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Abstract. In the analysis of DNA sequencing data for finding disease
causing mutations, to understand evolutionary relationships between
species, and to find variants, DNA-Reads are compared to a reference
genome. A reference genome is a representative example for a set of
genes of a species. Sorting these aligned DNA-Reads by their position
within the reference sequence is a crucial step in many of these down-
stream analyses. SAMtools sort, a widely used tool, performs exter-
nal memory sorting of aligned DNA-Reads stored in the BAM format
(Binary Alignment Map). This format allows for compressed storage of
alignment data. SAMtools sort provides the most comprehensive set of
features while exhibiting demonstrably faster execution times than its
open source alternatives. In this work, we analyze SAMtools sort for
sorting BAM files and propose methods to reduce its runtime. We divide
the analysis into three parts: management of temporary files, compres-
sion, and input/output (IO). For the management of temporary files,
we find that the maximum number of temporary files SAMtools sort

can open concurrently is lower than the maximum number of open files
permitted by the operating system. This results in an unnecessarily high
number of merges of temporary files into larger temporary files, introduc-
ing overhead as SAMtools sort performs extra write and compression
operations. To overcome this, we propose a dynamic limit for the num-
ber of temporary files, adapting to the operating system’s soft limit for
open files. For compression, we test seven different libraries for compat-
ible compression and a range of compression levels, identifying options
that offer faster compression and result in a speedup of up to five times
in single-threaded execution of SAMtools sort. For IO, we demonstrate
that a minimal level of compression avoids IO overhead, thereby reduc-
ing the runtime of SAMtools sort compared to uncompressed output.
However, we also show that uncompressed output can be used in the
pipelining of SAMtools commands to reduce the runtime of subsequent
SAMtools commands. Our proposed modifications to SAMtools sort

and user behavior have the potential to achieve speedups of up to 6.
This represents an important contribution to the field of bioinformatics,
considering the widespread adoption of SAMtools sort evidenced by its
over 5,000 citations and over 5.1 million downloads through Bioconda.
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Zusammenfassung. Bei der Analyse von DNA-Sequenzierungsdaten,
um krankheitsverursachende Mutationen zu finden, evolutionäre Bezie-
hungen zwischen Arten zu verstehen und Varianten zu identifizieren,
werden DNA-Reads mit einem Referenzgenom verglichen. Ein Referenz-
genom ist ein repräsentatives Beispiel für ein Set von Genen einer Spe-
zies. Das Sortieren dieser aligned DNA-Reads nach ihrer Position inner-
halb der Referenzsequenz ist ein entscheidender Schritt in vielen die-
ser nachgelagerten Analysen. SAMtools sort, ein weit verbreitetes Tool,
führt das externe Speichersortieren von aligned DNA-Reads durch, die
im BAM-Format (Binary Alignment Map) gespeichert sind. Dieses For-
mat ermöglicht die komprimierte Speicherung von Ausrichtungsdaten.
SAMtools sort bietet das umfassendste Set an Funktionen und weist
nachweislich schnellere Ausführungszeiten auf als seine Open-Source-
Alternativen. In dieser Arbeit analysieren wir SAMtools sort zum Sor-
tieren von BAM-Dateien und schlagen Methoden zur Reduzierung der
Laufzeit vor. Wir unterteilen die Analyse in drei Teile: Verwaltung von
Zwischendateien, Komprimierung und Eingabe/Ausgabe (IO). Für die
Verwaltung von Zwischendateien stellen wir fest, dass die maximale An-
zahl Zwischendateien, die SAMtools sort gleichzeitig öffnen kann, gerin-
ger ist als die maximale Anzahl offener Dateien, die vom Betriebssystem
zugelassen wird. Dies führt zu einer unnötig hohen Anzahl von Mer-
ges von Zwischendateien zu größeren Zwischendateien, was zusätzlichen
Aufwand bedeutet, da SAMtools sort zusätzliche Schreib- und Kom-
primierungsvorgänge durchführt. Um dies zu überwinden, schlagen wir
ein dynamisches Limit für die Anzahl von Zwischendateien vor, das sich
an das soft-limit des Betriebssystems für offene Dateien anpasst. Für
die Komprimierung testen wir sieben verschiedene kompatible Libraries
und eine Reihe von Komprimierungsstufen (Level), um Möglichkeiten zu
identifizieren, die schnellere Komprimierung bieten und zu einer bis zu
fünfmal schnelleren Ausführung von SAMtools sort im Single-Thread-
Betrieb führen. Für die Ein- und Ausgabe zeigen wir, dass ein mini-
males Komprimierungsniveau IO-Overhead vermeidet und dadurch die
Laufzeit von SAMtools sort im Vergleich zu unkomprimiertem Out-
put reduziert. Wir zeigen jedoch auch, dass unkomprimierter Output
im Pipelining von SAMtools-Befehlen verwendet werden kann, um die
Laufzeit aufeinanderfolgender SAMtools-Befehle zu reduzieren. Unsere
vorgeschlagenen Änderungen an SAMtools sort und dem Benutzerver-
halten haben das Potenzial, Speedups von bis zu 6 zu erreichen. Dies
stellt einen wichtigen Beitrag im Bereich der Bioinformatik dar, ange-
sichts der weit verbreiteten Verwendung von SAMtools sort, die durch
über 5.000 Zitate und über 5,1 Millionen Downloads über Bioconda be-
legt wird.
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1 Introduction

1.1 Motivation

Analysis of aligned DNA-Read data is a crucial part of modern bioinformatics,
with applications for scientific [25,35,39] and medical [36,22,54] purposes. DNA-
Reads are short (typically 250–800 bases long) sequences of DNA bases encoding
genetic information. They are aligned to a reference sequence, which serves as a
standard DNA or RNA sequence for comparison within a species. The alignment
can be used to find variants [47,44,15], disease causing mutations [41,30,34] and
understand evolutionary relationships between species [40,46,20]. In order to
analyze specific parts of a genome, e.g., a single chromosome, DNA-Reads are
sorted. This also improves the performance of many other downstream analysis
tasks and algorithms [43,37], e.g., finding and removing duplicate reads [23,6].

To address the vast amounts of data (ranging from less than 10GB up to
terabytes per sequencing run) generated by modern DNA sequencing machines,
highly efficient tools and data formats are needed. Developed during the 1000
Genome Project [50], the SAM and BAM formats have found widespread use
for storing alignment information to DNA sequences. Developed alongside these
formats, SAMtools became a standard tool for manipulating SAM and BAM
files. Beyond its collection of 38 commands for filtering, merging of aligned DNA-
Read files and various other tasks, SAMtools provides the SAMtools sort utility
to reorder the DNA sequences stored in DNA-Read files such as SAM and BAM
files.

We aim to optimize the computational cost and processing time of the SAM-
tools sort command for sorting DNA-Reads in BAM files. BAM is a file format
capable of storing alignment information to DNA sequences in a binary and com-
pressed form. Given the substantial storage requirements (uncompressed BAM
approximately 400GB per genome [7]) of DNA data, the BAM file format incor-
porates compression to minimize storage costs, optimize storage capacity, and
facilitate faster network transfer.

SAMtools sort sorts DNA-Read files by various sorting criteria, with the
default order sorting aligned DNA-Reads by the ID of the reference sequence
to which the DNA-Read is mapped, followed by the position of the mapping on
this reference sequence. This enables fast random access to specific regions of
interest via index files.

BAM files are compressed with BGZF, a compression method allowing to
access the content of the file in blocks without the necessity of decompressing all
preceding blocks of the file. The compression format internally uses the popular
zlib compression library for GZIP compression. Zlib is open source and used
extensively in a wide array of applications (e.g., HTML-Compression). Thus,
competing libraries have been implemented, offering GZIP compatible compres-
sion with higher throughput and smaller resulting files.

In this thesis, we present three approaches to speed up the sorting of DNA-
Reads stored in BAM files utilizing SAMtools sort:
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SAMtools sort utilizes an external memory sorting algorithm. In situa-
tions with limited memory, it utilizes temporary files and merges them subse-
quently. As writing temporary files requires additional computation steps, such
as compression, writing temporary files is computationally demanding. Espe-
cially, merging temporary files into other temporary files invokes computational
overhead, as SAMtools sort reads and decompresses already written temporary
files and compresses and writes their content again. In this thesis, we investigate
the runtime implications of SAMtools sort writing and merging temporary files.
We propose parameter settings and changes in SAMtools sort’s merging strat-
egy, reducing the amount of merges and thus lowering the runtime of SAMtools
sort.

SAMtools sort dedicates a substantial amount of its runtime to compressing
temporary and output files. To maintain the advantages of compression but
reduce its impact on SAMtools sort’s total runtime, we examine various GZIP-
compatible compression libraries and the effects of different compression levels.

Finally, we assess the impacts of IO operations and limitations of IO devices
and propose recommendations to minimize or eliminate IO blocklenecks.

2 Prerequisites

2.1 SAMtools

SAMtools [24] is a collection of tools to work on alignment data, such as aligned
DNA-Reads. It relies on the co-developed HTSlib [19] for reading and writing
information files, namely SAM, BAM, and CRAM files. With SAMtools sort,
SAMtools offers functionality for sorting of aligned DNA-Read files, which is the
focus here. In addition, SAMtools offers functionality for different operations on
alignment data, such as format conversion, statistics, variant calling and many
more.

2.2 Aligned DNA-Reads

DNA-Reads are short (typically 250–800 nucleotides long [32]) sequences of nu-
cleotides, the fundamental building blocks of DNA. These nucleotides are de-
noted by their bases, adenine (A), guanine (G), cytosine (C), and thymine (T). A
DNA-Read can consist of multiple contiguous sequences.

Aligned DNA-Reads are DNA-Reads aligned to a reference sequence, which
serves as a standard DNA or RNA sequence for comparison within a species. The
alignment may include insertions, deletions, mismatches, and skipped parts of
the reference sequence. Additionally, a step called clipping excludes parts of the
sequenced fragment with low read qualities from the alignment to improve the
alignment of the remaining high-quality sequence with the reference sequence.
Also, changes in the direction of the alignment on the reference are possible. In
alignment files, changes in direction of the alignment lead to splitting up the
DNA-Read into multiple sequences, one for each contiguous part of the DNA-
Read aligned in the same direction.
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2.3 SAM and BAM files

A SAM (Sequence Alignment Map) file as specified by Li et al. [38] is used to store
the alignment of sequences against reference sequences. It consists of a header
section and an alignment section. The header section contains meta information
such as the format version or the sorting of the content and a dictionary of the
reference sequences, whereas the alignment section contains aligned segments
with alignment information and meta information such as the read quality. A
segment is a continuous sequence or subsequence of a raw DNA-Read. Aligned
DNA-Reads are possibly put into multiple records with different segments in the
alignment section, as single BAM records can not store changes in directions of
the alignment on the reference sequence.

The alignment information primarily includes the ID of the reference se-
quence to which the alignment is mapped, the position in the reference sequence
where the alignment starts, and detail on the alignment at this position (match,
mismatch, insertion, or deletion).

A BAM (Binary Alignment Map) file is the binary representation of a SAM
file. Compared to the SAM format, this format utilizes a 4-bit encoding for DNA
sequences, a 3-bit encoding for CIGAR symbols, and adopts a 0-based coordinate
system for positions. Furthermore, a BAM file is per default BGZF compressed.

