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Abstract. This study explores the feasibility of using the in-
formation contained in observed streamflow measurements
to inversely correct catchment-average precipitation time se-
ries provided by reanalysis products at the continental scale.
We explore this possibility by training LSTM ensemble net-
works to inversely predict precipitation by using the stream-
flow of catchments as additional input. The first model uses
discharge as an input feature along with other meteorologi-
cal variables, while the second model uses only the meteoro-
logical predictors. Analysing the performance of both mod-
els showed that the discharge information not only led to
an average improvement overall, but also resulted in a sig-
nificant improvement (around 30 %) on days with precip-
itation amounts greater than Smm. An out-of-sample test
showed that the inversely estimated precipitation is better
able to reproduce small-scale, high-impact events that are
poorly represented in the reanalysis product. Further, using
the inversely generated precipitation time series for classi-
cal hydrological “forward” modeling resulted in improved
estimates for streamflow and soil moisture. Given that the
wealth of streamflow gauges around the world is currently
underutilised for meteorological applications, our findings
have significant implications for achieving better estimates
of precipitation associated with high-impact flood events.

1 Introduction

The performance of hydrological models has traditionally
been constrained by the availability and quality of obser-
vations covering various aspects of the water cycle. Among
those, precipitation and streamflow observations are pivotal,

as they represent cause-and-effect in the context of system
dynamics. Long-term experimental data from well-studied
research catchments, and data from operational monitoring
networks, have thus long been the cornerstone of the hy-
drological sciences (Tetzlaff et al., 2017). The relevance of
observed data and research observatories cannot be overem-
phasised, particularly due to the invalidity of stationarity as-
sumptions (Milly et al., 2008) in the face of anthropogenic
climate change and its impacts on water-related hazards and
availability.

As the availability and quality of observations crucially
constrain the “realism” of a hydrological model and thus
the accuracy of predictions, data scarcity impedes accurate
modelling and inference of hydrological processes. Global
reanalysis products (Mufioz-Sabater et al., 2021; Onogi et al.,
2007; Rienecker et al., 2011) can potentially, if of sufficient
quality, complement the few existing ground-based observa-
tions by offering a valuable alternative when exhaustive lo-
cal observations are not available. Further, they play a pivotal
role in hydro-climatic research (Alexopoulos et al., 2023; Gu
et al., 2023), by providing a consistent, long-term view of
the state of the global climate system via the assimilation of
measurements and monitoring data into numerical weather
models.

While previous studies (Essou et al., 2016; Tarek et al.,
2020) have already shown the value of using reanalysis data
as estimates for meteorological forcing data in regions with
little or sparse ground-based weather station data, serious
concerns about their quality remain when used in the context
of hydrological modelling. The main issues include (Tarek
etal., 2020) (i) regional variations in data quality and (ii) lim-
ited representation of local hydro-meteorological processes,
with both of these impacting/biasing model structures and
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simulated states and fluxes. Systematic biases are also crit-
ical obstacles to the broader applicability of such products
(Clerc-Schwarzenbach et al., 2024). In the case of ERAS-
Land, a component of the Copernicus Climate Change Ser-
vice (C3S) provided by the European Centre for Medium
Weather Forecasting (Mufioz-Sabater et al., 2021), there is a
known tendency to significantly overestimate potential evap-
otranspiration (Clerc-Schwarzenbach et al., 2024; Kratzert
etal., 2023; Xu et al., 2024). Deficiencies have also been doc-
umented in the representation of convective storms (Essou
et al., 2016; Taszarek et al., 2021) with subsequent underes-
timation of precipitation magnitudes and intensities (Manoj J
et al., 2024).

It is important to stress that “true” precipitation estimates
are per default unknown at the catchment scale. We obtain
estimates of them (with considerable uncertainty) by either
interpolating data from stations in or surrounding the catch-
ment or averaging gridded data from reanalysis/remote sens-
ing products to the catchment scale. Such precipitation un-
certainty is rarely considered when quantifying model out-
put uncertainty; while studies are usually conducted to show
how differences in simulated discharge can be as a conse-
quence of changing precipitation input, they rarely look at
how much improvement of the model performance would be
possible by using different but plausible precipitation (Bar-
dossy et al., 2020, 2022).

Because precipitation forcing data plays a crucial role in
rainfall-runoff modelling, several methods (Yumnam et al.,
2022) have been suggested for correcting precipitation data.
These range from the use of storm multipliers (Sun and
Bertrand-Krajewski, 2013) to station-wise correction of data
using a gauge-based precipitation network (Cornes et al.,
2018). However, gauge-based methods require a sufficient
number of weather stations (Agarwal et al., 2020), which
is often not the case for most regions around the world.
As seen from previous experience, the observation network
is too sparse even in data rich regions, and the majority
of high-impact rainstorms are simply not observed (Borga
et al., 2008). This is particularly true for flash floods in re-
sponse to convective storm activity (Manoj J et al., 2024;
Meyer et al., 2022; Villinger et al., 2022) and well related to
the classical ‘“Predictions in Ungauged Basins — PUB prob-
lem” (Sivapalan et al., 2003). To overcome this problem, and
in line with Kirchner’s (2009) work on “doing hydrology
backwards”, this paper explores options for inverse estima-
tion of precipitation using the information contained in ob-
served streamflow. The goal is to determine whether inverse
estimation at the catchment scale can refine precipitation es-
timates from reanalysis products, ensuring they are hydro-
logically consistent, especially for extreme events.

While the classical “forward rainfall-runoff generation
problem” has received considerable attention over various
decades (Montanari et al., 2013; Sivapalan et al., 2003),
a smaller subset of studies (Brocca et al., 2013; Kirchner,
2009; Kretzschmar et al., 2014; Krier et al., 2012; Teuling
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et al., 2010) has investigated the feasibility of tackling the
inverse problem. Kirchner (2009) reported an early and suc-
cessful attempt to infer catchment average rainfall and evap-
oration time series from streamflow fluctuations and inspired
several investigations examining the advantages and limita-
tions of doing “hydrology backwards” in diverse catchments
(Krier et al., 2012; Teuling et al., 2010). Although these stud-
ies have established a robust mathematical foundation for ad-
dressing the inverse hydrological problem, they were limited
to smaller, well-monitored research catchments. This raises
questions about the applicability of this approach to larger
catchments as well as to smaller, non-experimental ones.

Note that inversions of the catchment water balance are in-
herently ill-posed, making it near impossible to find a unique
solution (Bishop, 2006). Adopting the concept of micro- and
macro-states from statistical mechanics (Zehe and Bloschl,
2004), we argue that the exact micro-state, i.e. the “true”
space—time pattern of precipitation in the catchment, is nei-
ther uniquely identifiable nor observable. Yet, we conjecture
that streamflow data (being an integral response from a po-
tentially large and heterogeneous data) can reduce the uncer-
tainty associated with this process, because it provides valu-
able information on antecedent precipitation and the current
state of the catchment. As streamflow remains a non-linear
convolution of the catchment-average precipitation, we pro-
pose that machine learning is well suited to this problem.
Deep learning has recently fertilised almost all fields of the
natural sciences and engineering, showing great promise in
solving a wide range of inverse problems, especially those re-
lated to imaging (Ongie et al., 2020). It has also been argued
that such models can provide meaningful and general bench-
marks for hypothesis testing (Klotz et al., 2022; Nearing and
Gupta, 2015) and afford powerful avenues for generalisation
using large datasets (Loritz et al., 2024b).

The overall objective of this study is “do hydrology
backwards” using regional-scale long short-term memory
(LSTM) network ensemble models trained on large-scale
hydrological datasets. While ERA5 Land (Table 1: Mufioz-
Sabater et al., 2021) has well-documented issues in repre-
senting the driving precipitation estimates for specific event
scales (Essou et al., 2016; Manoj J et al., 2024), recent studies
(Bandhauer et al., 2022; Goteti and Famiglietti, 2024) have
shown that they hold considerable promise to tackle the “Pre-
dictions in Ungauged Basins — PUB problem”. This makes it
an ideal test candidate for an inverse correction using stream-
flow and observational precipitation estimates over the same
region (E-OBS: Cornes et al., 2018). The underlying research
question is, “How much information about the catchment-
average precipitation is effectively encoded in the variability
of the streamflow time series observed at the outlet?” To an-
swer this question, we first look at the performance gain in
using discharge for predicting precipitation by focusing on
days with higher precipitation magnitudes and then investi-
gate whether the approach can accurately replicate the spatial
characteristics of the original observational dataset (by look-
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ing at various time series measures) across European catch-
ments for an unseen testing period. We then examine how
the inverse model performs when moving to much smaller
(50-200 km?: Table 2) out-of-sample catchments. Here, we
compare (using the event runoff coefficients) LSTM-based
inverse estimates during flood events to the original reanaly-
sis product (ERAS5 Land) and rain gauge-based observational
estimates over the same region (E-OBS). Finally, we use a
conceptual hydrological model (HBV: Bergstrom and Fors-
man, 1973) and a process-based model (CATFLOW: Zehe
et al., 2001) to assess the quality of the precipitation esti-
mates for forward modelling of streamflow and soil moisture
dynamics, respectively.

2 Data and Methods
2.1 Model Configuration

LSTMs (Hochreiter, 1998) are a special type of recurrent
neural network that makes use of cell states and so-called
“gates” to control the information flow through the network.
The LSTM model used in this study extends upon the work
of Kratzert et al. (2018) and Acufia Espinoza et al. (2024).
The LSTM architecture, which is commonly used for stream-
flow simulation in hydrology (Kratzert et al., 2018) uses
a sequence of meteorological variables, such as precipita-
tion and temperature as dynamic inputs, along with catch-
ment attributes as static features, to predict the corresponding
streamflow. In our setting, to establish an inverse model, we
use the same general model architecture as in previous stud-
ies (Acuiia Espinoza et al., 2024; Loritz et al., 2024b). The
key difference is that future streamflow is now used along
with other dynamic and static data as inputs (Table Al in
Appendix A) in order to estimate the precipitation forcings
of the catchments. To account for the time lag between pre-
cipitation and discharge response observed at the catchment
outlet, the model was provided with 7d lead time series for
discharge. We explored ranges of hyperparameter settings on
a smaller subset of the training dataset to establish relatively
stable hyperparameter configurations (Fig. S1 in the Supple-
ment), finally setting them according to (Acufia Espinoza
et al., 2024) with a reduced number (5) of training epochs.
Table A2 in Appendix A indicates the values used for the
LSTM network hyperparameters. Mean squared error was
used as the training loss function. In accordance with stan-
dard practices in the deep learning community, we utilise an
ensemble network for LSTM predictions. In all cases, three
individual LSTM models (with different initialisation seeds)
were trained, and we present the mean predictions for the re-
mainder of this paper.

