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Abstract

In today’s fast-paced world, the digitalization of business workflows has become indispensable for

organizations to remain competitive and efficient. Documents play a critical role in these workflows,

as they contain vital information necessary for decision-making and record-keeping. Despite ad-

vancements in digitalization, a significant proportion of documents still exists in physical formats,

necessitating digitization for seamless integration into digital workflows. Since manual digitiza-

tion is labor-intensive and scanner-based digitization inflexible, there is a need for automated

document analysis systems that are capable of processing camera-captured document images. Al-

though camera-based digitization offers greater flexibility, it poses significant challenges due to

distortions caused by camera angles, document conditions, and varying lighting environments.

In this work, we address the problems of document image dewarping and illumination correction, as

they are essential preprocessing steps for document analysis. We aim to enhance document images

to achieve a scan-like quality, thereby enhancing downstream tasks such as text detection and

document understanding. Although the state-of-the-art methods have made significant progress

in this area, further advancements are still needed, especially in real-world scenarios. We work

towards improving the existing methods by leveraging additional information about the document

structure and visual appearance, which we refer to as reference templates.

The main contributions of this work are as follows:

1. We create the first large-scale, high-resolution dataset for document image dewarping and

illumination correction with reference templates, enabling the development of more accurate

and robust document image enhancement models.

2. We introduce two novel deep-learning-based systems for geometric dewarping, which inte-

grate reference templates to minimize distortions in warped document images and thereby

significantly improve the quality of the dewarped images.

3. We present a new method for illumination correction of document images using reference

templates, thus improving the readability and interpretability of the documents.

The contributions are evaluated individually, following predefined requirements and adhering to

state-of-the-art evaluation methodologies. The outcome led us to conclude that the information

contained in reference templates can be effectively leveraged to improve geometric dewarping and

illumination correction. Thereby, we narrow the gap between research and real-world applications,

bringing us closer to achieving fully automated document analysis in real-world contexts.
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Overview
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1
Introduction

Since the invention of computers, there has been a rapidly evolving trend to digitalize workflows,

especially in the business world [69]. This includes - amongst others - areas such as the retail

industry, insurance sector, and healthcare system. While digitalization in these fields has advanced

enormously over the last decades, in practice, numerous analogous workflows still rely on paper

sheets for information transfer between two parties. Since one party alone cannot easily change

the workflow to digitalize it, there is a need to digitize the information received on paper sheets.

For instance, this could be a shipping note or invoice from a retail customer.

The availability of digitized workflow information comes with a multiplicity of advantages. The

information can be processed fully automatically and linked with other information, thus allowing

business decisions to be made quickly and, ultimately, without manual input. These steps provide

immense economic value as it reduces the overall cost for a company since human labor is generally

more expensive than compute power.

There are three fundamental ways to digitize paper sheets: manual data entry, scanner-based, and

camera-based approaches. See Figure 1.1 for an overview of these methods that are explained in

the following:

• Manual data entry. Digitizing documents by hand entails a human reading the document

paper sheet and submitting the displayed information into a computer system. This is a

tedious task as there is a large amount of printed documents. For a company, this option is

slow and extremely costly since humans are limited in their perception speed, and personnel

costs are substantial. Also, the accuracy of human data entry highly depends on the employed

individual.

• Scanner-based approaches. Scanning documents and extracting the information based on the

flatbed image of the document using artificial intelligence (AI ) is very fast in comparison to

manual data entry. This is because only a minor part of the process involves a human being,

while most work is done automatically. Since this approach involves less manual labor, it is

also more cost-effective at scale than the first option. On the downside, this process requires

the availability of the proper hardware, namely a scanner, which might not be available at

any time in any location. For instance, in the receiving department of a company, there

might not be a scanner available at every point of delivery. The accuracy of this method

depends on the ability of the AI method to extract the information from the scan. With the

recent improvements in deep learning (DL) methods, this approach appears viable in many

contexts.

• Camera-based approaches. This way of digitization uses a camera to take a photo of the

printed document sheet, which is subsequently processed by an AI tool in order to extract the



1 Introduction

Manual labor

Manual labor Database

Scanners

Scanner AI Database
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Camera AI Database

Figure 1.1: Fundamental ways to digitize paper sheets.

information contained in the document. This method is even faster than the scanner-based

approaches since handheld cameras, i.e., smartphones, are ubiquitously available, and thus,

there is no need to have a scanner available nearby in order to start the digitization process.

The disadvantage of this approach is that the task of information extraction on camera images

is more challenging as the environment induces geometric and illumination distortions. This

affects the accuracy of this approach negatively and thus limits its applicability in the real

world.

In this work, we aim to improve camera-based images of documents to mitigate the environmental

influences, namely geometric warping and illumination. Given a document image taken by a

camera, our goal is to create a new image that looks like one would have used a scanner on the

document in order to create this new image. By transforming the camera-based images to scanner-

based images, the drop in accuracy for information extraction tasks can be reduced, thus increasing

the applicability of camera-based information extraction methods in the real world. This leads to

a fast and accurate method for document digitization, which is not bound to a physical location.

We introduce the concept of reference templates in this work as an additional source of information

for a DL model in order to improve the dewarping and illumination correction capabilities of our

models.

1.1 Challenges

In this section, we go into detail on the challenges of information extraction (IE) from camera-based

document images. In contrast to scanned documents, photographed documents exhibit many envi-

ronmental influences, making information extraction tremendously more difficult. Scanners yield,

by their nature, an image of the original document that resembles the paper document closely,

as the document needs to be placed flatbed into the device, and the device lights the document

uniformly. When digitizing documents using a camera, these constraints do not necessarily ap-

ply. The captured document might be in a different pose relative to the camera, there might

be deformations on the document paper sheet, and the environment might strongly influence the

lighting. We subdivide the challenges into three categories: camera distortions, paper distortions,

and lighting influences. It is important to note that all of these effects can occur simultaneously

in a single document image. See Figure 1.2 for an overview of the challenges, which are explained

in the following:

• Camera Distortions. This category contains all challenges with regard to the camera as a

capturing device. Since there is no enforcement of a specific pose for the document, the

document inside the captured image can be rotated, scaled, translated, and distorted in

perspective. In addition, camera lenses can cause non-linear distortions in captured images.

4
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Camera Distortions

Rotation Scaling Translation

Perspective Lens dist.

Paper Distortions

Folding Crumpling

Curvature

Lighting

Ambient light

Shadows

Figure 1.2: Challenges for camera-based information extraction.

This effect leads to curled lines in the captured image, which should be straight according to

the real-world object.

• Paper Distortions. We denote all deformations affecting the document paper sheet as shape

deformations. It contains folding, crumpling, and curvature. The first creates sharp edges on

the document while leaving the faces intact but skewed to each other. The second, crumpling,

creates many fine edges of irregular character and tiny faces. Lastly, curvature bends the

document without creating edges, but the document surface is curled.

• Lighting. In addition to the geometric deformations, there are also illumination-changing

environmental influences. We summarize these under the category Lighting. It consists

of ambient light and shadows. The prior is defined as the illumination effects created by

artificial and natural light sources. Here, the effect is typically a change in hue, saturation,

and lightness for the entirety of the document in a uniform or smoothly changing manner. The

second challenge, shadows, results from objects between the light source and the document,

thus creating a shadow on the document, which is captured by the camera.

In addition to the influences above, further influences can affect the document sheet and image-

capturing process. These include (partially) destroyed documents, stains of additional substances,

e.g., coffee, and blur while image capturing. In this work, we focus our research efforts on mitigating

the effects above, as they are widely present in many real-world scenarios.

Extracting details from document images is not a new concept, as many commercial products

already do. Therefore, the question arises: Why is the task at hand hard to solve? In this

work, we consider heavy distortions applied to the documents in combination with environments

in extreme lighting, as well as a multitude of different influences simultaneously. Because of this,

a complex geometric reconstruction and illumination correction is necessary in order to create a

scan-like image of the document and subsequently extract the information inside the document.

Simply extracting the text of a deformed document image performs worse by a large margin, as

we show in our results.

1.2 Key Idea & Hypothesis

In this thesis, we aim to improve existing geometric dewarping and illumination correction models

to bring these approaches closer to real-world applicability. As described in Section 1.1, this task is

challenging due to complex interfering factors while capturing the document. One key observation

5
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Dewarping
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Correction
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Visual Question Answering

Document Retrieval

...