2.4 The DEFLATE format and algorithm

The DEFLATE format [26] is a format specifying data compressed with a com-
bination of an LZ77 algorithm [55] and Huffman Coding [33]. Compressed data
is structured as a sequence of consecutive blocks. These blocks contain strings
and references to previous strings (matches). The references to previous strings
contain the distance to and the length of the matching part. The bytes of the
strings which are no matches to previous strings and the pointers, which consist
of distances and lengths, are compressed using Huffman coding. The trees repre-
senting the Huffman codes are Huffman coded as well. The DEFLATE algorithm
is an algorithm capable of producing an output stream in the DEFLATE format
given an input data stream.

2.5 GZIP and zlib

GZIP [27] is a container format for data compressed in the DEFLATE format.
A GZIP file consists of a series of members which consist of a header, a series
of compressed blocks, and a footer. The header contains meta information on
the compressed files (e.g., the file name and the modification time) and can
also contain extra fields which in the BGZF file format are used to identify a
member as part of a BGZF file and to store the length of the compressed member.
The compressed blocks contain the compressed data and the footer contains a
checksum and the size of the uncompressed content of the blocks modulo 232.

The c library zlib is an implementation of the DEFLATE algorithm. It can
produce output in GZIP, ZLIB, or raw DEFLATE format. The ZLIB format
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is a wrapper for DEFLATE similar to the GZIP format but with less header
information and another checksum algorithm (Adler32 instead of crc32).

2.6 BGZF Compression

The Blocked GNU Zip Format (BGZF) is a lossless compression method pro-
posed together with the BAM format. Widely used compression methods like
GZIP compress a file from the beginning to the end in one piece. This has
the advantage of allowing matching segments of the file to be located over a
greater range. Thus, the compression method is able to reduce the file size more
effectively, as repeated sequences can be identified throughout the entire file.
However, to decompress such a compressed file, it also must be read from the
beginning and, depending on the compression method, decompressed at least
until the point of interest.

Given that not all regions of large alignment data files are relevant for every
analysis, random access is required for efficient analysis of specific data subsets.
To achieve this, BGZF utilizes GZIP [27] to compress large files into blocks of
less than 64KB size (compressed and uncompressed). GZIP uses the DEFLATE
algorithm [26] to compress these individual blocks, which it then subsequently
concatenates. Thus, fast random access using index files is possible. In an index
file, the position of a piece of information is stored as a 64 bit integer. This index
is divided into a 48 bit block index and a 16 bit offset in the respective block.

The BGZF format leverages compatibility with GZIP, enabling any standard
GZIP decompression tool to handle BGZF-compressed files. This compatibil-
ity stems from BGZF exploiting GZIP’s ability to combine multiple compressed
blocks into a single file. Given that GZIP is highly prevalent as a compres-
sion technique, there are numerous compatible compression and decompression
libraries for all platforms. Thus, employing the open-source GZIP internally
simplifies the development of other legacy tools working with BGZF-compatible
compression.

Like GZIP, BGZF supports compression levels ranging from 1 (fastest but
largest file size) to 9 (slowest but smallest file size) analogously to the compres-
sion levels used for the underlying GZIP compression. We show details on the
resulting files sizes and throughput differences between the compression levels
in Section 6.3.
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3 Related Work

3.1 Sorting Tools for aligned DNA-Read Files

SAMtools is the most commonly used tool for manipulating SAM and BAM files,
which store information on aligned DNA-Reads. With over 5.1 Million downloads
(05.2024), it is the most downloaded package from the Bioconda [51] channel,
which is a common source for bioinformatic tools in the package and depen-
dency manager Conda. However, there are some alternatives for sorting aligned
DNA-Read files, such as Sambamba [48], Picard [8] and NovoSort [4]. Picard,
written in Java, provides a simpler interface for sorting SAM and BAM files, but
its functions are limited compared to SAMtools sort, and it does not prioritize
efficiency. NovoSort is a commercial program and, therefore, we could not test it.
Sambamba, written in the D programming language [14], aims to provide a sub-
set of SAMtools functionality, including sort, but with greater efficiency through
higher parallelization. With SAMtools introducing parallelism in version 1.4 in
2017, the advantage Sambamba had over SAMtools diminished. For sorting, we
report SAMtools 1.19 to be 3 times faster than Sambamba 1.0.0 for small files
(2.3GiB), both utilizing a total of 16 threads and 48GiB of memory. For larger
files, the speedup of SAMtools sort compared to Sambamba sort increases to
up to 5 at the largest input file we tested (215GiB). A comparison of the runtime
of SAMtools sort and Sambamba sort on different input file sizes is shown in
Figure 1.

3.2 Alternative Compression Methods and File Formats

Compression using BGZF, which is part of the specification of BAM files, utilizes
GZIP. As a general purpose compression method, GZIP is not specialized in
compressing DNA data. Hence, a variety of compression algorithms have been
developed specifically for DNA data [31]. These algorithms aim to minimize
the resulting file size, compression speed, memory usage during compression
or decompression, or the decompression speed, but typically focus primarily
on minimizing the resulting file size. Compression algorithms are divided in
reference-based and reference-free methods.

Reference-based algorithms utilize the reference sequence a DNA-Read is
aligned to for compression. By storing only differences between each DNA-Read
and the reference sequence, they archive better compression than reference-free
methods. NGC [45] exemplifies this approach. It leverages reference sequences
for compression and further enhances efficiency by splitting data types within a
BAM file, like sequences, sequence names, and read qualities, into separate blocks
for independent compression. Other algorithms and data formats like Goby [21],
DeeZ [29], and CRAM [28] are also reference-based, but keep the advantage
of enabling random access through index files. CRAM (Compressed Reference-
oriented Alignment Map) is also built into HTSlib, the library SAMtools utilizes
for file operations and the user can choose to use it as output for SAMtools
sort. NGC, Goby and CRAM also offer lossy compression. Lossy compression
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Fig. 1. Runtime of Sambamba and SAMtools for sorting BAM files of different sizes.
Both tools are default installations via Bioconda and utilize a total of 16 threads and
48GiB of memory. Data points represent median values across three replicate runs.
Error bars depict the minimum and maximum values observed in these runs.

primarily targets meta information, including read qualities. Read qualities may
not be crucial for every analysis and are independent of the reference sequence,
making them less compressible. Thus, lossy compression of read qualities offers
substantial storage savings.

Although reference-based compression methods for SAM files are still actively
developed [16], they lack interoperability, as these compression methods are not
widely used. An exception to this is CRAM, which is supported by HTSlib.
Although CRAM files offer several advantages over BAM files, including better
compression, BAM files remain more popular due to their wider support among
software tools.

Reference-free compression methods like BGZF, which per specification BAM
files are compressed with, do not require the reference sequence for compression
and decompression, making them more flexible, as e.g., no reference is required
for sorting. Furthermore, reference-based compression methods often necessitate
sorted DNA-Reads, making them inapplicable to inputs for SAMtools sort and
outputs sorted by read names or other criteria. However, the only commonly
used reference-free compression method is the BAM format, which uses binary
encoding for the bases a DNA sequence consists of and BGZF compression.

In summary, the BAM file format employing BGZF compression, which inter-
nally utilizes GZIP, is the most commonly used format for storing aligned DNA-
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Reads. Given its widespread use, optimizing the speed of generating BAM files
using SAMtools sort is essential. However, increasing adoption of the CRAM
format might lessen the future significance of BAM file generation.
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4 Algorithm (Version 1.19.2)

4.1 Prerequisites

The process of sorting alternates depending on some internal Constants and
command-line-arguments: We focus on sorting by the ID of the reference a DNA-
Read is aligned to, then the position where the alignment on the reference starts,
and then the REVERSE flag which indicates, if the sequence is aligned forward or
backward to the reference. This order is used by SAMtools per default, although
other sorting criteria e.g., tags or the read name are possible.

The maximum amount of memory SAMtools sort utilizes for storing BAM
records during the sorting process is calculated by the amount of memory the
user specifies via the -m option multiplied by the (via -@ option) assigned number
of threads. We refer to the total amount as max mem.

Users can specify the number of threads to use for SAMtools sort by the -@
parameter. If it is set to 1, the operation is single threaded. If the user sets it to
a number greater than one, SAMtools sort uses the specified number of threads
in addition to the main thread.

SAMtools sort infers the in- and output formats from the input and output
file names the user specifies. SAMtools sort passes the sorted aligned DNA-Read
files it outputs as BAM file to standard output if no output file is specified.

The maximum number of temporary files is hard-coded as 64 in a constant
named MAX TMP FILES.

Temporary files utilized in the sorting process are compressed with com-
pression level 1. The compression level of the result file defaults to the default
compression level used by the library that implements the compression. Usually
this is compression level 6. The user can change the compression level of the out-
put file via the -l parameter and set it to a number between 0 (no compression)
and 9 (highest and slowest compression).

4.2 Sorting

SAMtools performs an external memory sort utilizing temporary files that are
merged in the end. The sorting starts by sequentially reading BAM records from
the input BAM file, or stream using HTSlib for parallel decompression. Once
BAM records, which contain alignment information for DNA-Reads, exceed the
memory limit given by max mem, SAMtools sort splits these BAM records into
as many in-memory vectors as threads are specified and afterward sorts them
in parallel. For sorting, each thread used for sorting (on multithreading, each
thread except the main thread) performs a radix sort.

Then, SAMtools sort performs a heap based merge. In the merge, SAMtools
sort keeps a binary heap containing the smallest entry from each file, and in-
memory vector that should be merged. Each of these entries is a BAM record
with the lowest order from the respective file or in-memory vector, together with
a reference to the file or in-memory vector. The merge works by outputting the
entry of the heap with the lowest order, inserting the next entry from the file or
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in-memory vector this entry came from into the heap, and adjusting the heap
using the sift-down algorithm [18].

In the merge, SAMtools sort writes all the sorted in-memory vectors of
BAM records to a single sorted temporary BAM file. In addition, SAMtools
sort includes some of the previously created temporary files into the merge:
The algorithm distinguishes between small files and big files. Small files are files
generated by merging the sorted in-memory vectors of BAM records resulting
from sorting them in parallel. If the number of small files is greater than half
of the maximum allowed number of temporary files, SAMtools sort includes all
small files it generated before into the merge (and deletes them afterward). The
result of a merge of in-memory vectors of BAM records and temporary files is a
big file. If the total number of files (small files and big files) exceeds the limit for
temporary files, all previously generated temporary files including big files are
included in the merge and deleted afterward. The resulting file is also counted
as a big file, despite possibly being much larger than other big files generated by
merging only small files. However, as the first merging of big files occurs at the
1120th temporary file1, this is only relevant for combinations of enormous files
and little memory.

In general, temporary files can be put into three categories: small files being
at most as big as the sorted in-memory vectors of BAM records together, big
files being at most as big as half of the maximum number of allowed temporary
files times the maximum size for small files and one big file growing depending
on the ratio of allocated memory to the size of the input file possibly to much
larger size than the other big files.

After the merge, the algorithm repeats the previous steps from reading the
input to merging, until SAMtools sort reaches the end of the input file or stream.
As a last step, SAMtools sort sorts the remaining in-memory BAM records and
merges them together with all temporary files into the output file. The sorting
process flow is represented by the flowchart in Figure 2.

