
Intermodal Tour Planning for Delivery
and Pickup Activities for CEP Service

Providers

Algorithm Engineering Research Group
Institute of Theoretical Informatics and

Institute for Transport Studies
Department of Civil Engineering, Geo and Environmental Sciences

Karlsruhe Institute of Technology

Bachelor’s Thesis

of

Jordan Körte

Reviewers:
Prof. Dr. rer. nat. Peter Sanders

Prof. Dr.-Ing. Peter Vortisch

Advisors:
M.Sc. Robin Andre
M.Sc. Jelle Kübler

M.Sc. Moritz Laupichler

Date of Submission: 20.03.2024
Karlsruhe



Acknowledgment

The author is a scholarship holder of the Heinrich Böll Foundation.

ii







Abstract

The demand for parcel deliveries in city centers has been rising steadily for years.
This development is also problematic due to the climate-damaging exhaust gases
and the large amount of space required by delivery vehicles. Scientists are therefore
developing new concepts for deliveries in city centers that use trams and cargo bikes in
particular as transporting vehicles for parcels. However, there is a lack of algorithms
customized for these concepts that take intermodal delivery into account. This thesis
therefore introduces an algorithm for intermodal tour planning that focuses on delivery
using a combination of tram and cargo bike. The algorithm is based on the Ant Colony
Optimization metaheuristic and supports deliveries and pickups as well as time windows
and limited capacities. The thesis demonstrates the practicability of the introduced
algorithm using street networks of existing cities and synthetically generated parcel
demand.





Zusammenfassung

Die Nachfrage nach Paketlieferungen in Innenstädten steigt seit Jahren kontinuierlich
an. Problematisch ist diese Entwicklung auch wegen der klimaschädlichen Abgase
und des hohen Platzbedarfs der Zustellfahrzeuge. In der Wissenschaft werden daher
aktuell neue Konzepte für Zustellungen in Innenstädten entwickelt, die insbesondere
Trams und Lastenfahrräder als Transportmittel für Pakete nutzen. Diesen Konzepten
mangelt es jedoch an geeigneten Algorithmen, die intermodale Zustellung berücksichti-
gen. Daher führt diese Arbeit einen Algorithmus zur intermodalen Tourenplanung ein,
der den Fokus auf die Zustellung mit der Kombination aus Tram und Lastenfahrrad
legt. Der Algorithmus basiert auf der Ameisenalgorithmus-Metaheuristik und unter-
stützt Zustellungen und Abholungen sowie Zeitfenster und begrenzte Kapazitäten. Die
Arbeit demonstriert die Praxistauglichkeit des eingeführten Algorithmus anhand von
Straßennetzen existierender Städte und synthetisch generiertem Paketaufkommen.
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1 Introduction

In the context of the climate crisis, the continuously increasing demand for parcel
delivery in city centers poses a problem. Last mile delivery is typically achieved with
space-consuming vans powered by fossil fuels. Alternative concepts that reduce overall
emissions and space consumption are therefore desired.

Recently, the idea of using cargo bikes for last-mile delivery in urban centers has gained
traction [1]. Cargo bikes have a much lower capacity and movement speed compared
to vans but are less space-consuming and emission free. Since the depots of courier
express parcel (CEP) service providers are often located outside of city centers, trams
are being considered for transport from depots to so-called city hubs in urban centers.
These city hubs then act as micro-depots for cargo bikes. A city hub constitutes a
transfer point for deliveries from tram to cargo bike and for pickups from cargo bike to
tram.

Depending on the implementation, the trams may have a special compartment for
parcels or they may transport the parcels alongside the passengers. In the latter case,
the passengers have priority over parcels. As a result, the volume of parcels that can
be delivered by tram varies throughout the day, for example due to commuter traffic.
This means that some parcels cannot be delivered by tram and cargo bike. These
remaining parcels are then delivered by conventional means.

This thesis proposes both a modeling and an algorithm designed for the new approach
for parcel delivery using a combination of tram and cargo bike. The algorithm creates
tour plans for the used vehicles and minimizes the lengths of the tours to save costs.

The problem of creating the optimal tour plans can be considered a variant of the
Vehicle Routing Problem (VRP) which is a generalization of the well-known Traveling
Salesman Problem (TSP). The VRP was introduced in 1959 by Dantzig and Ramser
[4] and has some variants which integrate capacity, time and other constraints into the
problem. The VRP and its variants are NP-hard, which requires the use of heuristics
for large-sized instances.

There are manifold approaches to solve different variants of the VRP. However, there is a
lack of approaches which combine all the requirements of an intermodal tour algorithm.
Therefore, this thesis seeks to adapt the existing approach MACS-VRPTW.

1



1 Introduction

MACS-VRPTW was proposed by Gambardella et al. [8] and employs Ant Colony
Optimization (ACO). In its originally proposed form, the algorithm does not support
certain requirements, such as multiple depots and pickups, but the adaptability of ACO
allows us to use most of the approach anyways. The important changes made on
MACS-VRPTW are presented in-depth in Section 5.1.1. A complete description of the
algorithm in pseudocode is given in Section 5.2.

Furthermore, the algorithm is tested against various real-world data from the Open-
StreetMap project1 to demonstrate real-world usability.

The remainder of the thesis is structured as follows: Chapter 2 gives an overview of
similar existing approaches. Chapter 3 introduces the underlying optimization problems
and approaches. In chapter 4, mathematical descriptions of the problem and solution
models are provided. The proposed algorithm is presented in chapter 5. Chapter 6
evaluates the algorithm. A conclusion is provided in chapter 7.

1https://www.openstreetmap.org
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2 Related Work

Dantzig and Ramser [4] first described the Vehicle Routing Problem (VRP) applied to
gasoline delivery between one terminal and service stations and called it “The Truck
Dispatching Problem”. They proposed an algorithm to solve the problem using an
integer linear programming (ILP) formulation.

Since then, there has been great research effort regarding the VRP and its diverse
variants. Some of the proposed approaches focus on finding exact solutions. Examples
for those are ILP-based formulations and dynamic programming algorithms. Other
approaches focus on approximations and heuristics in order to achieve low computation
time even on big-sized instances. Examples for those are the Clarke-Wright algorithm
and the tabu search metaheuristic [13].

2.1 Exact Solution Algorithms

Wassan and Nagy [21] proposed an ILP model to solve the VRP with pickups, deliveries
and capacity and time constraints. However, it has problems at realistic-sized instances.
Their computational results show that even for relatively small-sized instances at around
30 (pickup and/or delivery) jobs, the computation time exceeds 3 hours. It is foreseeable
that the instances of intermodal tour planning in urban centers will become much larger
than that.

Laporte and Norbert [14] reported applicability of dynamic programming to several vari-
ants of the VRP, among them the VRP with capacity and time constraints. The authors
propose a combination of state-space relaxation and branch and bound algorithm. For
the capacity-constrained problem, the largest tested instance has 125 jobs which could
be solved in 15 minutes.

2.2 Approximate Solution Algorithms

Exact solution algorithms fail if the problem instance gets too large. Approximate
solution algorithms trade off some of the solution quality for a faster termination time.

3



2 Related Work

There are approximate solution algorithms based on heuristics that are customized for
specific problems. Apart from that, metaheuristics offer general-purpose mechanisms
for a variety of problems [20].

2.2.1 Heuristic Algorithms

Clarke and Wright [3] developed the savings algorithm, which is a heuristic for simple
tour planning problems. The algorithm starts assigning every job (delivery) to an own
tour of a vehicle. It subsequently tries to merge tours while favoring merges yielding a
high reduction of tour length (saving). While it is a simple solution approach, it neither
supports time constraints nor pickups nor more than one depot.

Ratnagiri et al. [17] designed a procedure to solve VRPs with focus on fast solution
generation instead of solution quality. The procedure is based on clustering and greedy
search. First, the (pickup and/or delivery) jobs are N-clustered, where N is the number
of vehicles available. The authors propose complete-linkage clustering for this purpose.
Every cluster contains jobs for one vehicle. Subsequently, the path of the vehicle is
generated using a greedy nearest-neighbor heuristic. Time and capacity constraints
as well as pickups are not considered, but could be integrated. The integration of
micro-depots pose a problem with this procedure because the clusters are generated
without consideration of the location of the depots. A further problem is that the nearest
neighbor heuristic may generate poor solutions on realistic instances.

2.2.2 Metaheuristic Algorithms

Tabu search is a flexible metaheuristic that is applicable to many optimization problems.
It tries to prevent the search from getting stuck at local optimums. This is done with a
tabu list that contains solutions which may not be visited (again). The algorithm starts
with an initial solution generated by another solution method and repeatedly searches
the neighborhood of the current solution in order to find better solutions. The tabu
search algorithm usually stops after a certain number of iterations [10].

Gambardella et al. [8] proposed MACS-VRPTW, a procedure to solve single depot
VRPs with capacity and time constraints. It employs the Ant Colony Optimization
metaheuristic and focuses on acceptable solution quality in acceptable time even on
large-sized instances. It does not support pickups, but the adaptability of Ant Colony
Optimization makes it possible to integrate pickups and multiple depots as well.

Zheng et al. [22] developed a delivery planning algorithm for cities based on a metro
line. The idea is to deliver parcels by truck from the depot to a nearby metro entry
station. At the entry station, the parcels are loaded into a compartment of a metro
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2.2 Approximate Solution Algorithms

train. The parcels are then transported to an exit station. This transport makes up the
most of the distance the parcel is transported. From the exit station, the parcels are
transported to the customers. The algorithm supports time windows and capacity of
vehicles. It comprises two steps. First, the parcels are assigned to a metro exit station.
After that, the actual tours from exit station to customers are calculated. Zheng et al.
use a combination of the Clarke-Wright algorithm and tabu search. The tours respect
the schedule of the metro line, but assume that there is always enough capacity on
the metro trains to transport the parcels. Furthermore, they enforce that all parcels
are transported with the metro. A direct transport from depot to customer is not
considered.

The rich VRP solver Jsprit [18] by GraphHopper supports a number of variations of
VRP such as CVRP, VRPTW, MDVRP and VRPPD. It is written in Java. The input
parameters of Jsprit are encapsulated as Java classes. Jsprit makes use of the ruin-
and-recreate principle, a large neighborhood search metaheuristic. Jsprit does not
support multi-leveled VRPs, where packages are first transported to a number of hubs
and from there transported to the customers.
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3 Foundations

Intermodal tour planning can be traced back to several well-studied optimization prob-
lems. The Vehicle Routing Problem (VRP) is concerned with the planning the shortest
possible tours for vehicles that need to visit a number of service points. The VRP is
used to plan tours for cargo bikes and sprinters (a type of van). The Knapsack problem
is concerned with the optimal selection of items in a container of limited capacity. The
Knapsack problem is used for the optimal assignment of sets of parcels to trams. These
optimization problems are introduced below.

3.1 Multiple Knapsack Problem with Assignment Restrictions

The Knapsack problem is a well-known combinatorial problem. The Multiple Knapsack
Problem with Assignment Restrictions (MKAR) is a variant of the Knapsack problem
with multiple knapsacks instead of one and restrictions on which item can be assigned
to which knapsack.

In this thesis, the following formulation adapted from Dawande et al. [5] will be used:

• Let N = {1, ...,n} be a set of n items.
• Let M = {1, ...,m} be a set of m knapsacks.
• Let w j ∈ R+ be the weight of item j ∈ N.
• Let ci ∈ R+ be the capacity of knapsack i ∈M.
• The subset Bi ⊆ N defines which items can be assigned to knapsack i ∈M.
• Find subsets Si ⊆ Bi that maximize ∑i∈M ∑ j∈Si w j and respect

(1) ∀i ∈M : ∑ j∈Si w j ≤ ci and
(2) ∀i1,i2 ∈M, i1 ̸= i2 : Si1 ∩Si2 = {}

Constraint (1) requires the compliance with the knapsack capacities ci. (2) requires that
items are not contained in multiple knapsacks. The MKAR problem is NP-hard [5].

The Knapsack problem without any variations can be solved in pseudo-polynomial time
using dynamic programming [16].

Dawande et al. proved in [5] that the MKAR problem is NP-hard in the strong sense.
That means that there cannot exist an algorithm that solves the MKAR problem in

7



3 Foundations

Algorithm 1 Pseudocode of the Successive Knapsack Algorithm

1: procedure SUCCESSIVEKNAPSACK(N,M,B)
2: for all i ∈M do
3: Si← Solve the Knapsack problem for i with items N∩Bi

4: N← N \Si

pseudo-polynomial time. However, Dawande et al. proposed a polynomial-time 1
2 -

approximation algorithm called Successive Knapsack Algorithm. The pseudo code is
stated in Algorithm 1.

The solutions of |M| Knapsack problems required by the Successive Knapsack Algo-
rithm to solve the MKAR problem must be solved by another algorithm. Dawande et al.
propose dynamic programming.

3.2 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a combinatorial problem. It is a generalization of
the well-known Travelling Salesman Problem (TSP). For the sake of completeness, we
introduce the TSP here.

3.2.1 Travelling Salesman Problem

• Let G = (V,E) be a directed graph.
• Let S⊆V be the set of vertices to visit.
• The goal is to find a path P in G with minimal length, such that all s ∈ S are visited.

The first vertex and last vertex in P must be equal.

3.2.2 Vehicle Routing Problem (Without Variations)

In this thesis, we use the following formulation of the VRP:

• Let G = (V,E) be a directed graph with N = |V |, M = |E|, a set of vertices V =

{v1, ...,vN} and a set of directed edges E = {e1, ...,eM} where an edge e = (vi,v j),
i ̸= j.

• Let d∗ ∈V be the depot where the tour starts and ends.
• Let D⊆V be a set of demands, meaning vertices to be visited.
• Let F = { f1, ..., f|F |} be a fleet of vehicles that can traverse the edges of G.
• Find paths P = (d∗, p1, ..., pK ,d∗) in G that contain each d ∈ D at least once and

minimize the total distance driven. There must not be more paths than there are
vehicles in the fleet.
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3.2 Vehicle Routing Problem

As the VRP is a generalization of the NP-hard TSP, VRP is also NP-hard [9]. It has
multiple variants, some of which we present next:

3.2.3 Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) is a variant of the VRP [12].

• Each demand gets a capacity usage property: D = {(v1,c1), ...,(v|D|,c|D|)} where
∀i ∈ {1, ..., |D|} : ci ∈ R+

• Each vehicle f gets an individual capacity constraint c.
• A vehicle starts with the summed capacity usages of the demands it serves.

When a demand is served, the capacity usage is subtracted from the current load
of the vehicle. There must not be capacity violations at any time.

3.2.4 Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem with Time Windows (VRPTW) is a variant of the VRP
[12].

• Each demand gets a time window property: D = {(v1, tw1), ...,(v|D|, tw|D|)} where
a time window tw = (start,end),start,end ∈ R+,start < end

• A demand can only be served within its time window.

3.2.5 Vehicle Routing Problem with Pickups and Deliveries

The Vehicle Routing Problem with Pickups and Deliveries (VRPPD) is a variant of the
VRP.

• Demands may not just be deliveries (from depot to customer), but also pickups
(from customer to depot).

• For the Capacitated Vehicle Routing Problem, this implies
a) pickups are excluded from the initial vehicle’s load at the depot and
b) when a pickup is served, its capacity usage is added to the load of the

vehicle instead of subtracted.

Page 9 of 86



3 Foundations

3.2.6 Multi Depot Vehicle Routing Problem

The Multi Depot Vehicle Routing Problem (MDVRP) is a variant of the VRP.

• There is not just one depot d∗ ∈V , but a set of depots D∗ ⊂V , from where tours
can start and end.

• The tour of every vehicle must end at the same depot where it started.

3.3 Metaheuristics for the Vehicle Routing Problem

The VRP and the variants listed above are all NP-hard. VRPs with simple constraints
and small size can be solved exactly. But as constraints become more complex and
size increases, obtaining exact solutions becomes infeasible. Metaheuristics can be
used to tackle this [2].

Talbi [20] categorizes metaheuristics as a branch of optimization that can be used when
exact algorithms fail to yield the solution in reasonable time. This is often the case for
big instances of NP-hard problems. The mechanisms of metaheuristics usually are very
abstract, which makes them applicable to a large variety of problems. Metaheuristics
are often inspired by nature, e.g. evolutionary algorithms.

3.3.1 Ant Colony Optimization

Ant Colony Optimization (ACO) introduced by Dorigo et al. [7] is a metaheuristic
inspired by the behavior of ants. Ants use pheromone trails to communicate with each
other. They leave pheromones that can be detected by other ants, making it more likely
that other ants take the same way. This kind of swarm intelligence is used in the ACO
metaheuristic and can be applied to path finding problems in graphs.