Figure 1.3: Overview of the document image analysis process. Starting with a camera-captured image of a
document, geometric dewarping and, subsequently, illumination correction improve the image
before applying the downstream tasks. We leverage reference template information in both
improvement tasks.

for our hypothesis is that we humans seemingly use our prior knowledge about documents to make

sense of the warped and barely readable document in our heads. This appears to be possible since

we have seen many documents or semi-structured forms throughout our lives, which we can use

to compare the warped document with them. We want to enable our AI models also to leverage

knowledge about the expected structure and the expected visual queues for the dewarping and illu-

mination correction tasks. The models should be able to leverage this explicitly provided additional

information in order to solve their respective task more accurately. As for geometric dewarping,

the knowledge of the true location of each visual element (e.g., logo) inside the document eases the

task of moving the pixels to the correct location. For illumination correction, the knowledge about

the expected true colors helps to remove the illumination artifacts from external light sources.

Our hypothesis is defined as follows:

Hypothesis: Reference Templates

Additional information about the expected document structure and visual appearance can

be leveraged to improve the document image enhancement process.

We represent this additional information using RGB images, referred to as reference templates,

which display the document structure without any instance-specific details. A reference template

includes fixed visual elements, such as logos, lines, and static text. For instance, given a document

image displaying an invoice, the reference template is an image of the invoice template prior to

filling and printing the document. See Figure 1.3 for an example of a reference template and the

integration in the enhancement process. For simplicity, we will refer to reference templates simply

as templates in this thesis.

6



1.3 Research Questions

1.2.1 Real-world Applicability

In practice, we encounter a multiplicity of scenarios in which the expected template is known

a priori due to the context of the usage, such as structured forms in administrative processes,

standardized templates in industry-specific documents, or repeated use of consistent layouts in

everyday tasks. Fields of application include, but are not limited to, the following: industry,

public administration, healthcare, finance, and logistics. Since these interactions are repetitive

and, in some cases, even standardized, the templates can be created once during the setup of the

system and be reused for all incoming documents. This initial overhead amortizes over time, and

the system works without further manual intervention.

Here are two concrete examples of scenarios with a priori known templates:

1. Company with known suppliers

Imagine the situation of a manufacturer in the industry. In practice, the manufacturer has

a list of suppliers who create many invoices. Each supplier has its own template, which is

usually consistent over time. So, when creating an application to extract the information

automatically, the template list must be created by hand only once to process all incoming

invoices. The worker in the receiving department can select the correct supplier (and im-

plicitly the correct template) from the available list of suppliers before photographing the

invoice. In future work, we can tackle the automatic selection of the best template given a

set of templates to automatize the process entirely.

2. Confirmation of residence

In Germany, many bureaucratic processes require transmitting information to the local gov-

ernment agencies using sheets of paper. One example for this case is the confirmation of

residence, a document stating a landlord’s supplying of the residence to the tenant as speci-

fied by the Federal Act on Registration Section 19 [29].

Note that current state-of-the-art approaches for dewarping and information extraction are more

flexible as they do not rely on the availability of a reference template. However, they are also less

accurate and robust than the proposed approach. By incorporating this a priori knowledge, we can

improve the quality and robustness of information extraction models and bring the state-of-the-art

closer to the real-world application. Often, these attributes are more important than the model’s

flexibility since an inaccurate model would lead to a high error rate in the information extraction

process, which might not be acceptable for a real-world scenario.

1.3 Research Questions

We divide our research objectives into three categories: (1) data acquisition, (2) geometric de-

warping, and (3) illumination correction. The category geometric dewarping is subdivided into

three individual questions, whereas the other categories contain a single question each. Figure 1.3

outlines the document image analysis process and locates the research questions within.

The first challenge when working with reference templates for document image enhancement is

the availability of suitable datasets for the given task. To the best of our knowledge, prior to this

work, no suitable dataset that offers both ground truth annotations and reference templates was

available. Therefore, our first research question concerns acquiring suitable data for both tasks,

geometric dewarping and illumination correction. RQ1 is given as follows:
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RQ1: Data Acquisition

How can we generate a large-scale, high-resolution dataset of document images with

ground truth annotations for geometric dewarping and illumination correction with cor-

responding reference templates?

With the data from RQ1, we want to investigate deep learning architectures and methods to lever-

age the additional information about the expected document structure and visual cues provided

by the reference templates. For this research question, we focus our endeavors on implicit ways to

integrate the additional information. In this context, implicit means that the model is provided

with additional information as input, but it is expected to figure out how to use the information

to improve geometric dewarping. We define the RQ2.1 as follows:

RQ2.1: Implicit Geometric Dewarping

How can we dewarp document images using a reference template to improve the quality

of the document images?

The second part of RQ2.1 poses the question on the correct metric for measuring the geometric

dewarping model performance. We find that all existing metrics show at least one flaw each,

making them unsuitable for the evaluation. Visual metrics are based on image comparisons, but

they lack sensitivity with regard to text readability. Text-based metrics compare two texts, but

they are susceptible to the correct order of detected words, which leads to inconsistent behavior.

That is why we introduce a new metric in RQ2.2:

RQ2.2: Dewarping Metric

How can we evaluate the quality of the geometric dewarping process with regard to text

readability and positional awareness?

In the third part of RQ2, we strive to find new models and approaches for geometric dewarping

that outperform the results of RQ2.1. For this approach, we build a multi-stage architecture with

interpretable intermediate results at each stage, which allows for more model supervision during

the process. That way, we can decompose the complex task of geometric dewarping into a subset

of smaller and simpler tasks.

RQ2.3: Explicit Geometric Dewarping

How can we dewarp document images with a reference template by explicitly leveraging

the template information to improve the quality of the document images?

Our last research question (RQ3) addresses the task of illumination correction. After the geo-

metric correction stage, the resulting images are usually not 100 % correctly dewarped. Given

these partially dewarped images, illumination correction aims to remove the illumination artifacts

originating from external light sources during image-capturing. Since the input image and the

reference template images do not match pixel perfect, the illumination correction becomes an

interesting task. We formulate our research question as follows:

8
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RQ3: Illumination Correction

Given the partially dewarped document images, how can we correct the illumination to

improve the quality of the document images?

1.4 Contributions

Our main contributions comprise two novel datasets for document image improvement, three state-

of-the-art deep learning models, and one new evaluation metric. In detail, the contributions are:

RQ1 We contribute two high-quality datasets for geometric dewarping and illumination

correction, called Inv3D and Inv3DReal. The prior is a fully synthetic, large-

scale dataset containing warped invoices, reference templates, and full ground-

truth annotations. These entail, amongst others, many per-pixel annotations in the

warped domain and several annotations in the flat domain. The dataset consists

of 25,000 samples. The second dataset (Inv3DReal) consists of semi-realistic data

for evaluation. Similar to Inv3D, the invoices are generated synthetically, but the

captured document images show real printed invoice sheets. It consists of 360

samples in total.

RQ2.1 We propose a novel deep-learning model called GeoTrTemplate. It extends the

previous state-of-the-art model GeoTr [21] by incorporating reference templates

implicitly. We show that our new model GeoTrTemplate outperforms GeoTr on

all metrics, most notably in local distortion (LD) by 26.1 %.

RQ2.2 In order to mitigate the flaws in existing metrics for the evaluation of geometric

dewarping models, we propose a new metric called matched normalized Character

Error Rate (mnCER). The new metric is text-aware, thus, non-readable documents

due to fine-grained dewarping errors get a low score. Also, it removes the need to

arrange the detected words in the document linearly, and, thus, becomes insensitive

to minor positional changes.

RQ2.3 We develop a new multi-stage deep learning model called DocMatcher, which incor-

porates the information from the reference template explicitly in order to geomet-

rically dewarp camera-based document images. The model focuses on structural

and textural lines in the warped and the flat domain and associates both. Based on

these matches, a pixel-wise flow mapping is computed to dewarp the image. Our

approach improves upon the state-of-the-art methods in all metrics, most notably

in LD by 32.6 % and in mnCER by 40.2 %.