1 This number is the result of adding 33 · 33 temporary files already merged into big
files to 31 small files. Here we have to square 33, as 32 small files can exist, and the
33rd file is the big file which the result of a merge, but not counted among the small
files. If 32 big files exist, there is still space for 32 small files, and they are merged
to a 33rd big file, leaving only space for 31 small files in the next merging process.
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Start:
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Fig. 2. Flow chart showing the current process of sorting, especially the choosing of
files to be merged. The list of files is a 0-indexed list of their names. In the beginning
it is empty, after BAM records are read the second time, there is a single record at
position 0 and #Files is 1.
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5 Temporary Files

5.1 Overview

Temporary files act as buffers for SAMtools sort, allowing it to process large
datasets that exceed the available memory, while supporting streams as input
and output. However, writing temporary files is time-consuming, as SAMtools
sort compresses each temporary file, writes it to disk, and afterward decom-
presses and reads it again in order to merge the temporary files.

When looking at the time between reading and decompressing the input, and
writing and compressing the output, decompressing and compressing temporary
files during the sorting process is more time-consuming than the actual sorting of
BAM records, which store the alignment information of DNA-Reads in a BAM
file.

Most operating systems limit the number of files that a process is allowed
to keep open simultaneously. To address this constraint, SAMtools sort em-
ploys a merging strategy, reducing the number of open files in the final merge
that creates the output files. However, in every merge of temporary files, BAM
records, that have been compressed and written to a temporary file before, are
compressed and written again. This introduces overhead, as the computation
time for decompressing and compressing the content of the merged temporary
files again is added to the overall computation time. Thus, we aim at reduc-
ing the amount of temporary files SAMtools sort utilizes in order to minimize
the frequency of SAMtools sort compressing and writing each BAM record. In
addition, a dynamic merging strategy that adapts to the limitations of the op-
erating system can reduce the number of merges needed for a given number of
temporary files, leading to performance improvements.

5.2 Analysis

SAMtools sort creates a total of 40 temporary files when sorting a 215GiB
unsorted BAM file, utilizing 16 threads and a total of 32GiB memory. Tempo-
rary files are BAM files like the output file, but since the main objective for
temporary files is processing speed, not disk space, SAMtools sort compresses
them with compression level 1. This is to maximize the throughput compared
to higher compression levels but reduce IO overhead on writing uncompressed
BAM files (Section 7.2). During writing, nearly all temporary files consume an
average of 29.75 seconds from opening the file to closing it. In this time, SAM-
tools sort merges the 16 (one per thread) sorted vectors of BAM records in
memory, compresses them, and writes them to the file. However, the 33rd file
takes 945.38 seconds. That is 31.7 times the amount of time needed for each
temporary file before.

SAMtools sort merges temporary files if it has written a certain number of
temporary files. This is to limit the total number of temporary files SAMtools
sort opens in the final merge. If a program opens too many files concurrently, the
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operating system kills it (Section 5.3). Thus, merging of temporary files is nec-
essary for SAMtools sort. To understand how many temporary files are written
and when they are merged, we examine SAMtools sort’s merging strategy:

SAMtools sort enforces a predefined maximum number of 64 temporary files
concurrently stored on disk. Until reaching half of this limit for temporary files,
it writes all blocks that are results of sorting the amount of BAM records fitting
into memory at once into a single temporary file (a ”small file”). Whenever
SAMtools sort has 32 (half of the limit for temporary files) small temporary
files stored on disk concurrently, the next temporary file (a ”big file”) is a merge
of all small temporary files written before together with the next in-memory
vectors of sorted BAM records. In summary, on writing every 33rd file (half of
the limit for temporary files plus one), SAMtools sort performs a merge of 32
small temporary files. This explains the increase in time at writing the 33rd
temporary file from the example above: SAMtools sort reads every temporary
file written before again, merges them and writes their content a second time.

The number of temporary files on the disk concurrently reaches the limit for
temporary files at writing a total of more than the square of half the limit for
temporary files (Footnote 1). If 33 big temporary files and 31 small temporary
files are stored on disk concurrently, SAMtools sort merges all small and big
temporary files into the next temporary file. For details, refer to Section 4.2.

The amount of merges depends on the number of temporary files SAMtools
sort utilizes in total. This is mainly determined by the amount of the memory
the user allocates to SAMtools sort. The user can configure the memory usage of
SAMtools sort via the ”-m” parameter. Defaulting to 768MiB, it gets multiplied
by the number of threads. We refer to the result as max mem. It is the limit up to
which SAMtools sort reads BAM records, which contain alignment information
to a DNA-Read, into memory, before sorting them in parallel. SAMtools sort
enforces at least 1MiB of memory per thread to prevent the creation of a huge
amount of temporary files. In general, sorting is faster the more memory the
user allocates to SAMtools sort, although not in a linear proportion, as shown
in Figure 3.

The execution time of SAMtools sort does not decrease on sorting a 2.3GiB
BAM file using between 400MiB and 12800MiB of memory.2 To investigate fur-
ther, we examine the amount of temporary files produced. The input file expands
to larger than 12800MiB, the second-highest memory limitation in Figure 3, as
the internal representation of BAM records is not compressed in contrast to BAM
records in a BAM file. At the highest setting (25600MiB = 25GiB), SAMtools
sort utilizes no temporary file. At the next highest settings, it produces 1, 2,
4, . . . temporary files, as the memory limitation max mem halves to every next
highest value.

Looking at the amount of temporary files generated, it is also possible to
approximate the size of the BAM file in memory. At the memory limitation of

2 Sorting a 2.3GiB input file utilizing a memory limitation of 400MiB, SAMtools sort
creates approximately the same amount of temporary files as sorting a 200GiB input
file utilizing a memory limitation of 32GiB.
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Fig. 3. Execution time of SAMtools sort on a 2.3GiB BAM file on a single thread
at different memory limitation settings. Data points: Median, Error bars: fastest and
slowest of 3 runs.

400MiB, SAMtools sort generates 32 temporary files. At 200MiB max mem, it
generates 65 temporary files. This indicates, that after having processed 12800MiB
(= 400MiB · 32) of data, 200MiB are not enough to keep the remaining data in
memory until the final merge into the output file, but 400MiB are. For this rea-
son, the size of the BAM file must increase to between 13000MiB and 13200MiB
in memory, which represents an increase in size by factor 5.52.

These observations explain the missing speedup between the memory limita-
tions of 400MiB and 12800MiB. In between these memory limitations, SAMtools
sort writes exactly the same records to the disk, in exactly the same order. The
only difference is the number of temporary files it splits them into.

This changes at the memory limitation of 200MiB max mem. The total of 65
produced temporary files means that SAMtools sort has to perform a single
merge and generate a single big file before the final merge. This comes with
additional time consumption because SAMtools sort reads the content of the
first 32 temporary files from disk, decompresses, merges, compresses, and writes
them to disk into a temporary file a second time.

At the memory limitation of 100MiB SAMtools sort generates 3 big files,
at 50MiB 7, and at 25MiB 15. This is also reflected in the total amount of
bytes written. With the memory limitation settings larger than 200MiB SAM-
tools sort utilizes temporary files, but does not merge them into big files. With
these memory limitation settings, SAMtools sort writes a total of 2.4GiB in
temporary files. This number goes up to 3.7GiB, 4.3Gi, 4.6GiB and 4.8 GiB
for the memory limitations of 200MiB, 100MiB, 50MiB, and 25MiB max mem.
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Here, the increase in total written bytes for temporary files is not proportional
to the amount of merges, as the size of the merged files shrinks with lowering the
memory limitation max mem. In addition, the proportional influence, merging of
temporary files has on the runtime of SAMtools sort lowers with the number of
performed merges: While writing the first big temporary file costs approximately
the same as writing all temporary files before, writing the second one costs only
a third of writing all files before, the next one 1/5 then 1/7 and so on.

The measurements above are unrealistic, as nowadays even Laptops have
more memory installed. However, aligned DNA-Read files are usually several
times larger than the used sample BAM file, which we sampled by randomly
selecting 1% of BAM records from a real world BAM file. To get an impression
of the impacts of increasing the file size, we look at the changes that come with
the size increase.

Both compression and decompression work in O(n), ensured by the blockwise
compression. The sorting algorithm SAMtools sort uses is a radix sort, which
also is in O(n). For merging, SAMtools sort employs a heap based approach,
which operates in O(n log(k)). Here, k is the number of sorted lists to be merged.
Thus, in theory, keeping the same ratio of input size and available memory
produces the same amount of temporary files. As all operations (except merging,
which also depends on the number of temporary files) are in linear time, results
on small files with less memory transfer proportional to large files and more
memory. This is confirmed by the experiment shown in Figure 4.

However, changing only one of these parameters has different effects. Using
SAMtools for example installed locally on a laptop for sorting a larger BAM
file can produce many temporary files if the laptop’s memory is limited. If, e.g.,
8GB are available for SAMtools sort, it cannot process files bigger than 50GB
without merging temporary files. The file size up to which SAMtools sort does
not merge temporary files decreases further, if the ratio of the input file to the
memory limitation max mem grows further.

An important point that should not be exceeded, is reaching 1120 (Foot-
note 1) temporary files. At this point, SAMtools sort merges all ”big files”
(temporary files resulting of a merge of other temporary files) into one single
file. This means SAMtools sort writes every single BAM record it processed
before to disk once more. This occurs approximately at sorting a 1700GiB file
using 8GiB of memory.

In conclusion, writing larger numbers of temporary files, specifically more
than 32, leads to merging of temporary files, which is time-consuming. The
amount of temporary files SAMtools sort utilizes is mainly affected by the ratio
of the size of the input file to the amount of available memory.

5.3 Recommendation

Since the most time-consuming part of sorting aligned DNA-Read files utilizing
SAMtools sort is compressing and writing, we aim to minimize the frequency of
SAMtools sort writing a single BAM record. Consequently, our primary strategy
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Fig. 4. Execution time of SAMtools sort on different input sizes. Keeping the ratio
from input size to the memory limitation max mem constant, the execution time grows
linear to both parameters. Data points: Median, Error bars: fastest and slowest of 3
runs.

focuses on reducing the number of merge steps performed by SAMtools sort

during the overall sorting process.

To accomplish this without changing any source code, the user can change the
”-m” parameter for per thread memory limitation setting. The more memory the
user gives to the process, the less likely SAMtools sort needs to merge temporary
files. Therefore, we recommend the user to allocate the highest possible memory
allowance to SAMtools sort within system constraints. To avoid merging of
temporary files, the user must set the memory limitation per thread (”-m”) to a
value larger than InputSize·6

31·#Threads
for any typical input file compressed with zlib on

compression level 6 (the default compression level).3 However, as the memory
limitation the user sets via ”-m” is an upper bound only for storing BAM records
in memory, SAMtools will most likely exceed it. Thus, the user should not set
”-m” to the whole available amount of memory divided by the number of used
threads, but keep some memory for SAMtools internal resource allocation.

However, on devices with limited physical memory, such as laptops, or when
working with exceptionally large files (ranging into terabytes of size), allocating
enough memory to entirely avoid merging in SAMtools sort might not be fea-
sible. Because of this, we recommend enlarging the limit for the number of open

3 6 for the blowup of the input file in memory (Section 5.2), 31 for the temporary files
written before merging minus 1 to avoid edge cases, #Threads, as the -m parameter
specifies the memory limitation per thread.
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temporary files in SAMtools sort. At the moment, SAMtools sort has a pre-
defined limit of 64 for temporary files stored on disk concurrently. Yet, modern
computers are able to keep much more files open without noticeable performance
losses.