The codes for model building and training can be found
online (Manoj J, 2025b). The LSTM was trained as a re-
gional model (single network trained on all available catch-
ments) based on the openly available datasets detailed in the
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next section (Sect. 2.2). For forward hydrological modelling
using the inversely-generated precipitation timeseries esti-
mates, we use two hydrological models (Appendix B) — the
lumped conceptual HBV model (Hydrologiska Byrans Vat-
tenbalansavdelning: Bergstrom and Forsman, 1973) and the
spatially distributed process-based CATFLOW model (Zehe
et al., 2001).

2.2 Data sets

This study utilized the Caravan dataset (Kratzert et al., 2023)
to investigate our hypothesis regarding the inverse identifia-
bility of precipitation from information about discharge dy-
namics. We trained our model on European catchments from
the GRDC-Caravan (Firber et al., 2023) community exten-
sion and the original Caravan dataset, which includes catch-
ments from CAMELS-GB (Coxon et al., 2020). The Caravan
dataset uses the ERAS Land (Muiioz-Sabater et al., 2021) as
the primary meteorological forcing, while the catchment at-
tributes include data from HydroATLAS (Linke et al., 2019).
The discharge data is tapped from relevant state and national
authorities and is accessible as open datasets. The observa-
tional E-OBS precipitation product (v31.0 — Cornes et al.,
2018), which uses the station network of the European Cli-
mate Assessment & Dataset (ECA&D) project, was used as
the training target for the model runs. Figure S2 in the Sup-
plement depicts the study catchments (1800 in total) in the
training dataset.

We chose a training period of around 25 years between
1 October 1980 to 30 September 2005. Following the best
practices in data-based modelling, the model was tested on
an unseen testing period between 2006 and 2020 (2015 for
CAMELS-GB catchments due to data unavailability). To in-
vestigate its generalizability across scales, we also tested
the model on four catchments (Figs. S3 and S4 in the Sup-
plement) that were not included in the original training set
(Sect. 2.3.2). For the out-of-sample test, we made use of data
from the Caravan Spain (Casado Rodriguez, 2023) and Cara-
van Switzerland (Hoge et al., 2023) extensions, in addition to
data from local data providers in Germany (Landesanstalt fiir
Umwelt, Messungen und Naturschutz Baden-Wiirttemberg
— LUBW) and Luxembourg (Nijzink et al., 2024). To vali-
date the inversely generated precipitation (Sect. 2.3.3) during
forward modeling, we conducted hydrological model sim-
ulations in the Elsenz Schwarzbach and Lippe catchments
(Fig. S5 in the Supplement). Table 1 provides an overview
of the main datasets used in this study, detailing their spatial
and temporal resolutions, as well as their sources.
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Table 1. Brief overview of the datasets used in this study, including their spatial and temporal resolution.

Dataset Type and Source Spatial Resolution =~ Temporal Details
Resolution

Caravan Hydrometeorological Catchment scale Daily Open community dataset that includes
dataset (Kratzert et al., catchment forcing data and attributes
2023) along with streamflow.

GRDC-Caravan Hydrometeorological Catchment scale Daily Community extension to the Caravan
dataset (Farber et al., dataset, incorporating data from the
2023) Global Runoff Data Centre (GRDC).

ERAS - LAND Reanalysis product 0.1°x 0.1° Hourly Reanalysis product produced by
(Muiioz-Sabater et al., (aggregated  replaying the land component of ERAS
2021) to daily) climate reanalysis

E-OBS Gridded observational 0.25° x 0.25° Daily Interpolated observational precipitation
precipitation product product utilizing the station network
(Cornes et al., 2018) from the European Climate Assessment

& Dataset (ECA&D) project.
Caravan Spain Hydrometeorological Catchment scale Daily Community extension to the Caravan

dataset (Casado
Rodriguez, 2023)

dataset, incorporating data from Spain.

Caravan Switzerland  Hydrometeorological Catchment scale Daily Community extension to the Caravan
dataset (Hoge et al., dataset, incorporating data from
2023) CAMELS-CH catchments.
Caravan Germany Hydrometeorological Catchment scale Daily Community extension to the Caravan
dataset (Dolich et al., dataset, incorporating data from
2025) CAMELS-DE catchments.
MERRA-2 Reanalysis product 0.625° x 0.5° Hourly Global atmospheric reanalysis by
(Gelaro et al., 2017) (aggregated NASA Global Modeling and
to daily) Assimilation Office (GMAO) using the
Goddard Earth Observing System
Model (GEOS)
GLDAS-2.2 Reanalysis product 0.25° x 0.25° Daily NASA Global Land Data Assimilation

(Lietal., 2019)

System model outputs with data
assimilation for the Gravity Recovery
and Climate Experiment (GRACE-DA)

2.3 Experimental Design

2.3.1 Exploring information about precipitation
encoded in streamflow

To shed light on the value of discharge for inversely predict-
ing precipitation, we conducted a virtual experiment (Fig. 1)
in which two LSTM ensemble models (Tables Al and A2
in Appendix A) were trained using the same catchments
and training period. The first model (without_discharge)
used only ERAS5 Land meteorological time series (to-
tal_precipitation, air temperature, solar and thermal radi-
ation) and static attributes (area, ele_mt_sav, frac_snow,
pet_mm_syr: Kratzert et al., 2023), while the second model
(with_discharge) included lagged discharge as an additional
input variable. Both models were trained to predict daily
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catchment average precipitation sums from the observational
EOBS product. Therefore, we only deal with spatially aver-
aged timeseries for precipitation, assuming that these values
represent the actual precipitation over the entire catchment.

We then used both the trained regional-scale models
(with_discharge and without_discharge) to predict the pre-
cipitation time series inversely for all the test catchments over
the unseen testing period and evaluated (Appendix C) those
using the mean wet day precipitation (MWD) —mmd~!, 95th
percentile limit (R95P) — mmd~', and Spearman autocorre-
lation values (SL) for each catchment, and then compared
them to the values from ERAS Land (the reanalysis product
we want to improve) and E-OBS (observational product used
as training target) at the continental scale.
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Figure 1. Schematic representation of our methodological approach. Each rectangular panel indicates different stages of our workflow.
Initially, we train two LSTM ensemble networks to predict catchment average precipitation through inverse experiments (Sect. 2.3.1). The
trained models are then then utilized for a continental-scale analysis before being used for out-of-sample testing (Sect. 2.3.2). Finally, a
validation exercise for the inversely generated precipitation is conducted using various hydrological models (Sect. 2.3.3).

2.3.2 Out of sample precipitation inversions and their
quality

We further tested the feasibility of knowledge transfer to
out-of-sample catchments and used the same regional-scale
models (with_discharge and without_discharge) to inversely
predict the intensity of driving rainstorms for selected flood
events in four hydro-climatically diverse and much smaller
catchments (not included in the original training dataset).
These catchments (Table 2 and Figs. S3 and S4) were cho-
sen based on the severity of the flooding and on the apparent
inability of ERAS Land forcings to accurately represent the
storms that triggered the flood events.

2.3.3 The potential of inverted precipitation for
forward modelling

To evaluate the value of generated precipitation data for for-
ward modeling of streamflow, we calibrated the HBV con-
ceptual hydrological model (Bergstrom and Forsman, 1973)
over the Elsenz Schwarzbach (Manoj J et al., 2024) and
Lippe (camelsde_DEA11130: Loritz et al., 2024a) catch-
ments (Fig. S5) using both the original ERAS Land and
the with_discharge LSTM-generated precipitation timeseries
and compared the evaluation period performance of both
model versions (Table B1 in Appendix B). The HBV model
(Appendix B) used in this paper requires precipitation (ERAS

https://doi.org/10.5194/hess-29-6115-2025

Land/LSTM simulated), potential evapotranspiration, and air
temperature as inputs. We follow the recommendations of
Clerc-Schwarzenbach et al. (2024), similar to that of Loritz
et al. (2024a), for the calculation of potential evapotranspira-
tion, and use the temperature-based Hargreaves formula de-
tailed by Adam et al. (2006).

Complementary to streamflow modelling, the performance
of a hydrological model can also be judged by how well it
replicates the catchment dynamics of a region. Soil mois-
ture is a key variable controlling the partitioning of net radia-
tion into sensible and latent heat (Seneviratne et al., 2010) or
overland flow during a rainstorm (Zehe and Bloschl, 2004).
We thus used each precipitation estimate (with_discharge
LSTM and ERAS5 Land) to run the process-based hillslope
scale model CATFLOW (Appendix B), using a setup from
Manoj J et al. (2024) used for uncalibrated predictions of lo-
cal floods. Here, we focused on one of the headwater sub-
catchments (Catchment W32 in Fig. S5) within the Elsenz
Schwarzbach. The model simulated (Table B1) the period
from 1 January 2008 to 31 December 2015 using each of
the ERAS Land and with_discharge LSTM precipitation es-
timates, and the corresponding spatially averaged soil mois-
ture states were compared against several soil moisture re-
analysis products (Table 1: due to the unavailability of ob-
served data). These include (a) ERAS Land: Muiioz-Sabater
et al., 2021, (b) GLDAS (NASA Global Land Data Assim-
ilation System, GLDAS-2.2 GRACE DA: Li et al., 2019)
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Table 2. Attributes for the four catchments used for out-of-sample testing.

Catchment Country Area  Mean precipitation Mean potential Mean elevation

(kmz) (mmd™ 1 )  evapotranspiration (mmyr— 1 ) (m)
Elsenz-Schwarzbach ~ Germany 196.5 2.51 812.85 246.7
Ernz Luxembourg 69.3 2.31 724.04 345.5
Sueiro Spain 132.5 3.31 873 381
Hoelzlebruck Germany 47.1 4.14 658 980

and (c) MERRA (Modern-Era Retrospective analysis for
Research and Applications version 2 — tavgl_2d_Ind_Nx:
Gelaro et al., 2017).