RQ3 To correct the illumination artifacts from external light sources, we propose a new

model called IllTrTemplate. It leverages the reference templates to improve the

color correction compared to methods without reference templates. Our model

demonstrates a 15.0 % relative improvement in Learned Perceptual Image Patch

Similarity (LPIPS) and 6.3 % in Character Error Rate (CER).
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1.5 Outline

This thesis is divided into six parts: (I) overview, (II) preliminaries, (III) data generation, (IV)

geometric dewarping, (V) illumination correction, and (VI) synthesis. The details for each part

are presented below:

Part II presents the preliminaries in which we explain relevant foundations for under-

standing this thesis. In addition, we discuss existing approaches and datasets in

the chapter-related work.

Part III introduces the data generation pipeline for our datasets Inv3D and Inv3DReal.

We analyze the data requirements for document image enhancement and derive

our dataset design decisions. Furthermore, we introduce the reference templates

formally. This part of the thesis builds upon the following publication:

– Felix Hertlein et al. “Inv3D: a high-resolution 3D invoice dataset for template-

guided single-image document unwarping”. In: International Journal on Doc-

ument Analysis and Recognition 26.3 [2023], pp. 175–186. doi: 10.1007/

S10032-023-00434-X

Part IV addresses the question of geometric dewarping. First, we formally define the prob-

lem at hand before presenting both our implicit and our explicit approach to geo-

metric dewarping with the use of reference template images. Besides, we introduce

our new metric mnCER as a robust way of evaluating geometric dewarping models.

This part of the thesis builds upon the following publications:

– Felix Hertlein et al. “Inv3D: a high-resolution 3D invoice dataset for template-

guided single-image document unwarping”. In: International Journal on Doc-

ument Analysis and Recognition 26.3 [2023], pp. 175–186. doi: 10.1007/

S10032-023-00434-X

– Felix Hertlein et al. “DocMatcher: Document Image Dewarping via Struc-

tural and Textual Line Matching”. In: Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision. 2025

Part V provides our approach on illumination correction. Firstly, we formalize the problem

before presenting our solution to template-based illumination correction, assuming

that the prior geometric dewarping stage fell short of perfection. This part of the

thesis builds upon the following publication:

– Felix Hertlein and Alexander Naumann. “Template-guided Illumination Cor-

rection for Document Images with Imperfect Geometric Reconstruction”. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision

Workshops. IEEE, 2023, pp. 904–913. doi: 10.1109/ICCVW60793.2023.

00097

Part VI presents our synthesis. We conclude the thesis and give an outlook on future

research directions.
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2
Foundations

This chapter outlines the foundational concepts of this work, categorized into three key areas:

(1) coordinate transformations, (2) deep learning architectures, and (3) evaluation metrics. The

first section provides details on the transformations between coordinate systems relevant to this

work, while the second section explores various architectures that form the basis for our proposed

models. In the final section, we introduce the established evaluation metrics in the field of geometric

dewarping and illumination correction, which we use to assess the performance of our models.

2.1 Coordinate Transformations

A coordinate transformation is a function that maps points from a source coordinate system S
to a target coordinate system T . This section describes the coordinate transformations used in

this work, namely Frenet coordinates, sinusoidal positional encoding, homography, and Delaunay

triangulation. These transformations are essential to our work for a variety of reasons:

1. They allow us to represent the input data in a more machine-interpretable format by trans-

forming the data into a rectangular shape.

2. They improve the generalization capabilities of deep learning models by the smooth and

predictable nature of the transformations.

3. They allow us to model partial dewarping transformations.

4. They provide a way to interpolate dewarping transformations defined by sparse control points.

5. They enable fine-grained control over the transformations.

2.1.1 Frenet Coordinates

Frenet coordinates are derived from the Frenet frame, a mathematical concept in differential geom-

etry used to describe the movement of a particle along a curve in three-dimensional space. Werling

et al. [91] apply the two-dimensional case of Frenet frames to the optimal trajectory planning

problem for autonomous vehicles. In the following, we describe the 2D Frenet coordinates and

their relation to the Cartesian coordinate system. Contrary to the work of Werling et al. [91], we

do not focus on the dynamic properties of the Frenet frame since we do not require them in this

thesis.

Given a point P = (x, y) in the Cartesian coordinate system and a curve C, we can describe

its position using Frenet coordinates (s, d), where s is the distance along the C (longitudinal
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Figure 2.1: Frenet coordinate transformation.

displacement), and d is the distance perpendicular to the curve (lateral displacement). Formally,

we can express Frenet coordinates as follows:

ξC : R2 → R
2

(x, y) 7→ (s, d)

See Figure 2.1 for an illustration of the Frenet coordinates. An intuitive understanding of the

Frenet coordinates can be obtained by considering a car driving along a road. In this context, C

represents the road’s centerline, s is the distance traveled along the road, and d is the distance

from the center of the road.

The transformation from Cartesian coordinates to Frenet coordinates enables us to map a tube-

like region around the curve C to a rectangular region in the Frenet coordinate system, as shown

in Figure 2.1. Thus, the Frenet coordinates provide a more compact and uniform representation

of the curve C and its proximity, independently of the course of the curve. By rescaling the

Frenet coordinates to the range [0, 1]2, we can normalize the representation of the curve and its

surroundings. In this thesis, we use the normalized Frenet coordinates to represent the visual

appearances of the lines inside the warped document and their surrounding context in a fixed-

size form suitable for deep learning models. Note that the conversion from Cartesian to Frenet

coordinates is a non-linear transformation that distorts the space, i.e., it stretches the space in

some regions and compresses it in others.

2.1.2 Sinusoidal Positional Encoding

This section is primarily based on the publication Attention Is All You Need by Vaswani et al.

[84].

Sinusoidal positional encoding is a method to represent coordinates using a combination of several

sine and cosine functions with different frequencies. It is used in the Transformer architecture

[84] to encode the position of the tokens within the model. Vaswani et al. [84] proposed the one-

dimensional sinusoidal positional encoding, which later got extended to two dimensions by Wang

and Liu [89].
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2.1 Coordinate Transformations

Given a sinusoidal encoding feature depth of D, the two-dimensional encoding PE is defined as

follows:

PED(x, y, 2i) = sin

(

x

10000
4i
D

)

,

PED(x, y, 2i+ 1) = cos

(

x

10000
4i
D

)

,

PED(x, y, 2j +
D

2
) = sin

(

y

10000
4j

D

)

,

PED(x, y, 2j + 1 +
D

2
) = cos

(

y

10000
4j

D

)

,

(2.1)

where x ∈ R and y ∈ R denote the 2D position to encode, and the third parameter denotes the

channel position within the D-dimensional encoding. The numbers i and j range from 0 to D/4,

not including D/4 itself, which results in D channels in total. Note that D is required to be a

multiple of 4.

Another way of expressing this is by using the following notation:

PED(x, y) =





















































sin (ω0x)
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cos (ωmy)





















































(2.2)

where ωk =
1

10000
4k
D

, k = 0, 1, . . . ,m :=
D

4
− 1.

Within the encoded vector PE(x, y), the first
D

2
dimensions represent the x-position, while the

second
D

2
dimensions represent the y-position. Figure 2.2 illustrates the sinusoidal positional

encoding for a depth of D = 8.

Sinusoidal positional embeddings have a set of desirable properties, which support deep learning

architectures in grasping the concept of positional information123:

1 https://medium.com/@pranay.janupalli/understanding-sinusoidal-positional-encoding-in-

transformers-26c4c161b7cc, Accessed 29th of November 2024
2 https://www.scaler.com/topics/nlp/positional-encoding/, Accessed 29th of November 2024
3 https://kazemnejad.com/blog/transformer_architecture_positional_encoding/,

Accessed 29th of November 2024
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Figure 2.2: Visualization of sinusoidal positional encoding. The left side shows 2D Cartesian coordinates.
The right side visualizes the corresponding sinusoidal positional embeddings for D = 8.

1. Normalized Range. Since the embeddings have a value range of [−1, 1], the model is likely to

encounter the full value range during the training process and, thus, is likely to generalize to

unseen positions as well. Additionally, normalized data values contribute to training stability

by helping prevent potential exploding gradients.

2. Smoothness. The fact that sine and cosine functions are differentiable, smooth, and periodic

is beneficial for generalization to unseen positions.

3. Relative Distance. Sinusoidal positional embeddings enable a model to learn relative dis-

tances easily since for a fixed offset k, there is a linear function f such that f(PED(x)) =

PED(x+ k).