On Unix systems, there exist two kinds of limits for the number of open files.
The operating system differentiates between soft limits and hard limits. A soft
limit is a limit set by the user. If a process attempts to open more files than the
soft limit, the operating system kills it. On most modern systems, the soft limit
is set to 1024 by default.

The hard limit is the limit up to which the user can increase the soft limit.
Its size differs from system to system, but is typically much larger than the hard
limit (e.g., 262144 on our testing machine). The hard limit can not be increased
by users of the operating system.

To maximize the limitation for the number of open temporary files in SAM-
tools sort, SAMtools sort must obtain the soft limit for open files and calculate
the number of files it opens in addition to temporary files. On a Unix-like oper-
ating system, a program can obtain its soft limit using the getrlimit [1] system
call. SAMtools sort only opens temporary files to merge, an output file (or
standard output), possibly an index file, and has standard input and standard
error open. We use this knowledge to propose a dynamic merging strategy. This
strategy recognizes how many files SAMtools sort can open concurrently with-
out exceeding the soft limit for open files. Subtracting the maximum number
of files (including standard output, standard error, and standard input) SAM-
tools sort opens concurrently to temporary files, the strategy sets an adapted
limit for temporary files in SAMtools sort. This also enables users to reduce the
amount of merges further by increasing the soft limit for open files for SAMtools
sort. For compatibility reasons, if the system call fails, SAMtools sort can still
enforce a limit of 64 for temporary files.

Notice, that the file size of the input, at which SAMtools sort stores as many
temporary files as its limit for temporary files allows on disk concurrently, grows
quadratic to this limit. At the same time, the file size of the input up to which
SAMtools sort does not perform a single merge of temporary files grows only
half as fast as the maximum number of temporary files.

5.4 Evaluation

Increasing the number of allowed temporary files to 1019 (= 1024 − 5 = the
default soft limit minus potential other files opened concurrently with temporary
files), leads to a 15.5-fold increase in the potential file size of the input file before
triggering a merge. With the limit of 1019 for temporary files, SAMtools sort
performs the first merge of temporary files at the 510th file instead of at the
33rd. Having a limited amount of 8GiB of memory, the change to 1019 allowed
temporary files raises the file size of the input file, after which the first merge of
temporary files occurs, from around 50GiB to around 775GiB.

Comparing the increased limit for temporary files to the current limit of 64
temporary files, we report a speedup of up to 1.25 at sorting a 2.3GiB BAM
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file with 40MiB of memory (Figure 5). At the memory limitations between
400MiB and 25600MiB, we observed identical execution times for both limits
for temporary files on sorting a 2.3GiB input file. This is due to SAMtools
sort utilizing between 0 and 32 temporary files. Therefore, it does not merge
temporary files with both limitations for temporary files. Sorting the 2.3GiB
BAM file with memory limitations between 50MiB and 200MiB (equivalent
to sorting between 1.6TiB and 400GiB with a memory limitation of 32GiB),
SAMtools sort performs between 1 and 7 merges of temporary files with the
limit of 64 for temporary files. In contrast, with the limit for temporary files
increased to 1019, sort does not merge temporary files in between these memory
limitations.

However, on the lowest tested memory limitation setting of 25MiB for sort-
ing the 2.3GiB BAM file (equivalent to sorting a 2.9TiB file with a memory
limitation of 32GiB), the increased limitation for temporary files of 1019 has no
speedup compared to the limitation for temporary files of 64. On this memory
limitation setting, SAMtools sort utilizes a total of 527 temporary files. With
the limitation for temporary files set to 1019, SAMtools sort merges tempo-
rary files the first time at writing the 510th temporary file. Therefore, SAMtools
sort merges 509 temporary files into the 510th file on the limitation of 1019 for
temporary files.

On the limitation of 64 for temporary files, SAMtools sort performs 15
merges while writing 527 temporary files. However, as each of these merges only
merges 32 temporary files into a single file, only the content of 480 temporary files
is written and compressed two times, compared to the content of 509 temporary
files at the limitation of 1019 for temporary files. The reason for the difference
between the two limits for temporary files is, that SAMtools sort includes the in-
memory vectors of sorted BAM records, which are the results of parallel sorting,
into each merge. Therefore, writing the 510th file, SAMtools sort performs less
compression and writing operations with the limit of 64 for temporary files,
than with the limit of 1019, as it compresses and writes content in the size of 15
temporary files only once. In addition, SAMtools sort merges temporary files
at the 495th and again at the 528th temporary file if its limit for temporary
files is 64. Thus, with this limit for temporary files, at the 510th temporary file,
SAMtools sort has written 15 temporary files, which are ”small files” and not
merged into a ”big file” until SAMtools sort writes the 528th temporary file.
The total amount of times, SAMtools sort compresses and writes a block of
BAM records in size of the available max mem into a temporary file is illustrated
in Figure 6 for both limitations for temporary files.

In summary, increasing the limit for temporary files results in a noticeable
speedup if it prevents merging of temporary files. However, with an increased
limit for temporary files, each merge of temporary files leads to a higher increase
in runtime than a merge with the limitation of 64 for temporary files. If the limit
is calculated from the soft limit defined by the operating system, it is maximized
and the user can increase it if necessary, preventing merging of temporary files
even for sorting terabyte-sized aligned DNA-Read files.
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5.5 Future Work

Despite setting the limit for the number of temporary files to 1019, the program
initiates merging as early as at writing the 510th temporary file, effectively
utilizing only half of the available capacity. Due to merging small temporary
files at half of the limit for temporary files, SAMtools sort only ever utilizes the
full capacity of 1019 temporary files, when the total number of written temporary
files exceeds 260,000. While users can potentially eliminate merging by increasing
the soft limit, this approach necessitates an unlikely amount of user awareness
of this optimization option. To minimize the number of merge steps and reduce
the runtime, SAMtools sort should ideally utilize the temporary file limit to
a greater extent before initiating the merging process. This can be achieved by
writing small temporary files not only up to half of the limit for temporary files,
but to the limit minus the current amount of big files before merging them. For
the first merges, this change would lead to reducing the number of merges by
half.
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6 Compression

6.1 Overview

Compression of aligned DNA-Read files reduces storage space and thus storing
costs as well as transfer-times of the files over network. Per specification, com-
pression is a part of writing BAM files, which are files containing information on
the alignment of DNA sequences to a set of reference sequences. The compres-
sion method used in BAM files is BGZF (Section 2.6). BGZF is an extension of
the popular GZIP compression format. BGZF compresses files in blocks of less
than 64KB (compressed and uncompressed), enabling fast random access to
each block. Internally, BGZF compresses data in the DEFLATE format, which
GZIP is a wrapper for. The library BGZF utilizes for compression is zlib. While
compression is beneficial for saving storage space and thus reducing storage
costs, it introduces additional processing steps compared to uncompressed out-
put. Therefore, applying compression to the sorted BAM files SAMtools sort

outputs leads to increased execution times for SAMtools sort.
In this chapter, we analyze the influences the default compression using zlib

has on the sorting process. Then, we discuss possible changes in the compression
levels. Afterward, we investigate seven different compression libraries offering al-
ternative implementations for zlib. Based on the findings, we recommend settings
to fasten up SAMtools sort and evaluate them.

6.2 Analysis

To measure the impacts of compression and decompression on the computation
time that SAMtools sort requires, we examine the proportional time consump-
tion of SAMtools sort’s processing steps. Running on 16 threads, with a total of
32GiB of memory, we report SAMtools sort to require 71 minutes and 57 sec-
onds to sort a 215GiB BAM file. However, SAMtools sort uses only 2 minutes
and 35 seconds, (3.6% of the total time), for sorting4 (merging not included),
while it uses the rest of the time for reading, writing, compression, decompres-
sion, and merging.

Profiling SAMtools sort locally on a laptop reveals that a substantial amount
of the remaining time is dedicated to compression: Compression and decompres-
sion of the temporary and output BAM files, which contain the alignment in-
formation to aligned DNA-Reads, together account for 97% of the CPU time
when performing SAMtools sort on a laptop with the default compression level.
On this compression level, the deflate method that is used for the compression
and a part of zlib requires approximately 81% of the CPU time, the inflate

method that is used for decompression approximately 11%, and the calculation

4 Sorting time calculated by adding up the time spans from dividing the blocks of
BAM records in memory into one block per thread and the time when all the sort-
ing threads are finished. The times are retrieved by changing SAMtools sort’s source
code to output the current Unix-Timestamp to standard error before and after sort-
ing.
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of the crc32 checksum, which is part of the compression as well as of the de-
compression, approximately 5%. Setting the compression level to 0 reduces the
relative amount of CPU time required for compression and decompression by 1%
to 96%. On this compression level, the deflate method requires approximately
68% of SAMtools sort’s computation time, inflate 19%, and the checksum cal-
culation 9%.

SAMtools utilizes HTSlib for file operations and compression. HTSlib serves
as an API for various high-throughput sequencing data formats, such as BAM
files, and provides functionalities for reading and writing them. HTSlib utilizes
the zlib library for compression and decompression of compressed file formats
(e.g., BAM). A file compressed in the BGZF format, the compression method
used in the BAM format, consists of a series of blocks of independently com-
pressed data (each smaller than 64KB both compressed and uncompressed). To
make optimal use of the available processors, HTSlib compresses these blocks in
parallel: SAMtools sequentially passes single BAM records containing alignment
information on DNA-Reads to HTSlib. HTSlib buffers these BAM records until
the next BAM record does not fit into a 64KB block together with the other
buffered BAM records. Then HTSlib creates a compression and writing job in a
thread pool. The thread pool contains queues for each job kind, in case of SAM-
tools sort compression and decompression jobs, and a counter for the amount of
queued jobs. The thread pool never wakes up more threads than pending jobs.
Threads work through jobs of the same queue until the queue is empty. This
leads to threads likely staying at the same job and to some threads running in
idle, if less jobs then threads are pending. Since all uncompressed blocks are ap-
proximately equal in size, active threads receive a balanced workload distribution
during the compression or decompression process.

6.3 Compression Levels

SAMtools utilizes HTSlib for compression tasks. HTSlib utilizes zlib for com-
pression to the DEFLATE format, which the BGZF compression format applied
to BAM files is a wrapper for. In zlib, compression levels offer a configurable
balance between computational intensity and resulting file size. The DEFLATE
format, internally used in all of zlib’s output formats, is a combination of LZ77
and Huffman codes. LZ77 is a dictionary-based compression method, which finds
matching sequences in a sliding window and replaces following sequences with
a reference to the first appearance of a match. The reduction of the file size
depends mainly on the amount of matches found and the length of the match-
ing sequences. As shorter matches occur more frequently, finding them is less
computational intensive.

The match finding algorithm in zlib hashes 3 bytes for every position in the
string it compresses and inserts a pointer to the position into a list in a hash map.
If the current position is not a part of a previous match, zlib looks within the hash
table for substrings starting with the same bytes. Then it iteratively compares
this substrings to the string at the current position to find the longest match.
The parameters after which match-length zlib stops searching for longer matches
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depend on the compression level. E.g, for compression level 1, zlib compares at
most 4 substrings per position, reduces this number to 2 if it finds a match of
length 4-7, and stops searching for longer matches if it finds a match of length
8 or longer. For compression level 9, zlib compares at most 4096 substrings
per position, reduces this number to 2048 if it finds a match of length 32-255,
and stops searching for longer matches if it finds a match of length 256 or
longer. For compression levels 4-9, zlib also computes the matches for the next
position before eventually accepting a match. This leads to approximately 6
times higher throughput and an approximately 21% larger resulting file size
on using compression level 1 instead of compression level 9 for compressing
BGZF files in HTSlib utilizing zlib. We show differences between the compression
levels’ output sizes in Figure 7 and differences between the compression levels’
throughput in Figure 8.
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Fig. 7. Size of BGZF compressed files on compression levels 0-9, exemplified using a
10.4GiB unsorted BAM file. Although no compression yields a file four times as large,
the distinctions between compression levels are less substantial.