The underlying mechanism works as follows [7]. Let G = (V,E) be a directed graph.
Let τi, j be the pheromone value between two vertices i and j. These pheromones are
initialized with the same value τ0. First, ant solutions are constructed based on the
current pheromone trails. A solution is constructed by traversing the graph starting
at a vertex and choosing the next vertex probabilistically based on the respective
pheromone trails. The formula to calculate the probabilities of next steps is displayed in
Equation (3.1). pi, j is the probability to take edge (i, j) next, N(sp) the set of feasible
next steps where sp is the solution constructed up to the current point, η is a heuristic
value that encourages ants to take better paths more frequently, α and β are algorithm
parameters that weigh the pheromones and heuristic value.
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(3.1) pi, j =


τ

α
i, j ∗η

β

i, j

∑
(i, j)∈N(sp)

τ
α
i, j ∗η

β

i, j

, if (i, j) ∈ N(sp)

0, otherwise

After the solutions have been constructed, the pheromone values are updated (offline
pheromone update). Implementations differ in how they perform these updates. Some
use the global best solution, others use the best solution of the current iteration. One
proposed formula is τi, j := (1−ρ)∗ τi, j +ρ ∗∆τi, j for all edges (i, j) that are part of the
best solution, where ρ is the evaporation rate and ∆τi, j is the increase of pheromones.
The actual value of ∆τi, j varies depending on implementation.

Then, a new solution is constructed. These steps are repeated until some termination
condition is met, e.g. number of iterations, a time threshold or a threshold of solution
improvement. The precise implementation must be chosen depending on the specific
problem.

Application to the Capacitated Vehicle Routing Problem One classical application
of the ACO metaheuristic is the TSP and the related VRP. In case of the CVRP, the
solution construction phase would yield solutions respecting the capacity constraints.
At a vertex, the next vertex is chosen probabilistically, but excluding already-visited
vertices and vertices violating a capacity constraint. The global best solution is updated
if a better solution (shortest route) is found. The application to VRPTW is very similar.

3.3.2 Ant Colony Optimization Algorithms

Ant Colony System

One important ACO algorithm is Ant Colony System (ACS) [7]. It introduces a so-called
local pheromone update. It is not to be confused with the pheromone update after
the solution construction. A local pheromone update is performed after each edge
traversing. In such an local pheromone update, the pheromone value of edge (i, j) is
updated as follows: τi, j = (1−ρ) ∗ τi, j +ρ ∗ τ0, where ρ is the decay of pheromones.
According to Dorigo et al. [7], this makes it less likely that following ants take the same
path as previous ants, hence diversifying the solutions produced by ants. Diverse
solutions are desirable for ACO because they make the search examine other parts of
the solution space. It has been proved by Stutzle and Dorigo [19] that the probability
that ACS yields an optimal solution (i.e. a solution of minimal length) can be made
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arbitrarily close to 1 if a sufficiently large number of iterations is given.

Multiple Ant Colony System for Vehicle Routing Problems with Time Windows

Multiple Ant Colony System for Vehicle Routing Problems with Time Windows (MACS-
VRPTW) is an ACS-based algorithm to solve the VRPTW [8]. In this case, VRPTW
implicitely means the combination of CVRP and VRPTW. It uses two separate instances
of ACS with different objectives. The first objective is to reduce the number of vehicles
used. The respective ACS instance (colony) is named ACS-VEI. The second objective
is to reduce the overall time vehicles spend traveling. The respective ACS instance
(colony) is named ACS-TIME. The first objective is always preferred over the second
objective, meaning that a longer overall tour duration is accepted if a lower number of
vehicles is achieved.

MACS-VRPTW takes as inputs a (directed) graph, the depot node and a set of demands
and their respective time windows. At the beginning, MACS-VRPTW calculates an
initial (feasible) solution by using the greedy local neighbor heuristic. This solution is
not bound to a number of vehicles. Thus, the main MACS-VRPTW procedure tries to
reduce the number of vehicles in the first place.

The ACS-VEI and ACS-TIME colonies are executed in parallel, using a common variable
keeping the global best. ACS-VEI tries to find any feasible solution with one vehicle
less than the current global best solution has. ACS-TIME tries to find a feasible solution
with less time spent. When ACS-TIME has found a feasible solution with the same
amount of vehicles, the global best solution is updated, but neither colony is stopped.
When either ACS-TIME or ACS-VEI has found a feasible solution with less vehicles,
both colonies are stopped. The global best solution is updated and both colonies are
started again. The colonies are run until a termination condition is met.

The solution construction functions nearly the same in both colonies. The procedure
first sets the depot as current location, where a location is either the depot or a
demand. Then, a sequence of locations is generated one by one. For each demand,
an attractiveness matrix ηi, j is computed first. i is the current location and j is any other
location. If it is infeasible to move from location i to location j, the algorithm sets ηi, j = 0.
This may be the case if demand j’s time window or capacity usage is incompatible or
if demand j has already been served. A next demand is either chosen by maximum
probability pi, j (“exploitation”) or probabilistically with probabilities pi, j (“exploration”).
Whether exploration or exploitation is performed, is decided at random. The parameter
q0 determines the probability of exploitation being performed. Exploration is thus
being performed with probability 1−q0. MACS-VRPTW uses Equation (3.1), taking the
attractiveness matrix ηi, j as heuristic value and α = 1. Following the ACS approach,
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a local pheromone update is then performed. The solution construction is repeated
until there are no more feasible demands. Solution construction is allowed to conclude
without necessarily having visited all demands.

To improve the computed solution, an insertion procedure and a local search are
optionally performed. The insertion procedure inserts yet unvisited demands into the
path based on a heuristic. Even after that, the solution may not be feasible as there
could still be missing demands. Infeasible solutions are filtered by ACS-VEI and ACS-
TIME. ACS-VEI additionally keeps track of how often a demand has been not included
in a solution and takes this into account in the attractiveness matrix.

The authors claim that MACS-VRPTW is competitive with the best existing solvers
when taking into account solution quality and computation time. They performed tests
on several benchmark instances and were able to improve the best known solution of
several of those instances [8].
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4 Problem Statement and Analysis

In this chapter the problem "Intermodal Tour Planning for Delivery and Pickup Activities
for CEP Service Providers" described in the introduction is analyzed. The problem will
be referenced as P. First, P is described thoroughly. After that, a decomposition of
P into smaller parts is proposed.

4.1 Description

In this section, the problem model, solution model and objective of P are given.

4.1.1 Problem Model

Table 4.1 provides an overview of the problem model. The problem model contains
14 items. Gs = (Vs,Es) and Gb = (Vb,Eb) are strongly directed loop-free graphs. Gs

and Gb may be equal. The vertex sets Vs and Vb contain 2-tuples (latitude, longitude)

holding the latitude and longitude of the vertex. d∗ = (ed , latitude, longitude) is the depot,
containing latitude and longitude of the depot and a corresponding edge ed ∈ Es. ed

must be contained in the sprinter graph vertex set, but not necessarily in the cargo bike
vertex set. H is the set of city hubs. A city hub h = (e,latitude,longitude) ∈ H contains
the same attributes as the depot. The corresponding edge must be contained in both
sprinter and cargo bike graph (e ∈ Es ∩Eb). Gt = (Vt ,Et) is the tram graph (or better
called, tram schedule). The graph contains only edges from the depot d∗ to any of the
city hubs h ∈ H or vice-versa. An edge additionally contains a capacity c that tells the
maximum-transportable amount of demands and a time window ts, te. The time window
tells when demands can be delivered to or picked up from the city hub h. To be precise:
If the edge e ∈ Et is an edge from the depot d∗ to any of the city hubs h ∈ H (delivery),
then the time window means the time window of arrival at the city hub. If the edge
e ∈ Et is an edge from any of the city hubs h ∈ H to the depot d∗ (pickup), then the time
window means the time window of departure at the city hub. Time windows have a
start time ts and an end time te. E.g. an edge (·, ·,c = 5, ts = 2, te = 6) ∈ Et (capacity of 5
within the time window from 2 to 6) means that from 2 hours1 to 6 hours the maximum

1hours since the start time
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Index Name Constraints Description

1 Gs = (Vs,Es) - sprinter graph
2 Gb = (Vb,Eb) - cargo bike graph
3 d∗ = (ed , lat, lon) ed ∈ Es depot
4 H - city hubs
5 Gt = (Vt ,Et) - tram graph (schedules)
6 P - pickup demands
7 D - delivery demands
8 rb ∈ R+ cargo bike delivery radius in meters
9 Ns ∈ N number of sprinter vehicles available

10 Nb ∈ N number of cargo bike vehicles available
11 Cs ∈ R+ capacity of sprinter vehicles in cu
12 Cb ∈ R+ capacity of cargo bike vehicles in cu
13 vs ∈ R+ speed of sprinter vehicles in meters per hour
14 vb ∈ R+ speed of cargo bike vehicles in meters per hour

to 1 and 2: Vx = {vx1, ...,vx|Vx|}, where a vertex vx = (latitude, longitude) ∈Vx,
Ex = {ex1, ...,ex|Ex|}, where an edge ex = (vxi,vx j) ∈ Ex, i ̸= j, x ∈ {s,b}

to 4: H = {h1, ...,h|H|}, where a city hub h = (e,lat,lon), e ∈ Es∩Eb
to 5: Vt = {ed}∪H, Et = {et1, ...,et|Et |}, eti = (vti,vt j,c, ts, te) where vti = ed⊕ vt j = ed, c is

the transportable capacity in the time window from ts to te
to 6 and 7: P = {p1, ..., p|P|}, D = {d1, ...,d|D|}, where a pickup or delivery demand = (e,c, ts, te),

e ∈ Es∩Eb is the corresponding edge, c ∈ R+ the capacity usage in cu, ts, te ∈ R+
0

the start and end of the time window in hours

Table 4.1: Input of problem P

capacity to be transported is 5. The time windows are non-overlapping. P and D are
pickup and delivery demands that shall be served by the vehicles. A demand (e,c,ts,te)

has a corresponding edge e it belongs to, a capacity usage c and a time window ts, te in
which it must be served. rb ∈ R+ is the cargo bike delivery radius in meters. Ns ∈ N is
the number of sprinter vehicles available. Nb ∈ N is the number of cargo bike vehicles
available. Cs ∈ R+ is the capacity of sprinter vehicles in cu1. Cb ∈ R+ is the capacity of
cargo bike vehicles in cu. vs ∈ R+ is the speed of sprinter vehicles in meters per hour.
vb ∈ R+ is the speed of cargo bike vehicles in meters per hour.

Figure 4.1 visualizes how street (i.e. sprinter and cargo bike) and tram graphs might
look like together. Assume that the sprinter graph equals the cargo bike graph. The
depot is located at the edge marked with the envelope. There are two city hub edges,
marked by gray cylinders. For each of them, there is a tram connection through which
parcels can be transported. Sprinters start at the depot edge. Cargo bikes start at one
of the city hubs. Demands can be located at any of the edges.

1cu (capacity unit) is an arbitrary unit for capacities
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Figure 4.1: Visualization of street and tram graphs with a depot and city hubs

4.1.2 Solution Model

Index Name Description

1 T = (t1, ..., t|T |) tour plan of vehicles
2 A = (a1, ...,a|A|) assignment of demands to tour

to 1: ti = (type,route), where type ∈ {sprinter,cargo bike, tram} is the vehicle type and
route is a list of edges that are sequentially used by the vehicle

to 2: ai = (demand, tours), where demand ∈ P∪D is the demand and tours⊂ T is a set
of tours the demand is part of

Table 4.2: Output of problem P

The solution of P contains two single parts T and A. T is the tuple of tour plans. Each
tour plan contains the type of vehicle that performs the tour and a route that the vehicle
takes. The route is a list of edges in the respective graph. A contains exactly |P∪D|
assignments of a demand to the tours the demand is part of. In case the demand is
not delivered, tours remains empty. In case the demand is delivered by sprinter, tours

contains exactly one tour, namely the sprinter tour that serves the demand. In case the
demand is delivered by tram and cargo bike, tours contains exactly two tours, namely
the corresponding tram and cargo bike tour. Other cases do not exist.
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4.1.3 Objective

There are two objectives of P:

1. maximize |{a | a = (demand, tours) ∈ A, |tours|= 2}|
2. minimize ∑

t∈T
tourlength(t), where tourlength(t = (type,route)) is the time needed

to take the route

The first and superior objective is to maximize the number of demands that are delivered
by tram and cargo bike. The second objective is to minimize the time vehicles spend to
serve the demands. Valid solutions (T,A) are subject to the following constraints:

• The routes of the tours T are valid paths in Gs, Gb or Gt respectively.
• The tours T serve all demands. A demand is served if the corresponding edge is

traversed by the vehicle that is ought to serve the demand.
• The load of every vehicle does not exceed the vehicle’s capacity at any time.
• The time window of every served demand is respected.
• The number of available vehicles is not exceeded.

4.2 Decomposition

P is a composition of different VRPs. It is a CVRP because of the capacity restrictions
Cs and Cb. It is a VRPTW because there are time windows ts and te for every demand
(e,c,ts,te). It also is a VRPPD as there are pickup and delivery demands.

This special combination of VRPs is not found in literature up to this point and thus
requires an individual approach to solve it. For this purpose, a decomposition is
proposed. P is broken down into two Capacitated Vehicle Routing Problems with
Pickups and Deliveries and Time Windows (CVRPPDTWs) and one Multiple Knapsack
Problem with Assignment Restrictions (MKAR problem). For each of these partial
problems, approaches and solvers already exist. Solutions for the partial problems can
be combined into a solution for the full problem using greedy algorithms and special
heuristics.

In principle, there are two VRPs to solve: The first is the VRP for the cargo bikes, the
second is the VRP for the sprinters. As cargo bikes emit no greenhouse gases, we aim
to serve as many requests as possible using cargo bikes rather than polluting sprinters.
Sprinters are second-tier vehicles that serve all demands the cargo bikes fail to serve.
As each demand served by a cargo bike first needs to be transported to a city hub
using a tram, we also need to optimize the usage of cargo tram capacity. However, the
tram schedule may prevent that demands are transported to a city hub, for example
due to commuter traffic. Any demand that could not be transported by tram will also be
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served by sprinters.

4.3 Transformation

In this section, the transformation of the problem P into the decomposed subproblems
is stated. Note that in the following it is neglected that demands of P are assigned
to edges whereas the VRP assumes demands are assigned to vertices. This issue is
treated in Section 5.1.1.

4.3.1 Capacitated Vehicle Routing Problem with Pickups and Deliveries
and Time Windows

The Capacitated Vehicle Routing Problem with Pickups and Deliveries and Time Win-
dows (CVRPPDTW) is a composition of several VRP variants, which are discussed
individually below.

Vehicle Routing Problem The VRP requires a directed graph, a depot, a set of
demands and a fleet of vehicles. The graph is taken from either the sprinter graph Gs or
cargo bike graph Gb of P. The depot is taken from the depot of P. The demands are
taken from P and D as in P. The fleet of vehicles is defined as { fi | 1≤ i≤ N } where
N = Ns for sprinters and N = Nn for cargo bikes.

Capacitated Vehicle Routing Problem The CVRP requires demands to have a
capacity usage and vehicles to have a maximum capacity. The capacity usages
of demands are taken from the capacity usage parameter c of pickup and delivery
demands P and D of P. The capacity of vehicles is defined as Cs or Cb as in P for
every vehicle.

Vehicle Routing Problem Time Windows The VRPTW requires demands to have a
time window. That is taken from the time window ts,te of the demands P and D of P.

Vehicle Routing Problem with Pickups and Deliveries The VRPPD allows and
separates pickups and deliveries. The separation is specified by the sets P and D of
P.

The goal of the CVRPPDTW remains to minimize the total distance driven.
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4.3.2 Multi-Depot Capacitated Vehicle Routing Problem with Pickups and
Deliveries and Time Windows

The Multi-Depot Capacitated Vehicle Routing Problem with Pickups and Deliveries and
Time Windows (MDCVRPPDTW) includes all transformations from CVRPPDTW, but
replaces the depot d∗ by D∗ as follows.

Multi-Depot Vehicle Routing Problem The MDVRP requires not one depot, but
(possibly) multiple depots. These depots are taken from the city hubs H of P.

4.3.3 Multiple Knapsack Problem with Assignment Restrictions

Assume that a P-solver has yielded a solution for the cargo bike delivery stage. Two
Multiple Knapsack Problem with Assignment Restrictions (MKAR problem) instances
are then constructed. One for deliveries from depot to city hubs (1), one for pickups
from city hubs to depot (2).

The set of items N is taken from the cargo bike tours. Every cargo bike tour is
transformed into one item j ∈ N. The weight w j is the summed capacity usage of
deliveries in the cargo bike tour (1) or the summed capacity usage of pickups in the
cargo bike tour (2). The set of knapsacks M is taken from the edges from of the tram
graph Et . For (1), the edges from the depot d∗ to any city hub h ∈ H are taken. For
(2) vice versa. The edges represent the summed maximum capacity usages that can
be transported in a time slot. Every one is transformed into one knapsack ∈M. The
capacity usage ci (i ∈M) is the summed maximum capacity usage of the corresponding
edge. Recall that the assignment restriction Bi for knapsack (i ∈M) defines which j ∈ N

can be assigned to which knapsacks Bi ⊆ N. An item j ∈ N is contained in Bi of a
knapsack i ∈M if and only if the time windows of the corresponding cargo bike tour of
j overlaps with the time window of the corresponding tram graph edge of i. In other
words, if the rider of the cargo bike is able to receive the demands of the tour within the
time window of the tram graph edge corresponding to i and can serve all demands on
the tour without violating any time window of a demand, then and only then the item j

corresponding to the tour is contained in Bi.
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This chapter describes the intermodal tour algorithm A solving the problem P de-
scribed in chapter 4.