3 Results

3.1 The information contained in streamflow about
precipitation

Figure 2 shows violin plots displaying the pairwise differ-
ence in the mean performance of the two LSTM models
(Fig. Al in Appendix A) over the catchments (n = 1800) in
the test dataset for varying precipitation amounts (All days,
days with daily precipitation greater than 1 mm and days with
daily precipitation greater than 5 mm). Each point denotes
the difference in NSE (Appendix C) for individual catch-
ments while making predictions using the with_discharge
model compared to the without_discharge model. A marked
shift towards higher positive differences indicates that the
model “with_discharge” has higher NSE values than the
model “without_discharge”. This holds true not only on av-
erage but also with respect to the best-performing catchments
The median NSE metric value ( Nash and Sutcliffe, 1970)
for the regional LSTM model (considering entire time se-
ries) across the study catchments is about 13 % higher when
discharge is used as an additional predictor than when it is
not. However, it is also observed that discharge informa-
tion has worsened the performance in a few cases, likely
due to the poor quality of streamflow data in these catch-
ments. Analysing the performance improvement achieved by
focusing on days with increasing precipitation amounts re-
veals that the gains are considerably greater on days with
higher recorded precipitation (increase in median NSE value
of about 29 % from 13 % as we look only at days with more
than 5 mm precipitation). This largely answers our main re-
search question and shows that the variability of discharge as
measured in the catchment outlets holds enormous informa-
tion about the driving storms over the entire catchment area.
Consequently, we can utilise this information by applying a
data-driven LSTM network. The information gain is natu-
rally higher for more extreme precipitation events, as aver-
age streamflow conditions do not provide much information
about the catchment scale precipitation.

Hydrol. Earth Syst. Sci., 29, 6115-6135, 2025

3.2 Unraveling the Continental Scale Characteristics

To examine the characteristics of the simulated time se-
ries from the with_discharge and without_discharge models
over the testing period in detail, we computed three time-
series measures (Appendix C) namely mean wet day pre-
cipitation (MWD) — mm d=!, 95th percentile limit (R95P)
—mmd~!, and Spearman autocorrelation values (SL) across
all the catchments.

The continental-scale analysis reveals distinct patterns for
the major European climatic regions. The spatial patterns for
the mean wet day precipitation (Fig. 3d: MWD) obtained
using the with_discharge LSTM model are well aligned to
the ones from ERAS5 Land (Fig. 3a) and EOBS (Fig. 3j).
Higher daily average values are observed towards the Alps,
the Carpathian Mountain ranges, and the coast of Norway,
consistent with the climatology of these regions. In addi-
tion, we also see that the ERAS5 Land largely matches the
precipitation field’s characteristics (wet day mean and 95th
percentile limit) as in the observational E-OBS product. This
indicates that both products contain complementary informa-
tion at such larger spatial scales.

For the 95th percentile of wet days (R95P), we again see a
robust representation of the spatial differences, along with an
underestimation of the magnitudes (Fig. 3b-k). The Spear-
man autocorrelation coefficient values (SL: Fig. 3c-1) in-
dicate that while the models underestimate the mean and
95th percentile limits, they overestimate the autocorrelation
(which indicates the persistence in the precipitation time se-
ries) compared to the ERAS Land and EOBS time series.

Comparing the with_discharge and without_discharge
models for MWD and R95P, we see that the addition of dis-
charge information reduces the underestimation errors over
the continental scale.

The higher autocorrelation values for the with_discharge
(Fig. 3f) and without_discharge (Fig. 3i) may arise from
model products incorporating catchment persistence, unlike
the gridded observational E-OBS data. In the case of the
with_discharge LSTM model, the higher values are likely
due to the inclusion of strongly auto correlated streamflow
data, which adds redundancy or a longer memory.
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Figure 2. Comparison of performance gain for the with_discharge vs. without_discharge models in NSE for different precipitation amounts.
The first violin plot illustrates the average improvement across all days in the testing period. The second and third plots display the mean
performance gains over the catchments, specifically focusing on days where precipitation exceeded 1 and 5 mm, respectively.

3.3 Out of sample predictions

Figure 4 shows predicted event precipitation values over
time for the four out-of-sample catchments. Again, we com-
pare the inversely modelled values (with_discharge and with-
out_discharge) to the ERAS Land (the reanalysis product
to be corrected) and the gauge-based E-OBS product (our
training target). Table 3 lists the peak storm precipitation
values reported by the different products along with the
recorded flood values (both normalised to the catchment area
in mmd~"). Also shown are the storm runoff coefficients for
the respective events based on the different precipitation es-
timates and discharge data.

Figure 4a represents the summer flood in June 2016 in
the Elsenz Schwarzbach catchment in Germany. This an-
nual flood event was triggered by a series of convective rain-
fall events caused by persistent atmospheric conditions in
Germany during the summer of 2016. Localised rainfall to-
tals exceeded 100 mm in some catchments (Bronstert et al.,
2018), triggering widespread flash floods. Our previous work
(Manoj J et al., 2024) indicated that the ERAS Land reanaly-
sis product could not accurately replicate the characteristics
of the convective storm that caused this annual flood event
over the Elsenz Schwarzbach catchment. The with_discharge
LSTM simulated precipitation for this event was higher than
the values reported by both ERAS Land and the training
target EOBS, while the without_discharge model performed
even worse than ERAS5 Land.

A comparison of with_discharge LSTM-simulated pre-
cipitation values to radar estimates over the same region
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(Manoj J et al., 2024) revealed the estimates to be closer
than those reported by the observational E-OBS product. The
runoff coefficient (Table 3) for the event also decreased from
48 % (ERAS Land) to around 18 % (with_discharge), which
is consistent with estimates from Manoj et al. (2024). The
with_discharge LSTM model was also able to represent the
second storm peak more accurately than ERAS Land.

Next, the with_discharge model was used to estimate
precipitation for another convective episode over the Ernz
Catchment in Luxembourg (Fig. 4b) in the summer of 2018.
Once again, we observed that the model overestimated the
peak precipitation compared to the observational EOBS
product used for training. However, the model benefited
from integrating improved event timing information from
ERAS5 Land, which helped reduce timing errors compared
to EOBS. Essentially, the model combined information from
both ERAS Land and discharge to produce a storm estimate
that was more consistent with the hydrology of the flood, tak-
ing into account both the volume and timing of the event,
than the observational EOBS product. In contrast, the with-
out_discharge model again performed poorly for this event,
resulting in an unrealistically high runoff coefficient of 4.34
(Table 3).

In the third catchment (Sueiro: camelses_1414 from Car-
avan Spain extension), the with_discharge estimate for
storm forcing was higher than ERAS Land and E-OBS
(Fig. 4c). The corresponding runoff coefficients underline
the reliability of the storm prediction from with_discharge
(0.40) compared to E-OBS (0.79). For the Sueiro catchment
(camelses_1414), the closest observational station is located
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Figure 3. The spatial patterns of the different time series metrics (Appendix C) mean wet day precipitation (MWD) — mm d=!,95th percentile
limit (R95P) —mmd~!, and Spearman autocorrelation values (SL) over the study catchments for the different precipitation estimates — ERAS
Land (top row): (a—c), with_discharge LSTM model (second row): (d-f), without_discharge LSTM model (third row): (g-i) and E-OBS
(bottom row): (j-1) from 2006 to 2020 (2015 for CAMELS-GB catchments).

Table 3. Event characteristics (storm volume and runoff coefficients) for the four out of sample catchments.

Event Characteristics Elsenz-Schwarbach Ernz  Sueiro  Hoelzlebruck
Precipitation (mm) ERAS Land 12.51 9.60 41.81 32.12
with_discharge 3279 4275  58.53 50.85
without_discharge 4.92 6.20 29.46 22.92
E-OBS 20.07 51.72 29.50 44.90
Discharge (mm) 598 26.88 23.39 19.14
Runoff Coefficient (-) = ERAS Land 0.48 2.80 0.56 0.60
with_discharge 0.18 0.63 0.40 0.38
without_discharge 1.21 4.34 0.79 0.84
E-OBS 0.30 0.52 0.79 0.43
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Figure 4. Precipitation estimates for flood events at four out-of-sample catchments: (a) Elsenz Schwarzbach, (b) Ernz, (¢) Sueiro, and
(d) Hoelzlebruck. The red line represents the observed daily streamflow, with a cross marking the day of the flood event. The orange curve
indicates the precipitation predicted by the with_discharge LSTM model, while the green curve shows the precipitation predicted by the
without_discharge model. The blue line reflects the original gauge-based EOBS time series, and the grey line represents the estimate from

the ERAS Land.

more than 60 km away (Fig. S4), explaining why the EOBS
performs rather poorly in representing the driving forcings
for the summer flood event.

In the Hoelzlebruck catchment (camelsch_4003 from Car-
avan Switzerland extension), two consecutive events oc-
curred in October 2014. ERAS5 Land was better than the
with_discharge LSTM model in capturing the initial event
magnitude, while the with_discharge model had better timing
accuracy for the events (Fig. 4d). For the second event, which
was the annual flood event, the with_discharge model, which
incorporated streamflow information, was again able to re-
duce the relative errors in storm volume (Table 3). The with-
out_discharge model showed the same timing error as ERAS
Land for the first storm; however, introducing discharge al-
lowed the model to correct the timing bias.

3.4 Forward Hydrological Modelling

The precipitation estimates generated by the with_discharge
LSTM model were then used to run classical hydrological
models (HBV and CATFLOW: Table B1) in a forward man-
ner. To address the question of performance in differently
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sized basins, we run the conceptual HBV model in two catch-
ments (Fig. S5) — Elsenz Schwarzbach (Fig. 5: 196.5 km?)
and Lippe (Fig. 6: 3366.3 km?).

Figure 5d illustrates that the HBV model, which uti-
lized the inverted precipitation estimates, performed bet-
ter (NSE = 0.70) during the evaluation period over Elsenz
Schwarzbach compared to the model driven by the ERAS
Land (NSE = 0.57). To gain a better understanding of the
differences between the models, we visually examined the
results for three individual flood events, as shown in Fig. Sa—
c.