To measure the compression speed, we measure the speed of HTSlib’s bgzip,
a tool to compress arbitrary files using BGZF. SAMtools sort uses the same
methods as bgzip of HTSlib, the library utilized by SAMtools for compression
and file operations. This still holds for compression level 0. For this compression
level, bgzip as well as SAMtools sort do not compress, but directly write the
output. Therefore, the compression speed of bgzip is relevant for sorting because
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it sets a lower boundary on writing the output of SAMtools sort, considering
that compression is a part of creating BAM files.

Per default, SAMtools sort uses two different zlib compression levels for the
BGZF compression of temporary and output BAM files. For writing output files,
it uses the default compression level of the zlib implementation (compression
level 6 for zlib) as long as the user has not set a specific compression level.5

For temporary files, SAMtools uses compression level 1. In current SAMtools
versions, this can not be changed without changing the source code.

6.4 Alternative zlib Implementations

Being build into the Linux kernel, zlib is seen as the de facto standard of file
compressing using the DEFLATE algorithm. However, other libraries have been
created that surpass zlib in both compression throughput and smaller file size
of the resulting files.

5 For instructions to set compression levels in SAMtools, refer to Appendix A.2.
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For Example, libdeflate [17] offers faster compression than zlib (e.g., 2.3 times
faster on single threaded compression with HTSlib’s bgzip compression tool on
compression level 6) while achieving a better compression ratio at the same time
(0.5% smaller file on compression level 6 (Figure 9)).

Remember, SAMtools utilizes zlib and libdeflate to compress data into the
DEFLATE format wrapped by BGZF for BAM files, which contain alignment
information on DNA-Reads. The DEFLATE format is a combination of Huffman
Codes and LZ77, which finds identical substrings in a string and replaces matches
of previous substrings with references to the position of the previous substring.

To speed up the compression process, libdeflate employs various improve-
ments: It uses an optimized algorithm for generating Huffman Codes and chooses
dynamically between the two types of Huffman Codes that are supported by the
DEFLATE format, fixed and dynamic Huffman Codes. Moreover, depending
on the compression level, libdeflate uses different kinds of hash maps for the
match finding: Hash tables with the matches stored directly in the table for
low compression levels, hash maps with lists of matches in external arrays for
intermediate compression levels, and hash maps with binary heaps containing
lexicographically sorted matches for the higher compression levels. Libdeflate
also incorporates five different algorithms for DEFLATE compression and se-
lects them depending on the compression level. These algorithms include greedy
algorithms, algorithms which calculate matches for one or two positions ahead
and accept matches only, if there is not a longer match at the following posi-
tions, and an algorithm utilizing a graph based approach to find near optimal
matches. Similar to zlib, the length at which libdeflate accepts a match and
stops comparing a substring to possible matches in the hash map, depends on
the compression level, as well as the maximal amount of string comparisons for
each position. Furthermore, libdeflate makes use of various precomputed values,
e.g., for hashing, and uses optimized instructions on compatible machines.

Libdeflate also offers a decompressor for DEFLATE compressed formats,
incorporating various improvements such as using word access instead of byte
access in input reading and match copying, which are parts of decoding the
DEFLATE format. Furthermore, it uses a speed-up Huffman decoding process
and utilizes BMI2 instructions on x86 64 machines if they support them.

Moreover, libdeflate contains a crc32 checksum implementation, which it uses
for both decompression and compression of files in the GZIP format. This im-
plementation leverages properties of the XOR operation to reduce computation
steps and utilizes multi-bit units. The implementation relies on an iterative ap-
proach to calculate the checksum. It processes the data four bytes at a time,
leveraging pre-computed values for each byte.

Support for libdeflate is already built into SAMtools. Moreover, the develop-
ers recommend using libdeflate instead of zlib. If HTSlib’s configure script finds
libdeflate libraries, HTSlib uses them automatically instead of zlib.6. Since libde-
flate offers 12 compression levels compared to zlib’s 9 compression levels, SAM-

6 To decide manually between zlib and libdeflate see Appendix A.3
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tools implements a mapping scheme (Appendix A.4) to translate user-specified
compression levels when utilizing libdeflate for compression tasks.

In addition, the user can choose to use other zlib implementations by using
LD PRELOAD [42]. The LD PRELOAD environment variable instructs the dynamic
linker to prioritize specific shared libraries during program execution. Shared
libraries are reusable code modules that can be loaded by multiple programs. If
two different definitions for methods or variables exist, e.g., one definition in the
shared library a program uses by default and one in a library in LD PRELOAD, the
linker prefers the one from a shared library in LD PRELOAD over the one from a
shared library that is not in LD PRELOAD.

For example, HTSlib uses the deflatemethod of libz.so. However, the user
can compile e.g., zlib-ng [13], which is API compatible to zlib, to a shared object.
Then he can specify the path to the compiled shared object in LD PRELOAD. As
a result, every time HTSlib calls zlib methods, it uses the implementations in
zlib-ng.

However, this approach is only possible, if the replacement implementation
supports the zlib API. LD PRELOAD also allows for partial compatibility. If the
dynamic linker does not find a method or variable within the preloaded libraries,
it uses the implementation from the default shared libraries.

6.5 7BGZF: Testing Non-API-Compatible Compression Libraries

7BGZF [53] is a tool for testing different compression libraries for BGZF com-
pression in SAMtools. It works by overwriting the method HTSlib uses anytime
it outputs BGZF compressed files, bgzf compress, via LD PRELOAD. Users can
choose the compression library and the compression level of 7BGZF via an en-
vironment variable.7

This approach simplifies the evaluation of various compression libraries. It
eliminates the need for individual library installations and accommodates li-
braries with non-zlib-compatible API implementations.

However, the evaluation of compression libraries utilizing 7BGZF does not
transform directly to implementing their usage into SAMtools. SAMtools has
to link to HTSlib as a shared library rather to linking to the static library, as
the method 7BGZF overwrites is a method of HTSlib.8 Moreover, 7BGZF dis-
regards the compression level passed to the bgzf compress method. Instead,
7BGZF receives the compression level to be used via an environment variable.
Therefore, it applies the same compression level on every written BGZF com-
pressed file, in context of SAMtools sort the sorted output files and temporary
files. This means temporary files, which contain memory-sized chunks of sorted
BAM records and are merged into the final output file (Section 5), have the
same compression level as output files. Without using 7BGZF, SAMtools sort
compresses temporary files with compression level 1, regardless of the specified
output compression level. With using 7BGZF, employing a compression level

7 For more information on using 7BGZF, refer to Appendix A.5.
8 To change SAMtools to link to HTSlib as a shared library, refer to Appendix A.6.
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greater than one for the output file will result in increased compression time,
compared to an implementation of the compression library into SAMtools, which
would make use of different compression levels for output and temporary files.
Therefore, using files that require SAMtools sort to produce temporary files
distort comparisons with the default zlib or libdeflate compression.

To get insights of the runtime of SAMtools sort utilizing the different com-
pression libraries of 7BGZF on different levels, we use 7BGZF on sorting a BAM
file small enough not to produce any temporary files. For libdeflate and zlib,
SAMtools sort achieved similar runtimes on average when using 7BGZF com-
pared to plain HTSlib, with variances ranging from 3 to 5 percent.

6.6 Compression Libraries in 7BGZF

We tested the following seven compression libraries in 7BGZF: zlib-ng [13] is a
merge of optimizations of a zlib version by Intel [12] and a zlib fork by Cloud-
flare [9]. Both of these zlib implementations can be found in old comparisons
of zlib implementations for using them in SAMtools. Zlib-ng aims to provide a
version of Zlib that is more receptive to code changes. Therefore, it makes use
of newer compiler features, adapts faster to code improvements than zlib, and
removes many of zlib’s workarounds for older systems and compilers.

The slz [49] compression library supports only a single compression level.
It reduces CPU and RAM usage for web servers by limiting the size of the
hash map containing previous matches, using precomputed fixed Huffman Codes
only, and precomputed coding for the distances which are parts of the references
to previous matches. These changes also come with lower runtimes but larger
resulting files.

igzip [52], which is a part of the Intelligent Storage Acceleration Library
(ISA-L) [11] by Intel, prioritizes runtime over result size as well, but without
slz’s goal of reducing the CPU and RAM usage for the compressor.

In contrast, Google’s zopfli [10] is an algorithm designed to enable the best
possible deflate-compatible compression by iteratively modeling the entropy of
the data and finding a minimal path in a graph of all possible DEFLATE com-
pressions. However, previous experiments showed its implementation on default
settings being slower than zlib by a factor of 80.

miniz [5] is another zlib implementation written from scratch. It presents its
main advantage as being contained in a single source file.

7BGZF also supports zlib and libdeflate (Section 6.4). A comparison of the
supported compression levels and features of the tested compression libraries in
7BGZF is shown in Table 1.
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Implementation zlib libdeflate miniz igzip slz zlib-ng zopfli

Levels 1-9 1-12 1-9 1-3 1 1-9 -9

Decompression yes yes yes yes no yes no

Drop-In10 - no yes no no yes11 no

Table 1. Comparison of features of the compression libraries tested in 7BGZF.

6.7 7BGZF Results

In the following, we present the results of using the compression libraries sup-
ported by 7BGZF for compression of aligned DNA-Read files in the BAM format
using SAMtools sort. We tested each library on their fastest and on their de-
fault compression level. To work around 7BGZF’s limitation regarding separate
compression levels for output and temporary files, we sort a file small enough
to avoid producing temporary files in SAMtools sort. The results can be used
to see which libraries have potential for replacing zlib in HTSlib. We primarily
compare the compression libraries to zlib and libdeflate, since HTSlib already
supports these.

The best performance could be reached by igzip. On both tested compression
levels, it compressed faster than all other compression libraries on their fastest
compression level. Using one or two threads, igzip achieved a speedup of up to 5
compared to the default zlib compression. However, igzip’s resulting file size on
both tested compression levels turned out larger than libdeflate on compression
level 1 (30% respective 23% of the original size with igzip on compression level
1 respective compression level 3 against 22% of the original size with libdeflate
on compression level one, see Figure 9).

While slz achieves a speedup of 4.5 on one and two threads and is therefore
nearly as fast as igzip on compression level 3, it compresses the tested files to 30%
of their uncompressed size, which is more comparable to igzip on compression
level 1.

Zlib-ng’s runtime and resulting file size are comparable with libdeflate. Zlib-
ng on compression level 1 achieves a speedup of 4 on one or two threads, surpass-
ing libdeflate on the same level, but also producing with 28.9% of the original
file size 33% larger files. However, zlib-ng on compression level 6 produces a 3%
smaller file than libdeflate on the same level, but achieves a speedup of less than
2, making it noticeably slower than libdeflate on compression level 6.

9 zopfli does not use compression levels but can specify iterations of the algorithm.
Here, the level in experiments is always used as iterations.

10 Drop-In does not infer, that the API provides every symbol of zlib, but that the
most important symbols are implemented.