5.1 Structure

The algorithm A is divided into five steps that are executed after another. Figure 5.1
gives an overview of the steps. Each of the steps has access to the output of the
previous step. A description of the steps is given below.

Partition demands

Solve cargo bike
problem

Solve tram
assignment problem

Solve sprinter
problem

Combine
solutions

Figure 5.1: Overview of Algorithm A

The first step partitions the demands based on their distance to the depot. The first part
includes all demands within the range of a depot. The other part includes the remaining
demands out of range of any depot. The range is defined by rb.

Subsequently, the cargo bike problem is calculated. The cargo bike problem centers
around serving demands within the range rb of a city hub by using only cargo bikes.
The city hubs hereby act as depots. The respective multi-depot problem1 is solved.

1Multi-Depot Capacitated Vehicle Routing Problem with Pickups and Deliveries and Time Windows
(cf. Section 4.3.2)
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The solution of the cargo bike problem is passed to the tram assignment problem.
This step calculates the deliveries from the depot to the city hubs and the pickups
from the city hubs to the depot by tram. The respective tram assignment problem1 is
solved. There might be failed transports, depending on the capacities of the trains. The
respective demands are then removed from the cargo bike deliveries and added to the
demands pool of the sprinter problem.

These remaining demands are then passed to the next step. In this step, the sprinter
problem is calculated. The sprinter problem centers around serving remaining demands.
Unlike the cargo bike problem, there is only one depot d∗. The respective single-depot
problem2 is solved.

Finally, the solutions from the steps are combined and transformed to the correct output
format.

The main sub problems are the sprinter problem problem, the cargo bike problem
and the tram assignment problem. The algorithm frame allows the solvers to be
interchanged. The single-depot ant algorithm is used as solver for the sprinter problem.
The multi-depot ant algorithm is used as solver for the cargo bike problem. The greedy
tram assignment algorithm, an adaption of the successive Knapsack algorithm, is used
as solver for the tram assignment problem.

5.1.1 Cargo Bike and Sprinter Problem

The MACS-VRPTW3 approach by Gambardella et al. [8] presented in Section 3.3.2
can be used to solve the CVRPTW, which is missing multi-depot and pickup capabilities
that are required for the cargo bike problem and the sprinter problem. To solve them,
the algorithm uses an adaption of MACS-VRPTW, which is presented here.

Edge Routing

The MACS-VRPTW approach expects the customers at vertices of the graph, whereas
P specifies that customers are assigned to an edge. This is resolved by using edge
routing instead of vertex routing. This means that paths are not a sequence of vertices
(vertex routing), but a sequence of edges (edge routing). This raises the question of
how the distance between two edges is determined:

Figure 5.2 illustrates an example of edge routing. Assume that we want to calculate the

1Multiple Knapsack Problem with Assignment Restrictions (cf. Section 4.3.3)
2Capacitated Vehicle Routing Problem with Pickups and Deliveries and Time Windows (cf. Sec-

tion 4.3.1)
3Multiple Ant Colony System for Vehicle Routing Problems with Time Windows (cf. Section 3.3.2)
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Figure 5.2: Illustration of edge routing.

distance between the two edges estart = (vstart,1,vstart,2) and eend = (vend,1,vend,2). Further
assume that the reversed edge (vend,2,vend,1) exists in the graph (left case) and that
vstart,1 is the current location. The distance between estart and eend is calculated as the
minimum length from vstart,1 to either vend,1 or vend,2, plus the length of edge eend. This
ensures that the shortest route is taken and the the edge is traversed. If no reversed
edge (vend,2,vend,1) exists in the graph (right case), then the distance between estart and
eend is calculated as the minimum length from vstart,1 to vend,1 plus the length of edge
eend to respect the one-way edge.

The current location is then updated accordingly. In Figure 5.2 the next edge is vend,1

(left) or vend,2 (right).

The exact formula to calculate the lengths between vertices (Equation (5.1)) or between
a vertex and an edge (Equation (5.2)) is called sp(·, ·).

(5.1) sp(v1,v2) := length of the shortest path from v1 to v2

(5.2) sp(v,e = (v1,v2)) :=

min{sp(v,v1),sp(v,v2)}+ length(e) if (v2,v1) exists

sp(v,v1)+ length(e) otherwise

Equation (5.1) requires the length of shortest paths. The shortest paths can be
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Figure 5.3: Illustration of unassigned edges.

precalculated in order to save computation time during the later calculations. However,
not all lengths of paths between all pairs of vertices are relevant. Vertices that are
not part of any edge that is assigned to a demand can be excluded. The result is a
complete graph containing only vertices incident to demand edges. This procedure
abstracts away the search for paths between demands, leaving only the problem of
determining an optimal sequence in which to process the demands.

Figure 5.3 presents this procedure. Subfigure a) shows the source graph, Subfigure b)
shows the result. Assume that there are two demands assigned to the edges (v1,v0)

and (v3,v0) (highlighted in red). Consequently, the induced vertices are v0, v1 and v3.
Subfigure b) shows the complete graph containing only these vertices. Note that the
rest of the graph was still used for calculating the shortest paths.

Pickups

The MACS-VRPTW approach does not support pickups at all, but they are required
by P. If a tour contains only deliveries but no pickups (or vice versa), the way to
calculate the load of vehicles is easy: The capacity usages of deliveries are summed
up. If the sum exceeds the capacity of the vehicle, the tour cannot include the demand.
Mixed deliveries and pickups are not compatible with this approach. Therefore, the
calculations of capacity limits during tour generation have to be adapted.

The tours are generated by subsequently appending demands to the tour. Pickup and
delivery demands do not take place at the same time and have different consequences
for the load of the transporting vehicle. Appending a pickup to the tour increases the
load of the vehicle on the following path as the vehicle must transport the pickup from
the time of loading the pickup until reaching the depot. Thus, appending a pickup
does not affect previous loads. Appending a delivery to the tour increases the load of
the vehicle on the previous path as the vehicle must transport the delivery from the
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beginning of the tour until unloading it. Thus, appending a delivery does not affect
following loads.

There are three variables pn, dn and d̃n used to ensure compliance with capacity
constraints during tour generation (1 ≤ n ≤ # demands of tour). pn is the sum of all
capacity usages of all pickups included in the first n demands of a tour. dn is the sum of
all capacity usages of all deliveries included in the first n demands of a tour. d̃n is the
sum of all capacity usages of all deliveries included between the first pickup demand
and the n’th demand (inclusive) of a tour. If only deliveries are included in the tour,
then d̃n = 0 for all n. If the first demand in the tour is a pickup, then d̃n = dn for all n. A
tour can include a further pickup of capacity usage c at position n+1 if pn + c does not
exceed the capacity of the vehicle (1). A tour can include a further delivery of capacity
usage c at position n+1 if dn + c does not exceed the capacity of the vehicle (2) and
d̃n + pn + c does not exceed the capacity of the vehicle (3).

The constraints (1) and (2) ensure that the capacity constraints of individual pickups
or deliveries are met. Constraint (3) ensures that a new delivery does not break the
constraints of previous demands. If a new delivery of capacity usage c is added to a
tour, it must be transported from the depot up to the current point in the tour, adding the
capacity usage c to the current load of every previous point in the tour. The deliveries
that are served before the first pickup are not taken into account because they are only
decreasing the load of the vehicle, thus not affecting the ability to serve deliveries at a
later point.

D: 2 D: 3 P: 4 D: 3 P: 2 P: 4

load 8 6 3 7 4 6 10
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depot pickup (P) or delivery (D) with capacity statement

Figure 5.4: Illustration of mixed pickups and deliveries

Figure 5.4 shows an example of 6 mixed pickups and deliveries. Assume the capacity
of the transporting vehicle to be 10. Additionally to the variables pn, dn and d̃n, the load
of the vehicle is displayed to show that the capacity is never exceeded.
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Multiple Depots

The MACS-VRPTW approach does not support multiple depots, but assumes that there
is only one depot where all vehicles start from. This is only needed for the cargo bike
problem and not the sprinter problem as the tour origin for sprinters is always set as
the central depot instead of city hubs.

To augment the MACS-VRPTW approach to handle multiple depots, the choice of the
depot is encoded in the problem formulation using pheromone values modeling the
selection of a specific depot: Every depot gets a pheromone value δdepot that determines
the probability of the depot to be chosen. The pheromone value is handled the same
as regular pheromones of edges. A depot gets local pheromone updates when it is
chosen as initial depot and offline pheromone updates if it is included in a solution that
is subject to an offline pheromone update.

Encoding the depot selection within the ant colony problem also allows the selection
of a depot which already depleted all the demands in its range. As a remedy, a depot
blacklist can be used. A depot is contained in the blacklist if and only if there are no
demands in the range this depot that are not-yet served. If a depot is contained in the
blacklist, its probability to be chosen as initial depot is 0. If all depots are blacklisted, the
solution generation is aborted. The blacklist is only kept within one solution generation
procedure. Every solution generation starts with an empty blacklist.

5.1.2 Tram Assignment Problem

The tram assignment problem is a MKAR problem1. MKAR problems can be solved
using the successive Knapsack algorithm [5]. The successive Knapsack algorithm
requires the solutions of regular Knapsack problems. The number of required solutions
depends on the amount of time slots the tram schedule contains. For this, the dynamic
programming algorithm for solving Knapsack problems can be used.

However, the successive Knapsack algorithm is not the best approach for this type
of problem, because it does not take the length of time windows into account when it
chooses a time window for a demand. Figure 5.5 illustrates the problem. There are
two demands and two time slots of capacity 5. The first demand has a capacity usage
of 5 and fits in both time slots. The second demand has a capacity usage of 4 an fits
only in the first time slot. The successive Knapsack algorithm will then choose the first
demand for the first time slot because the first demand has a higher capacity usage
than the second demand. Subsequently, the second demand can not be chosen for the
second time slot, because it could only be fit into the first time slot. But the successive

1Multiple Knapsack Problem with Assignment Restrictions (cf. Section 4.3.3)
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Figure 5.5: Illustration of unfavorable greedy choice by successive Knapsack

Knapsack algorithm does not respect this and makes overly greedy choices.

The highlighted issue can be remedied by the greedy tram assignment algorithm, which
is used for the tram assignment problem. The procedure is described for deliveries.
The procedure for pickups is done respectively.

First, the demands are sorted by the latest time in their time window (ascending) and
their capacity usage (descending). The capacity usage is only taken into account if
the time of two demands is equal. Similar to the successive Knapsack algorithm, the
greedy tram assignment algorithm iterates over the time slots. It checks whether the
demand with the lowest index that has not-yet been assigned to a time slot can be
assigned to the current time slot and assigns it if possible.

The greedy tram assignment algorithm is not optimal at assigning optimally-many
demands to a time slot, but takes the length of the time windows into account. A
comparison of the performance of the successive Knapsack algorithm and the greedy
tram assignment algorithm is given in Section 6.3.

5.2 Pseudo Code

In this section, the pseudo code of the algorithm A is given. The pseudo code of the
algorithm frame (Section 5.2.1), the greedy tram assignment algorithm (Section 5.2.2)
and the ant algorithm (Section 5.2.3) is given.
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Algorithm 2 Intermodal Tour Algorithm (Frame)

1: procedure ALGORITHM(P-Instance)
2: sp(·, ·)← SHORTESTPATHS(Gs,Gb,)
3: (cargoBikeDemands,sprinterDemands)← PARTITIONDEMANDS( )
4: cargoBikeTours← MDMACS(cargoBikeDemands, sp, H, Nb, Cb, vb)
5: (deliveredByTram, tramDeliveryFailed)← TRAMDELIVERY(cargoBikeTours)
6: deliveredBySprinter← MACS(sprinterDemands∪ tramDeliveryFailed, sp, d∗, Ns,

Cs, vs)

7: function SHORTESTPATHS(Gs,Gb)
8: distances←{}
9: for all vertex ∈Vs∪Vb do

10: distances← distances∪di jkstra(vertex,Gs∪Gb)
return λ f rom. λ to. distances[ f rom][to]

11: function PARTITIONDEMANDS( )
12: inRange←{}
13: outOfRange←{}
14: for all d ∈ D do
15: minimalDistance←{sp(h,d) | h ∈ H}
16: if minimalDistance < rb then
17: inRange← inRange∪{d}
18: else
19: outOfRange← outOfRange∪{d}
20: return (inRange,outOfRange)

5.2.1 Algorithm Frame

The frame of the intermodal tour algorithm gets an instance of problem P as parameter
and heuristically computes a solution of the given instance. It comprises five steps. The
pseudo code is given in Algorithm 2.

In the first step, the shortest path from every vertex to every other vertex is calculated
using Dijkstra’s algorithm [6]. This is done for both the sprinter graph Gs and the cargo
bike graph Gb The shortest path between vertices is sp(·,·) as defined in Section 5.1.1.
The second step PARTITIONDEMANDS partitions the demands into cargoBikeDemands

for demands within delivery range by bike and sprinterDemands. Next, the multi-depot
ant algorithm (MDMACS) is used to compute a feasible solution of cargo bike deliveries
for the cargoBikeDemands. Then, the TRAMDELIVERY function calculates which of the
cargoBikeTours can be supplied by tram. Lastly, the single-depot ant algorithm (MACS)
is used to compute a feasible solution of sprinter deliveries for the unassignedPackages =

sprinterDemands∪ tramDeliveryFailed.
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5.2.2 Greedy Tram Assignment Algorithm

The pseudo code of the greedy tram assignment algorithm is given in Algorithm 3.
The TRAMDELIVERY function calculates which of the cargoBikeTours can be supplied
by tram. It first calculates the summed capacity usage of pickups and the summed
capacity usage of deliveries. If the summed capacity usage of the pickups is greater
than 0, it creates a joint (non-atomic) pickup demand with the summed capacity usage
of the pickups. The time windows of the tour are taken from the tour. The targeted
edge is the edge assigned to the city hub. A joint delivery is created the same way if
applicable. Then, the TRAMDELIVERY function calls the FITDEMANDS function for each
city hub and individually for pickups and deliveries. In each case, the FITDEMANDS

function returns a set of successfully assigned joint demands and a set of failed joint
demands. The TRAMDELIVERY function then transforms the joint demands back to
atomic demands and adds atomic demands that are part of a successfully assigned
joint demand to delivered. It respectively adds atomic demands that are part of a failed
joint demand to remaining.

The FITDEMANDS function calculates which joint demands are delivered by tram. The
function first sorts the demands by their time window (ascending) and their capacity
usage (descending). The time window has precedence over capacity usage. In case of
pickups, the earliest time the tour can possibly end is taken. In case of deliveries, the
latest time the tour can possibly start is taken. In this order, the function iterates over
the demands for each time slot, reducing the capacity usage of d from the time slot,
removing the demand from the remaining list and adding the demand to the delivered

set if an applicable time slot has been found. The delivered and undelivered demands
are then returned. Hereafter, for every accumulated demand, it is checked whether
the trams can serve the demand. The demands are handled in descending order by
number of accumulated demands. If the request at Gt was successful, the capacity
usage of the accumulated demand is subtracted from Gt . The served join demands
and the not served joint demands are returned separately.

5.2.3 Single-Depot and Multi-Depot Ant Algorithms

The only difference between the single-depot ant algorithm (MACS) and the multi-depot
ant algorithm (MDMACS) is the number of depots, which is why they are described
together. The description only refers to the multi-depot ant algorithm. The differing
parts are highlighted at the end of Section 5.2.3.
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Multi-Depot Ant Algorithm

The multi-depot ant algorithm solves the multi-depot problem. The multi-depot ant
algorithm is an adaption of MACS-VRPTW by Gambardella et al. [8] presented in
Section 3.3.2. The pseudo code of the multi-depot ant algorithm is given in Algorithms
5 - 8. The parameters of the MDMACS function, which contains the multi-depot ant
algorithm, is the following:

• A list of demands⊆ P∪D.
• The shortest paths function sp(·,·).
• A list of depots. A single depot is a tuple (e,lat,lon), just as d∗ in P.
• The maximum number of usable vehicles maxVehicles, an integer.
• The vehicleCapacity, a floating point number.
• The vehicleSpeed, a floating point number.

The multi-depot algorithm uses a greedy solution generator to generate an initial
solution. The pseudo code of the greedy solution generator is given in Algorithm 4.
The greedy solution generator complies with all constraints to the multi-depot problem
except the number of vehicles available. It builds tours and always begins a new tour
with a newly assigned vehicle as soon as a constraint is broken. After the generation of
a greedy solution, the algorithm tries to reduce the number of vehicles if it exceeds the
number of vehicles available.

The GREEDY function calls the ASSIGNDEPOT function to assign the nearest depot to
each demand. Then, the SINGLEDEPOTGREEDY function is used to generate paths
for a single depot serving all assigned demands. First, the demand nearest to the
depot is added to a new path in the SINGLEDEPOTGREEDY function. Subsequently, the
closest feasible and not-yet served demand is added. If there is no feasible and not-yet
served demand, the path is ended and a new path is begun. In the end, all paths are
returned. With each path, the following attributes are returned: The demands served
in this path, the depot, timeWindowStart, the first possible time to begin the tour, and
timeWindowEnd, the last possible time to begin the tour. The tours for all depots are
collectively returned by the GREEDY function.