During the winter flood of December 2012 (23 Decem-
ber 2012, Fig. 5a), the model driven by ERAS Land sig-
nificantly underestimated both the peak and the volume of
the flood event. When using with_discharge-simulated pre-
cipitation, the relative peak error decreased slightly Simi-
larly, the model runs using with_discharge precipitation more
accurately captured the post-event conditions (28 Decem-
ber 2012). In the winter of 2015 (Fig. 5b), the model us-
ing with_discharge precipitation again demonstrated better
performance. The model could more accurately represent the
smaller flood peaks before the larger floods. This aligns with

Hydrol. Earth Syst. Sci., 29, 6115-6135, 2025
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estimate precipitation obtained using the with_discharge LSTM model. Moreover, three rainfall-runoff events are highlighted and displayed

separately.

findings from other studies (Berghuijs et al., 2019; Manoj J
et al., 2023) that emphasize the importance of initial condi-
tions for floods across Europe.

During the convective summer storm event in June 2016
(Fig. 5¢), neither model run successfully captured the flashy
runoff response. Although the model that utilized ERAS
Land input predicted an earlier flood event in May 2016
with an overestimation bias, it did not accurately depict the
dynamics of the annual flood event occurring a few days
later. In contrast, the model with LSTM-generated precipita-
tion (with_discharge) generally performed better in capturing
both the magnitude and volume of the smaller storm peaks as
well as the annual flood event on 8 June 2016.

For the larger Lippe catchment, we again saw improved
mean performance for the run with inversely generated pre-
cipitation (Fig. 6¢). For the winter flood of 2011 (Fig. 6a), the
HBYV model, which used inversely generated precipitation,
better matched the observed streamflow dynamics, whereas
the ERAS Land run exhibited significant overestimation er-
rors. The inversely generated precipitation estimates again
improved HBV model performance for replicating the dis-
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charge dynamics during the floods in December 2012 and
February 2013 (Fig. 6b).

To understand the evolution of soil moisture dynam-
ics while using the with_discharge LSTM-based precipita-
tion estimates in physically based models, we conducted a
hillslope-scale CATFLOW model simulation (Loritz et al.,
2017; Manoj J et al, 2024) in one of the headwa-
ter catchments in Elsenz Schwarzbach (ERAS5 Land vs.
with_discharge LSTM). The pairwise correlation values, as
shown in Fig. 7, indicate that the use of the LSTM-based
precipitation estimates does not lead to a loss of information
regarding soil moisture dynamics in the region. In fact, we
observe a slight increase in correlation when comparing the
inversely derived precipitation estimates (referred to as CAT-
FLOW_Istm) to MERRA and GLDAS (Table 1), in contrast
with the correlation obtained for the run with ERAS Land
(referred to as CATFLOW _era5). As expected, the correla-
tion value for the ERAS Land run is slightly higher when
assessed against soil moisture from the same ERAS5 Land
dataset, which may be attributed to model biases arising from
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Figure 6. Observed and simulated runoff (using the HBV model) at the Lippe catchment. The blue line denotes the streamflow simulated
using the ERAS Land precipitation product, while the red curve depicts the simulations using the inversely-estimate precipitation obtained
using the with_discharge LSTM model. Moreover, two rainfall-runoff events are highlighted and displayed separately.

using the same dataset for both precipitation and soil mois-
ture.

4 Discussion
4.1 Improved precipitation estimation using discharge

Overall, our study reiterates that streamflow data can be
exploited to obtain useful information about the nature of
catchment-scale precipitation amounts: we can thus invert
the cause using the effect as input to an LSTM. This is in line
with, and steps beyond, previous studies (Brocca et al., 2013;
Kirchner, 2009; Kretzschmar et al., 2014; Krier et al., 2012;
Teuling et al., 2010) that explored the possibility of doing
hydrology backwards using experimental catchments. Here,
we successfully expanded this idea to large samples, cutting
across the wide range of hydro-climatic conditions that char-
acterise Europe. We found a largely “normal” distribution of
performance, with a few outliers, the latter indicating possi-
ble poor quality of discharge data.

Although ERAS Land precipitation has known uncertain-
ties, it provides continuous global spatial and temporal cov-
erage, making it a useful training dataset. Our goal was not to
generate a fully independent dataset but to improve the ERAS
Land precipitation estimates using the additional streamflow
information. Reanalysis data, by definition, are a mix of ob-
servations and past short-range weather forecasts rerun with
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modern weather forecasting models. Different data assimila-
tion methods are then employed (Li et al., 2019). The inver-
sion technique could be used as another final layer of post-
processing (using the LSTM in this case) for the model out-
puts to ensure that the final product is more consistent with
the variabilities observed in the discharge record.

One limitation of our approach is that the LSTM model
tends to underestimate the timeseries measures (MWD and
R95P) at the continental scale. The LSTM’s architecture is
known to have a theoretical saturation limit, leading to the
underestimation of some of the peak storm events. This so
called “saturation problem” (Baste et al., 2025; Chen and
Chang, 1996) implies that irrespective of the input series, the
predicted values can never exceed a theoretical limit (which
is established during the training phase). Furthermore, the
LSTM model looks for recurrence in patterns and mean con-
ditions. This means that it can indeed account for consis-
tent baseflow dynamics (as also indicated by analysis over
the larger Lippe catchment, Fig. 6). In extreme floods (Merz
et al., 2021), the relative contributions of each component
can vary significantly, depending on various factors such as
the antecedent conditions of the catchment area. The model
likely struggles to learn this variability while attempting to
invert and obtain the driving precipitation values. Given the
non-linear nature of the inverse problem, there are always
multiple possible solutions. Since the model is trained to
minimize the mean squared error (Gupta et al., 2009), it may
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also tend to consistently predict lower values (on peaks) to
effectively reduce the average error during training.

It is also important to acknowledge that “true” precipita-
tion estimates don’t exist at the catchment scale. We obtain
estimates of forcing precipitation at such scales (with con-
siderable uncertainty) by interpolating station data (e.g. E-
OBS) or averaging gridded data from reanalysis/remote sens-
ing products (e.g. ERAS Land).

In our out-of-sample simulations, we observed that the
LSTM model, which included additional discharge informa-
tion, overestimated the peak values reported by the obser-
vational product used for training. While such an overesti-
mation is typically considered an artifact of imperfect model
training and viewed as statistical white noise, we believe that
the consistent overestimation of peaks in three out of the four
catchments suggests that the LSTM model, trained globally
on larger catchments with smaller observational uncertain-
ties, is capable of learning the rainfall-runoff relationship
and can adjust for observational errors at the out-of-sample
sites. Although the model was not specifically trained on the
timing characteristics of hydrological events, we found that it
can still produce hydrologically consistent estimates for the
time to peak for storms.

Hydrol. Earth Syst. Sci., 29, 6115-6135, 2025

The performance comparison using the runoff coefficients
was intended to provide insight into the feasibility of differ-
ent precipitation estimates from a hydrological perspective.
While we acknowledge the existence of even better regional
products (e.g., HYRAS — German Weather Service) for some
of the study catchments compared to the continental scale
EOBS, we believe that these various products should not be
viewed as independent of one another. Instead, they contain
complementary information as they represent the same phys-
ical truth i.e. precipitation occurring over a catchment, albeit
with different uncertainties and errors. Although the EOBS
data is only available over Europe, the trained model could be
transferred to similar hydroclimatic regions worldwide that
have discharge information to correct the globally available
ERAS Land product.

4.2 Catchment as a functional unit

In the introduction, we argued that the catchment scale is cru-
cial for improving our understanding of the factors that drive
the water cycle and representing them more accurately in re-
analysis products. Our findings across the four catchments
highlight the benefit of using streamflow variations to rectify
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precipitation estimates. By leveraging the generalisation ca-
pabilities of the data-driven LSTM model, we successfully
transferred knowledge across different scales (Notably, only
about 9 % of the catchments in our training dataset had areas
smaller than 100 km? ), indicating important implications for
addressing the ever-evolving challenge of predictions in un-
gauged basins (PUB): Hrachowitz et al. (2013).

Although this approach can only be applied after the event
has taken place, it has implications for generating coherent
long-term statistical records for catchment forcings, which
could be used for the design of small- to medium-purpose
water resource projects. Employing daily precipitation sums
from products like ERAS Land and EOBS should ideally be
a last resort for reproducing small-scale hydrological events,
however, the scarcity of real-world data and the rarity of
these events may sometimes necessitate a modelling deci-
sion to incorporate these coarser estimates. Using the stream-
flow fluctuations, it would be possible to identify localised
rainfall cells or snowfall events that are poorly captured by
traditional rain gauges (Kretzschmar et al., 2014). The ap-
proach also has potential for evaluating long-term rainfall
estimates from Global Circulation Models for specific catch-
ments using information about hydrological conditions (Fu-
jihara et al., 2008).

While the LSTM-based precipitation estimates improved
the representation of most events, there were still instances
where the original ERA5 Land provided better accuracy for
peak flood magnitudes (Fig. 5); this highlights the need for
a blended approach that incorporates additional information
rather than completely replacing one product with another. In
regions around the world, the wealth of streamflow informa-
tion remains underutilised in this aspect. For Germany alone
(Loritz et al., 2024a), there are more than 1500 streamflow
gauges, which represent a significantly higher representative
area compared to precipitation stations.

The forward exercise using the HBV model showed that
the precipitation estimates after inversion enhanced mean
performance for streamflow simulation and helped improve
the modelling of extreme individual floods. The ability to
match the hydrograph differed between the different seasons.
Compared to the storage-controlled winter floods (Dunne,
1978), summer floods in these regions are usually driven by
Hortonian flow (Horton, 1932) in response to high-intensity
rainfall during convective storms. Previous studies (Kirch-
ner, 2009; Krier et al., 2012) have discussed such storage-
controlled dynamics and their impact on the inversion prob-
lem.

Previous experiences at the event scale (Beauchamp et al.,
2013; Zehe and Bloschl, 2004) have also shown that inferring
the antecedent soil moisture conditions remains a key chal-
lenge for accurate and reliable flood simulations. By utilising
the process-based CATFLOW model for soil moisture sim-
ulations in a small headwater catchment, we achieved high
correlation values using the inverse precipitation estimate.
This suggests that the approach can help represent the catch-
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ment’s overall water dynamics and has the potential for reli-
able flood design estimations at the event scale, particularly
in data-scarce regions.