11 The user has to enable the API compatibility in a configuration step before compil-
ing.
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Fig. 9. Compression ratio of different zlib implementations. We report the file sizes
relative to the uncompressed file.
Igzip on compression level 1 as well as slz and zlib-ng on compression level 1 produce
files 50% larger than zlib on its default compression level. Miniz on compression level
1 and zlib on compression level 1 produce files which are 20% larger than the reference
(zlib on compression level 6). All other compression libraries and compression levels
resulted in differences of up to 10% compared to zlib on compression level 6, which are
2% of the uncompressed file.

Libdeflate with compression level 6 has a speedup of 2.3 compared to zlib
on compression level 6 (default) for up to 4 used threads, while producing a
0.5% smaller file than the default zlib compression. This speedup is even larger
than the speedup of 2.1 resulting from using zlib on compression level 1. On
compression level 1, libdeflate achieved a speedup between 3.5 and 4 for up
to 4 threads, while producing a 6.5% larger file than the zlib compression on
compression level 6.

Reducing the compression level to 1, zlib reaches a speedup of approximately
2 for up to 8 threads, while producing a 20% larger file than on the default
compression level of 6.

Previous experiments showed that zopfli produced around 10% smaller files
than the default zlib compression, but took 70 to 90 times longer. Miniz provides
for each compression level a marginally worse compression ratio than zlib while
having longer processing times, as previous experiments showed. In Figure 10,
zopfli and miniz are excluded for clarity.
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Fig. 10. Speedup of SAMtools sort using compression libraries in 7BGZF relative
to SAMtools sort using zlib compression level 6 (the default) on the same number
of threads. Sorting the 2.3GiB BAM file with 48GiB of memory did not utilize a
temporary file. Numbers in parentheses indicate the compression level. One thread
is single threaded computation; for a higher thread count, SAMtools sort uses the
threads in addition to the main thread. Data points: Median, Error bars: fastest and
slowest of 3 runs.
The plot shows that using faster compression libraries and lower compression levels
improves SAMtools sort’s runtime for a smaller number of threads. With more threads,
the improvement decreases.

Increasing the number of threads gradually reduces the speedup achieved by
using faster compression libraries. The speedup of 5 achieved by igzip on one or
two threads diminishes to 4 on 4 threads, to 2.5 on 8 threads, and finally to 1.5
on 16 threads, the highest tested number of threads. For all other compression
libraries and compression levels, igzip with compression level 1 serves as an upper
limit. The speedup of all other libraries stays close to their single-thread speedup
until the number of threads, where the speedup of igzip on compression level 1
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drops below their single-thread speedup. Then, their speedup approaches the
speedup of igzip on compression level 1. Therefore, on 16 threads, all alternative
zlib implementations on their tested compression levels achieve a speedup of
approximately 1.5.

The speedup of the different compression libraries and compression levels
compared to their single-threaded execution time increases slower for the set-
tings achieving a higher single-thread speedup, e.g., igzip on compression level 1.
The speedup of zlib on compression level 6 increases with every higher number of
threads, reaching a speedup of 12 on 16 threads. In contrast, faster compression
libraries such as igzip show a less substantial increase in speedup: All tested com-
pression libraries and corresponding compression levels that achieved a single-
thread speedup (compared to zlib on compression level 6) which is as high or
higher than libdeflate on compression level 1, reached their highest speedup
against their single-thread performance on 8 cores with a speedup of less than
5. When raising the number of threads from 8 to 16, their speedup decreases
slightly, as shown in Figure 11.
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Fig. 11. Speedup against their respective single-threaded performance of 7BGZF com-
pression libraries and compression levels. Sorting the 2.3GiB BAM file with 48GiB
of memory did not utilize a temporary file. Numbers in parentheses indicate the com-
pression level. One thread is single threaded computation; for a higher thread count,
SAMtools sort uses the threads in addition to the main thread. Data points: Median,
Error bars: fastest and slowest of 3 runs.
The plot illustrates the extent to which the compression libraries and compression
levels benefit from an increasing number of threads.
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This suggests that beyond a certain number of threads, compression, which
is fully parallelized, is no longer the limiting factor. This is supported by the
observation that with increasing the amount of used threads, the time SAMtools
sort spends on decompression, sorting and merging together with compression
relative to the total time converges to a similar ratio for all compression libraries
and tested compression levels.

In the following, decompression stands for the time from starting SAMtools
sort until starting the parallel sorting, sorting for the timespan from starting
to ending the sorting, and compression the timespan from end of sorting to the
end of the SAMtools sort process. Recall, having multiple threads available,
SAMtools sort at first reads the BAM records containing alignment informa-
tion on DNA-Reads while decompressing the input BAM file in parallel. Then,
SAMtools sort splits the BAM records in memory and sorts them in parallel.
After the sorting, SAMtools sort merges the lists of sorted BAM records from
the threads, writing each record immediately after merging it (buffered and with
compression). Therefore, in the following, compression time includes merging.

On 16 threads, all compression libraries on their tested levels use 21% to
31% of their computation time for decompression, 6% to 9% for sorting and
60% to 71% for compression. Here, the faster compression methods use more
of their computation time for decompression than slower methods like zlib on
compression level 6. However, on a single thread, the faster compression methods
use around 50% of their time for decompression, while zlib on level 6 only uses
9% of its computation time for decompression. On two threads, the percentage
of the computation time the faster compression methods spend on compres-
sion decreases further. However, with further increasing the number of threads,
faster compression methods reveal a trend of higher relative allocation of pro-
cessing time towards compression (around 60% on 16 threads against 35% on
2 threads) compared to decompression (around 30% on 16 threads against 56%
on 2 threads). In contrast, for the compression methods with less single-thread
speedup (compared to zlib on compression level 6), the relative computation time
spend on compression decreases gradually down to around 70% on 16 threads
(against 88% on 1 thread). This is illustrated in Figure 13. This analysis reveals
that the compression stage within SAMtools sort, including the merging pro-
cess, exhibits limitations in scalability compared to decompression as the number
of threads increases.

The underlying reasons for this behavior warrant further investigation. It’s
likely that the merging step, currently included within the compression time mea-
surement, contributes to the compression time being a bottleneck for a larger
amount of threads. Also, influences of SAMtools sort producing temporary files
remain uninvestigated. In a sorting process utilizing temporary files, SAMtools
sort would decompress temporary files at the same time as it compressed the
output file. In the scenario we investigate here, decompression and compression
are strictly separated by the sorting process between both processes.
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Fig. 13. Procentual amounts of the runtime SAMtools sort uses for decompression,
sorting, and compression. Decompression: walltime from program startup of SAMtools
sort until start of the parallel sorting step. Sorting: time spent sorting the BAM
records containing aligned DNA-Reads in memory. Compression: walltime from end
of sorting to the end of the SAMtools sort process. We count the merging of BAM
records towards compression, as SAMtools sort performs the merge concurrently to
compressing the DNA-Reads. Sorting the 2.3GiB BAM file with 48GiB of memory did
not utilize a temporary file. Numbers in parentheses indicate the compression level. One
thread is single threaded computation; for a higher thread count, SAMtools sort uses
the threads in addition to the main thread. Data points: Median, Error bars: fastest
and slowest of 3 runs.
While the compression methods with a higher single-thread speedup compared to the
default zlib compression on level 6 use a lower percentage of their computation time on
compression on a single thread, the usages converge to a similar ratio on 16 threads.



42 D. Siebelt

Besides compression, decompression speed should be taken into account for
the full picture. Here, differences between decompressing files compressed by
compression libraries in 7BGZF are within a range of 15% around the average
decompression time for compressed files. This holds for both, the zlib and the
libdeflate decompressor. Which of the files compressed utilizing compression li-
braries of 7BGZF decompresses the fastest, depends on the used decompressor.
Nevertheless, there is a trend indicating that files with smaller sizes, thus higher
compression rates, are decompressed faster, as shown in Figure 12.
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Fig. 12. Decompression speed by SAMtools using zlib compared to using libdeflate
for decompression. Measured as execution time of SAMtools view with -u flag on
a single thread, piped to /dev/null. The test file is a 104GB uncompressed BAM
file, compressed by SAMtools sort using the 7BGZF settings shown on the x-axis.
Numbers in parentheses indicate the compression level. One thread is single threaded
computation; for a higher thread count, SAMtools sort uses the threads in addition to
the main thread. Data points: Median, Error bars: fastest and slowest of 3 runs. HTSlib
was built with --with-libdeflate for decompression utilizing libdeflate respective
--without-libdeflate for the decompression utilizing zlib.
Decompressing with Libdeflate takes about half the time as with zlib. The trend is for
smaller files to decompress faster than larger ones.

Additionally, it is evident that libdeflate is substantially faster than zlib for
decompression (on average a speedup of 2). This still holds for the uncompressed
file. This is due to a checksum calculation. For each read block, HTSlib calculates
a crc32 checksum. Profiling SAMtools view (which we used for decompression)
revealed that the implementation of the crc32 checksum within libdeflate is ap-
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proximately ten times faster than the zlib implementation.

In conclusion, igzip, slz as well as zlib-ng and libdeflate on compression level
1 are very fast and suitable for temporary files and files immediately used for
further analysis. On compression level 6, zlib-ng and libdeflate are good default
values and provide a trade-off between file size and computation time.

6.8 Recommendation

To increase compression and decompression speed, the amount of threads SAM-
tools sort sort uses should be increased. This can be done using the ”-@” param-
eter. Threads are also used for parallel sorting of in memory blocks of read BAM
records. This further speeds up the process. The optimal number of threads to
use depends on the compression settings. If SAMtools sort uses the default zlib
implementation with the default compression level 6, using up to 16 threads is
reasonable for our setup. For faster compression settings, like zlib-ng or libdeflate
on compression level 1, using up to 8 threads is optimal for our setup.

The optimal selection of the compression level depends on the intended us-
age of the sorted BAM file. For archiving, users can set the compression level
parameter of SAMtools sort to 9 for maximal compression. If the HTSlib ver-
sion SAMtools uses was built with libdeflate support, this maps to libdeflate’s
compression level 12.

However, most of the time, sorting of aligned DNA-Read files is a step in a
larger pipeline, and the data is read and processed further soon. To speed this
up, we recommend to use compression level 0 (”-l 0” which is equal to ”-u”)
if the data is not written directly to the disc or transferred over network with
limited throughput.

However, if the data is written directly to disk or transferred over a network,
the selection hinges on the specific I/O conditions (discussed in the next section).
In most cases, compression level 1 (”-l 1”) serves as a good starting point for
these use cases.

For the zlib implementation to use in HTSlib for compression and decom-
pression tasks, we recommend libdeflate, as it is already supported by SAMtools.
While other zlib implementations like igzip offer faster compression, libdeflate
is already supported by HTSlib. This means the stability is much higher as its
usage is tested within SAMtools. Also, libdeflate provides not only a compressor
but a decompressor as well. Moreover, even for uncompressed in- and output, the
faster crc32 implementation leads to performance improvements. If SAMtools is
installed via Bioconda, it is built with libdeflate per default. Users, concerned
about output sizes but prioritizing a low execution time, can consider using
igzip on compression level 1 via 7BGZF. Still, they should compile HTSlib with
libdeflate support.
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6.9 Evaluation

Using igzip on compression level 1 via BGZF together with libdeflate for decom-
pression leads to a speedup of up to 5 for single core sorting. This remains valid
even if SAMtools sort generates a temporary file due to insufficient memory
relative to the input file size.