4. Global Coordinates. The embeddings capture the nested coordinates on a global scale,

enabling the model to interpret and reason about the overall positions of each embedded

coordinate.

5. Unique Position Encoding. Lastly, for any given position in the Euclidean space, there should

be a unique representation in the embedded space to avoid disambiguation. This property

holds until the sine wave with the largest frequency in embedding repeats itself. Due to the

large constant of 10,000 in the definition of the embedding, this does generally not occur in

praxis.

In this work, we use sinusoidal positional encodings to represent the position of each pixel in a

given image in a machine-learning-friendly manner. Subsequently, we transform a region of the

image and its associated coordinates using the Frenet coordinate transformation while keeping

track of the original pixel coordinates as a sinus embedding. This approach encodes the original

shape and global position of the region of interest prior to the Frenet transformation.

2.1.3 Homography

This section is based on the book Multiple View Geometry in Computer Vision by Harltey and

Zisserman [27].
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2.1 Coordinate Transformations

A two-dimensional homography, also known as a perspective transformation, is a special case of a

projective transformation, which maps a two-dimensional plane to another two-dimensional plane:

ζ : R2 → R
2

(x, y) 7→ (x̃, ỹ)

A homography is defined by a 3 × 3 matrix H :

H =









h11 h12 h13

h21 h22 h23

h31 h32 h33









=

[

A t

v⊤ 1

]

(2.3)

where:

A =

[

a11 a12

a21 a22

]

, t =

[

t1

t2

]

, v =

[

v1

v2

]

The sub-matrix A is called affine matrix, as it encodes the geometric transformations of an affine

transformation except the translation. t describes the translation necessary to transform one point

from the source to the target plane. The vector v determines the perspective distortion, which

allows parallel lines to meet at a vanishing point. Since we are using homogenous coordinates

to define the coordinate transformation, only relative ratios between the matrix elements matter,

meaning that the overall scale of the matrix H does not affect the transformation.

For the conversion of a point p = (x, y) from one plane to the other, we need to represent the point

in homogenous coordinates ph = (x, y, 1) and multiply with H:
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The transformed coordinates in Cartesian form can be obtained as:

x̃ =
x̃h

w̃h

, ỹ =
ỹh

w̃h

.

Figure 2.3 illustrates the homography coordinate transformation. We can see that the homography

transformation can be used to map a plane to another plane while preserving the straight lines.

In this work, we estimate the homography transformation to minimize the overall warping of the

document in the input image. Since the document in the input image is approximately a plane,

we use the estimated homography to map the document to a frontal view without perspective

distortion and skew, as well as non-optimal scaling and translation. Note that this mapping is not

capable of dewarping the fine-grained displacement since it only has eight degrees of freedom.
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Figure 2.3: Homography coordinate transformation.

2.1.4 Delaunay Triangulation

This section is based on the book Delaunay mesh generation by Cheng et al. [11].

Delaunay Triangulation, introduced by Boris Nikolaevich Delaunay in 1934, is a method for trian-

gular mesh generation given a finite set of points Pn ⊂ R
n. Even though the triangulation method

works on n-dimensional data points, we focus on the 2-dimensional case for our tasks.

In this work, we use the triangular mesh generated using the Delaunay Triangulation algorithm to

interpolate sparsely given coordinate mappings in order to allow for a coordinate transformation

from a rectangular source domain [0, 1]2 ⊂ R
2 to another rectangular target domain [0, 1]2 ⊂ R

2.

See Figure 2.4 (1) for an example set of points. Note that our example point set contains, among

others, the points (0, 0), (0, 1), (1, 0), (1, 1). These points are required for image-to-image mapping

since interpolation via meshing can only interpolate values inside the convex hull of our point set.

Given the point set P2 ⊂ R
2, there are many possibilities to generate a triangular mesh. One

desirable property of triangular meshes is maximizing the smallest angle between the sides of any

triangle. This property leads to a mesh, where the triangles are as little flat as possible. According

to this property, an optimal mesh contains only triangles with an angle of 60°. This is desirable

for interpolation since it leads to smaller distances between the points we want to interpolate and,

thus, less interpolation error. Delaunay triangulation satisfies this property, making it a suitable

interpolation method. Figure 2.4 (2) shows the Delaunay Triangulation of our example point set.

For transforming coordinates from a rectangular source domain to another rectangular target

domain via sparse control points, we can now associate a target vector vi ∈ [0, 1]2 to each point

pi ∈ P2. Figure 2.4 (3) shows the x-component of vi for each point in our example point set. Given

these target vectors and the triangulated mesh, we can interpolate the target vectors linearly

inside each triangle to generate a dense mapping, one for the x- and one for the y-component

of the mapping. Figure 2.4 (4) shows the dense mapping for the x-component of this example

coordinate transformation.
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Figure 2.4: Visualization of a coordinate transformation using Delaunay triangulation. For simplicity, we
only define and apply the transformation in x-direction.

For clarity, we applied our example coordinate transformation to an example input image (Fig-

ure 2.4 (5)), which results in the transformed image Figure 2.4 (6).

2.1.5 Dense coordinate mapping

Contrary to sparse coordinate mapping, 2D dense coordinate mapping is defined for a regular grid

of points, e.g., the pixels of an image. For each point in the grid, the dense coordinate mapping

provides an individually definable target coordinate in the target domain. Therefore, the dense

coordinate mapping can be represented as a 2D tensor M ∈ [0, 1]w×h×2, where w and h are the

width and height of the grid, respectively.

The mapping from source to target coordinate can be expressed as a function ηM :

ηM : [0, 1]2 → [0, 1]2

(x, y) 7→
{

Mx∗w,y∗h if (x ∗ w, y ∗ h) is on the grid,

Interp(M, x ∗ w, y ∗ h) otherwise.

Any point (x, y) on the grid is mapped to its target coordinate Mx∗w,y∗h. For points not on the

grid, we use bilinear interpolation to determine the target coordinate.

In this work, we use dense coordinate mapping to represent the geometric transformation from the

warped document image to the flatbed domain. We refer to the dense coordinate mapping from
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Figure 2.5: Example of a small forward map Fsmall ∈ [0, 1]8×8×2. Each vector in Fsmall maps from the
warped domain to the flatbed domain. For visual clarity, we visualized only four vectors. Note
that the vectors outside the warped image are undefined.
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Figure 2.6: Example of a small backward map Bsmall ∈ [0, 1]8×8×2. Each vector in Bsmall maps from the
flatbed domain to the warped domain. For visual clarity, we visualized only four vectors.

the warped domain to the flatbed domain as the forward map F̂ ∈ [0, 1]wf ×hf ×2 where wf and hf

define the resolution of the forward mapping. See Figure 2.5 for an example of a forward map.

In order to apply the geometric dewarping to an image, we need the reverse projection from

the flatbed domain to the warped domain. This projection, called backward map, is defined as

B̂ ∈ [0, 1]wb×hb×2, where wb and hb define the resolution of the backward mapping. Each cell in

the backward map contains a 2D vector pointing to the position in the warped image where the

flatbed pixel was moved during warping. Figure 2.6 shows an example of a backward mapping on

the left side. For comprehensibility, only the outermost backward vectors are visualized.
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2.2 Deep Learning Architectures

This work builds upon several deep learning architectures, namely the Vision Transformer [19]

(ViT ), Segment Anything [36] (SAM ), and LightGlue [49]. This section provides an overview of

these architectures and their components.

2.2.1 Transformer

This section is primarily based on the publication Attention Is All You Need by Vaswani et al.

[84].

A transformer is a network architecture centered around the attention mechanism. It was intro-

duced by Vaswani et al. [84] and was initially intended for natural language processing (NLP) tasks

such as machine translation. Contrary to previous architectures in NLP, the transformer architec-

ture does not rely on recurrent or convolutional layers but instead uses the attention mechanism to

model dependencies between input and output tokens. The attention mechanism allows the model

to selectively focus on specific information, similar to the human cognitive attention. Through the

attention mechanism, the model can process important information more efficiently, as it functions

as a resource allocation mechanism. Furthermore, it can be used for explainability, as it allows

visualizing the importance of each token in the input sequence for the output sequence [68].