After the multi-depot algorithm has computed an initial solution using the greedy
algorithm, it tries to optimize the initial solution using Ant-Colony-Optimization.

MDMACS function The MDMACS function starts the multi-depot algorithm algo-
rithm. It first assigns the greedy solution to the globalBestSolution and then asyn-
chronously calls the ACS-VEI and ACS-TIME procedures which do the optimiza-
tion work. The former tries to find a solution using less vehicles than the current
globalBestSolution. The latter tries to find a solution taking less time than the current
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globalBestSolution. After they have started, the only job of the MDMACS function is to
accept solutions by the two procedures and update the globalBestSolution. If the new
globalBestSolution additionally uses less vehicles than the current globalBestSolution,
then the executions of both ACS-VEI and ACS-TIME are stopped and restarted.
Note that the ACS-VEI and ACS-TIME procedures always have access to the cur-
rent globalBestSolution. The optimization process is stopped as soon as a predefined
stopping criterion holds true.

ACS-VEI procedure The ACS-VEI procedure is trying to find solutions with less
vehicles. First, it calls the GREEDY solution generator to find a solution using at most
numVehicles vehicles. This solution may not serve all demands. It subsequently tries to
find other ant solutions and rewards solutions serving more demands. For all demands
d ∈ demands, in(d) counts for how many subsequent times d has not been included in a
solution generated by NEWACTIVEANT. in is handed to NEWACTIVEANT as parameter
where it changes the probability for demands to be chosen next. As soon as a solution
serving all customers is found, it is sent to MDMACS.

ACS-TIME procedure The ACS-TIME procedure is trying to find shorter solutions.
Like ACS-VEI, it generates ant solutions, but it rewards shorter solutions. As soon
as a complete solution shorter than the current shortest solution is found, it is sent to
MDMACS. A solution is regarded complete if it is not missing out any demand.

NEWACTIVEANT function The NEWACTIVEANT function generates new solutions
based on a mixed-parameter heuristic and pheromones. The paths variable stores all
paths generated. The path variable stores only the single currently generated path.
First, a depot is chosen by the CHOOSEDEPOT function. It is added as the beginning
of the first path. After that, the subsequent path items are added until the maximum
number of vehicles is reached. In order to perform this, the attractiveness of each
demand and depot is calculated. The attractiveness of a demand or depot is a heuristic
value that prevents infeasible legs1 and makes presumably bad legs less likely, thus
decreasing the time to find good-quality solutions. The exact calculation is shown in
Equation (5.7). An infeasible leg could arise from a demand that has already been
visited or would lead to excess of capacity. An example for a presumably bad leg would
be a demand that is very far away from the current position. As soon as all demands
have been served, the solution generation is stopped. Otherwise, the next demand or
depot is chosen based on pheromones τ and attractiveness η . The exact calculation is
shown in Equation (5.8). The next leg is saved to the path and the local pheromone

1A leg ( f rom,to) means a „step“ from a demand or depot to another demand or depot.

Page 31 of 86



5 Algorithm

update (see Section 3.3.2) is performed. Additionally, if the next leg leads to one of
the depots, the current path is ended and added to the paths. A new starting depot is
chosen in the same way as at the beginning of the function. At the end, the paths and
the demands that have not been served by any of the paths are returned. With each
path, the following attributes are returned: The demands served in this path, the depot,
timeWindowStart, the first possible time to begin the tour, and timeWindowEnd, the last
possible time to begin the tour.

OFFLINEPHEROMONEUPDATE procedure The OFFLINEPHEROMONEUPDATE proce-
dure performs the offline pheromone update. It is performed for the best solution(s) after
an iteration of an ACS. For every path that is part of the solution, the depot pheromones
are updated. After that, for all legs ( f rom,to) in the path, the pheromones of that legs
are also updated.

LOCALPHEROMONEUPDATE procedure The LOCALPHEROMONEUPDATE procedure
performs the local pheromone update. It is performed when a leg ( f rom,to) is added
during solution construction. The pheromone value of ( f rom,to) is updated.

CHOOSEDEPOT function The CHOOSEDEPOT function probabilistically chooses a
depot to start a tour at and performs the respective local depot pheromone update
immediately.

Offline pheromone update For every leg ( f rom,to) in a solution with length L, the
pheromones τ f rom,to are updated as follows:

(5.3) τ f rom,to← (1−ρ)∗ τ f rom,to +ρ ∗ 1
L

where ρ is the pheromone decay.

Local pheromone update For a leg ( f rom,to) with initial pheromones value τ0, the
pheromones τ f rom,to are updated as follows:

(5.4) τ f rom,to← (1−ρ)∗ τ f rom,to +ρ ∗ τ0

where ρ is the pheromone decay.
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Offline depot pheromone update For the depot of every tour in a solution with length
L, the depot pheromones τdepot are updated as follows:

(5.5) δdepot ← (1−ρ)∗δdepot +ρ ∗ 1
L

where ρ is the pheromone decay.

Local depot pheromone update For a depot with initial depot pheromones value δ0,
the pheromones δdepot are updated as follows:

(5.6) δdepot ← (1−ρ)∗δdepot +ρ ∗δ0

where ρ is the pheromone decay.

Leg attractiveness The attractiveness of a leg ( f rom,to) is defined as follows:
η f rom,to = 0 if the leg ( f rom,to) is infeasible. Reasons for this are:

• to has already been visited
• f rom and to are both depots
• to is a depot ̸= the depot where the tour started
• to would be arrived after the time window
• to would exceed the vehicleCapacity

For all other legs ( f rom,to), where to = (e,c,ts,te) and t is the current time, η is defined
as follows:

(5.7) η f rom,to =
1

max(1,distance f rom,to− in(to))

where distance f rom,to = (deliveryTimeto− t)∗ (e− t)

and deliveryTimeto = max(t + sp( f rom,to),s)

Leg choice The next demand or depot given that f rom is the current demand or
depot is chosen as follows:
A random number q ∈ [0,1) is generated. It decides whether exploitation or exploration
is performed. Exploitation (case q < q0) is performed with probability q0. Exploration
(other case) is performed with probability 1−q0:

(5.8) next =

to ∈ f easible f rom with maximum p f rom,to if q < q0

to chosen probabilistically with probabilities p f rom,to otherwise
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Where ∀to ∈ f easible f rom : p f rom,to =
τ f rom,to ∗η

β

f rom,to

∑
d∈ f easible f rom

τ f rom,d ∗η
β

f rom,d

and f easible f rom = {to ∈ demands, where η f rom,to > 0}

Depot choice The depot of a tour is chosen at random with the following probabilities
for each depot:

(5.9) ∀depot ∈ depots : pdepot =


δdepot

∑
d∈depots\blacklist

δd
if depot /∈ blacklist

0 if depot ∈ blacklist

Single-Depot Ant Algorithm

The single-depot ant algorithm (MACS) is a slimmed version of the multi-depot ant
algorithm. If only one depot exists, there is potential so save some computation time.
In the single-depot version, the depot assignment (cf. ASSIGNDEPOT) and the depot
selection (cf. CHOOSEDEPOT), including the depot blacklist and depot pheromones can
be omitted. This is why two versions of the algorithm were considered instead of using
the multi-depot ant algorithm with just one depot.

In the MDMACS function of the multi-depot ant algorithm, the initial globalBestSolution

is calculated using the SINGLEDEPOTGREEDY function instead of the GREEDY function.
Hereby, the unnecessary assignment is omitted. The ACS-VEI and ACS-TIME
procedures are not changed. In the NEWACTIVEANT function, the initial and following
depots are not chosen. In the OFFLINEPHEROMONEUPDATE procedure, the offline
depot pheromone update is omitted. The CHOOSEDEPOT function is omitted.
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Algorithm 3 Greedy Tram Assignment Algorithm

1: function TRAMDELIVERY(cargoBikeTours)
2: jointPickups← []
3: jointDeliveries← []
4: for all (demands,cityHub, timeWindowStart, timeWindowEnd, path) ∈

cargoBikeTours do
5: pickupCapacity← sum({c | p = (e,c,ts,te) ∈ (demands∩P)}
6: deliveryCapacity← sum({c | d = (e,c,ts,te) ∈ (demands∩D)}
7: if pickupCapacity > 0 then
8: p← (cityHub, pickupCapacity, timeWindowStart, timeWindowEnd)
9: jointPickups← jointPickups+[p]

10: if deliveryCapacity > 0 then
11: d← (cityHub,deliveryCapacity, timeWindowStart, timeWindowEnd)
12: jointDeliveries← jointDeliveries+[d]
13: delivered←{}
14: remaining←{}
15: for all cityHub ∈ H do
16: FITDEMANDS(cityHub,{d | d ∈ jointPickups,d is assigned to cityHub})
17: FITDEMANDS(cityHub,{d | d ∈ jointDeliveries,d is assigned to cityHub})
18: Transform the joint demands returned by FITDEMANDS back to atomic de-

mands and add them to delivered and remaining
19: return (delivered,remaining)

20: function FITDEMANDS(cityHub, jointDemands)
21: delivered←{}
22: if the jointDemands are pickups then
23: remaining← sort jointDemands by the earliest time of time window and

capacity usage
24: else
25: remaining← sort jointDemands by the latest time of time window and capacity

usage
26: for all time slots (start,end) ∈ Gt do
27: for all d ∈ remaining do
28: if d can be assigned to time slot (start,end) then
29: subtract the capacity usage of d from time slot (start,end)
30: remaining← remaining\{d}
31: delivered← delivered∪{d}
32: return (delivered,remaining)
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Algorithm 4 Greedy Solution Generator

1: function GREEDY(demands, sp, depots, maxVehicles, vehicleCapacity, vehicleSpeed)
2: part← ASSIGNDEPOT(depots,demands)
3: tours←{}
4: for all depot ∈ depots do
5: depotDemands←{d ∈ demands where part(d) = depot }
6: tours← tours ∪ SINGLEDEPOTGREEDY(depot,depotDemands,

vehicleCapacity)
7: return tours

8: function ASSIGNDEPOT(depots,demands)
9: for all demand ∈ demands do

10: Find depot ∈ depots with minimal sp(depot,demand)
11: part(demand) = depot
12: return part

13: function SINGLEDEPOTGREEDY(demands, sp, depot, maxVehicles, vehicleCapacity,
vehicleSpeed)

14: paths←{}
15: while there is a not-yet served demand ∈ demands left do
16: path← empty path
17: Add depot to path
18: demand← depot
19: repeat
20: if there is no feasible and not-yet served d ∈ demands then
21: break
22: next← feasible and not-yet served d ∈ demands with minimal

sp(demand,d)
23: Add next to path, mark as served
24: demand← next
25: until all demands are served
26: Add depot to path
27: paths← path∪{path}
28: return {(demands,depot,timeWindowStart,timeWindowEnd,path) | path ∈ paths}
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Algorithm 5 Multi-Depot Ant Algorithm (Part 1)

1: function MDMACS(demands,sp,depots,maxVehicles,vehicleCapacity,vehicleSpeed)
2: globalBestSolution← GREEDY(demands, sp, depots, maxVehicles, vehicleCapacity,

vehicleSpeed)
3: repeat
4: numVehicles← Number of vehicles used by globalBestSolution
5: if numVehicles > maxVehicles then
6: Call ACS-VEI(numVehicles - 1) asynchronously
7: Call ACS-TIME(numVehicles) asynchronously
8: while ACS-VEI and ACS-TIME are not stopped do
9: Wait until a better feasible solution s has been found

10: globalBestSolution← s
11: if Number of vehicles used by s < numVehicles then
12: Cancel the execution of ACS-VEI and ACS-TIME
13: continue
14: until The stopping criterion has met
15: return globalBestSolution
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Algorithm 6 Multi-Depot Ant Algorithm (Part 2)

16: procedure ACS-VEI(numVehicles)
17: repeat
18: maxDemandsSolution← GREEDY(depots,demands,vehicleCapacity)
19: ∀d ∈ demands : in(d)← 0
20: for k = 1, ...,antCount do
21: (solutionk,missingk)← NEWACTIVEANT(numVehicles, in)
22: ∀d ∈ missingk : in(d)← in(d)+1
23: iterationMaxDemandsSolution← solutionk with maximum number of served

demands
24: if iterationMaxDemandsSolution serves more demands than

maxDemandsSolution then
25: maxDemandsSolution← iterationMaxDemandsSolution
26: ∀d ∈ demands : in(d)← 0
27: if iterationMaxDemandsSolution serves all demands then
28: Send iterationMaxDemandsSolution to MDMACS
29: OFFLINEPHEROMONEUPDATE(maxDemandSolution)
30: OFFLINEPHEROMONEUPDATE(globalBestSolution)
31: until it is cancelled by MDMACS

32: procedure ACS-TIME(numVehicles)
33: repeat
34: for k = 1, ...,antCount do
35: (solutionk,missingk)← NEWACTIVEANT(numVehicles,0)
36: iterationShortestPathSolution← solutionk with minimal path length and

missingk is empty
37: if iterationShortestPathSolution is shorter than globalBestSolution then
38: Send iterationShortestPathSolution to MDMACS
39: OFFLINEPHEROMONEUPDATE(globalBestSolution)
40: until it is cancelled by MDMACS
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Algorithm 7 Multi-Depot Ant Algorithm (Part 3)

41: function NEWACTIVEANT(numVehicles, in)
42: paths←{}
43: path← empty path
44: depot← CHOOSEDEPOT({d | d ∈ depots, all demands in range of d are served })
45: current← depot
46: Add current to path
47: repeat
48: calculate the attractiveness values ηcurrent,· according to Equation (5.7)
49: if No demand or depot is feasible then
50: Add depot to path
51: paths← paths∪ path
52: break
53: next← choose next demand or depot according to Equation (5.8)
54: Add next to path
55: LOCALPHEROMONEUPDATE(current,next)
56: if next is a depot then
57: paths← paths∪ path
58: path← empty path
59: depot← CHOOSEDEPOT({d | d ∈ depots, all demands in range of d are served })
60: current← depot
61: Add current to path
62: else
63: current← next
64: until |paths|= numVehicles ∨ ∀d ∈ depots : all demands in range of d are served
65: solution←{(demands,depot,timeWindowStart,timeWindowEnd,path)|path ∈

paths}
66: missing← all demands that are not contained in any solution
67: return (solution,missing)

Algorithm 8 Multi-Depot Ant Algorithm (Part 4)

68: procedure OFFLINEPHEROMONEUPDATE(solution)
69: for all (demands,depot,timeWindowStart,timeWindowEnd,path) ∈ solution do
70: Update δ for depot according to Equation (5.5)
71: for all legs ( f rom,to) in the path do
72: Update τ for ( f rom,to) according to Equation (5.3)

73: procedure LOCALPHEROMONEUPDATE( f rom, to)
74: Update τ for ( f rom,to) according to Equation (5.4)

75: function CHOOSEDEPOT(blacklist)
76: depot← choose depot with probabilities according to Equation (5.9)
77: Update δ for depot according to Equation (5.6)
78: return depot
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In this section, the intermodal tour algorithm is evaluated. Section 6.1 introduces the
instances used for the evaluation and explains how they have been generated. The
multi-depot ant algorithm (Section 6.2) and the greedy tram assignment algorithm
(Section 6.3) are evaluated separately. Section 6.4 evaluates the full intermodal tour
algorithm.

The intermodal tour algorithm is implemented in Java SE 18 using Apache Commons
Lang 3.12.0 and FasterXML Jackson Databind 2.16.1. The tests are executed on a
machine with an Intel Xeon E-2288G (8x 3.70 GHz) CPU and 128 GB of memory.

6.1 Test Instances

The evaluation of the developed algorithm is carried out on a set of instances that is
introduced here. The city of Karlsruhe in Baden-Württemberg, Germany, is the first
instance. To verify that the algorithm can be applied to other cities with different layouts
as well, two more cities have been chosen. The city of Santa Ana in California, USA has
surprisingly similar properties compared to Karlsruhe, which is why it has been chosen
as second instance. The third instance, the city of Amsterdam in the Netherlands, is
interesting regarding the infrastructure for bicycles. In the following, the instances are
introduced.

6.1.1 Karlsruhe

Karlsruhe in the German state of Baden-Württemberg is a city with about 304 0001

residents. It is a planned city with streets arranged in the shape of a fan in the city
center. A special feature of Karlsruhe is trams running on standard broad-gauge
tracks. The tracks are connected to the regular German track network which makes it
possible to transport people and goods from outside the city to the city center without
transshipment. This makes package delivery particularly interesting applied to the city
of Karlsruhe.

1https://www.karlsruhe.de/mobilitaet-stadtbild/stadtentwicklung/statistik-und-zensu
s
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The Graph

The graph has been created based on data from OpenStreetMap, downloaded from
Geofabrik1. The data has been converted to binary format using KaRRi’s graph
converting functionality2. The graph generated contains only the largest strongly
connected component of OpenStreetMap’s street network and does not contain any
pedestrian walkways and areas. The latitude and longitude of the vertices and the
length, speed limit and road category3 of the edges are extracted.