4.3 Limitations and Outlook

It is important to stress that, as for any data-driven study,
the results of our work are contingent on the quality of the
training dataset. While we are aware of better regional prod-
ucts for individual countries, ERA5 Land provides consistent
global coverage, and a permissive data sharing policy makes
it one of the obvious choices for a continental scale mod-
elling exercise. To evaluate the applicability of the commonly
used LSTM network architecture, we decided to use the same
architecture previously employed in hydrological studies in-
stead of creating an experimental design with modified in-
dividual layers and training functions for inverse modelling.
It is evident that exploring the impacts of different loss func-
tions and deep learning model architectures like transformers
would help advance the methodology discussed in this pa-
per. This approach could also shed light on best-suited algo-
rithms for the problem but is beyond the scope of the present
work. The choice of Mean Squared Error (MSE) as the train-
ing function and Nash Sutcliffe Efficiency (NSE) as a per-
formance metric is motivated by its success and applications
in the forward problem (streamflow prediction), but this adds
its own biases to the modelling exercise. In the present work,
we tried to overcome this issue by relying less on the eval-
uation measure (NSE) and placing greater emphasis on the
hydrological feasibility of the predictions (using the runoff
coefficient). Additionally, we tried to complement this by
calculating various other time series metrics commonly used
in hydrometeorological studies. The four events for out-of-
sample tests across various catchments were chosen based
on the severity of the floods and ERAS Land’s inability to
capture the characteristics of the driving storms. The choice
of the hydrological models and calibration period also adds
uncertainty to the forward simulations.

Our approach opens up many perspectives for future re-
search. Transfer learning to data-scarce regions could help
address the challenge of highly uncertain precipitation es-
timates in smaller catchments without precipitation gauges,
improving hydrological modeling and the representation of
extreme events such as convective storms, which are crucial
for designing flood defense measures. Additionally, the in-
version technique could serve as a final post-processing layer
for gridded reanalysis products, ensuring better consistency
with discharge variability and enabling machine learning ap-
proaches to estimate spatial precipitation fields conditioned
on discharge data (Bardossy et al., 2020, 2022). Moreover,
this methodology could be applied to reconstruct past floods
by leveraging historical hydrological records, storm water
level markings, and observational flood data (Bronstert et al.,
2018; Seidel et al., 2009), providing valuable insights into
the driving storms behind some of the devastating past flood
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events. The workflow could also be expanded for the genera-
tion of new precipitation products, merging multiple different
precipitation sources alongside the streamflow inversion.

5 Conclusions

Our main hypothesis was supported by the findings, which
demonstrated that discharge has unused potential and can
be inversely assimilated to adjust precipitation estimates de-
rived from reanalysis products, while machine learning mod-
els are key to expanding this effort to large data sets spanning
the scale of entire continents. As expected, the performance
gain in using discharge information was significantly higher
for days with increasing precipitation amounts. Insights from
the out-of-sample catchments provided valuable information
about the applicability of our method for estimating flood
forcings and the generalizability of the model. Additionally,
we have shown that the inversely estimated precipitation es-
timates can improve forward modelling of both streamflow
and soil moisture dynamics, illustrating how the information
gained can be integrated into existing modelling strategies.

Appendix A: LSTM configurations

Table Al details the static and dynamic inputs used for set-
ting up the with_discharge and without_discharge LSTM en-
semble models. The hyperparameter settings for both models
are shown in Table A2, while Fig. Al provides the compari-
son results for both runs.

Table A1. Model configurations for the LSTM model runs.

Model Inputs Output
Static Attributes Dynamic Attributes
with_discharge area (area of catchment — kmz) total_precipitation_sum_era5 (precipitation eobs_precipitation
ele_mt_sav (spatial mean daily sums — mm d—h temperature_2m_mean (precipitation daily sums —
elevation — m above sea level) (daily mean temperature — °C) mmd™ l)
frac_snow (fraction of surface_net_solar_radiation_mean (shortwave
precipitation falling as snow) radiation — Wm™2)
pet_mm_syr (potential surface_net_thermal_radiation_mean (Net
evapotranspiration annual thermal radiation at the surface — Wm_z)
mean — mm) qobs_lead (lead streamflow 7d — mm d-! )
without_discharge  area (area of catchment —km?)  total _precipitation_sum_era5 (precipitation eobs_precipitation
ele_mt_sav (spatial mean daily sums — mmd ™) temperature_2m_mean (precipitation daily sums —
elevation — m above sea level) (daily mean temperature — °C) mmd™ 1)
frac_snow (fraction of surface_net_solar_radiation_mean (shortwave
precipitation falling as snow) radiation — Wm™2)
pet_mm_syr (potential surface_net_thermal_radiation_mean (Net
evapotranspiration annual thermal radiation at the surface — Wm™2)

mean — mm)

Hydrol. Earth Syst. Sci., 29, 6115-6135, 2025
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Table A2. Hyperparameter settings for the LSTM models.

Hyperparameter =~ LSTM Network

Hidden Layer 1

Hidden cells 64
Batch size 256
Sequence length 365
Epochs 5
Drop out 0.4
Learning rate 0.001
Optimizer Adam
1.0 Distribution of NSE Xwith = 0.72, Xyithout = 0.58
(a)
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Figure Al. Comparison of the mean performance of the
two regional scale LSTM models (with_discharge and with-
out_discharge). (a) Top panel depicts violin plots with included
boxplots showing the distribution of performance (quantified by
comparing the LSTM model simulated precipitation series to
the observational EOBS timeseries over the testing period: NSE)
(b) Bottom panel displays cumulative distribution plots for the per-
formance of the two models.
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Appendix B: Hydrological Modelling

Hydrologiska Byrans Vattenbalansavdelning (HBV). The
HBYV model (Bergstrom and Forsman, 1973) is a so-called
conceptual hydrological model that is used to simulate
rainfall-runoff processes at the catchment scale. It makes use
of different catchment water stores (storage elements, also re-
ferred to as buckets). Each storage element represents a cer-
tain compartment of a catchment (e.g. groundwater, surface
water bodies, soil zone). The main input requirements in-
clude precipitation, temperature and potential evapotranspi-
ration. The model has several empirical parameters that need
to be calibrated during the model training phase. A more de-
tailed description of the model architecture and set up can
be found in the studies by Seibert (2005) and Loritz et al.
(2024a).

CATFLOW. The physically based model CATFLOW for
catchment water and solute dynamics was developed as part
of the detailed process studies carried out from 1991-1996
in the Weiherbach catchment in South-West Germany (Zehe
et al., 2001). The basic modeling unit is a 2D hillslope, dis-
cretized by curvilinear orthogonal coordinates in the verti-
cal and downslope directions. Soil water dynamics within the
hillslopes are characterized using the potential based form of
the 2D Darcy—Richards equation. Overland flow is simulated
using the diffusion wave approximation of the Saint-Venant
equation and explicit upstreaming, in combination with the
Gauckler—-Manning—Strickler formula. A detailed model de-
scription with the workflow required for setting up the model
can be found in Manoj J et al. (2024).
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Appendix C: Performance Metrics

Nash—Sutcliffe Efficiency (NSE). First proposed by Nash and
Sutcliffe (1970), the Nash—Sutcliffe efficiency (NSE) is one
of the most widely used similarity measures in hydrology
for calibration, model comparison, and verification. It mea-
sures how well the simulated timeseries (ygim) matches the
observed values (Yobs)-

Z (yobs - ysim)2

NSE=1-— 5
Z (yobs - yobs)

(CI)

Values closer to 1 indicate excellent model performance
(Moriasi et al., 2007), while NSE values near or below 0 sug-
gest that the model, in fact, performs worse than simply using
the mean of the observed values.

Mean Wet Day Precipitation (MWD (mm d~"). The Expert
Team on Climate Change Detection and Indices (ETCCDI —
World Climate Research program; 2021) recommends eval-
uating the intensity of precipitation on wet days (defined as
a day with a minimum of 1 mm precipitation) to understand
systematic over or underestimation of precipitation amounts.
This metric (Simple Daily Intensity Index as per ETCCDI) is
reported as the mean daily precipitation on days where pre-
cipitation > 1 mm. Let P; be the daily precipitation amount
on wet days, (P; > 1mm). If N represents the total number
of wet days, then:

N
iz P
N

MWD = (C2)

95th Percentile Precipitation (R95P mmd~1). This met-
ric denotes the daily precipitation value at which 95 % of all
daily values (again only considering rainy days) are lower
(top 5 % events). This helps to assess the ability to capture
extreme precipitation events. Let P; be the daily precipita-
tion amount on wet days, (P; > 1 mm)

RO95P = Percentile ({ P;| P; > 1 mm}, 95) (C3)

Spearman Rank Autocorrelation (SL). The Spearman
Rank Autocorrelation measures the monotonic relationship
between daily precipitation values and their values on the
preceding day (1d lag). It is computed using the ranked val-
ues of the precipitation time series. For a precipitation time-
series (with total n observations) P = {Py, P,, ..., P,} with
R(P;) and R(P;+1) being the ranks of the precipitation val-
ues at times 7 and ¢ + 1,

6T (R(P1) = R(P))?

SL=1
nmn?—1)

(C4)

This measure helps analyse persistence in precipitation
patterns and whether the temporal structure of precipitation
events are preserved.
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Code availability. The codes used to conduct the LSTM
analysis in this study are based on the publicly available
HY?DL python library (https://github.com/KIT-HYD/Hy2DL,
last access: 26 November 2024) and can be accessed at
https://doi.org/10.5281/zenodo.14161027 (Manoj J, 2025b).
The code used to run the HBV models is available at
https://doi.org/10.5281/zenodo.15051966  (Manoj J, 2025a).
The CATFLOW model and the setup used to run the experiment in
this study are archived at https://doi.org/10.5281/zenodo.10958813
(Manoj J, 2024).

Data availability. The Caravan dataset and related
community extensions are publicly available at
https://doi.org/10.5281/zenodo.10968468  (Kratzert et al.,
2023) and https://github.com/kratzert/Caravan/discussions/10,
last access: 26 November 2024. We acknowledge the E-OBS
dataset from the Copernicus Climate Change Service (C3S,
https://surfobs.climate.copernicus.eu, last access: 26 Novem-
ber 2024) and the data providers in the ECA&D project
(https://www.ecad.eu, last access: 26 November 2024). The
datasets generated as part of this publication can be found at
https://doi.org/10.5281/zenodo.14161027 (Manoj J, 2025b) and
https://doi.org/10.5281/zenodo.15051966 (Manoj J, 2025a).
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line at https://doi.org/10.5194/hess-29-6115-2025-supplement.

Author contributions. AM]J designed the study and carried out all
analysis and model simulations. Funding was acquired by EZ. The
initial draft was prepared by AMIJ, with all authors contributing to
review and editing. RL, HG and EZ jointly supervised the work. All
authors have read and agreed to the current version of the paper.