The concrete attention mechanism, as used in [84], combines three feature vectors, each intended

to represent different types of information: queries, keys, and values. Queries are feature vectors

that describe what the model is looking for, i.e., the information the model is interested in. The

keys are feature vectors that relate to the kind of information that is stored in the values or when

it is relevant. Finally, the values are feature vectors that store the information that is relevant to

the queries.4 Formally, the scaled-dot product attention mechanism can be expressed as follows:

Attention(Q,K, V ) = softmax

(

QKT

√
dk

)

V (2.4)

where Q, K, and V are the query, key, and value matrices, respectively, and dk is the dimension

of the key vectors. Note that the attention mechanism can be extended to multi-head attention,

where the input is projected linearly into multiple subspaces, and the attention is computed in

each subspace before being concatenated and projected back into the original space. This allows

the model to capture different aspects of the input and to learn more complex patterns.

The transformer architecture consists of an encoder-decoder structure, where the encoder pro-

cesses the input sequence, and the decoder generates the output sequence. Figure 2.7 shows the

architecture of the transformer. Given an input sequence (x1, . . . , xn), the encoder generates a se-

quence of representations z = (z1, . . . , zn). Thereafter, the decoder generates the output sequence

(y1, . . . , ym) based on the output of the encoder z. In the following, we describe the architecture

in more detail. Note that this is not a comprehensive description of the transformer architecture.

The encoder contains self-attention layers, i.e., the queries, keys, and values are derived from the

input sequence using linear transformations. This allows the model to attend between every pair

of tokens in the input sequence, thus capturing their relationships.

4 https://notesonai.com/attention+mechanism, Accessed 07th of December 2024
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Figure 2.7: Transformer architecture. This figure is derived from Vaswani et al. [84], without significant
modifications..

The decoder differs from the encoder in two aspects: (1) it uses masked self-attention and (2) an

additional attention mechanism to attend to the encoder’s output. First, masked self-attention

is used to prevent the model from attending to future tokens, i.e., the model can only attend to

already generated tokens. During inference, the decoder generates the output sequence iteratively,

starting with a special start token. However, during training, the full target sequence is available,

and therefore, a masking mechanism is necessary to prevent the model from attending to future

tokens. Secondly, the decoder uses an additional attention mechanism to attend to the encoder’s

output. The queries are derived from the previous decoder layer, while the keys and values are

derived from the encoder’s output. This allows the decoder to attend to the full input sequence

and to generate the output sequence based on the already generated tokens.

The positional encodings are added to the input embeddings to provide the model with informa-

tion about the position of the tokens. Since the transformer architecture has no recurrence or

convolution, the model does not have any information about the position of the tokens in a given

sequence. Vaswani et al. [84] employ one-dimensional sinusoidal positional encodings as described

in Section 2.1.2.
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Figure 2.8: Vision Transformer architecture. This figure is derived from Dosovitskiy et al. [19], without
significant modifications.

In this work, we use an extension of the transformer architecture, the Vision Transformer (ViT ),

as a base model for geometric dewarping and illumination correction. In the following section, we

describe the Vision Transformer in more detail.

2.2.2 Vision Transformer

This section is primarily based on the publications An Image is Worth 16x16 Words: Transformers

for Image Recognition at Scale by Dosovitskiy et al. [19].

The Vision Transformer (ViT ) is a transformer-based architecture that was introduced by Doso-

vitskiy et al. [19] for image classification tasks. It was originally designed as an alternative to the

classic convolution-based ResNet [28] architectures and as a direct application of transformers to

images with the fewest possible modifications.

Figure 2.8 shows the architecture of the ViT . Given an input image I ∈ R
h×w×c, the image is

split into a sequence of flattened 2D patches xi ∈ R
p2·c, where p is the patch size, and (h,w)

are the height and width of the image, and c is the number of channels. The total number of

patches is n =
hw

p2
. Given the patches, a linear layer maps the patches to a D-dimensional

space, where D is the dimensionality used by the transformer. Since the transformer requires

positional information, learnable 1D positional embeddings are added to the patches. The authors

did experiment with 2D positional embeddings but did not observe a significant difference between

1D and 2D embeddings. Note that the positional embeddings are learned during training instead

of the sinusoidal positional encodings used in the original transformer architecture. Additionally,

a learnable class token, denoted as [class], is appended to the sequence. This token is used for the

classification task, and its final state after passing through the transformer encoder is processed by

a small MLP to make the final classification. The class token is designed to gather all the relevant

information for classification from the whole image.
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The transformer encoder itself consists of a stack of L layers. These layers are identical to the

original transformer layers, with one exception: the layer normalization is applied before the

self-attention and before the MLP. This modification is called pre-normalization and is beneficial

because it reduces the risk of vanishing or exploding gradients [87].

When comparing ViTs to CNN s, Dosovitskiy et al. [19] found that ViTs lack some inductive

biases of CNN s, such as translation equivariance, locality, and the two-dimensional neighborhood

structure. Translation equivariance means the model should produce the same but translated

output when the input is translated. Locality and the two-dimensional neighborhood structure

refer to the relation of pixels in a 2D image. CNN s inherently provide these biases through their

architecture, while ViTs must learn them. As a result, ViTs need larger datasets to outperform

CNN s in performance. However, when trained on sufficiently large datasets, ViTs are capable of

surpassing CNN s.

ViTs are not limited to image classification tasks but can be used for various tasks, such as

object detection, semantic segmentation, and image restoration [2, 33]. Specifically, the latter is

interesting for this work, as we use the ViT architecture for geometric dewarping and illumination

correction of document images.

2.2.3 Segment Anything

This section is based on the publication Segment Anything by Kirillov et al. [36].

Segment Anything (SAM ) [36] is a deep learning-based instance segmentation model, i.e., a model

that detects and isolates individual objects in an image. The intention behind SAM is to provide

a flexible yet powerful foundation model for image segmentation, which can be used as a building

block for more complex computer vision tasks, for example, semantic segmentation. In order to

achieve this, Kirillov et al. [36] define a new segmentation task, that is, segmenting individual

objects in an image based on prompts. A prompt is a user-provided input, such as a point or

bounding box, specifying which object or region the model should segment in the image. SAM

can handle four types of prompts: points, bounding boxes, coarse masks, and plain text. Points

indicate whether a specific region is included in the valid mask or excluded. A bounding box or

a coarse mask prompt specifies the region of interest. Lastly, a plain text prompt can guide the

model in focusing on a specific object or region in the image based on a textual description. SAM

consists of three components: (1) image encoder, (2) prompt encoder, and (3) mask decoder. For

a visual illustration of the different kinds of prompts and the architecture of SAM , see Figure 2.9.

The image encoder is a large vision transformer pre-trained as a masked autoencoder, with slight

modifications to the original transformer architecture to process high-resolution images [47]. Since

the image encoder is computationally expensive, the authors differentiate between the image en-

coder and the prompt encoder to reuse the image encodings for different prompts. That reduces

the computational cost of the model for multiple prompts.

The prompt encoder is used to encode the prompts into a fixed-size representation. Points and

bounding boxes are encoded using two-dimensional Fourier feature-based positional encodings [83]

and a learnable vector per prompt type. Plain text prompts are processed and encoded using the

text encoder from CLIP [72], a powerful multimodal model designed to link text and images in a

shared embedding space. For mask prompts, a convolutional network is used to encode the masks,

which are then added directly to the image features.
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Figure 2.9: Segment Anything architecture. This figure is based on Kirillov et al. [36]

Finally, the mask decoder is used to predict the masks based on the image and prompt encodings.

It consists of a variant of a transformer decoder block [84] and a mask prediction head. The mask

decoder predicts multiple low-resolution mask predictions and corresponding confidence scores.

The decision to predict multiple masks instead of a single mask allows the model to resolve ambi-

guity in the segmentation task. Given a region in an image, the intended object can be covered by

multiple masks, which can lead to ambiguity. During training, the model is trained to predict at

least one mask that covers the object by backpropagating only the minimum mask loss.

In this work, we use the SAM architecture for the instance segmentation of document images. We

use the detected document regions to remove the background and reduce the overall warping of

the document in the input image. This simplifies the geometric dewarping task for the subsequent

models.

2.2.4 LightGlue

This section is based on the publication LightGlue by Lindenberger et al. [49].