The Depot and City Hubs

The depot has been placed at a depot of the German mail service (Deutsche Post AG),
which is located near the railway station with connection to the tram network. The exact
coordinates are: 48.99570,8.40626.

The city hubs have been placed at several stations of the Karlsruhe tram network. An
overview is given in Table A.1 and Figure 6.1.

© OpenStreetMap contributors

blue: depot, red: city hub

Figure 6.1: Depot and city hubs of the Karlsruhe instance

1http://download.geofabrik.de/europe/germany/baden-wuerttemberg/karlsruhe-regbez.h
tml

2https://github.com/molaupi/karri/blob/main/RawData/ConvertGraph.cc
3https://wiki.openstreetmap.org/wiki/Template:Map_Features:highway
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6.1 Test Instances

Generating Synthetic Parcel Demand

Demands are assigned to an edge (part of a street) they must be delivered at. Not all
edges are reasonable for parcel delivery, e.g. parking lots or highways. The following
edges meeting the following conditions are considered valid edges for parcel delivery:

• the length of the edge must be greater than 50 meters
• the speed limit of the street must not be higher than 50 kilometers per hour
• the road category must be one of { residential, living_street, secondary, tertiary }

Edges with a length lower than 50 meters are excluded to prevent to many demands in
a certain areas because of increased fragmentation of streets. The speed of 50 km/h
is the maximum speed of regular streets inside towns and cities. Streets with higher
speed limits are not reasonable for city bike delivery. For the Karlsruhe instance, the
number of valid edges is 8 934. An overview of them is given in Figure 6.2. 2 938 (33%)
of the valid edges are within the 1 kilometer radius of any city hub.

It is not realistic for each of the edges to have a demand assigned. Thus, edges are
uniformly chosen at random. In order to test different amounts of demands, there are
two sets of demands. One contains demands associated to ~10% of the edges. The
other contains demands associated to ~50% of the edges. The capacity usage of the
demands is chosen as random integer between 1 and 4 (inclusive). The probability that
a demand is a delivery is 95%. Thus, the probability that a demand is a pickup is 5%.

© OpenStreetMap contributors

Figure 6.2: Valid edges of the Karlsruhe instance
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Other Attributes

The cargo bike delivery radius rb is set to 1000 meters. The maximum number of cargo
bike tours Nb and the maximum number of sprinter tours Ns are set to a sufficiently
high value of 99 so that the algorithm focuses on short paths instead of minimizing the
number of vehicles. The capacity of cargo bikes Cb is set to 100 capacity units (cu).
Thus, a cargo bike is able to transport between 25 and 100 parcels at a time, given
that a single parcel has a capacity usage of at least 1 to at most 4. The capacity of
sprinters Cs is set to 10 times Cb as proposed by [15]. The speed of cargo bikes vb is
set to 20.7 kilometers per hour. The speed of sprinters vs is set to twice the speed of
cargo bikes.

6.1.2 Santa Ana

Santa Ana in the U. S. state of California is a city with about 308 0001 residents. It is
located near Los Angeles in a very urban area. Most of its street network is arranged in
a grid pattern. The different arrangement of streets in combination with similar number
of residents compared to Karlsruhe makes the city important for testing purposes.
Unlike Karlsruhe, Santa Ana does not have an exhaustive tram network, but a bus
network with stops at many crossings.

The Graph

The graph has been created based on data from OpenStreetMap2 the same way as
the Karlsruhe instance.

The Depot and City Hubs

The depot has been placed at the 1st-Bristol crossing in central Santa Ana. The exact
coordinates are: 33.745464,−117.885096.

The city hubs have been placed at several crossings in Santa Ana, which correspond
to stations of the bus network. The small Orange County streetcar network is not
exhaustive enough to be used. An overview is given in Table A.2 and Figure 6.3.

1https://www.census.gov/quickfacts/santaanacitycalifornia
2https://download.geofabrik.de/north-america/us/california/socal.html
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6.1 Test Instances

© OpenStreetMap contributors

blue: depot, red: city hub

Figure 6.3: Depot and city hubs of the Santa Ana instance

Generating Synthetic Parcel Demand

The demands are calculated in the same way as for the Karlsruhe instance. This results
in 9 111 valid edges, which is roughly the same amount as in the Karlsruhe instance.
An overview of them is given in Figure 6.4. 3 440 (38%) of the valid edges are within
the 1 kilometer radius of any city hub, which also roughly corresponds to Karlsruhe’s
value.

Other Attributes

The other attributes of Santa Ana are the same as the other attributes of Karlsruhe, see
Section 6.1.1.
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© OpenStreetMap contributors

Figure 6.4: Valid edges of the Santa Ana instance

6.1.3 Amsterdam

Amsterdam in the Netherlands is a city with about 918 0001 residents. The city is known
for the good infrastructure for cyclists and their pioneering role in modern transport.
The tram network is very dense in the southern part of the city.

The Graph

The graph has been created based on data from OpenStreetMap2 the same way as the
Karlsruhe instance. Because the city is divided in a bigger part where the city center
is located and a smaller part in the south east that are not connected by any streets,
only the central part of Amsterdam inside the bounds defined by the A10 highway3 has
been included.

1https://opendata.cbs.nl/#/CBS/en/dataset/37259eng/table?ts=1709544739543
2https://download.geofabrik.de/europe/netherlands/noord-holland.html
3https://www.openstreetmap.org/relation/13537038
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6.1 Test Instances

The Depot and City Hubs

The depot has been placed in the center of Amsterdam with connection to the tram
network and near the railway station. The exact coordinates are: 52.37024,4.92900.

The city hubs have been placed at stations of the Amsterdam tram network. Because
the network is too dense, 30% of the stations have been randomly chosen as city hubs.
Note that there are no stations in the northern part of Amsterdam. An overview is given
in Table A.3 and Figure 6.5.

© OpenStreetMap contributors

blue: depot, red: city hub

Figure 6.5: Depot and city hubs of the Amsterdam instance

Generating Synthetic Parcel Demand

The demands are calculated in the same way as for the Karlsruhe instance. This results
in 7 515 valid edges. An overview of them is given in Figure 6.6. 4 470 (59%) of the
valid edges are within the 1.5 kilometer radius of any city hub.

Other Attributes

The other attributes of Amsterdam are mostly the same as the other attributes of
Karlsruhe, see Section 6.1.1. The only exception is the cargo bike radius rb is set
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© OpenStreetMap contributors

Figure 6.6: Valid edges of the Amsterdam instance

to 1500 meters instead of 1000 meters in order to cover more streets close to the
boundary in the southern part of Amsterdam.

6.2 Multi-Depot Ant Algorithm

6.2.1 Algorithm Parameters

In this section, the multi-depot ant algorithm algorithm will be tested against a parameter
space. The goal is to find which values produce good results for parameters for the
algorithm. The algorithm has four parameters that can be specified independently from
the input problem instance: antCount, β , ρ and q0. antCount specifies the number of
ants that are used within one iteration. Each ant conforms to one generated solution,
that can be feasible or not. β specifies the influence of the attractiveness value η

on the probability of a next leg (see Equation (5.8)). β can only accept values β > 0

because η f rom,to = 0 =⇒ p f rom,to = 0. A value of 1 means that the pheromone value τ

is weighted the same as the attractiveness η . A value < 1 increases the influence of τ ,
a value > 1 increases the influence of η . ρ ∈ [0,1] specifies the share of influence of the
previous pheromone value in a pheromone update (see Equations 5.3 - 5.6). A value of
0 means that the previous pheromone value has full influence on the next pheromone
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value (meaning that the initial pheromone value never changes). A value of 1 means
that the pheromone update value has full influence on the next pheromone value. The
scale between 0 and 1 is linear. Lastly, q0 ∈ [0,1] specifies the probability of exploitation
being performed. Exploration is performed with probability 1−q0.

In the first part of the test, only the parameters antCount, β and ρ are tested. The
second part includes q0, but not antCount. It is performed on a more narrow parameter
space.

Test Setup (1)

The test is performed on the Karlsruhe instance using the smaller demand set including
~10% of the possible edges. Only demands within the range of a city hub have
been taken into account. The timeout of each test has been set to 2 minutes which
poses a good balance between solution quality and practicability. The test has been
performed 10 times for each combination of parameter values. The tour lengths of each
combination of parameter values is summed up. The following parameter space has
been chosen:

• antCount ∈ {1,2,5,10,20,50,100}
• β ∈ {1.0,2.0,3.0,4.0,8.0,12.0,16.0}
• ρ ∈ {0.0,0.05,0.30,0.50,0.70,0.95,1.0}

Results (1)

Figure 6.7 shows a plot of the tour length depending on the three parameters antCount,
β and ρ. The dots are arranged in a grid and every dot represents 10 measurements
with the same parameter values. The color of the dots shows the solution quality,
namely the length of the tour. A yellow dot represents a longer tour length and thus a
worse solution. A blue dot represents a shorter tour length and thus a better solution.

Values for β of 1,2,3 and 4 consistently yield bad solutions for every combination of
antCount and rho. The tour length of 1,392,790 (meters) of these dots corresponds to
the tour length found by the initial solution generator. This means, that there has been
no improvement found at all.

The antCount also has influence on solution quality. antCounts between 1 and 20

perform equally well, with small benefits among smaller numbers. Other than that,
higher numbers than 20 perform worse.

ρ values mostly perform equally well with overall better values in the mid of the inter-
val.
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Figure 6.7: 3D plot of tour lengths depending on antCount, β and ρ

The best parameter space according to this test is {(antCount,β ,ρ) | antCount ∈
{1,2,5,20},β ∈ {8,12,16},ρ ∈ {0.3,0.5,0.7}}.

Figure 6.8 shows the same data for a fixed antCount of 5. In plot a) it can be seen that
the values of β ∈ {8,12,16} yield similarly-well results with small benefits at β = 8. Plot
b) shows that extreme ρ values of 0 and 1 yield worse results compared to others. ρ

values of 0.05 and 0.95 perform a lot better than their nearby values 0 and 1.

Interpretation and Explanation (1)

The data shows that high antCount values lead to bad solutions. A high number of ants
for each iteration also reduces the number of updates to the pheromones τ when the
computation time is equal. A high number of pheromone updates is important for a
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b) ρ 7→ tour length plot

Figure 6.8: Visualization for antCount = 5

good solution quality. The data also shows that too low β values contribute to bad
solution quality. This can be explained by the fact that β values determine the influence
of the attractiveness η . The attractiveness value is important to reduce the probability
to make bad local choices. This leads to the question if the use of pheromone values
τ is important at all. This is covered in Section 6.2.2. Lastly, the data shows that
extreme ρ values of 0 and 1 lower solution quality. With such an extreme value, the
pheromone values after each iteration are solely determined by the initial pheromone
value (case ρ = 0) or the currently best solution (case ρ = 1). This must lead to worse
solutions because the algorithm should neither consider only the initially-found nor only
the lastly-found solution.

Test Setup (2)

The second part of the test is performed exactly the same as the first test, but with the
following different parameter space. Some of the underperforming parameter values
have been excluded:

• β ∈ {8.0,12.0,16.0}
• ρ ∈ {0.30,0.50,0.60}
• q0 ∈ {0.0,0.2,0.4,0.6,0.8,1.0}
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Results (2)
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Figure 6.9: 3D plot of tour lengths depending on β , ρ and q0

Figure 6.9 shows that both extremes q0 = 0 and q0 = 1 yield worse tour lengths than
values in between with q0 = 1 performing much worse. q0 = 0.4 and q0 = 0.6 perform
best with parameter β = 8.0. The tour respective average tour lengths are 1 335 481
(q0 = 0.4) and 1 333 309 (q0 = 0.6). With other values for β , the best value is q0 = 0.2,
but the tour length is higher.

Interpretation and Explanation (2)

The data shows that q0 = 1 yields bad solutions. This is reasonable. It means that
exploitation is always performed, which leads to a high share of equal solutions among
generated solutions. The only way to explore other solutions is to wait for the pheromone
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value to drop due to evaporation. A high value of ρ accelerates this process. This is
why there are slightly better results for ρ = 0.7.

In general, values q0 ∈ {0.2,0.4,0.6} yield better results. There is an interplay with
parameter β . A value of q0 should be chosen accordingly.

6.2.2 Comparison with Disabled Pheromones and Attractiveness

In this section, the influence of disabled pheromones and attractiveness in the multi-
depot ant algorithm will be tested. The pheromones τ store global information about
good solutions, whereas the attractiveness η stores local information about good
solutions. The goal is to test the algorithm with parts of information disabled.

Test Setup

The test is performed in the same way as described in Section 6.2.1, but the test is
performed with a timeout of 2 hours. The following setups are tested:

a) pheromones τ disabled, attractiveness η enabled
b) pheromones τ enabled, attractiveness η disabled
c) both pheromones τ and attractiveness η disabled (⇐⇒ purely random choice)
d) both pheromones τ and attractiveness η enabled (⇐⇒ normal procedure)

Results

Table 6.1 shows the result of the test. Each of the four cells represents one of the
tested setups. The first value is the tour length in meters. The second value shows
the percentage of “useful” solutions covering every demand and the total number of
solutions generated. Equal solutions may be counted more than once.

The results show that during the test, the number of solutions covering all demands is
0 if the attractiveness is disabled. If the attractiveness is enabled, but the pheromones
disabled, the number is roughly the same as in the normal run with both enabled.
Nevertheless, there has been no improvement found compared to the initial solution.

Interpretation and Explanation

The test shows that the interplay of pheromones τ and attractiveness η is extremely
important. If one of both is disabled, the solutions generated are unusable.
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Table 6.1: Comparison of multi-depot ant algorithm runs with disabled pheromones or
attractiveness

τ enabled τ disabled

tour length useful solutions tour length useful solutions

η

enabled 128 120 m 86% (of 725 984) 139 279 m 81% (of 853 919)

disabled 139 279 m 0% (of 713 518) 139 279 m 0% (of 1 227 910)

6.2.3 Comparison with Jsprit

In this section, the performances of the multi-depot ant algorithm and the open source
rich VRP solver Jsprit [18] are compared on several instances. Jsprit version 1.9.0 is
used.

Test Setup

The test is performed on the Karlsruhe instance. One iteration is performed with the
same set of edges as in Section 6.2.1, the other iteration is performed with another set
of ~50% of the edges. Only edges in range of any city hub are taken into account. First,
Jsprit is run with the standard iteration threshold. The time Jsprit takes to terminate
is measured. This exact time is then assigned as timeout of the multi-depot ant
algorithm.

Results

Table 6.2 shows the results of the first iteration. The Jsprit algorithm had a run time of
1507 seconds (25.1 minutes). It yielded a result of 119 707 meters using 14 vehicles.
The runs of the multi-depot ant algorithm with β = 12.0 yielded worse results than the
runs with β = 8.0. The latter varied between a best of 124 816 meters and a worst of
125 512 meters using an equal amount of 13 vehicles. Figures 6.10 and 6.11 show the
routes of the tours taken.

Table 6.3 shows the results of the second iteration. The Jsprit algorithm had a run
time of 7304 seconds (2 hours). It yielded a result of 301 898 meters using 41 vehicles.
In this iteration, β = 12.0 yielded better results. The best result of the multi-depot ant
algorithm is 380 211 meters using 43 vehicles.
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Table 6.2: Comparison of Jsprit and the multi-depot ant algorithm results for instance
with ~10% of edges

algorithm antCount β ρ q0 # vehicles tour length % tour length

Jsprit - - - - 14 119 707 m 100
MDAA 5 8.0 0.3 0.2 13 125 409 m 105
MDAA 5 8.0 0.3 0.4 13 125 512 m 105
MDAA 5 8.0 0.3 0.6 13 124 816 m 104
MDAA 5 12.0 0.3 0.2 13 127 285 m 106
MDAA 5 12.0 0.3 0.4 13 131 672 m 110
MDAA 5 12.0 0.3 0.6 14 129 824 m 108

Table 6.3: Comparison of Jsprit and the multi-depot ant algorithm results for instance
with ~50% of edges

algorithm antCount β ρ q0 # vehicles tour length % tour length

Jsprit - - - - 41 301898 m 100
MDAA 5 8.0 0.3 0.4 43 386968 m 128
MDAA 5 8.0 0.3 0.6 43 386968 m 128
MDAA 5 12.0 0.3 0.4 43 380211 m 126
MDAA 5 12.0 0.3 0.6 42 381470 m 126

6.2.4 Solution Generation in the Course of Time

This section investigates the process of solution generation by the multi-depot ant
algorithm over a long period of time. This helps to evaluate how good the algorithm is
at calculating good solutions after a certain period of time. The parameter q0 will be
varied by two values to see typical differences in solution quality. The processes of
solution generation by the multi-depot ant algorithm and Jsprit are compared.

Test Setup

The test is performed in the same way as described in Section 6.2.1, but the test is
performed with a timeout of 1 hour. The parameters antCount = 5, β = 8.0, ρ = 0.3 have
been chosen. q0 is varied by 0.4 and 0.6. During the test, every solution considered
“useful” (namely those covering all demands) is taken into account. Not “useful”
solutions are not considered as their possibly lower tour lengths might disrupt the
plot.
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Figure 6.10: Jsprit results for instance with ~10% of edges

Results

Figure 6.12 shows the results of the runs in one plot. The x axis describes the time
in seconds, the y axis the tour length in meters. The two upper lines represent the
mean value over 10 values. The two lower lines represent the minimum value over 10
values.