Competing interests. At least one of the (co-)authors is a member
of the editorial board of Hydrology and Earth System Sciences. The
peer-review process was guided by an independent editor, and the
authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibil-
ity lies with the authors. Views expressed in the text are those of the
authors and do not necessarily reflect the views of the publisher.

Acknowledgements. The authors acknowledge support by the fed-
eral state of Baden-Wiirttemberg through bwHPC (High Perfor-
mance Computing Cluster). Ashish Manoj J would like to thank
Eduardo Acufia Espinoza for helpful discussions regarding the
HYZDL python library for deep learning methods and Alexander
Dolich for help in implementing the stgrid2area python package.

Hydrol. Earth Syst. Sci., 29, 6115-6135, 2025


https://github.com/KIT-HYD/Hy2DL
https://doi.org/10.5281/zenodo.14161027
https://doi.org/10.5281/zenodo.15051966
https://doi.org/10.5281/zenodo.10958813
https://doi.org/10.5281/zenodo.10968468
https://github.com/kratzert/Caravan/discussions/10
https://surfobs.climate.copernicus.eu
https://www.ecad.eu
https://doi.org/10.5281/zenodo.14161027
https://doi.org/10.5281/zenodo.15051966
https://doi.org/10.5194/hess-29-6115-2025-supplement

6132 A. Manoj J et al.: Can discharge be used to inversely correct precipitation?

Financial support. This research has been supported by the
Deutsche Forschungsgemeinschaft (German Research Foundation
- DFG) via the project - Implementation of an InfraStructure for
dAta-BasEd Learning in environmental sciences (ISABEL - grant
no. 496155047).

The article processing charges for this open-access publica-
tion were covered by the Karlsruhe Institute of Technology
(KIT).

Review statement. This paper was edited by Roger Moussa and re-
viewed by three anonymous referees.

References

Acuna Espinoza, E., Loritz, R., Alvarez Chaves, M., Biuerle, N.,
and Ehret, U.: To bucket or not to bucket? Analyzing the perfor-
mance and interpretability of hybrid hydrological models with
dynamic parameterization, Hydrol. Earth Syst. Sci., 28, 2705-
2719, https://doi.org/10.5194/hess-28-2705-2024, 2024.

Adam, J. C., Clark, E. A., Lettenmaier, D. P. and Wood, E. F.: Cor-
rection of global precipitation products for orographic effects, J.
Climate, 19, 15-38, https://doi.org/10.1175/JCLI3604.1, 2006.

Agarwal, A., Marwan, N., Maheswaran, R., Ozturk, U., Kurths, J.,
and Merz, B.: Optimal design of hydrometric station networks
based on complex network analysis, Hydrol. Earth Syst. Sci., 24,
2235-2251, https://doi.org/10.5194/hess-24-2235-2020, 2020.

Alexopoulos, M. J., Miiller-Thomy, H., Nistahl, P, graj, M.,
and Bezak, N.: Validation of precipitation reanalysis products
for rainfall-runoff modelling in Slovenia, Hydrol. Earth Syst.
Sci., 27,2559-2578, https://doi.org/10.5194/hess-27-2559-2023,
2023.

Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Béaserud, L.,
Izsdk, B., Szentes, O., Tveito, O. E., and Frei, C.: Eval-
vation of daily precipitation analyses in E-OBS (v19.0e)
and ERAS by comparison to regional high-resolution
datasets in European regions, Int. J. Climatol., 42, 727-747,
https://doi.org/10.1002/joc. 7269, 2022.

Béardossy, A., Anwar, F., and Seidel, J.: Hydrological Mod-
elling in Data Sparse Environment: Inverse Modelling
of a Historical Flood Event, Water (Switzerland), 12,
https://doi.org/10.3390/w12113242, 2020.

Bérdossy, A., Kilsby, C., Birkinshaw, S., Wang, N., and An-
war, F.: Is Precipitation Responsible for the Most Hy-
drological Model Uncertainty?, Front. Water, 4, 1-17,
https://doi.org/10.3389/frwa.2022.836554, 2022.

Baste, S., Klotz, D., Espinoza, E. A., Bardossy, A., and Loritz, R.:
Unveiling the Limits of Deep Learning Models in Hydrological
Extrapolation Tasks, Hydrol. Earth Syst. Sci., 29, 5871-5891,
https://doi.org/10.5194/hess-29-5871-2025, 2025.

Beauchamp, J., Leconte, R., Trudel, M., and Brissette, F.: Estima-
tion of the summer-fall PMP and PMF of a northern watershed
under a changed climate, Water Resour. Res., 49, 3852-3862,
https://doi.org/10.1002/wrcr.20336, 2013.

Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., and
Kirchner, J. W.: The Relative Importance of Different Flood-

Hydrol. Earth Syst. Sci., 29, 6115-6135, 2025

Generating Mechanisms Across Europe, Water Resour. Res., 55,
4582-4593, https://doi.org/10.1029/2019WR024841, 2019.

Bergstrom, S. and Forsman, A.: Development of a Conceptual De-
terministic Rainfall-Runoff Model., Nord. Hydrol., 4, 147-170,
https://doi.org/10.2166/nh.1973.0012, 1973.

Bishop, C. M.: Pattern recognition and machine learning, Springer,
New York, ISBN 978-0-387-31073-2, 2006.

Borga, M., Gaume, E., Creutin, J. D., and Marchi, L.: Surveying
flash floods: gauging the ungauged extremes, Hydrol. Process.,
22, 3883-3885, https://doi.org/10.1002/hyp.7111, 2008.1.

Brocca, L., Moramarco, T., Melone, F., and Wagner, W.: A
new method for rainfall estimation through soil mois-
ture observations, Geophys. Res. Lett.,, 40, 853-858,
https://doi.org/10.1002/gr1.50173, 2013.

Bronstert, A., Agarwal, A., Boessenkool, B., Crisologo, I,
Fischer, M., Heistermann, M., Kohn-Reich, L., Loépez-
Tarazén, J. A., Moran, T., Ozturk, U., Reinhardt-Imjela, C.,
and Wendi, D.: Forensic hydro-meteorological analysis of
an extreme flash flood: The 2016-05-29 event in Brauns-
bach, SW Germany, Sci. Total Environ., 630, 977-991,
https://doi.org/10.1016/j.scitotenv.2018.02.241, 2018.

Casado Rodriguez, J.: CAMELS-ES: Catchment Attributes and Me-
teorology for Large-Sample Studies — Spain, Zenodo [code],
https://doi.org/10.5281/zenodo.8428374, 2023.

Chen, C. T. and Chang, W. Der: A feedforward neural network
with function shape autotuning, Neural Networks, 9, 627-641,
https://doi.org/10.1016/0893-6080(96)00006-8, 1996.

Clerc-Schwarzenbach, F. M., Selleri, G., Neri, M., Toth, E., van
Meerveld, 1., and Seibert, J.: Large-sample hydrology: a few
camels or a whole caravan?, Hydrology and Earth System
Sciences, 28, 4219—4237, https://doi.org/10.5194/hess-28-4219-
2024, 2024.

Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and
Jones, P. D.: An Ensemble Version of the E-OBS Temperature
and Precipitation Data Sets, J. Geophys. Res. Atmos., 123, 9391—
9409, https://doi.org/10.1029/2017JD028200, 2018.

Coxon, G., Addor, N., Bloomfield, J. P, Freer, J., Fry, M., Han-
naford, J., Howden, N. J. K., Lane, R., Lewis, M., Robin-
son, E. L., Wagener, T., and Woods, R.: CAMELS-GB: hydrom-
eteorological time series and landscape attributes for 671 catch-
ments in Great Britain, Earth Syst. Sci. Data, 12, 2459-2483,
https://doi.org/10.5194/essd-12-2459-2020, 2020.

Dolich, A., Maharjan, A., Milicke, M., Manoj J, A., and
Loritz, R.: Caravan-DE: Caravan extension Germany — Ger-
man dataset for large-sample hydrology, Zenodo [code],
https://doi.org/10.5281/zenodo.14755229, 2025.

Dunne, T.: Field studies of hillslope flow processes, in: Hillslope
Hydrology, edited by: Kirkby, M. J., John Wiley & Sons, 227—
293, ISBN 978-0-471-99510-4, 1978.

Essou, G. R. C., Sabarly, F., Lucas-Picher, P., Brissette, F., and
Poulin, A.: Can precipitation and temperature from meteoro-
logical reanalyses be used for hydrological modeling?, J. Hy-
drometeorol., 17, 1929-1950, https://doi.org/10.1175/JHM-D-
15-0138.1, 2016.

Farber, C., Plessow, H., Kratzert, F., Addor, N., Shalev, G., and
Looser, U.: GRDC-Caravan: extending the original dataset with
data from the Global Runoff Data Centre, Zenodo [code],
https://doi.org/10.5281/zenodo.10074416, 2023.

https://doi.org/10.5194/hess-29-6115-2025


https://doi.org/10.5194/hess-28-2705-2024
https://doi.org/10.1175/JCLI3604.1
https://doi.org/10.5194/hess-24-2235-2020
https://doi.org/10.5194/hess-27-2559-2023
https://doi.org/10.1002/joc.7269
https://doi.org/10.3390/w12113242
https://doi.org/10.3389/frwa.2022.836554
https://doi.org/10.5194/hess-29-5871-2025
https://doi.org/10.1002/wrcr.20336
https://doi.org/10.1029/2019WR024841
https://doi.org/10.2166/nh.1973.0012
https://doi.org/10.1002/hyp.7111
https://doi.org/10.1002/grl.50173
https://doi.org/10.1016/j.scitotenv.2018.02.241
https://doi.org/10.5281/zenodo.8428374
https://doi.org/10.1016/0893-6080(96)00006-8
https://doi.org/10.5194/hess-28-4219-2024
https://doi.org/10.5194/hess-28-4219-2024
https://doi.org/10.1029/2017JD028200
https://doi.org/10.5194/essd-12-2459-2020
https://doi.org/10.5281/zenodo.14755229
https://doi.org/10.1175/JHM-D-15-0138.1
https://doi.org/10.1175/JHM-D-15-0138.1
https://doi.org/10.5281/zenodo.10074416

A. Manoj J et al.: Can discharge be used to inversely correct precipitation?

Fujihara, Y., Simonovic, S. P., Topaloglu, F., Tanaka, K., and Watan-
abe, T.: An inverse-modelling approach to assess the impacts of
climate change in the Seyhan River basin, Turkey, Hydrol. Sci. J.,
53, 1121-1136, https://doi.org/10.1623/hysj.53.6.1121, 2008.