LightGlue [49] is a deep-learning model designed to match local features across images. These

features are typically sparse interest points with high-dimensional descriptors, which encode the
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local visual appearance of the region around the point. The model can find correspondences

between the images by matching these features across images.

Given two images, A andB, along with two sets of sparse features, FA = {di}M
i=1 and FB = {di}N

i=1,

where each di ∈ R
d is a d-dimensional real vector derived from a 2D point pi = (xi, yi), the goal is

to establish correspondences between the features in FA and FB . The correspondences are defined

as a set of pairs of indices C = {(i, j)}, where i and j are indices into the feature sets FA and FB ,

respectively.

The architecture of LightGlue consists of L stacked identical DL layers that process two sets of

features. In order to create a fast and memory-efficient model, the authors designed the model to

preemptively stop after a few layers instead of processing all layers. Additionally, the model can

discard unmatchable points early, which allows the model to focus on the most informative points.

Within each layer, the model takes the input features F k
A and F k

B , as well as the points PA and

PB , and computes a series of self-attention and cross-attention between the two sets of features.

Given the updated representations of the points, the authors calculate two different scores using

linear layers: assignment scores and matchability scores. The prior encodes the affinity for all pairs

of features to form a correspondence, while the latter encodes the likelihood of a feature having a

correspondence at all. Based on these scores, the model calculates a soft partial assignment matrix

P ∈ [0, 1]
M×N

, where Pij denotes the likelihood of the i-th feature in FA being matched to the

j-th feature in FB . The final assignments are determined by selecting (i, j) pairs, where Pij > τ

for a threshold τ , and there is no larger value in the same row or column.

In order to make the model fast and memory-efficient, it predicts a confidence score ci for each

feature at the end of each layer. A point is considered confidently matched if the confidence score

for that point is above a minimum confidence threshold. If the ratio of confidently matched points

is above a minimum ratio threshold α, the model stops processing further layers. Additionally,

the model reduces the number of points to process in the next layer by discarding points that are

neither confidently matched nor unmatchable.

In this work, we use the LightGlue architecture to match features from the warped document

images to their reference templates. Differently from the original approach, we do not match

points but instead features that resemble structural or textual lines in the document. We use the

matched features to improve the geometric dewarping process by aligning the warped document

images with the reference templates.

2.3 Evaluation Metrics

This section is based on the following publication:

Publication

Felix Hertlein et al. “Inv3D: a high-resolution 3D invoice dataset for template-guided

single-image document unwarping”. In: International Journal on Document Analysis and

Recognition 26.3 [2023], pp. 175–186. doi: 10.1007/S10032-023-00434-X

Since geometric dewarping and illumination correction are image-to-image translation tasks, the

evaluation metrics measure the similarity between the generated and the reference images. The
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similarity is evaluated between the flat invoice image and the processed image, whether it is de-

warped for geometric correction or light-corrected for illumination correction. Since not all metrics

are symmetric, we refer to the flatbed invoice image as the reference image and the processed image

as the source image. Note that the evaluation of both tasks individually cannot yield the optimal

evaluation scores, as both warping and illumination negatively impact image similarity. Only the

combination of both tasks can yield the optimal evaluation scores for a perfect model. Neverthe-

less, the evaluation of both tasks individually is valuable as we can compare the performance of

the models with the state-of-the-art methods.

In the following, we describe established metrics in the field of geometric dewarping and illumina-

tion correction to evaluate the performance of these approaches. The metrics can be divided into

visual and text-based metrics and are explained in the following sections.

2.3.1 Visual metrics

Visual metrics directly measure the perceived similarity between two images. In related work,

common visual metrics include MS-SSIM [90], LD [97], and LPIPS [104], which we explain in the

following. To make all visual metrics scale-invariant, both images are resized to a fixed area of

598400 pixels while retaining the ground truth aspect ratio similar to the work of Ma et al. [61].

MS-SSIM . Multiscale Structural Similarity (MS-SSIM ) [90] is an established perceptual metric

that measures the perceived change in structural information by calculating statistical properties

on multiple image windows at different scales. The metric consists of multiple structural similarity

(SSIM ) calculations on different scales of input and reference image in order to become scale-

invariant. Following the evaluation approach of Das et al. [16], the source and reference images

are converted to grayscale to ensure comparable values before applying the metric. The MS-SSIM

ranges between 0 and 1, whereas 1 denotes the optimal score.

LD. The local distortion (LD) as defined by You et al. [97] quantifies the similarity of two images

based on the SIFT flow [52]. Input and reference images are converted to dense SIFT feature

matrices and subsequently are matched pixel-wise to form the SIFT flow. The local distortion is

defined as the mean L2-norm of the SIFT flow. We applied the implementation and parametriza-

tion of Ma et al. [61] to grayscale images, following the procedure of Das et al. [16]. The LD ranges

between 0 and infinity, where 0 is the optimal score.

LPIPS. In addition to MS-SSIM and LD, the Learned Perceptual Image Patch Similarity (LPIPS)

metric, introduced by Zhang et al. [104], is employed to measure perceived image similarity. The

authors show that the LPIPS metric is better suited for measuring perceived image similarity than

SSIM . The metric is learned using a large-scale similarity preference dataset. For our evaluation,

we used the pre-trained weights provided by the authors based on the AlexNet [37] model. LPIPS

ranges between 0 and infinity, where 0 denotes the optimal score.

2.3.2 Text-based metrics

For many use cases, such as information extraction, a text-based metric is better suited to evaluate

geometric dewarping and illumination correction, as they focus on the text-readability within the

images. Given both images to be compared, the text-based metrics evaluate the similarity by first

extracting the text from the images using optical character recognition (OCR) and then comparing
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the extracted text. Following Das et al. [16], the open source engine Tesseract 4.0.0 [78] is used for

OCR. In order to detect the text in images, the input image requires a sufficiently high resolution

with respect to the contained text size. Therefore, we scaled both images to a size of 3740000

pixels while preserving the aspect ratio of the reference image. To evaluate the recognized text,

there are two different metrics ED and CER as described below.

ED. The Edit Distance (ED), also known as the Levenshtein distance [43], is defined as the mini-

mum number of insertions, deletions, and substitutions required to transform an input text to the

corresponding reference text. The optimal score is 0, where the input text equals the reference

text.

CER. The character error rate (CER) [1] is defined as the edit distance between input and reference

divided by the number of characters in the reference text, i.e., the detected text in the flatbed

invoice image. The normalization by the number of characters in the reference text allows for

a length-independent comparison between texts of different lengths. Note that even though the

CER is normalized with respect to the reference text length, it still ranges from 0 to infinity, as

the length of the source image text can be arbitrarily long.

2.4 Summary

Summarizing the foundational concepts of this work, we began by introducing various coordinate

transformations, including Frenet coordinates [91], sinusoidal positional encoding [84], homogra-

phy [27], Delaunay triangulation [11], and dense coordinate transformations. Representing data

using Frenet coordinates and sinusoidal positional encodings enables a compact and machine-

learning-friendly representation of curves and their surroundings. Homography, Delaunay trian-

gulation, and dense coordinate mappings are used to map between 2D-dimensional coordinate

systems to model geometric dewarping transformations. Homographies are limited to eight de-

grees of freedom, while Delaunay triangulation allows for interpolating sparse control points to

generate free-flow dense mappings.

In Section 2.2, we introduced the deep learning architectures used in this work, including the Trans-

former [84], Vision Transformer [19], Segment Anything [36], and LightGlue [49]. The transformer

architecture is the fundamental building block for the other architectures. Vision Transformer is

introduced since it is the core model for our approaches to geometric dewarping and illumination

correction. We explain the Segment Anything architecture, which we use, for instance, in the

segmentation of document images in this work. Lastly, we introduce LightGlue, a model capable

of matching local features across images. We use LightGlue to match features across the warped

documents and the reference templates to improve the geometric dewarping process.

Lastly, we introduced the established evaluation metrics for geometric dewarping and illumination

correction, including visual metrics such as MS-SSIM [90], LD [97], and LPIPS [104], as well as

text-based metrics such as ED [43] and CER [1].
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In this chapter, we present an overview of the related work with regard to our research questions. In

general, document image enhancement is performed in two stages. First, the geometric distortions

are corrected, followed by the correction of lighting artifacts in the captured image. We divide the

literature accordingly into three categories: (1) geometric dewarping (Section 3.1), (2) illumination

correction (Section 3.2), and (3) datasets (Section 3.3). In the following, we present the relevant

works from these areas and highlight the differences in the approaches described in this thesis.