The path length has been reduced from ~139 300 to ~124 700 (q0 = 0.6) and ~123 000
(q0 = 0.4). Both pairs of lines are near to each other. q0 = 0.6 has a lower average than
q0 = 0.4 over the whole time span. q0 = 0.6 also has a lower minimum value until ~400
seconds, after which q0 = 0.4 almost always has a lower minimum value. Until ~1500
seconds, the average and minimum values drop permanently. After that, the mean
values drop slowly but steadily and the minimum values keep approximately the same
with more variation in case of q0 = 0.4.
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Figure 6.11: Multi-Depot Ant Algorithm results for instance with ~10% of edges

Figure 6.13 shows the same results as Figure 6.12, but separated by value of q0 and
with every measurement represented as dot.

Interpretation and Explanation

In general, q0 = 0.4 performed better than q0 = 0.6, but q0 = 0.4 had a slower start.
This is because more exploitation than exploration leads to more frequent selection of
(currently) best choices. However in the long run, increased exploration succeeds. The
more frequent exploration can also be observed in the more frequent peaks and lows
in case of q0 = 0.4, while q0 = 0.6 has more level sections. q0 = 0.4 has a lower tour
length after ~1500 seconds although the mean of q0 = 0.6 remains lower during the full
period. This is also due to more frequent exploitation of best choices.
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Figure 6.12: Mean and minimum of solution quality during 1h runs of the multi-depot ant
algorithm with q0 ∈ {0.4,0.6}

Comparison to Jsprit

Figure 6.14 shows the Jsprit’s process of solution generation, as outputted by Jsprit
itself. There are two things to note: The diagrams shows the mean solution quality
depending on the iteration, not the time. Also, the best results as derived from the
figure are 105 000 and 240 000, which does not fit to the tour lengths in Tables 6.2
and 6.3. This is because the tour lengths are re-calculated afterwards so that they
are comparable to the tour lengths of the multi-depot ant algorithm. Jsprit does not
support edge routing (cf. Section 5.1.1), which leads to a different distance between
demands.

Jsprit’s path length does not drop as much as the path length of the multi-depot
ant algorithm at the very beginning. This is due to the fact that Jsprit spends more
time on an initial solution than the multi-depot ant algorithm. The drop thereafter is
correspondingly weaker.
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Figure 6.13: Solution qualities during 1h runs of the multi-depot ant algorithm with q0 ∈
{0.4,0.6}
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a) Jsprit run in Table 6.2

b) Jsprit run in Table 6.3

Figure 6.14: Solution qualities during runs of Jsprit

Page 60 of 86



6.3 Greedy Tram Assignment Algorithm

6.3 Greedy Tram Assignment Algorithm

In this section, the greedy tram assignment algorithm is tested in two steps. The first
step uses a randomly generated solution of a last mile delivery. The second step uses
a previously-calculated solution by the multi-depot ant algorithm.

6.3.1 Randomized Last Mile Solution

The test using a random last mile solution compares the performance of the greedy
tram assignment algorithm with the successive Knapsack algorithm.

Test Setup

The test is performed on an instance that has been randomly generated. The instance
contains 40 tours each having a random summed delivery capacity usage d ∈ [15,75).
The values are taken from typical solutions of the multi-depot ant algorithm. Pickups are
not considered in this test. The tour length is (p+d)/90d. The tour starts at a random
time t ∈ [0,0.6). The tram schedule is determined by a summed capacity. The summed
capacity is varied by the values {1000,1500,2000,2500}. The tram schedule contains
five time slots [0,0.25), [0.25,0.5), [0.5,0.75), [0.75,1), [1,1.25). Furthermore, two types of
capacity distributions are evaluated. The first time, an even distribution of capacity is
assigned to the tram schedule, where every time slot gets a capacity of 0.16∗ summed
capacity. The second time, the distribution is the following: [0.05,0.1,0.3,0.3,0.25], each
multiplied by the summed capacity. This resembles a scenario where in the morning
and evening, the tram capacities are lower than during the day due to commuting.

Results

Figure 6.15 and Table 6.4 show the results for even distribution, Figure 6.16 and
Table 6.5 for uneven distribution. The green bars show the available capacity in a time
slot. The red bars show the load calculated by the greedy tram assignment algorithm.
The blue bars show the load calculated by the successive Knapsack algorithm.

It should be noted that the successive Knapsack algorithm is an 1
2 -approximation

algorithm [5]. This means that twice the result of the successive Knapsack algorithm
is an upper bound of the optimal solution in Tables 6.4 and 6.5. The optimal solution
might be below 100%.

The load of the successive Knapsack algorithm is higher than the load of the greedy
tram assignment algorithm in the first three time slots. In the other two time slots, the
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reverse is the case. This can be observed in both tests and for all four capacities.

The greedy tram assignment algorithm has an overall better performance in both tests,
with one exception in the uneven distribution test at the capacity of 1 000.
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Figure 6.15: Tram assignment results at even distribution of capacity

Table 6.4: Percentage of load at even distribution of capacity

algorithm
capacity [%]

1 000 1 500 2 000 2 500

Greedy 60.8 89.5 92.4 96.4
Knapsack 50.0 63.3 65.5 69.4

Interpretation and Explanation

The effect of a higher load in the first three time slots by the successive Knapsack algo-
rithm can be explained by the plausible fact that the dynamic programming Knapsack
algorithm calculates the best solution to a Knapsack problem and at the beginning,
more demands can be chosen. At later time slots, the successive Knapsack algorithm
has made choices it cannot undo. It does not choose demands according to how far in
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Figure 6.16: Tram assignment results at uneven distribution of capacity

Table 6.5: Percentage of load at even distribution of capacity

algorithm
capacity [%]

1 000 1 500 2 000 2 500

Greedy 44.0 68.5 91.8 100.0
Knapsack 45.4 62.0 71.0 78.6

time it can be postponed, which is what the greedy tram assignment algorithm does.
This effect leads to an overall worse performance of the successive Knapsack algorithm
in both even and uneven distribution. This shows that the greedy tram assignment
algorithm should be chosen for this type of problem, although the successive Knapsack
algorithm may seem like a better choice.

6.3.2 Last Mile Solution of the Multi-Depot Ant Algorithm

This section presents the performance of the greedy tram assignment algorithm on two
solutions from Section 6.2.3. The best-performing solutions with parameters β = 8.0,
q0 = 0.6 and β = 12.0, q0 = 0.4 are used as input.
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6 Evaluation

Table 6.6: Percentage of load by the greedy tram assignment algorithm

instance distribution
capacity [%]

100 200 300 400 500 600 700

β = 8.0, q0 = 0.6 even 0.0 11.9 30.8 76.3 100 100.0 100.0
β = 8.0, q0 = 0.6 uneven 2.8 30.8 87.9 100.0 100.0 100.0 100.0
β = 12.0, q0 = 0.4 even 0.3 2.6 9.9 15.8 73.5 96.1 100.0
β = 12.0, q0 = 0.4 uneven 1.5 9.9 46.7 81.8 87.1 97.4 100.0

6.4 Intermodal Tour Algorithm

In this section, the performance of the whole proposed intermodal tour algorithm (IMTA)
is evaluated. Karlsruhe, Santa Ana and Amsterdam serve as instances. For each of the
cities, three cases are tested. The first case is performed with ~10% of the edges and
10 hours of computation time. The second is performed with ~50% of the edges and
16 hours of computation time. The third is equally performed with ~50% of the edges
and 16 hours of computation time, but only sprinter delivery is enabled and cargo bike
and tram delivery is disabled. For more realistic results, for every demand, 2 minutes
of time needed to pickup or deliver the demand are estimated. The time window of all
demands is set to an interval of eight hours (ts = 0 and te = 8). For the Karlsruhe and
Santa Ana instances, the tram schedule is set in such a way, that all demands could be
transported by tram to see the performance of the intermodal tour algorithm without the
greedy tram assignment algorithm. For the Amsterdam instance, the tram schedule is
set to a capacity of 300 per city hub during the whole time. Pickups and deliveries have
a separate capacity of 300 each.

The solutions are broken down by the tours of a vehicle type. The number of stops, the
maximum utilization of the vehicle at any point during the tours, the length of the tours,
the time needed to drive the tours without stopping, the overall working time including
the time to drive the tours and load and unload the demands and the emissions of
CO2 are presented. To calculate the CO2 emissions of a tour, an emission factor of
0.087 l

km ∗2700 g
l ≈ 235 g

km has been applied to sprinter vehicles1 [11].

The Tables 6.7 - 6.15 show the results calculated by the intermodal tour algorithm.
For results broken down by tour, the reader is referred to the Tables B.1 - B.10. The
results give an idea of how many and which tours would be needed for intermodal
parcel deliveries and pickups, given that there is approximately the same demand at
each valid edge. In reality, there would be more demands and the demand volume
would more depend on the particular area. Please note that the results show tours, not

1https://www.mercedes-benz.de/vans/models/sprinter/panel-van/overview.html#technic
al-data
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6.4 Intermodal Tour Algorithm

work assignments of employees. It would be reasonable to assign multiple tours to one
employee if applicable.

For Karlsruhe and Santa Ana, the number of stops served by cargo bikes is approxi-
mately half the number of stops served by sprinters. Nevertheless, the number of cargo
bike tours is higher than the number of sprinter tours. This is due to the higher capacity
of sprinters.

The working time is around 2 hours for cargo bike tours and 8 hours for sprinter tours.
This is because of different constraints restricting the admission of demands. Cargo
bike tours are mostly ended after a shorter time because the load of the cargo bike
reaches the relatively low capacity. This can also be observed in the high utilization of
cargo bike tours. Sprinter tours are mostly ended after a longer time because of the
end of the demands’ time windows at 8 hours and not because of the load reaching the
capacity. This results in a lower utilization that can be observed.

The possible savings of CO2 according to the intermodal tour algorithm can be observed
in Tables 6.8 and 6.9 and Tables 6.11 and 6.12. It strikes out that the CO2 savings of
Karlsruhe’s instance (~26%) are not comparable to Santa Ana’s (~35%) although the
number of demands are comparable. This can be ascribed to the different city layout.
Karlsruhe does not have a grid layout as Santa Ana has which leads to longer tours
in outer areas of the city. This effect is intensified by the fact that sprinter delivery is
mostly performed outside of the city center because the city hubs are located there.

The results of Amsterdam are differing from the results of Karlsruhe and Santa Ana. The
number of stops of cargo bikes is much higher because there are more demands within
the range of a city hub. The demands in the southern and central part of Amsterdam
are almost completely covered by the range of the city hubs. Thus, in the southern and
central part of Amsterdam, there are almost only cargo bikes used. This leads to CO2

savings of ~69% (cf. Tables 6.14 and 6.15).

Other than the Karlsruhe and Santa Ana instances, the Amsterdam instances have a
lower tram capacity limit. For the first case (~10% edges), this has no effect because of
the lower amount of demands. For the second case (~50% edges), this leads to 8 cargo
bike tours that could not be performed because of the tram schedule. Accordingly, the
demands of these tours have been served by sprinter vehicles. The 8 cargo bike tours
are not included in the tour overview to avoid double accounting, but Table B.9 shows
an overview of them.
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6 Evaluation

Table 6.7: IMTA results for Karlsruhe and 10% edges

tour # vehicle stops utilization length driving time working time CO2

1 - 13 cargo bike 319 60% 126 km 6:04 h 16:42 h 0 kg
14 - 17 sprinter 525 32% 315 km 7:36 h 25:06 h 74 kg
1 - 17 all 844 39% 441 km 13:40 h 41:48 h 74 kg

Table 6.8: IMTA results for Karlsruhe and 50% edges

tour # vehicle stops utilization length driving time working time CO2

1 - 43 cargo bike 1473 81% 354 km 17:05 h 66:11 h 0 kg
44 - 58 sprinter 3018 48% 891 km 21:32 h 122:08 h 210 kg
1 - 58 all 4491 55% 1 245 km 38:37 h 188:19 210 kg

Table 6.9: IMTA sprinter only results for Karlsruhe and 50% edges

tour # vehicle stops utilization length driving time working time CO2

1 - 22 sprinter 4491 49% 1 199 km 28:57 h 178:39 h 282 kg

Table 6.10: IMTA results for Santa Ana and 10% edges

tour # vehicle stops utilization length driving time working time CO2

1 - 13 cargo bike 304 53% 139 km 6:44 h 16:52 h 0 kg
14 - 17 sprinter 568 33% 248 km 6:00 h 24:56 h 58 kg
1 - 17 all 872 38% 388 km 12:44 h 41:48 h 58 kg

Table 6.11: IMTA results for Santa Ana and 50% edges

tour # vehicle stops utilization length driving time working time CO2

1 - 47 cargo bike 1664 84% 453 km 21:54 h 77:22 h 0 kg
48 - 61 sprinter 2833 48% 695 km 16:46 h 111:12 h 163 kg
1 - 61 all 4497 57% 1 148 km 38:40 h 188:34 h 163 kg

Table 6.12: IMTA sprinter only results for Santa Ana and 50% edges

tour # vehicle stops utilization length driving time working time CO2

1 - 22 sprinter 4497 49% 1 058 km 25:33 h 175:27 h 249 kg

Table 6.13: IMTA results for Amsterdam and 10% edges

tour # vehicle stops utilization length driving time working time CO2

1 - 28 cargo bike 436 38% 237 km 11:27 h 25:59 h 0 kg
29 - 30 sprinter 288 35% 154 km 3:42 h 13:18 h 36 kg
1 - 30 all 724 37% 391 km 15:09 h 39:17 h 36 kg
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6.4 Intermodal Tour Algorithm

Table 6.14: IMTA results for Amsterdam and 50% edges

tour # vehicle stops utilization length driving time working time CO2

1 - 64 cargo bike 2029 77% 693 km 33:29 h 101:07 h 0 kg
65 - 73 sprinter 1657 44% 488 km 11:47 h 67:01 h 115 kg
1 - 73 all 3686 58% 1 181 km 45:16 h 168:08 h 115 kg

Table 6.15: IMTA sprinter only results for Amsterdam and 50% edges

tour # vehicle stops utilization length driving time working time CO2

1 - 19 sprinter 3686 47% 1 078 km 26:02 h 148:54 h 253 kg
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7 Conclusion

This thesis proposed an intermodal tour planning algorithm that integrates modern
sustainable mechanisms for CEP service providers, such as transport by cargo bike and
tram. The thesis introduced problem and solution models for intermodal tour planning.
In order to solve the intermodal tour planning problem, it is decomposed and traced
back to problem variants of the Vehicle Routing Problem and the Knapsack Problem.
The algorithm uses Ant Colony Optimization with an adapted version of MACS-VRPTW1

[8]. The changes therefore made to MACS-VRPTW have been explained in-depth. The
variable tour generator makes the algorithm extensible. The thesis demonstrated using
three examples that the algorithm can be run on real-world data and produces useful
results.

1Multiple Ant Colony System for the Vehicle Routing Problem with Time Windows
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8 Future Work

The proposed intermodal tour algorithm can be enhanced in several ways. Currently,
the algorithm is split in three parts (cargo bike, tram, sprinter) which are merged with
greedy choices. The Ant Colony approach would be suitable to merge the parts into
one procedure that does all three parts together without greedy choices. Also, the
initial solution generator could be enhanced by a more-sophisticated heuristic than the
nearest neighbor heuristic. In the current approach, the cargo bike problem solver does
not get information on the tram schedules. It is reasonable that it should know about
the tram schedule in order to not generate tours that are not possible due to the tram
schedule.

Despite the real-world data the algorithm has been tested on, most of the other input
data has been arbitrarily chosen or synthetically/randomly generated. Therefore, real
world impacts of e. g. demographic attributes have not been considered. Testing the
algorithm on more sophisticated data would further reveal the practicality.