Gelaro, R., McCarty, W., Sudrez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G.,
Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C.,
Akella, S., Buchard, V., Conaty, A., da Silva, A. M.,
Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rie-
necker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The Modern-Era Retrospective Analysis for Research and Ap-
plications, Version 2 (MERRA-2), J. Clim., 30, 5419-5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.

Global Modeling And Assimilation Office: MERRA-2
tavgl _2d_Ind_Nx: 2d, 1-Hourly, Time-Averaged, Single-
Level, Assimilation, Land Surface Diagnostics V5.12.4,
https://doi.org/10.5067/RKPHT8KC1Y1T, 2015.

Goteti, G. and Famiglietti, J.: Extent of gross underestimation of
precipitation in India, Hydrol. Earth Syst. Sci., 28, 3435-3455,
https://doi.org/10.5194/hess-28-3435-2024, 2024.

Gu, L., Yin, J., Wang, S., Chen, J., Qin, H., Yan, X., He, S., and
Zhao, T.: How well do the multi-satellite and atmospheric reanal-
ysis products perform in hydrological modelling, J. Hydrol., 617,
128920, https://doi.org/10.1016/j.jhydrol.2022.128920, 2023.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, J. Hydrol.,
377, 80-91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hochreiter, S.: The Vanishing Gradient Problem During Learn-
ing Recurrent Neural Nets and Problem Solutions, Int. J.
Uncertainty, Fuzziness Knowledge-Based Syst., 06, 107-116,
https://doi.org/10.1142/S0218488598000094, 1998.

Hoge, M., Kauzlaric, M., Siber, R., Schonenberger, U., Horton, P,
Schwanbeck, J., Floriancic, M. G., Viviroli, D., Wilhelm, S.,
Sikorska-Senoner, A. E., Addor, N., Brunner, M., Pool, S.,
Zappa, M., and Fenicia, F.: Catchment attributes and hydro-
meteorological time series for large-sample studies across hy-
drologic Switzerland, Earth Syst. Sci. Data, 15, 5755-5784,
https://doi.org/10.5194/essd-15-5755-2023, 2023.

Horton, R. E.: The role of infiltration in the hy-
drology cycle, Eos Trans, AGU, 14, 446-460,
https://doi.org/10.1029/TR014i001p00446, 1932.

Hrachowitz, M., Savenije, H. H. G., Bloschl, G., McDon-
nell, J. J., Sivapalan, M., Pomeroy, J. W., Arheimer, B.,
Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E.,
Gelfan, A., Gupta, H. V., Hughes, D. A., Hut, R. W., Mon-
tanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlen-
brook, S., Wagener, T., Winsemius, H. C., Woods, R. A,
Zehe, E., and Cudennec, C.: A decade of Predictions in Un-
gauged Basins (PUB)-a review, Hydrol. Sci. J., 58, 1198-1255,
https://doi.org/10.1080/02626667.2013.803183, 2013.

Kirchner, J. W.: Catchments as simple dynamical systems:
Catchment characterization, rainfall-runoff modeling, and do-
ing hydrology backward, Water Resour. Res., 45, 1-34,
https://doi.org/10.1029/2008 WR006912, 2009.

Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A.,
Brandstetter, J., Klambauer, G., Hochreiter, S., and Near-
ing, G.: Uncertainty estimation with deep learning for rainfall-

https://doi.org/10.5194/hess-29-6115-2025

6133

runoff modeling, Hydrol. Earth Syst. Sci., 26, 1673-1693,
https://doi.org/10.5194/hess-26-1673-2022, 2022.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrneg-
ger, M.: Rainfall-runoff modelling using Long Short-Term
Memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005-
6022, https://doi.org/10.5194/hess-22-6005-2018, 2018.

Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M.,
Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S.,
Shalev, G., and Matias, Y.: Caravan — A global commu-
nity dataset for large-sample hydrology, Sci. Data, 10, 61,
https://doi.org/10.1038/s41597-023-01975-w, 2023.

Kretzschmar, A., Tych, W. and Chappell, N. A.: Revers-
ing hydrology: Estimation of sub-hourly rainfall time-series
from streamflow, Environ. Model. Softw., 60, 290-301,
https://doi.org/10.1016/j.envsoft.2014.06.017, 2014.

Krier, R., Matgen, P., Goergen, K., Pfister, L., Hoffmann, L., Kirch-
ner, J. W., Uhlenbrook, S., and Savenije, H. H. G.: Inferring
catchment precipitation by doing hydrology backward: A test
in 24 small and mesoscale catchments in Luxembourg, Water
Resour. Res., 48, 1-15, https://doi.org/10.1029/201 1WR010657,
2012.

Li, B., Rodell, M., Kumar, S., Beaudoing, H. K., Getirana, A.,
Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S.,
Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D.,
Nanteza, J., Lee, J., Policelli, F., Goni, 1. B., Daira, D.,
Bila, M., de Lannoy, G., Mocko, D., Steele-Dunne, S. C.,
Save, H., and Bettadpur, S.: Global GRACE Data As-
similation for Groundwater and Drought Monitoring: Ad-
vances and Challenges, Water Resour. Res., 55, 7564-7586,
https://doi.org/10.1029/2018WR024618, 2019.

Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G.,
Anand, M., Beames, P., Burchard-Levine, V., Maxwell, S.,
Moidu, H., Tan, F., and Thieme, M.: Global hydro-environmental
sub-basin and river reach characteristics at high spatial resolu-
tion, Sci. Data, 6, 283, https://doi.org/10.1038/s41597-019-0300-
6,2019.

Loritz, R., Hassler, S. K., Jackisch, C., Allroggen, N., van
Schaik, L., Wienhofer, J., and Zehe, E.: Picturing and model-
ing catchments by representative hillslopes, Hydrol. Earth Syst.
Sci., 21, 1225-1249, https://doi.org/10.5194/hess-21-1225-2017,
2017.

Loritz, R., Dolich, A., Acuifia Espinoza, E., Ebeling, P., Guse, B.,
Gotte, J., Hassler, S. K., Hauffe, C., Heidbiichel, L., Kiesel, J.,
Miilicke, M., Miiller-Thomy, H., Stolzle, M., and Tarasova, L.:
CAMELS-DE: hydro-meteorological time series and attributes
for 1582 catchments in Germany, Earth Syst. Sci. Data, 16,
5625-5642, https://doi.org/10.5194/essd-16-5625-2024, 2024a.

Loritz, R.,, Wu, C. H., Klotz, D., Gauch, M., Kratzert, E,
and Bassiouni, M.: Generalizing Tree-Level Sap Flow
Across the European Continent, Geophys. Res. Lett., 51,
https://doi.org/10.1029/2023GL107350, 2024b.

Manoj J, A.: Simulation results of Manoj J et al. (2023), Zenodo
[code], https://doi.org/10.5281/zenodo.10958813, 2024.

Manoj J, A.: Ash-Manoj/Hy2DL_Caravan: = Conceptual
models for Manoj J et al. (2024), Zenodo [code],
https://doi.org/10.5281/zenodo.15051966, 2025a.

Manoj J, A.: Ash-Manoj/lstm_backward: LSTM mod-
els for Manoj J et al. (2024), Zenodo [code],
https://doi.org/10.5281/zenodo.14161027, 2025b.

Hydrol. Earth Syst. Sci., 29, 6115-6135, 2025


https://doi.org/10.1623/hysj.53.6.1121
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.5067/RKPHT8KC1Y1T
https://doi.org/10.5194/hess-28-3435-2024
https://doi.org/10.1016/j.jhydrol.2022.128920
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.5194/essd-15-5755-2023
https://doi.org/10.1029/TR014i001p00446
https://doi.org/10.1080/02626667.2013.803183
https://doi.org/10.1029/2008WR006912
https://doi.org/10.5194/hess-26-1673-2022
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.1038/s41597-023-01975-w
https://doi.org/10.1016/j.envsoft.2014.06.017
https://doi.org/10.1029/2011WR010657
https://doi.org/10.1029/2018WR024618
https://doi.org/10.1038/s41597-019-0300-6
https://doi.org/10.1038/s41597-019-0300-6
https://doi.org/10.5194/hess-21-1225-2017
https://doi.org/10.5194/essd-16-5625-2024
https://doi.org/10.1029/2023GL107350
https://doi.org/10.5281/zenodo.10958813
https://doi.org/10.5281/zenodo.15051966
https://doi.org/10.5281/zenodo.14161027

6134 A. Manoj J et al.: Can discharge be used to inversely correct precipitation?

Manoj J, A., Pérez Ciria, T., Chiogna, G., Salzmann, N.,
and Agarwal, A.: Characterising the coincidence of soil
moisture — precipitation extremes as a possible pre-
cursor to European floods, J. Hydrol, 620, 129445,
https://doi.org/10.1016/j.jhydrol.2023.129445, 2023.

Manoj J, A., Loritz, R., Villinger, F., Milicke, M., Koopaeidar, M.,
Goppert, H., and Zehe, E.: Toward Flash Flood Modeling Us-
ing Gradient Resolving Representative Hillslopes, Water Resour.
Res., 60, https://doi.org/10.1029/2023WR036420, 2024.

Merz, B., Bloschl, G., Vorogushyn, S., Dottori, F., Aerts, J. C.J. H.,
Bates, P., Bertola, M., Kemter, M., Kreibich, H., Lall, U.,
and Macdonald, E.: Causes, impacts and patterns of dis-
astrous river floods, Nat. Rev. Earth Environ., 2, 592-609,
https://doi.org/10.1038/s43017-021-00195-3, 2021.

Meyer, J., Neuper, M., Mathias, L., Zehe, E., and Pfister, L.: At-
mospheric conditions favouring extreme precipitation and flash
floods in temperate regions of Europe, Hydrol. Earth Syst.
Sci., 26, 6163-6183, https://doi.org/10.5194/hess-26-6163-2022,
2022.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M.,

Kundzewicz, Z. W., Lettenmaier, D. P, and Stouf-
fer, R. J.: Climate change: Stationarity 1is dead:
Whither water management?, Science, 319, 573-574,

https://doi.org/10.1126/science.1151915, 2008.