Using the libdeflate integration of HTSlib we achieve a speedup of 2 against
zlib on its default level 6 for libdeflate’s default compression level (6). Lowering
the compression level of libdeflate to 1, we achieve a speedup of 3.2 on 1 to 4
threads (Figure 14).

Zlib on default compression level, as well as libdeflate on default compression
level, profit from utilizing up to 16 cores (Figure 15). Libdeflate on compression
level 1 and igzip via 7BGZF gain their highest speedup increase from using up to
8 threads. Still, changing from 8 to 16 used threads, they become slightly faster
(around 4%), contrary to the previous results, where for igzip the execution time
increased at changing from 8 to 16 used threads (Figure 11).

In conclusion, to reduce computation time of the compression done by SAM-
tools sort, the user can lower the compression level and choose a different zlib
implementation. Libdeflate emerged to provide higher compression with lower
computation time in both compression and decompression. Other libraries like
igzip offer faster compression than libdeflate, but are currently not supported
by HTSlib. Nevertheless, with certain restrictions, they can still be used via
7BGZF.

6.10 Future Work

To enhance user awareness, a warning message for the compression library could
be implemented within SAMtools. This message would inform users that compil-
ing HTSlib with libdeflate is recommended if HTSlib is currently linked against
zlib but not explicitly configured to do so.

Intel’s igzip performs even better than libdeflate. Although this comes with
the downside of larger files, implementing igzip support in HTSlib would enable
even faster compression for temporary files. E.g., a mapping could be used map-
ping compression level 1 and 2 to compression level 1 and 3 of igzip and the
higher levels to libdeflate levels.

For improving 7BGZF, a differentiation between output files and temporary
files could be implemented.

Also, the reduced speedup at using faster compression libraries on a larger
number of threads could be investigated further. E.g., the merging process could
be removed to see if it limits the execution time of SAMtools sort.
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Fig. 14. Speedup of SAMtools sort after changing the compression library and the
compression level. Reference is SAMtools sort using HTSlib with default zlib com-
pression on compression level 6. Libdeflate is used via the HTSlib integration, igzip
via 7BGZF. The input file is a 23.6GB unsorted BAM file. SAMtools sort uses up
to 48GiB memory. The output is piped to /dev/null to minimize IO impacts. One
temporary files is written to disk. SAMtools sort compresses the 23.6GB compressed
input file to 21,1GB using zlib (the reference), 20.5GB using libdeflate on level 6,
22.6GB using libdeflate on level 1 and 31.5GB using igzip on level 1 (in both set-
tings). Numbers in parentheses indicate the compression level. One thread is single
threaded computation; for a higher thread count, SAMtools sort uses the threads in
addition to the main thread. Data points: Median, Error bars: fastest and slowest of 3
runs.
The plot illustrates that while alternative compression methods possess the potential
to improve the runtime of SAMtools sort, this advantage diminishes as the number of
threads employed for sorting increases.
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Fig. 15. Speedup of SAMtools sort after changing the compression library and the
compression level. The reference is the respective single-core performance (strong scal-
ing). The input file is a 23.6GB unsorted BAM file. SAMtools sort uses up to 48GiB
memory. The output is piped to /dev/null to minimize IO impacts. Numbers in paren-
theses indicate the compression level. One thread is single threaded computation; for a
higher thread count, SAMtools sort uses the threads in addition to the main thread.
Data points: Median, Error bars: fastest and slowest of 3 runs.
The default zlib implementation on compression level 6 benefits most from a higher
number of threads. The faster the compression speed, the less benefits come from using
a higher number of threads.
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7 Input/Output

7.1 Overview

While the internal algorithms of SAMtools sort are highly optimized for paral-
lel processing, the runtime of SAMtools sort can also be constrained by limi-
tations of the input and output devices. In contrast to a program’s behavior or
used libraries, often the IO devices can hardly be changed. However, in certain
scenarios, optimization strategies can be employed to improve processing speed.

7.2 Compression

SAMtools sort outputs sorted BAM files containing aligned DNA-Reads in a
BGZF compressed format. The BGZF compression format employed by SAM-
tools sort internally relies on GZIP compression provided by the compression
library zlib. Zlib offers various compression levels (0-9), with compression level
0 resulting in uncompressed data. The user can achieve lower runtimes of SAM-
tools sort by using a faster implementation for GZIP compatible compression,
or a lower compression level (Section 6). If the user sets the compression level
to 0, SAMtools sort bypasses the compression step and outputs uncompressed
data, leading to a higher throughput of SAMtools sort.

However, taking IO requirements into account, outputting compressed files
turns out to be faster than writing them uncompressed if the disk does not match
the compression throughput (Figure 16). As HTSlib compresses blockwise with
every block compressed individually, compression scales well with increasing the
amount of threads. Therefore, IO bottlenecks occur with higher probability when
using a higher amount of threads.

On our test system, removing the output compression leads to a speedup of
approximately 3.5 on a single thread. However, on 16 threads, running SAMtools
sort with the default compression level 6 takes only 62% (speedup of 0.62) of
the time it takes with uncompressed output (see Figure 16).

To investigate further, we measure the IOWait time incurred during SAM-
tools sort’s execution. The IOWait time is the time a CPU waits in IDLE for
the completion of IO operations, such as writing to disk.12 For both compressed
outputs from the example above, the IOWait time is below 2 seconds for every
tested amount of threads. Moreover, for both compression levels, 1 and 6, the
IOWait time is nearly identical, despite a difference in throughput. This obser-
vation casts doubt on the assumption that the IOWait primarily arises during
the output stage for compressed output.

For the uncompressed output, the IOWait time is at 2 seconds for single
threaded sorting and increases with the number of threads used up to 6 sec-
onds on using 16 additional threads, as shown in Figure 17. These observations
suggest an IO bottleneck on SAMtools sort with uncompressed output. How-
ever, the testing system’s disk-write speed exceeds 2000MB/s. In comparison,

12 Waiting for memory access is not counted as IOWait [2]
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Fig. 16. Execution time of SAMtools sort with output written to disk and to
/dev/null. One thread is single threaded computation; for a higher thread count,
SAMtools sort uses the threads in addition to the main thread. Data points: Median,
Error bars: fastest and slowest of 3 runs.
Writing uncompressed data is faster than writing compressed data for up to two
threads. While writing to /dev/null is faster on all settings, the difference between
the writing targets is higher for uncompressed output.

SAMtools sort writes 2.22GB in 10.5 s (only the time from starting the merg-
ing of temporary files to the termination of SAMtools sort), which equals a
throughput of 211.7MB/s, if writing uncompressed output to /dev/null. Thus,
the disk’s write speed should be adequate even for writing uncompressed output.
Therefore, future work could focus on a more comprehensive investigation into
the reasons behind the observed increase in execution time when writing to disk
compared to writing to /dev/null.

7.3 Unix Pipelines

Pipelines are a way of forwarding the output of one program to the input of
another program. In Unix-like operating systems, they connect the standard
output of one program with the standard input of another program. In the
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Fig. 17. IOWait time of the experiment shown in Figure 16. IOWait time is the time
all processors spend in IDLE because they are waiting for IO requests. One thread
is single threaded computation; for a higher thread count, SAMtools sort uses the
threads in addition to the main thread. Data points: Median, Error bars: fastest and
slowest of 3 runs.
With both compressed output, the IOWait time is nearly identical, while substantially
higher with uncompressed output. This suggests an IO bottleneck at uncompressed
output.

Linux Kernel, this is implemented by a ring buffer in memory [3]. When the
output of a program is piped to the input of another, the first one writes to the
buffer until the buffer is full, or the write operation is finished. If the buffer is
full, the operating system halts the first program and allows the second program
to read the data from the buffer. In shell scripting, users typically indicate a
pipe by placing a vertical bar symbol (”|”) between commands.

7.4 Pipelining in SAMtools

SAMtools’ commands are designed to work on a stream. They process data se-
quentially, reading input and writing output in a single pass, without revisiting
previous data. Therefore, users can combine several SAMtools commands with
Unix Pipelines. For SAMtools sort, this has the following consequences: SAM-
tools sort can read BAM records as soon as a potential preceding command
has written them. If the potential preceding command supports this, it can for-
ward uncompressed BAM data to SAMtools sort. This eliminates the necessity
for decompression in SAMtools sort and for compression for the potential pre-
ceding command. The potential IO bottleneck in writing uncompressed data is
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prevented by pipelining, as the outputs of the piped commands are not written
to the disk but stored in memory.

Using the default compression (zlib on compression level 6), the speedup
on pipelining SAMtools sort into a SAMtools view command compared to
SAMtools sort writing a file which is afterward read by SAMtools view, is for
all tested amounts of threads below 1.2.(Figure 18). However, with SAMtools
sort outputting uncompressed data, the speedup increases to approximately 1.8
for up to 8 used threads and 1.6 for 16 used threads.
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Fig. 18. Execution time comparison between different methods of chaining SAMtools
sort with SAMtools view: Not Piped uses ”&&” for chaining, both of the others use ”|”.
SAMtools sort utilizes a total of 8GB of RAM. With this memory setting, SAMtools
sort utilizes one temporary file. One thread is single threaded computation; for a higher
thread count, SAMtools sort uses the threads in addition to the main thread. Data
points: Median, Error bars: fastest and slowest of 3 runs. The input file is a 2.3GB
unsorted BAM file.

7.5 Prefixes for Temporary Files

SAMtools sort utilizes temporary files as buffers in its external memory sort. If
no prefix is specified, it writes them into the same directory as the output. If the
output is to standard output, SAMtools sort places them in the current working
directory. Users can set prefixes for temporary files via the ”-T” parameter. To
reduce IOWait times, we recommend choosing a directory located on a local,
high-speed disk. As temporary files are deleted automatically after successful
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sorting, the disks capacities are used only at the time of sorting. However, it is
important to remember, that temporary files are less compressed (compression
level 1) than input and output files compressed with default zlib compression
(compression level 6). In combination, they typically require about 20% more
disk space than the input file, possibly exceeding the capacity of small disks.

In scenarios with limited computational power but very fast and readily avail-
able storage, e.g., sorting on a laptop, the compression of the intermediate files
can be omitted. At the moment, this is only possible by changing the source
code of SAMtools sort (Appendix A.7). While this reduces the amount of com-
putations SAMtools sort performs, it can lead to IO bottlenecks (Section 7.2).

7.6 Recommendation

The effectiveness of the IO-related recommendations presented here hinges on the
specific characteristics of the employed storage devices. While these guidelines
hold for our testing system, they may require adjustments based on the relative
balance between computational speed and the read/write performance of the
used disk.

IO operations can limit the runtime of SAMtools sort, if it outputs un-
compressed files, such as uncompressed BAM files and writes them to disk. To
reduce the amount of IO operations while also eliminating compression asso-
ciated overhead in the output stage of SAMtools sort, we recommend using
pipelines together with uncompressed output wherever possible.

To automate the process of SAMtools sort switching to uncompressed out-
put, detecting if its output is piped to another SAMtools command would be
necessary. As this is hardly possible and files piped into non-SAMtools com-
mands might benefit from compression, we do not recommend implementing
such a behavior. However, a warning should be displayed, if the output file re-
mains unspecified. This situation commonly arises when the program is used
within a pipeline. In this case, the filename of the output file is set to ”-” and
the output is forwarded to standard output using HTSlib. The change in the file
name can be detected, and a warning can be printed to standard error, allowing
users unfamiliar with compression options to adjust their parameters and save
on computation time.