The proposed algorithm is an offline algorithm and was intended to be a such. However,
the Ant Colony approach would allow to convert it to an online algorithm, where the
algorithm is able to handle unexpected incidents after the tours have already started.
This is particularly interesting for practical applications, e. g. of CEP service providers.
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A Detailed City Hub Data

Table A.1: City Hubs of the Karlsruhe instance

# Name Latitude Longitude

1 Europaplatz 49.010072 8.393473
2 Yorckstraße 49.010872 8.374780
3 Durlacher Tor/KIT 49.008900 8.417167
4 Entenfang 49.010320 8.358662
5 Siemensallee 49.026844 8.351491
6 Kurt-Schumacher-Straße 49.029900 8.374894
7 Neureut-Heide 49.036032 8.387882
8 Daxlanden Karl-Delisle-Straße 48.996268 8.338646
9 Rüppurr Tulpenstraße 48.970952 8.403928
10 Wolfartsweier Nord 48.978280 8.458247
11 Durlach Friedrichsschule 48.999328 8.468429
12 Rintheim Forststraße 49.013992 8.442191
13 Waldstadt Zentrum 49.034920 8.445386

Table A.2: City Hubs of the Santa Ana instance

# Name Latitude Longitude

1 Bristol-17th 33.759972 -117.885072
2 Main-17th 33.760088 -117.867568
3 17th-Concord 33.759928 -117.845856
4 1st-Newhope 33.745116 -117.928792
5 1st-Fairview 33.745264 -117.905192
6 McFadden-Hathaway 33.733636 -117.853104
7 Edinger-Fairview 33.727336 -117.90624
8 Edinger-Bristol 33.727176 -117.88508
9 Main-Saint Gertrude 33.71972 -117.86788
10 Warner-Raitt 33.7155 -117.896088
11 Fairview-Segerstrom 33.7088 -117.907696
12 Main-Dyer 33.708776 -117.868032
13 Bristol-Alton 33.703692 -117.885456
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A Detailed City Hub Data

Table A.3: City Hubs of the Amsterdam instance

# Name Latitude Longitude

1 Meester Visserplein 52.3677535 4.9058474
2 Nassaukade 52.3810685 4.8791525
3 Marnixplein 52.3778393 4.8786695
4 Prinses Irenestraat 52.3431074 4.8767749
5 Muziekgebouw 52.3772761 4.912547
6 Gerrit van der Veenstraat 52.3492157 4.877365
7 Stadhouderskade 52.3576504 4.8993709
8 Maasstraat 52.3468163 4.8947303
9 Dintelstraat 52.341887 4.893324
10 Van Woustraat 52.3549659 4.9015662
11 Hoogte Kadijk 52.3666491 4.9242477
12 Prinsengracht 52.3621338 4.8989773
13 Bos en Lommerweg 52.3811265 4.8539231
14 Willem de Zwijgerlaan 52.3704221 4.8641586
15 Hugo de Vrieslaan 52.351066 4.934801
16 Oostpoort 52.3574304 4.9268761
17 Wijttenbachstraat 52.3602514 4.9250583
18 Nicolaas Beetsstraat 52.365525 4.8656566
19 Elandsgracht 52.368541 4.8768971
20 Amstelveenseweg 52.3517531 4.8564472
21 Kattenburgerstraat 52.3761672 4.9211099
22 Victorieplein 52.3464278 4.9063478
23 Eerste Constantijn Huygensstraat 52.3626351 4.874895
24 Rokin 52.3697221 4.892274
25 Koningsplein 52.3677188 4.8893427
26 Javaplein 52.3641725 4.9382411
27 De Pijp 52.3526769 4.8901771
28 Van Baerlestraat 52.3587793 4.8781266
29 Erasmusgracht 52.3763312 4.8469734
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B Detailed Intermodal Tour Algorithm
Results

Table B.1: Detailed IMTA results for Karlsruhe and 10% edges
tour # vehicle stops utilization length driving time working time CO2

1 cargo bike 9 22% 7 214 m 0:20 h 0:38 h 0 g
2 cargo bike 42 100% 13 376 m 0:38 h 2:02 h 0 g
3 cargo bike 15 36% 7 041 m 0:20 h 0:50 h 0 g
4 cargo bike 30 75% 10 166 m 0:29 h 1:29 h 0 g
5 cargo bike 25 65% 8 194 m 0:23 h 1:13 h 0 g
6 cargo bike 42 90% 12 777 m 0:37 h 2:01 h 0 g
7 cargo bike 20 48% 7 832 m 0:22 h 1:02 h 0 g
8 cargo bike 30 65% 12 163 m 0:35 h 1:35 h 0 g
9 cargo bike 20 52% 7 402 m 0:21 h 1:01 h 0 g

10 cargo bike 12 34% 7 053 m 0:20 h 0:44 h 0 g
11 cargo bike 17 47% 9 110 m 0:26 h 1:00 h 0 g
12 cargo bike 27 71% 12 376 m 0:35 h 1:29 h 0 g
13 cargo bike 30 71% 11 003 m 0:31 h 1:31 h 0 g
14 sprinter 174 41% 90 325 m 2:10 h 7:58 h 21 226 g
15 sprinter 170 41% 101 097 m 2:26 h 8:06 h 23 758 g
16 sprinter 164 39% 104 954 m 2:32 h 8:00 h 24 664 g
17 sprinter 17 5% 18 598 m 0:26 h 1:00 h 4 371 g

1 - 13 cargo bike 319 60% 126 m 6:04 h 16:42 h 0 g
14 - 17 sprinter 525 32% 315 m 7:36 h 25:06 h 74 kg
1 - 17 all 844 39% 441 km 13:40 h 41:48 h 74 kg
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B Detailed Intermodal Tour Algorithm Results

Table B.2: Detailed IMTA results for Karlsruhe and 50% edges
tour # vehicle stops utilization length driving time working time CO2

1 cargo bike 23 59% 4 762 m 0:13 h 0:59 h 0 g
2 cargo bike 46 100% 8 012 m 0:23 h 1:55 h 0 g
3 cargo bike 44 97% 8 501 m 0:24 h 1:52 h 0 g
4 cargo bike 47 100% 7 925 m 0:22 h 1:56 h 0 g
5 cargo bike 40 100% 6 091 m 0:17 h 1:37 h 0 g
6 cargo bike 40 100% 6 435 m 0:18 h 1:38 h 0 g
7 cargo bike 45 100% 6 988 m 0:20 h 1:50 h 0 g
8 cargo bike 43 96% 11 454 m 0:33 h 1:59 h 0 g
9 cargo bike 36 91% 7 550 m 0:21 h 1:33 h 0 g

10 cargo bike 47 93% 6 782 m 0:19 h 1:53 h 0 g
11 cargo bike 44 95% 6 876 m 0:19 h 1:47 h 0 g
12 cargo bike 46 100% 9 427 m 0:27 h 1:59 h 0 g
13 cargo bike 29 70% 5 312 m 0:15 h 1:13 h 0 g
14 cargo bike 42 100% 10 861 m 0:31 h 1:55 h 0 g
15 cargo bike 39 93% 5 794 m 0:16 h 1:34 h 0 g
16 cargo bike 40 100% 10 151 m 0:29 h 1:49 h 0 g
17 cargo bike 29 64% 7 484 m 0:21 h 1:19 h 0 g
18 cargo bike 18 49% 6 487 m 0:18 h 0:54 h 0 g
19 cargo bike 37 100% 9 161 m 0:26 h 1:40 h 0 g
20 cargo bike 36 73% 4 901 m 0:14 h 1:26 h 0 g
21 cargo bike 47 100% 6 514 m 0:18 h 1:52 h 0 g
22 cargo bike 38 100% 7 931 m 0:22 h 1:38 h 0 g
23 cargo bike 41 100% 9 550 m 0:27 h 1:49 h 0 g
24 cargo bike 2 5% 5 530 m 0:16 h 0:20 h 0 g
25 cargo bike 9 29% 5 067 m 0:14 h 0:32 h 0 g
26 cargo bike 35 88% 6 422 m 0:18 h 1:28 h 0 g
27 cargo bike 32 75% 8 230 m 0:23 h 1:27 h 0 g
28 cargo bike 38 94% 5 996 m 0:17 h 1:33 h 0 g
29 cargo bike 26 68% 10 541 m 0:30 h 1:22 h 0 g
30 cargo bike 22 51% 7 077 m 0:20 h 1:04 h 0 g
31 cargo bike 42 99% 7 694 m 0:22 h 1:46 h 0 g
32 cargo bike 41 100% 9 623 m 0:27 h 1:49 h 0 g
33 cargo bike 38 100% 7 442 m 0:21 h 1:37 h 0 g
34 cargo bike 38 94% 17 097 m 0:49 h 2:05 h 0 g
35 cargo bike 8 19% 5 820 m 0:16 h 0:32 h 0 g
36 cargo bike 34 90% 11 532 m 0:33 h 1:41 h 0 g
37 cargo bike 16 37% 5 350 m 0:15 h 0:47 h 0 g
38 cargo bike 31 70% 11 229 m 0:32 h 1:34 h 0 g
39 cargo bike 42 100% 11 186 m 0:32 h 1:56 h 0 g
40 cargo bike 32 73% 12 673 m 0:36 h 1:40 h 0 g
41 cargo bike 41 100% 13 988 m 0:40 h 2:02 h 0 g
42 cargo bike 22 54% 4 972 m 0:14 h 0:58 h 0 g
43 cargo bike 27 74% 11 304 m 0:32 h 1:26 h 0 g
44 sprinter 213 49% 38 856 m 0:56 h 8:02 h 9 131 g
45 sprinter 210 51% 41 913 m 1:00 h 8:00 h 9 850 g
46 sprinter 205 50% 54 679 m 1:19 h 8:09 h 12 850 g
47 sprinter 202 48% 59 710 m 1:26 h 8:10 h 14 032 g
48 sprinter 209 51% 50 623 m 1:13 h 8:11 h 11 896 g
49 sprinter 202 48% 56 204 m 1:21 h 8:05 h 13 208 g
50 sprinter 208 50% 49 877 m 1:12 h 8:08 h 11 721 g
51 sprinter 199 49% 64 067 m 1:32 h 8:10 h 15 056 g
52 sprinter 208 49% 52 436 m 1:15 h 8:11 h 12 322 g
53 sprinter 195 48% 70 225 m 1:41 h 8:11 h 16 503 g
54 sprinter 196 48% 67 404 m 1:37 h 8:09 h 15 840 g
55 sprinter 181 42% 87 709 m 2:07 h 8:09 h 20 612 g
56 sprinter 189 46% 70 911 m 1:42 h 8:00 h 16 664 g
57 sprinter 204 49% 57 719 m 1:23 h 8:11 h 13 564 g
58 sprinter 197 48% 69 182 m 1:40 h 8:14 h 16 258 g

1 - 43 cargo bike 1473 81% 354 km 17:05 h 66:11 h 0 g
44 - 58 sprinter 3018 48% 891 km 21:32 h 122:08 h 210 kg
1 - 58 all 4491 55% 1 245 km 38:37 h 188:19 210 kg
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Table B.3: Detailed IMTA sprinter only results for Karlsruhe and 50% edges
tour # vehicle stops utilization length driving time working time CO2

1 sprinter 214 52% 40 548 m 0:58 h 8:06 h 9 529 g
2 sprinter 215 50% 37 116 m 0:53 h 8:03 h 8 722 g
3 sprinter 212 52% 40 715 m 0:59 h 8:03 h 9 568 g
4 sprinter 215 52% 38 843 m 0:56 h 8:06 h 9 128 g
5 sprinter 203 51% 56 316 m 1:21 h 8:07 h 13 234 g
6 sprinter 203 49% 56 825 m 1:22 h 8:08 h 13 354 g
7 sprinter 204 48% 51 522 m 1:14 h 8:02 h 12 108 g
8 sprinter 208 49% 50 105 m 1:12 h 8:08 h 11 775 g
9 sprinter 208 50% 50 892 m 1:13 h 8:09 h 11 960 g
10 sprinter 212 52% 45 243 m 1:05 h 8:09 h 10 632 g
11 sprinter 214 53% 41 090 m 0:59 h 8:07 h 9 656 g
12 sprinter 211 51% 47 213 m 1:08 h 8:10 h 11 095 g
13 sprinter 200 45% 57 350 m 1:23 h 8:03 h 13 477 g
14 sprinter 205 48% 54 834 m 1:19 h 8:09 h 12 886 g
15 sprinter 205 49% 52 846 m 1:16 h 8:06 h 12 419 g
16 sprinter 202 50% 59 974 m 1:26 h 8:10 h 14 094 g
17 sprinter 195 46% 67 586 m 1:37 h 8:07 h 15 883 g
18 sprinter 189 41% 76 747 m 1:51 h 8:09 h 18 036 g
19 sprinter 202 50% 59 093 m 1:25 h 8:09 h 13 887 g
20 sprinter 205 49% 56 199 m 1:21 h 8:11 h 13 207 g
21 sprinter 177 42% 84 814 m 2:02 h 7:56 h 19 931 g
22 sprinter 192 47% 73 162 m 1:46 h 8:10 h 17 193 g

1 - 22 sprinter 4491 49% 1 199 km 28:57 h 178:39 h 282 kg

Table B.4: Detailed IMTA results for Santa Ana and 10% edges
tour # vehicle stops utilization length driving time working time CO2

1 cargo bike 37 93% 15 332 m 0:44 h 1:58 h 0 g
2 cargo bike 41 96% 15 454 m 0:44 h 2:06 h 0 g
3 cargo bike 29 59% 11 569 m 0:33 h 1:31 h 0 g
4 cargo bike 19 39% 10 697 m 0:31 h 1:09 h 0 g
5 cargo bike 37 85% 13 106 m 0:37 h 1:51 h 0 g
6 cargo bike 19 41% 11 265 m 0:32 h 1:10 h 0 g
7 cargo bike 9 21% 5 590 m 0:16 h 0:34 h 0 g
8 cargo bike 22 48% 9 220 m 0:26 h 1:10 h 0 g
9 cargo bike 9 25% 3 989 m 0:11 h 0:29 h 0 g

10 cargo bike 13 31% 9 455 m 0:27 h 0:53 h 0 g
11 cargo bike 29 62% 11 200 m 0:32 h 1:30 h 0 g
12 cargo bike 19 44% 12 051 m 0:34 h 1:12 h 0 g
13 cargo bike 21 48% 10 512 m 0:30 h 1:12 h 0 g
14 sprinter 181 43% 81 565 m 1:58 h 8:00 h 19 168 g
15 sprinter 185 45% 77 396 m 1:52 h 8:02 h 18 188 g
16 sprinter 182 40% 79 582 m 1:55 h 7:59 h 18 702 g
17 sprinter 20 4% 9 888 m 0:14 h 0:54 h 2 324 g

1 - 13 cargo bike 304 53% 139 km 6:44 h 16:52 h 0 g
14 - 17 sprinter 568 33% 248 km 6:00 h 24:56 h 58 kg
1 - 17 all 872 38% 388 km 12:44 h 41:48 h 58 kg
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B Detailed Intermodal Tour Algorithm Results

Table B.5: Detailed IMTA results for Santa Ana and 50% edges
tour # vehicle stops utilization length driving time working time CO2

1 cargo bike 38 100% 7 957 m 0:23 h 1:39 h 0 g
2 cargo bike 46 100% 10 645 m 0:30 h 2:02 h 0 g
3 cargo bike 41 99% 8 666 m 0:25 h 1:47 h 0 g
4 cargo bike 44 100% 5 851 m 0:16 h 1:44 h 0 g
5 cargo bike 43 100% 11 179 m 0:32 h 1:58 h 0 g
6 cargo bike 38 100% 8 317 m 0:24 h 1:40 h 0 g
7 cargo bike 40 97% 7 162 m 0:20 h 1:40 h 0 g
8 cargo bike 48 100% 15 097 m 0:43 h 2:19 h 0 g
9 cargo bike 48 98% 10 458 m 0:30 h 2:06 h 0 g

10 cargo bike 39 98% 8 835 m 0:25 h 1:43 h 0 g
11 cargo bike 42 100% 9 257 m 0:26 h 1:50 h 0 g
12 cargo bike 38 83% 8 380 m 0:24 h 1:40 h 0 g
13 cargo bike 40 100% 7 122 m 0:20 h 1:40 h 0 g
14 cargo bike 43 100% 11 777 m 0:34 h 2:00 h 0 g
15 cargo bike 43 100% 12 989 m 0:37 h 2:03 h 0 g
16 cargo bike 45 100% 6 805 m 0:19 h 1:49 h 0 g
17 cargo bike 43 100% 17 209 m 0:49 h 2:15 h 0 g
18 cargo bike 43 100% 11 492 m 0:33 h 1:59 h 0 g
19 cargo bike 40 90% 7 731 m 0:22 h 1:42 h 0 g
20 cargo bike 41 100% 9 523 m 0:27 h 1:49 h 0 g
21 cargo bike 12 34% 8 465 m 0:24 h 0:48 h 0 g
22 cargo bike 45 100% 15 842 m 0:45 h 2:15 h 0 g
23 cargo bike 46 100% 12 238 m 0:35 h 2:07 h 0 g
24 cargo bike 31 74% 8 936 m 0:25 h 1:27 h 0 g
25 cargo bike 35 81% 5 474 m 0:15 h 1:25 h 0 g
26 cargo bike 26 61% 5 838 m 0:16 h 1:08 h 0 g
27 cargo bike 41 100% 7 874 m 0:22 h 1:44 h 0 g
28 cargo bike 36 100% 9 362 m 0:27 h 1:39 h 0 g
29 cargo bike 9 23% 5 396 m 0:15 h 0:33 h 0 g
30 cargo bike 42 100% 7 765 m 0:22 h 1:46 h 0 g
31 cargo bike 38 98% 13 459 m 0:39 h 1:55 h 0 g
32 cargo bike 43 100% 11 787 m 0:34 h 2:00 h 0 g
33 cargo bike 7 21% 5 112 m 0:14 h 0:28 h 0 g
34 cargo bike 39 100% 14 974 m 0:43 h 2:01 h 0 g
35 cargo bike 50 100% 13 259 m 0:38 h 2:18 h 0 g
36 cargo bike 37 97% 12 452 m 0:36 h 1:50 h 0 g
37 cargo bike 1 4% 1 327 m 0:03 h 0:05 h 0 g
38 cargo bike 33 78% 10 900 m 0:31 h 1:37 h 0 g
39 cargo bike 19 47% 8 237 m 0:23 h 1:01 h 0 g
40 cargo bike 43 100% 7 800 m 0:22 h 1:48 h 0 g
41 cargo bike 40 100% 13 334 m 0:38 h 1:58 h 0 g
42 cargo bike 45 100% 15 321 m 0:44 h 2:14 h 0 g
43 cargo bike 27 63% 13 338 m 0:38 h 1:32 h 0 g
44 cargo bike 27 64% 9 854 m 0:28 h 1:22 h 0 g
45 cargo bike 3 11% 3 098 m 0:08 h 0:14 h 0 g
46 cargo bike 13 29% 6 363 m 0:18 h 0:44 h 0 g
47 cargo bike 33 81% 9 219 m 0:26 h 1:32 h 0 g
48 sprinter 219 52% 31 843 m 0:46 h 8:04 h 7 483 g
49 sprinter 214 52% 37 813 m 0:54 h 8:02 h 8 886 g
50 sprinter 212 47% 41 114 m 0:59 h 8:03 h 9 662 g
51 sprinter 216 54% 34 945 m 0:50 h 8:02 h 8 212 g
52 sprinter 203 50% 53 905 m 1:18 h 8:04 h 12 668 g
53 sprinter 210 49% 43 066 m 1:02 h 8:02 h 10 121 g
54 sprinter 204 48% 51 032 m 1:13 h 8:01 h 11 993 g
55 sprinter 210 50% 43 473 m 1:03 h 8:03 h 10 216 g
56 sprinter 202 46% 58 257 m 1:24 h 8:08 h 13 690 g
57 sprinter 194 44% 67 862 m 1:38 h 8:06 h 15 948 g
58 sprinter 204 49% 53 599 m 1:17 h 8:05 h 12 596 g
59 sprinter 204 49% 52 057 m 1:15 h 8:03 h 12 233 g
60 sprinter 201 47% 59 045 m 1:25 h 8:07 h 13 876 g
61 sprinter 140 38% 66 688 m 1:36 h 6:16 h 15 672 g

