9):2625-2638, 2017.

[19] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time al-
gorithm to detect community structures in large-scale networks. Physical review E,

76(3):036106, 2007.

[20] Ilya Safro, Peter Sanders, and Christian Schulz. Advanced coarsening schemes for
graph partitioning. Journal of Experimental Algorithmics (JEA), 19:1-24, 2015.

[21] Peter Sanders and Daniel Seemaier. Distributed deep multilevel graph partitioning.
arXiv preprint arXiv:2303.01417, 2023.

[22] Peter Sanders and Tim Niklas Uhl. Engineering a distributed-memory triangle count-
ing algorithm. In /EEE International Parallel and Distributed Processing Symposium,
IPDPS 2023, St. Petersburg, FL, USA, May 15-19, 2023, pages 702-712. IEEE, 2023.

[23] George M Slota, Cameron Root, Karen Devine, Kamesh Madduri, and Sivasankaran
Rajamanickam. Scalable, multi-constraint, complex-objective graph partitioning.
IEEE Transactions on Parallel and Distributed Systems, 31(12):2789-2801, 2020.

[24] Christian L Staudt and Henning Meyerhenke. Engineering parallel algorithms for
community detection in massive networks. IEEE Transactions on Parallel and Dis-
tributed Systems, 27(1):171-184, 2015.

[25] Trevor Steil, Tahsin Reza, Keita Iwabuchi, Benjamin W. Priest, Geoffrey Sanders,
and Roger Pearce. Tripoll: Computing surveys of triangles in massive-scale temporal
graphs with metadata, 2021.

54

Bibliography

[26]

Trevor Steil, Tahsin Reza, Benjamin Priest, and Roger Pearce. Embracing irregular
parallelism in hpc with ygm. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC *23, New York, NY,
USA, 2023. Association for Computing Machinery.

Tim Niklas Uhl. Enabling scalability through asynchronous messaging and aggrega-
tion. unpublished manuscript by Tim Niklas Uhl, Karlsruhe Institute of Technology,
uhl@kit.edu.

Chris Walshaw and Mark Cross. Jostle: parallel multilevel graph-partitioning
software—an overview. Mesh partitioning techniques and domain decomposition tech-
niques, 10:27-58, 2007.

55

	Abstract
	Introduction
	Structure of Thesis

	Fundamentals
	General Definitions
	Machine Model and Input Format
	Collective MPI Operations

	Related Work
	Multilevel Graph Partitioning
	Coarsening
	Initial Partitioning
	Uncoarsening

	Distributed Multilevel Graph Partitioning
	Distributed Deep-Multilevel Graph Partitioning
	Streaming Graph Partitioning
	ParHIP
	dKaMinPar
	Message Queue
	Applications

	Label Propagation Clustering Using Threading
	Overview
	Implementation

	Experimental Evaluation of Threaded LP
	Experimental Setup
	Environment
	Instances

	Strong Scaling Experiments
	Weak Scaling Experiments

	Message Queue Label Propagation Clustering
	Overview
	Implementation

	Experimental Evaluation of Message Queue LP
	Experimental Setup
	Environment
	Tuning Parameters
	Instances

	Strong Scaling Experiments
	Weak Scaling Experiments
	Iterations

	Conclusion
	Future Work

	Additional Plots for MQLP
	Bibliography