If pipelining is not possible, we recommend a compression level of 1, if SAM-
tools sort has more than a single thread available. If SAMtools sort is run
single-threaded, writing uncompressed output leads to runtime improvements.

In addition, we recommend users to change the prefix for temporary files to
a local, high-speed disk. This is especially important to remember if pipelining
is used. In this case, SAMtools sort writes temporary files to the user’s current
working directory, which can lead to unexpected IO bottlenecks if the current
working directory is, e.g., a network mount.

Modifying SAMtools sort to use uncompressed temporary files might yield
performance benefits in specific scenarios. It should only be considered if compu-
tational resources are limited, while high-speed disk space is readily available.
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8 Failed Approaches

8.1 Storing Pointers

The initial idea to speed up the sorting process consisted of the following steps:

1. Read once through the whole input file. For every BAM record, store a
pointer to the location of the BAM record on the disk together with the
attributes needed for sorting: the ID of the reference sequence, the DNA-
Read is aligned to, the starting position of the alignment on this reference
sequence, and the REVERSE flag.

2. Sort the resulting list based on the extracted attributes. Due to their smaller
memory footprint compared to complete BAM records (10 bytes for the
attributes needed for sorting compared to on average 250 bytes for BAM
records in our test BAM file), sorting these attributes can be efficiently
performed in-memory.

3. Iterate over the resulting sorted list. For every entry, read the referenced
BAM record from disk using random reads and write it sequentially into the
output file.

Although this method eliminates the need to write intermediate files, which cur-
rently consumes a substantial portion of the time needed for sorting (Section 5),
it has some drawbacks:

BAM files are binary compressed representations of SAM files containing
alignment information of DNA-Reads. While compression is beneficial to store
and transfer the huge amounts (up to multiple terabytes per file) of data an
aligned DNA-Read file can consist of, it makes random access a lot harder.
Usually, a compressed file has to be decompressed from start to at least the
position the user is interested in. To address this, BAM files are compressed in the
BGZF file format. As a file in the BGZF file format consists of small blocks (less
than 64KB uncompressed) compressed individually in the DEFLATE format,
for a random read only the number of the block the BAM record for the aligned
DNA-Read is in, together with an offset into the compressed block is necessary.

However, this method is not suitable for accessing every single record in a file
in random order: As mentioned before, the DEFLATE compressed blocks in a
BGZF file typically have sizes of 64KB of uncompressed data. Within our main
test file, BAM records have on average a size of about 250 bytes. Therefore, a
DEFLATE compressed block on average contains 256 BAM records. To extract
every record in random order, the block has to be decompressed 256 times on
average to halfway. Moreover, if the input file is very large in comparison to the
available memory, caching the uncompressed blocks is not feasible.

We can now approximate the compression and decompression operations
per BAM record at the current state of SAMtools sort, compared to this ap-
proach:13 Currently, SAMtools sort decompresses the input file once, accounting

13 For simplicity, we ignore possible caching of uncompressed blocks in the approach
using random reads.
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for one decompression operation for every 265 BAM records. Then, the record
is written to the temporary file, resulting in one compression operation for ev-
ery 256 records. In the final merge, SAMtools sort reads the temporary file
again (one decompression operation per 256 records) and writes the output file
(again, one compression operation for every 256 records). Input and output de-
compression and compression are necessary for both approaches, therefore they
account for the same amount of compression and decompression operations in
both approaches.

The approach using random reads, however, does not use compression op-
erations in between reading the input file and writing the output file, but for
every BAM record on average one compression operation on half a block, accu-
mulating to around 128 decompression operations on whole blocks per 256 BAM
records. Therefore, for the approach using random reads to be faster than the
current behavior of SAMtools sort, compression of a single block (together with
writing) would have to be 127 times slower than the combination of reading and
decompressing a compressed block. However, with the default zlib compression
library, compression on compression level 6 is approximately 9 times slower than
decompression of a file.

These considerations apply only to sorting without merging of temporary
files. If SAMtools sort’s memory limitations are too limited to allow for sorting
without merging of temporary files, each merge of temporary files, would add one
compression and decompression step for each block of BAM records which is part
of the merge. These considerations are not supported by experiments. However,
due to the multiple decompression operations for each block, a speedup from
this approach seems unlikely.

In addition, having to read the file two times breaks the ability of SAMtools
sort to work on a stream. As this is a core feature of SAMtools, breaking it
should be avoided.

8.2 Removing Compression of Temporary Files

Our first measurements showed, that SAMtools sort spends most of its compu-
tation time for compression, even if it outputs uncompressed aligned DNA-Read
files. Based on this observation, our initial assumption was that removing the
compression of the temporary files would reduce the runtime of SAMtools sort.
However, experimenting with faster compression libraries and utilizing a larger
amount of processor cores, removing the compression of files turned out to be
slower than keeping it on a low level (Section 7.2). Therefore, we decided not to
change the compression SAMtools sort applies to temporary files.
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9 Conclusion and Outlook

In this work, we analyzed SAMtools sort for sorting aligned DNA-Read files,
specifically BAM files. We found that the most time-consuming part of sorting
is compression and writing of output and temporary files. To reduce the runtime
of SAMtools sort, we proposed setting a higher limit for the number of tem-
porary files concurrently stored on disk, analyzed alternative implementations
of the compression library used by SAMtools, and examined the impact of IO
requirements on the runtime of SAMtools sort.

Setting a higher limit for temporary files concurrently stored on disk reduces
the number of merges SAMtools sort performs, leading to lower runtimes when
sorting large files with limited memory. By using libdeflate as the compression
library, which is automatically the case if SAMtools is installed via Bioconda, we
achieved a single-thread speedup of 2.3 compared to using zlib. On 16 threads,
this results in a speedup of 1.6. By utilizing Unix pipelines, we can remove the
output compression of SAMtools sort, achieving a speedup of 1.8 when SAM-
tools sort is piped to SAMtools view (SAMtools view with zlib compression
at level 6). To increase user awareness of better compression options, we recom-
mended implementing warnings if zlib is used instead of libdeflate, and if the
output of SAMtools sort is piped but still compressed.

Combining our optimizations and using libdeflate for decompression, igzip
with compression level 1 for compression of temporary and output files, and an
increased limit for temporary files, we could archive a speedup of 6 compared
to SAMtools sort with the default zlib compression on compression level 6
for single-threaded sorting of a 215GiB BAM file utilizing 32GiB of memory.
Compared to SAMtools sort with libdeflate compression on compression level
6, this equals a speedup of 3.14 Utilizing 16 additional threads for sorting a
215GiB BAM file making use of 32GiB of memory, our optimizations lead to
a speedup of 2 compared to SAMtools sort with the default zlib compression
on compression level 6, and a speedup of 1.5 compared to SAMtools sort with
libdeflate compression on compression level 6.

These improvements for the runtime of SAMtools sort represent an im-
portant contribution to the field of bioinformatics, considering the widespread
adoption of SAMtools sort evidenced by its over 5,000 citations and over 5.1
million downloads through Bioconda.

Future projects can investigate the merging process further, as this appears
to be a bottleneck for very fast compression libraries. Additionally, they can
implement igzip support into SAMtools and its file operation library HTSlib, as
igzip has lower runtimes than libdeflate. Furthermore, the merging strategy of
SAMtools sort can be enhanced by writing temporary files not only to half the
limit for temporary files but to the limit minus existing ”big files”, which are
results of previous merges, thereby halving the merges for the first few merges.
14 Runtimes single-threaded: with zlib (6): 41395 s, with libdeflate (6): 20815 s, with

libdeflate decompression and igzip (1) compression: 6887 s. Runtimes utilizing 16
additional threads: with zlib (6): 4287 s, with libdeflate (6): 3488 s, with libdeflate
decompression and igzip (1) compression: 2217 s. (Compression levels in parentheses)
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A Methods

A.1 Computational Environment

We conducted the experiments on a machine with the following specifications:

– Operating System: AlmaLinux release 8.9 ([core-4.1 kernel])
– CPU:

• Architecture: x86 64 (64-bit capable)
• Model: AMD Ryzen 9 3950X 16-Core Processor
• Cores: 16 physical cores, 32 logical cores

– Memory: 64GB total RAM
– Storage: NVMe device (KXG60PNV2T04 NVMe KIOXIA 2048GB)

7BGZF was compiled with clang (16.0.6). All other programs were compiled
with gcc (8.5.0).

A.2 Setting Compression Levels In SAMtools

In SAMtools sort, the user can set the compression level of the output file using
the ”-l” parameter. Possible options are integers from 0 to 9. Compression level
0 is equal to no compression (equal to the -u parameter).

For other SAMtools commands where the ”-l” parameter does not ex-
ist, the user can still change the compression level of the output via adding
--output-fmt-option level=1 to the arguments of the command (Put the de-
sired compression level between 0 and 9 instead of 1).

A.3 Configuring Libdeflate Support in HTSlib

To decide manually between using zlib and libdeflate, the user can run the HT-
Slib configure script with the --with-libdeflate resp. --without-libdeflate
option. To use LD PRELOAD for changing the zlib implementation, the user must
build HTSlib without libdeflate.

A.4 Libdeflate Compression Level Mapping

zlib 1 2 3 4 5 6 7 8 9
libdeflate 1 2 3 5 6 7 8 10 12

Table 2. Mapping between zlib compression levels and libdeflate compression levels
in HTSlib. The default level is marked bold.
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A.5 Configuring 7BGZF

To configure the compression library and the compression level, 7BGZF uses
to compress BAM files in the BGZF format, the user can set the BGZF METHOD

environment variable to a compression library’s name concatenated with a com-
pression level before running a SAMtools command.

For the compression libraries, users can choose one of zlib, miniz, slz,
libdeflate, zlibng, igzip, and zopfli. Their possible compression levels vary:

– zlib, miniz, and zlibng offer levels from 1 to 9.
– libdeflate offers levels from 1 to 12.
– igzip offers levels from 1 to 3.
– slz only supports level 1.
– While zopfli does not use compression levels in the traditional sense, it

allows specifying an amount of iterations (greater than or equal to 1) within
the compression level parameter of 7BGZF.

Example for calling SAMtools sort with igzip and compression level 1:
BGZF METHOD=igzip1 LD PRELOAD=/path/to/7bgzf.so samtools sort ...

A.6 Using HTSlib as a Shared Library

SAMtools uses HTSlib as static library by default. To override methods from
HTSlib, SAMtools must use HTSlib as a shared library. To use HTSlib as a
shared library, the user has to change a single line in SAMtools’ config.mk.in
and change @Hsource@HTSLIB = $(HTSDIR)/libhts.a to refer to libhts.so

instead. Running SAMtools ./configure script and make leads to SAMtools
using HTSlib as a shared library. If SAMtools does not find the shared object,
export the location of HTSlib in the LD LIBRARY PATH environment variable.

A.7 Writing Uncompressed Temporary Files

To remove the compression of temporary files, the source code of SAMtools sort
must be changed. This can be done by replacing the parameter mode of the first
call of bam merge simple in the bam sort core ext method, which is located
in bam sort.c. Current values are, depending on the existence of a position too
large to be stored in a BAM file, ”wzx1” for BGZF compressed SAM files on
compression level 1 and ”wbx1” for BAM files with compression level 1. Those
can be changed to ”w” for SAM files and ”wbx0” for uncompressed BAM files.