1 - 47 cargo bike 1664 84% 453 m 21:54 h 77:22 h 0 g
48 - 61 sprinter 2833 48% 695 m 16:46 h 111:12 h 163 kg
1 - 61 all 4497 57% 1 148 km 38:40 h 188:34 h 163 kg
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Table B.6: Detailed IMTA sprinter only results for Santa Ana and 50% edges
tour # vehicle stops utilization length driving time working time CO2

1 sprinter 213 51% 41 898 m 1:00 h 8:06 h 9 846 g
2 sprinter 212 48% 42 447 m 1:01 h 8:05 h 9 975 g
3 sprinter 214 49% 38 559 m 0:55 h 8:03 h 9 061 g
4 sprinter 214 51% 36 385 m 0:52 h 8:00 h 8 550 g
5 sprinter 211 49% 43 425 m 1:02 h 8:04 h 10 205 g
6 sprinter 209 51% 46 784 m 1:07 h 8:05 h 10 994 g
7 sprinter 218 54% 32 259 m 0:46 h 8:02 h 7 581 g
8 sprinter 217 52% 33 440 m 0:48 h 8:02 h 7 858 g
9 sprinter 208 50% 48 390 m 1:10 h 8:06 h 11 372 g
10 sprinter 213 51% 39 743 m 0:57 h 8:03 h 9 340 g
11 sprinter 206 46% 51 873 m 1:15 h 8:07 h 12 190 g
12 sprinter 212 51% 41 741 m 1:00 h 8:04 h 9 809 g
13 sprinter 202 47% 56 768 m 1:22 h 8:06 h 13 340 g
14 sprinter 212 50% 44 344 m 1:04 h 8:08 h 10 421 g
15 sprinter 205 51% 50 350 m 1:12 h 8:02 h 11 832 g
16 sprinter 204 51% 53 115 m 1:16 h 8:04 h 12 482 g
17 sprinter 206 49% 51 748 m 1:14 h 8:06 h 12 161 g
18 sprinter 206 48% 51 997 m 1:15 h 8:07 h 12 219 g
19 sprinter 185 44% 82 815 m 2:00 h 8:10 h 19 462 g
20 sprinter 205 48% 51 938 m 1:15 h 8:05 h 12 205 g
21 sprinter 191 46% 72 986 m 1:45 h 8:07 h 17 152 g
22 sprinter 134 30% 45 273 m 1:05 h 5:33 h 10 639 g

1 - 22 sprinter 4497 49% 1 058 km 25:33 h 175:27 h 249 kg

Table B.7: Detailed IMTA results for Amsterdam and 10% edges
tour # vehicle stops utilization length driving time working time CO2

1 cargo bike 8 13% 6 663 m 0:19 h 0:35 h 0 g
2 cargo bike 37 90% 14 770 m 0:42 h 1:56 h 0 g
3 cargo bike 20 50% 11 631 m 0:33 h 1:13 h 0 g
4 cargo bike 11 29% 5 126 m 0:14 h 0:36 h 0 g
5 cargo bike 21 54% 7 305 m 0:21 h 1:03 h 0 g
6 cargo bike 10 28% 8 429 m 0:24 h 0:44 h 0 g
7 cargo bike 4 13% 3 572 m 0:10 h 0:18 h 0 g
8 cargo bike 11 24% 5 460 m 0:15 h 0:37 h 0 g
9 cargo bike 8 20% 3 750 m 0:10 h 0:26 h 0 g

10 cargo bike 11 20% 7 960 m 0:23 h 0:45 h 0 g
11 cargo bike 5 15% 3 371 m 0:09 h 0:19 h 0 g
12 cargo bike 21 55% 13 954 m 0:40 h 1:22 h 0 g
13 cargo bike 20 47% 10 706 m 0:31 h 1:11 h 0 g
14 cargo bike 38 89% 16 387 m 0:47 h 2:03 h 0 g
15 cargo bike 22 53% 8 497 m 0:24 h 1:08 h 0 g
16 cargo bike 6 15% 5 656 m 0:16 h 0:28 h 0 g
17 cargo bike 2 6% 1 685 m 0:04 h 0:08 h 0 g
18 cargo bike 10 21% 6 763 m 0:19 h 0:39 h 0 g
19 cargo bike 38 98% 20 883 m 1:00 h 2:16 h 0 g
20 cargo bike 9 23% 6 262 m 0:18 h 0:36 h 0 g
21 cargo bike 20 45% 13 719 m 0:39 h 1:19 h 0 g
22 cargo bike 15 41% 8 187 m 0:23 h 0:53 h 0 g
23 cargo bike 3 3% 4 599 m 0:13 h 0:19 h 0 g
24 cargo bike 3 4% 2 186 m 0:06 h 0:12 h 0 g
25 cargo bike 37 87% 15 033 m 0:43 h 1:57 h 0 g
26 cargo bike 13 33% 6 119 m 0:17 h 0:43 h 0 g
27 cargo bike 17 48% 9 221 m 0:26 h 1:00 h 0 g
28 cargo bike 16 38% 9 229 m 0:26 h 0:58 h 0 g
29 sprinter 169 41% 102 577 m 2:28 h 8:06 h 24 106 g
30 sprinter 119 28% 51 084 m 1:14 h 5:12 h 12 005 g

1 - 28 cargo bike 436 38% 237 m 11:27 h 25:59 h 0 g
29 - 30 sprinter 288 35% 154 m 3:42 h 13:18 h 36 kg
1 - 30 all 724 37% 391 km 15:09 h 39:17 h 36 kg
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B Detailed Intermodal Tour Algorithm Results

Table B.8: Detailed IMTA results for Amsterdam and 50% edges
tour # vehicle stops utilization length driving time working time CO2

1 cargo bike 46 99% 20 152 m 0:58 h 2:30 h 0 g
2 cargo bike 6 21% 4 132 m 0:11 h 0:23 h 0 g
3 cargo bike 40 96% 8 161 m 0:23 h 1:43 h 0 g
4 cargo bike 40 100% 8 042 m 0:23 h 1:43 h 0 g
5 cargo bike 17 49% 8 372 m 0:24 h 0:58 h 0 g
6 cargo bike 45 100% 16 528 m 0:47 h 2:17 h 0 g
7 cargo bike 41 99% 17 491 m 0:50 h 2:12 h 0 g
8 cargo bike 2 4% 3 249 m 0:09 h 0:13 h 0 g
9 cargo bike 46 100% 10 592 m 0:30 h 2:02 h 0 g

10 cargo bike 19 51% 7 138 m 0:20 h 0:58 h 0 g
11 cargo bike 5 12% 3 224 m 0:09 h 0:19 h 0 g
12 cargo bike 43 100% 9 168 m 0:26 h 1:52 h 0 g
13 cargo bike 38 100% 8 894 m 0:25 h 1:41 h 0 g
14 cargo bike 9 27% 3 342 m 0:09 h 0:27 h 0 g
15 cargo bike 39 100% 15 153 m 0:43 h 2:01 h 0 g
16 cargo bike 7 20% 3 741 m 0:10 h 0:24 h 0 g
17 cargo bike 40 100% 12 823 m 0:37 h 1:57 h 0 g
18 cargo bike 4 12% 3 813 m 0:11 h 0:19 h 0 g
19 cargo bike 40 95% 15 479 m 0:44 h 2:04 h 0 g
20 cargo bike 11 32% 6 104 m 0:17 h 0:39 h 0 g
21 cargo bike 37 87% 11 157 m 0:32 h 1:46 h 0 g
22 cargo bike 46 100% 11 666 m 0:33 h 2:05 h 0 g
23 cargo bike 35 89% 11 303 m 0:32 h 1:42 h 0 g
24 cargo bike 38 100% 10 959 m 0:31 h 1:47 h 0 g
25 cargo bike 5 14% 4 140 m 0:11 h 0:22 h 0 g
26 cargo bike 43 100% 10 996 m 0:31 h 1:57 h 0 g
27 cargo bike 39 100% 10 787 m 0:31 h 1:49 h 0 g
28 cargo bike 31 77% 13 427 m 0:38 h 1:40 h 0 g
29 cargo bike 41 100% 8 659 m 0:25 h 1:47 h 0 g
30 cargo bike 39 100% 13 641 m 0:39 h 1:57 h 0 g
31 cargo bike 40 100% 13 587 m 0:39 h 1:59 h 0 g
32 cargo bike 44 100% 10 844 m 0:31 h 1:59 h 0 g
33 cargo bike 41 100% 7 920 m 0:22 h 1:44 h 0 g
34 cargo bike 43 100% 11 718 m 0:33 h 1:59 h 0 g
35 cargo bike 41 100% 10 085 m 0:29 h 1:51 h 0 g
36 cargo bike 38 100% 8 316 m 0:24 h 1:40 h 0 g
37 cargo bike 33 84% 14 680 m 0:42 h 1:48 h 0 g
38 cargo bike 39 100% 14 744 m 0:42 h 2:00 h 0 g
39 cargo bike 3 9% 2 578 m 0:07 h 0:13 h 0 g
40 cargo bike 13 27% 5 329 m 0:15 h 0:41 h 0 g
41 cargo bike 42 97% 15 763 m 0:45 h 2:09 h 0 g
42 cargo bike 19 45% 11 671 m 0:33 h 1:11 h 0 g
43 cargo bike 46 100% 19 496 m 0:56 h 2:28 h 0 g
44 cargo bike 40 100% 13 671 m 0:39 h 1:59 h 0 g
45 cargo bike 40 100% 13 480 m 0:39 h 1:59 h 0 g
46 cargo bike 42 100% 14 080 m 0:40 h 2:04 h 0 g
47 cargo bike 4 12% 4 102 m 0:11 h 0:19 h 0 g
48 cargo bike 41 92% 11 688 m 0:33 h 1:55 h 0 g
49 cargo bike 40 100% 15 256 m 0:44 h 2:04 h 0 g
50 cargo bike 41 100% 14 003 m 0:40 h 2:02 h 0 g
51 cargo bike 45 98% 12 975 m 0:37 h 2:07 h 0 g
52 cargo bike 35 100% 14 485 m 0:41 h 1:51 h 0 g
53 cargo bike 15 42% 5 322 m 0:15 h 0:45 h 0 g
54 cargo bike 16 39% 10 414 m 0:30 h 1:02 h 0 g
55 cargo bike 14 32% 9 686 m 0:28 h 0:56 h 0 g
56 cargo bike 52 100% 17 463 m 0:50 h 2:34 h 0 g
57 cargo bike 39 100% 10 616 m 0:30 h 1:48 h 0 g
58 cargo bike 39 100% 14 716 m 0:42 h 2:00 h 0 g
59 cargo bike 42 100% 15 712 m 0:45 h 2:09 h 0 g
60 cargo bike 18 46% 10 234 m 0:29 h 1:05 h 0 g
61 cargo bike 43 94% 11 926 m 0:34 h 2:00 h 0 g
62 cargo bike 29 63% 9 699 m 0:28 h 1:26 h 0 g
63 cargo bike 40 88% 15 667 m 0:45 h 2:05 h 0 g
64 cargo bike 20 54% 8 863 m 0:25 h 1:05 h 0 g
65 sprinter 200 49% 56 941 m 1:22 h 8:02 h 13 381 g
66 sprinter 212 49% 43 454 m 1:02 h 8:06 h 10 212 g
67 sprinter 180 46% 86 214 m 2:04 h 8:04 h 20 260 g
68 sprinter 199 48% 62 889 m 1:31 h 8:09 h 14 779 g
69 sprinter 207 50% 51 004 m 1:13 h 8:07 h 11 986 g
70 sprinter 208 49% 49 070 m 1:11 h 8:07 h 11 531 g
71 sprinter 207 49% 51 438 m 1:14 h 8:08 h 12 088 g
72 sprinter 196 49% 66 047 m 1:35 h 8:07 h 15 521 g
73 sprinter 48 10% 21 308 m 0:30 h 2:06 h 5 007 g

1 - 64 cargo bike 2029 77% 693 km 33:29 h 101:07 h 0 g
65 - 73 sprinter 1657 44% 488 km 11:47 h 67:01 h 115 kg
1 - 73 all 3686 58% 1 181 km 45:16 h 168:08 h 115 kg
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Table B.9: Tours with failed tram delivery (Detailed IMTA results for Amsterdam and 50%
edges)

tour # vehicle stops utilization length driving time working time CO2

1 cargo bike 3 10% 3 642 m 0:10 h 0:16 h 0 g
2 cargo bike 36 100% 9 203 m 0:26 h 1:38 h 0 g
3 cargo bike 22 54% 9 790 m 0:28 h 1:12 h 0 g
4 cargo bike 40 100% 7 025 m 0:20 h 1:40 h 0 g
5 cargo bike 37 100% 11 569 m 0:33 h 1:47 h 0 g
6 cargo bike 9 22% 8 702 m 0:25 h 0:43 h 0 g
7 cargo bike 17 44% 5 022 m 0:14 h 0:48 h 0 g
8 cargo bike 4 13% 6 386 m 0:18 h 0:26 h 0 g

1 - 8 cargo bike 168 55% 61 339 m 2:57 h 8:33 h 0 g

Table B.10: Detailed IMTA sprinter only results for Amsterdam and 50% edges
tour # vehicle stops utilization length driving time working time CO2

1 sprinter 209 52% 43 800 m 1:03 h 8:01 h 10 293 g
2 sprinter 214 51% 39 441 m 0:57 h 8:05 h 9 269 g
3 sprinter 194 47% 64 792 m 1:33 h 8:01 h 15 226 g
4 sprinter 201 47% 55 492 m 1:20 h 8:02 h 13 041 g
5 sprinter 195 49% 64 233 m 1:33 h 8:03 h 15 095 g
6 sprinter 210 47% 46 863 m 1:07 h 8:07 h 11 013 g
7 sprinter 205 53% 52 959 m 1:16 h 8:06 h 12 445 g
8 sprinter 211 51% 45 118 m 1:05 h 8:07 h 10 603 g
9 sprinter 208 49% 47 414 m 1:08 h 8:04 h 11 142 g
10 sprinter 203 46% 56 003 m 1:21 h 8:07 h 13 161 g
11 sprinter 199 49% 62 613 m 1:30 h 8:08 h 14 714 g
12 sprinter 202 48% 58 838 m 1:25 h 8:09 h 13 827 g
13 sprinter 200 48% 58 719 m 1:25 h 8:05 h 13 799 g
14 sprinter 196 47% 62 423 m 1:30 h 8:02 h 14 669 g
15 sprinter 190 48% 75 255 m 1:49 h 8:09 h 17 685 g
16 sprinter 187 44% 79 354 m 1:55 h 8:09 h 18 648 g
17 sprinter 198 47% 65 801 m 1:35 h 8:11 h 15 463 g
18 sprinter 204 50% 58 064 m 1:24 h 8:12 h 13 645 g
19 sprinter 60 14% 40 940 m 0:59 h 2:59 h 9 621 g

1 - 19 sprinter 3686 47% 1 078 km 26:02 h 148:54 h 253 kg
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