3.1 Geometric Dewarping

Document image dewarping is a widely researched topic in document analysis aimed at correcting

geometric distortions in document images to enhance subsequent analysis tasks. However, the geo-

metric dewarping task is challenging due to the complex deformations that can occur in document

images.

In recent years, several approaches have been proposed to tackle the geometric dewarping problem.

In Table 3.1, we present an overview of the different approaches for geometric dewarping over

the last several years. Further details on the proposed approach are provided along with the

paper reference, year of publication, and a short name for the architecture. In column Base

Architecture, we state the employed machine learning architecture or established network for each

work. The remaining columns show the following attributes, which can help to distinguish between

the approaches:

• Multiscale approaches consider the input image or the internal features at different resolutions

to enable the network to handle local and global deformations differently.

• Patch-based works break down the dewarping task by subdividing the input image in smaller

patches, solve the dewarping on the patch level, and stitch the results together.

• Line-based approaches focus on visual lines in the documents, such as text lines, structural

lines, and borders of the documents.

• Iterative papers try to generate an initial dewarping guess and progressively update/improve

the dewarping guess until there is a termination condition.

• Model-based approaches assume a specific model for the document deformation and try to

estimate the model’s parameters.

• And lastly, we highlight solutions that leverage reference templates in addition to the input

image as an aid for the model on how to dewarp the input image.
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Ma et al. [61] 2018 DocUNet U-Net ✓ - - - - -

Meng et al. [64] 2018 - - - - - - ✓ -

Li et al. [46] 2019 DocProj CNN - ✓ - - - -

Das et al. [16] 2019 DewarpNet U-Net ✓ - - - - -

Burden et al. [7] 2019 - - - - ✓ - ✓ -

Ramanna et al. [73] 2019 pix2pixHD CGAN - - - - - -

Markovitz et al. [62] 2020 CREASE U-Net + DenseNet ✓ - - - - -

Xie et al. [92] 2020 - CNN ✓ - - - - -

Liu et al. [56] 2020 AGUN U-Net ✓ - - - - -

Vinod and Niranjan [86] 2020 - - - - ✓ - - -

Feng et al. [21] 2021 GeoTr Transformer - - - - - -

Xie et al. [93] 2021 DDCP CNN - - - - - -

Das et al. [18] 2021 - U-Net + DenseNet + FPN ✓ ✓ - - - -

Garai et al. [24] 2021 - CNN - - ✓ - ✓ -

Simon and Tabbone [75] 2021 - - - - - - ✓ -

Bandyopadhyay et al. [5] 2021 RectiNet-v2 U-Net + CNN ✓ - - - - -

Xue et al. [96] 2022 FDRNet CNN - - ✓ - - -

Jiang et al. [34] 2022 - U-Net ✓ - ✓ - - -

Zhang et al. [102] 2022 Marior CNN - - - ✓ - -

Ma et al. [60] 2022 PaperEdge CNN - - ✓ - - -

Feng et al. [23] 2022 DocGeoNet CNN - - ✓ - - -

Feng et al. [22] 2022 DocScanner CNN + ConvGRU - - - ✓ - -

Xu et al. [95] 2022 - U-Net + DenseNet ✓ - - - - -

Das et al. [15] 2022 - MLP - - - - - -

Luo and Bo [59] 2023 - - - - ✓ ✓ - -

Feng et al. [20] 2023 DocTr++ CNN + Transformer ✓ - - - - -

Zhang et al. [100] 2023 DocAligner CNN + ConvGRU ✓ - ✓ ✓ - -

Dai et al. [14] 2023 MataDoc Transformer - - ✓ - - -

Li et al. [44] 2023 - CNN + Transformer - - ✓ - - -

Li et al. [45] 2023 - CNN - ✓ - - - -

Liu et al. [53] 2023 - Transformer - - ✓ - - -

Nachappa et al. [66] 2023 - - - - ✓ - - -

Zhang et al. [106] 2023 Polar-Doc Transformer - - - - - -

Liu et al. [54] 2023 DocMAE Masked AE - - - - - -

Yu et al. [98] 2024 DocReal CNN + Transformer - - ✓ - - -

Kumari and Das [39] 2024 DocTLNet CNN ✓ - - - - -

Hertlein et al. [31] (ours) 2023 GeoTrTemplate Transformer - - - - - ✓

Hertlein et al. [32] (ours) 2025 DocMatcher Transformer - - ✓ - - ✓

Table 3.1: Overview of the related work on geometric dewarping. We list our publications for completeness.
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As indicated by the table, to the best of our knowledge, there are no publications that leverage

reference template information except our own publications. Note that a given paper may fit into

multiple categories or might not be associated with any of them.

Multiscale approaches. Many works are based on multiscale approaches [61, 16, 73, 62, 56, 5, 18,

34, 95, 20, 100]. Ma et al. [61] presented a pioneering approach to this problem called DocUNet.

The approach is based on two stacked U-Nets, one for estimating the forward map and the second

for inverting the forward map to get a backward map. Given the architecture of the U-Nets, this

approach handles features representing the input image at different scales. Based on this work,

Bandyopadhyay et al. [4] propose to integrate gated convolutional layers in the architecture to help

the network focus on the line-level document features. Similar to [61], Das et al. [16] also employ

U-Nets for dense grid estimations, but contrary to the prior works, they lift the problem from 2D to

3D. Instead of searching for a 2D displacement map (forward map), they estimate the 3D positions

of all pixels before inferring the backward map based on the 3D positions. Markovitz et al. [62]

approach the problem similarly via the intermediate 3D map and integrate additional losses for

the document curvature and local angles to straighten it further. Unlike previous works, Liu et al.

[56] present a pyramid encoder-decoder architecture that concatenates the input image at different

scales explicitly. Xie et al. [92] propose a hierarchical Convolutional Neural Network (CNN )

similar to a U-Net without skip-connections to estimate the displacement flow and the document

segmentation. Additionally, they present a local smoothness constraint for regularization during

training, which preserves local document details. Das et al. [18] employ a U-Net module to estimate

the 3D shape of the document similar to [16], before dividing the overall document into patches

for further processing. Contrary to the previous approaches, Jiang et al. [34] leverage the power of

DocUNet and U-Net to detect the boundaries and the text lines of the document, which then build

the basis for a grid regularization in order to determine the dense backward map. Similar to [16,

18], Xu et al. [95] employ a U-Net as a backbone to reconstruct the 3D coordinates of the document.

The authors extend the previous works by training the model as a Siamese Network, i.e., using

contrasting features from contrasting input images. The approaches DocTr++ and DocAligner

by Feng et al. [20] and Zhang et al. [100] are both primarily based on a transformer architecture,

which is adapted to handle image features at different resolutions. Most recently, Kumari and Das

[39] proposed a new hierarchical geometric dewarping model called DocTLNet based on transfer

learning. Their method is trained to simultaneously categorize the distortion type and estimate

the backward map using a U-Net like architecture.

Patch-based approaches. The first patch-based approach to document dewarping was presented

by Li et al. [46] in 2019. Their model slices the input image into patches, dewarps the patches

individually using a CNN , and stitches the resulting flows back together. The advantage of this

approach over full image networks lies in the problem simplification since the geometric deformation

in each patch is less complex than the overall deformation. Das et al. [18] propose a model that

attempts to infer both the global warping and the local warping per patch before merging all of

them together. Notably, their model is end-to-end trainable since they employ a neural network to

combine all warp information. Recently, Li et al. [45] proposed a patch-based layout-aware model.

The authors employ a segmentation model to yield layout-specific segmentation masks, which are

then leveraged in the patch-merging process.

Line-based approaches. Since documents contain visually rich structures such as text lines, table

lines, and document borders, many approaches were presented that detect those features in the

warped document image and leverage this knowledge in the dewarping process. Earlier line-based

approaches (since 2018) were presented by Burden et al. [7], Vinod and Niranjan [86], and Garai
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et al. [24]. All three models only consider simple deformations of the document, for instance

curls, which simplifies the dewarping task significantly. In contrast, Jiang et al. [34] propose

a line-based model which can also process complex deformations. They detect the document

boundaries and the text lines before determining the backward map using grid regularization.