Montanari, A., Young, G., Savenije, H. H. G., Hughes, D.,
Wagener, T., Ren, L. L., Koutsoyiannis, D., Cudennec, C.,
Toth, E., Grimaldi, S., Bloschl, G., Sivapalan, M., Beven, K.,
Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E.,
Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P,
Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Har-
man, C., Thompson, S., Rogger, M., Viglione, A., McMil-
lan, H., Characklis, G., Pang, Z., and Belyaev, V.: “Panta Rhei-
Everything Flows”: Change in hydrology and society-The IAHS
Scientific Decade 2013-2022, Hydrol. Sci. J., 58, 1256-1275,
https://doi.org/10.1080/02626667.2013.809088, 2013.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L.,
Harmel, R. D., and Veith, T. L.. Model Evaluation
Guidelines for Systematic Quantification of Accuracy
in Watershed Simulations, Trans. ASABE, 50, 885-900,
https://doi.org/10.13031/2013.23153, 2007.

Muiioz-Sabater, J., Dutra, E., Agusti-Panareda, A., Albergel, C.,
Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harri-
gan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M.,
Rodriguez-Fernandez, N. J., Zsoter, E., Buontempo, C., and
Thépaut, J.-N.: ERAS-Land: a state-of-the-art global reanalysis
dataset for land applications, Earth Syst. Sci. Data, 13, 4349—
4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.

Nash, J. E. and Sutcliffe, J. V: River flow forecasting through con-
ceptual models, Part I — a discussion of principles, J. Hydrol., 27,
282-290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Nearing, G. S. and Gupta, H. V.: The quantity and quality of infor-
mation in hydrologic models, Water Resour. Res., 51, 524-538,
https://doi.org/10.1002/2014WR015895, 2015.

Nijzink, J., Loritz, R., Gourdol, L., Zoccatelli, D., Iffly, J. F,,
and Pfister, L.: CAMELS-LUX: Highly Resolved Hydro-
Meteorological and Atmospheric Data for Physiographically
Characterized Catchments around Luxembourg, Zenodo [code],
https://doi.org/10.5281/zenodo.13846620, 2024.

Hydrol. Earth Syst. Sci., 29, 6115-6135, 2025

Ongie, G., Jalal, A., Metzler, C. A., Baraniuk, R. G., Dimakis, A. G.,
and Willett, R.: Deep Learning Techniques for Inverse Prob-
lems in Imaging, IEEE J. Sel. Areas Inf. Theory, 1, 39-56,
https://doi.org/10.1109/jsait.2020.2991563, 2020.

Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S.,
Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H.,
Takahashi, K., Kadokura, S., Wada, K., Kato, K., Oyama, R.,
Ose, T., Mannoji, N., and Taira, R.: The JRA-25 Re-
analysis, J. Meteorol. Soc. Japan. Ser. II, 85, 369-432,
https://doi.org/10.2151/jms;j.85.369, 2007.

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeis-
ter, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L.,
Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A.,
da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R.,
Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Re-
ichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and
Woollen, J.: MERRA: NASA’s Modern-Era Retrospective Anal-
ysis for Research and Applications, J. Clim., 24, 3624-3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.

Seibert, J.:  HBV  lightt HBV  Light version 2
User’s Man., https://www.geo.uzh.ch/dam/jcr:
c8afa73c-ac90-478e-a8¢c7-929eed7b1b62/HBV_manual _
2005.pdf (last access: 25 November 2024), 2005.

Seidel, J., Imbery, F., Dostal, P., Sudhaus, D., and Biirger, K.: Poten-
tial of historical meteorological and hydrological data for the re-
construction of historical flood events — the example of the 1882
flood in southwest Germany, Nat. Hazards Earth Syst. Sci., 9,
175-183, https://doi.org/10.5194/nhess-9-175-2009, 2009.

Seneviratne, S. 1., Corti, T., Davin, E. L., Hirschi, M.,
Jaeger, E. B., Lehner, L., Orlowsky, B., and Teuling, A. J.:
Investigating soil moisture—climate interactions in a chang-
ing climate: A review, Earth-Science Rev., 99, 125-161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.

Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karam-
biri, H., Lakshmi, V., Liang, X., McDonnell, J. J., Men-
diondo, E. M., O’Connell, P. E., Oki, T., Pomeroy, J. W.,
Schertzer, D., Uhlenbrook, S., and Zehe, E.: IAHS Decade on
Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an
exciting future for the hydrological sciences, Hydrol. Sci. J., 48,
857-880, https://doi.org/10.1623/hysj.48.6.857.51421, 2003.

Sun, S. and Bertrand-Krajewski, J. L.: Separately accounting for
uncertainties in rainfall and runoff: Calibration of event-based
conceptual hydrological models in small urban catchments us-
ing Bayesian method, Water Resour. Res., 49, 5381-5394,
https://doi.org/10.1002/wrcr.20444, 2013.

Tarek, M., Brissette, F. P,, and Arsenault, R.: Evaluation of the
ERAS reanalysis as a potential reference dataset for hydrologi-
cal modelling over North America, Hydrol. Earth Syst. Sci., 24,
2527-2544, https://doi.org/10.5194/hess-24-2527-2020, 2020.

Taszarek, M., Allen, J. T., Marchio, M., and Brooks, H. E.:
Global climatology and trends in convective environments from
ERAS and rawinsonde data, npj Clim. Atmos. Sci., 4, 1-11,
https://doi.org/10.1038/s41612-021-00190-x, 2021.

Tetzlaff, D., Carey, S. K., McNamara, J. P., Laudon, H., and
Soulsby, C.: The essential value of long-term experimental data
for hydrology and water management, Water Resour. Res., 53,
2598-2604, https://doi.org/10.1002/2017WR020838, 2017.

Teuling, A. J., Lehner, 1., Kirchner, J. W., and Seneviratne, S. L.:
Catchments as simple dynamical systems: Experience from

https://doi.org/10.5194/hess-29-6115-2025


https://doi.org/10.1016/j.jhydrol.2023.129445
https://doi.org/10.1029/2023WR036420
https://doi.org/10.1038/s43017-021-00195-3
https://doi.org/10.5194/hess-26-6163-2022
https://doi.org/10.1126/science.1151915
https://doi.org/10.1080/02626667.2013.809088
https://doi.org/10.13031/2013.23153
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1002/2014WR015895
https://doi.org/10.5281/zenodo.13846620
https://doi.org/10.1109/jsait.2020.2991563
https://doi.org/10.2151/jmsj.85.369
https://doi.org/10.1175/JCLI-D-11-00015.1
https://www.geo.uzh.ch/dam/jcr:c8afa73c-ac90-478e-a8c7-929eed7b1b62/HBV_manual_2005.pdf
https://www.geo.uzh.ch/dam/jcr:c8afa73c-ac90-478e-a8c7-929eed7b1b62/HBV_manual_2005.pdf
https://www.geo.uzh.ch/dam/jcr:c8afa73c-ac90-478e-a8c7-929eed7b1b62/HBV_manual_2005.pdf
https://doi.org/10.5194/nhess-9-175-2009
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1623/hysj.48.6.857.51421
https://doi.org/10.1002/wrcr.20444
https://doi.org/10.5194/hess-24-2527-2020
https://doi.org/10.1038/s41612-021-00190-x
https://doi.org/10.1002/2017WR020838

A. Manoj J et al.: Can discharge be used to inversely correct precipitation? 6135

a Swiss prealpine catchment, Water Resour. Res., 46, 1-15,
https://doi.org/10.1029/2009WR008777, 2010.

Villinger, F., Loritz, R., and Zehe, E.: Torrents in small rural
Catchments and the Potential of physics-based Models for their
Simulation, Hydrol. und Wasserbewirtschaftung, 66, 284-285,
https://doi.org/10.5675/HyWa_2022.6_1, 2022.

World Climate Research program (WCRP): Expert Team on Cli-
mate Change Detection and Indices (ETCCDI), https://www.
werp-climate.org/etcedi (last access: 7 March 2025), 2021.

Xu, C., Wang, W., Hu, Y., and Liu, Y.: Evaluation of ERAS, ERAS-
Land, GLDAS-2.1, and GLEAM potential evapotranspiration
data over mainland China, J. Hydrol. Reg. Stud., 51, 101651,
https://doi.org/10.1016/j.ejrh.2023.101651, 2024.

https://doi.org/10.5194/hess-29-6115-2025

Yumnam, K., Kumar Guntu, R., Rathinasamy, M., and Agarwal, A.:
Quantile-based Bayesian Model Averaging approach towards
merging of precipitation products, J. Hydrol., 604, 127206,
https://doi.org/10.1016/j.jhydrol.2021.127206, 2022.

Zehe, E. and Bloschl, G.: Predictability of hydrologic response at
the plot and catchment scales: Role of initial conditions, Water
Resour. Res., 40, https://doi.org/10.1029/2003WR002869, 2004.

Zehe, E., Maurer, T., Ihringer, J., and Plate, E.: Modelling wa-
ter flow and mass transport in a Loess catchment, Phys. Chem.
Earth, Part B, 26, 487-507, https://doi.org/10.1016/S0378-
3774(99)00083-9, 2001.

Hydrol. Earth Syst. Sci., 29, 6115-6135, 2025


https://doi.org/10.1029/2009WR008777
https://doi.org/10.5675/HyWa_2022.6_1
https://www.wcrp-climate.org/etccdi
https://www.wcrp-climate.org/etccdi
https://doi.org/10.1016/j.ejrh.2023.101651
https://doi.org/10.1016/j.jhydrol.2021.127206
https://doi.org/10.1029/2003WR002869
https://doi.org/10.1016/S0378-3774(99)00083-9
https://doi.org/10.1016/S0378-3774(99)00083-9

	Abstract
	Introduction
	Data and Methods
	Model Configuration
	Data sets
	Experimental Design
	Exploring information about precipitation encoded in streamflow
	Out of sample precipitation inversions and their quality
	The potential of inverted precipitation for forward modelling


	Results
	The information contained in streamflow about precipitation
	Unraveling the Continental Scale Characteristics
	Out of sample predictions
	Forward Hydrological Modelling

	Discussion
	Improved precipitation estimation using discharge
	Catchment as a functional unit
	Limitations and Outlook

	Conclusions
	Appendix A: LSTM configurations
	Appendix B: Hydrological Modelling
	Appendix C: Performance Metrics
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