Crucially, this method assumes horizontally and vertically aligned lines in the document. Similarly,

Luo and Bo [59] consider the dewarping problem a constrained optimization problem based on

the document boundaries and text lines. In contrast to the prior method, the constraints are

formulated differently. They constrain the text lines only to be straight and the paper sheet to

be non-stretchable. In a different approach, many works first pre-dewarp the input images before

performing a follow-up fine-grained dewarping step. This involves implicitly or explicitly detecting

the document boundaries and using them to partially dewarp the document, ensuring it fills the

entire image space [60, 100, 98]. This simplifies the task for the downstream network, as all pixels

can be assumed to be within the document borders. Similarly, Xue et al. [96] and Liu et al. [53]

build on a two-stage process: a coarse and a refinement transformer. In contrast to the three

works mentioned above [60, 100, 98], the edge is not explicitly represented but rather a full coarse

displacement field. The former approach [96] is unique since the training partially takes place in the

Fourier space, enabling low-pass filtering of the image. This focuses the model on the details rich

in information. Interestingly, in the latter approach [53], the authors introduce a self-consistency

loss based on the observation that the rectified image should be identical for multiple warped

document images, which were derived from the same base image. Differently from the previous

works, Feng et al. [23] and Dai et al. [14] both define additional losses based on the text lines within

a document. The prior is a transformer-based approach intended to learn the global 3D coordinates

and simultaneously the text mask. The latter, MataDoc, is trained with losses based on the text

lines and document borders. In contrast to prior work, MataDoc was designed to dewarp partially

visible documents as well. Li et al. [44] explicitly detect the text lines and document mask and

use this information to cross-attend between both branches. Vastly different from all previous

works, Nachappa et al. [66] propose a non-learning-based approach to dewarp documents. They

detect control points along the document borders using the Hough transformation, followed by a

cylindrical surface projection as proposed in [63].

Iterative approaches. The model DocScanner presented by Feng et al. [22] contains a recurrent

architecture based on a convolution-based variant of Gated Recurrent Units (GRU s) [12]. With

this recurrent model, they keep a single estimate of the dewarping flow and iteratively refine it.

Thus, their model is relatively lightweight compared to a single-pass network. With Marior, Zhang

et al. [102] propose a different iterative approach. Instead of a recurrent machine learning network

that contains the current dewarping encoded in its state, they infer the backward map multiple

times and apply it directly to the input image to reduce the necessary displacement with each

iteration. Unlike previous works, Luo and Bo [59] present a non-learning-based iterative approach.

Instead of a neural network, they search iteratively for an isometric mapping from the 3D to the

2D plane, which follows the constraints of the document boundaries and text lines. In 2023, Zhang

et al. [100] pick up the idea of using convolution-based GRU s for refining their estimate of a

backward map in a more detailed resolution. Their previous step yields a flow estimation of 1/4

the size of the input image, and their refinement module allows for a refinement of said flow in full

resolution.

Model-based approaches. Some approaches are based on a model of the document deformation

[64, 7, 24, 75]. These works typically assume that a simple parametrized model can describe the

deformation. Meng et al. [64] and Simon and Tabbone [75] both utilize a cylindrical surface model

to represent document deformation. In contrast, Burden et al. [7] propose a more complex model
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that combines multiple curved surface models to represent text and non-text regions individually.

Lastly, Garai et al. [24] introduce a mathematical model of warping, which is capable of describing

three patterns for curling and propose a CNN -based approach to find these dewarping factors.

Other approaches. Not all approaches fall into any of the above-mentioned categories. Ramanna

et al. [73] consider the dewarping problem as an image-to-image translation task and employ a

Conditional Generative Adversarial Network (CGAN ) in their approach. Xie et al. [93] present

an encoder-based approach that aims to detect sparse control points mapped to a regular grid

and interpolate the dewarping map between the control points. Sparse control points allow for a

simple human interaction when correcting suboptimal points. Zhang et al. [106] likewise attempt

to detect control points, the 3D shape and points along the border. The authors propose to

represent these points in polar coordinates. In 2021, Feng et al. [21] proposed using attention-

based models for geometric dewarping for the first time. They divide the input image into patches,

deep encode them, and let the patches attend to each other using a transformer architecture before

recombining and upscaling the resulting features. In contrast to all previous works, the approach

DocMAE by Liu et al. [54] uses self-supervised representation learning to transfer the document

image encoding capabilities from autoencoders to a dewarping network. In a pretraining stage,

they train an autoencoder (AE) to fill in the gaps in a masked image. The encoder weights are later

used in an encoder-decoder architecture for displacement flow prediction. This approach enables

the pretraining of the encoder on large-scale unlabeled datasets, thus reducing the gap between

the synthetic annotated data domain and the real-world applications. In a fundamentally different

approach, Das et al. [15] employ neural rendering to learn an implicit surface representation of

a dewarped document from multiple views of the document. This approach not only allows for

document dewarping, but also for texture replacement in the warped domain.

3.1.1 Discussion

In contrast to prior work, our attempt to solve the geometric dewarping problem uses reference

templates as an additional input along with the warped document images. To the best of our knowl-

edge, there are no previous works for document dewarping with the help of reference templates in

the era of deep learning. In this thesis, we investigate the benefits of the provided reference tem-

plate. In our evaluation, we will compare ours and the state-of-the-art papers to show the benefit

of reference templates. When comparing our methods to the related work, it is crucial to remember

that our approaches have more information available in both training and inference time. While

the availability of reference templates is less flexible than template-free methods, many real-world

use cases exist where reference templates are available or can be provided easily to facilitate the

dewarping problem. See Section 1.2.1 for more details on the applicability of our approach.

Our second approach, DocMatcher, can also be categorized as line-based since we explicitly detect

and match structural and text lines from the warped domain to the normalized domain. We are

not the first to explicitly detect the text lines within the document [34, 59]. However, since their

approaches do not have reference templates available, thus, it cannot leverage the knowledge about

the true position of each line in the flatbed document. Instead, they attempt to straighten and axis

align the detected lines. We, on the other hand, can associate the warped lines to the template

lines and, thus, know the absolute position for said line within the document.
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3.2 Illumination Correction

This section is based on the following publication:

Publication

Felix Hertlein and Alexander Naumann. “Template-guided Illumination Correction for

Document Images with Imperfect Geometric Reconstruction”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision Workshops. IEEE, 2023,

pp. 904–913. doi: 10.1109/ICCVW60793.2023.00097

Illumination correction can be subdivided into two categories: Document Image Binarization (DIB)

and Document Image Enhancement (DIE). DIB maps all colors to a binary signal, effectively

reducing the image to a black-and-white representation. On the other hand, DIE aims to enhance

the document image by attempting to restore the original colors. Table 3.2 provides an overview

of the related work on illumination correction.

3.2.1 Document Image Binarization

In the past, various works have been conducted on document image binarization [58, 82, 50, 3, 51,

8, 35, 79, 26, 80, 66, 67, 103]. Early work was presented by Lu et al. [58] and Su et al. [82]. A

diverse array of binarization algorithms was assessed by Lins et al. [50]. Almeida et al. [3] pro-

posed an approach for image binarization inspired by Otsu’s method [70] for pixel thresholding.

In 2019, the International Conference on Document Analysis and Recognition (ICDAR) hosted a

binarization competition that included a benchmark of thirty distinct binarization algorithms [51].

Calvo-Zaragoza and Gallego [8] presented a convolutional auto-encoder architecture. DE-GAN

by Souibgui and Kessentini [81] uses conditional Generative Adversarial Networks for multiple

document enhancement tasks. Kang et al. [35] proposed a document binarization method using

cascading UNets to cope with the limited number of training images. In 2022, Souibgui et al. [79]

presented DocEnTr, an encoder-decoder architecture based on vision transformers without any

convolutional layers. Gonwirat and Surinta [26] proposed DeblurGAN, a CNN -GAN hybrid, for

enhancing noisy handwritten characters. In 2023, Souibgui et al. [80] introduced Text-DIAE, a

transformer-based model that utilizes self-supervised pretraining to enhance document binariza-

tion. Contrary to previous work, Nachappa et al. [66] integrate a traditional binarization algorithm

called Adaptive Thresholding [6] in their dewarping and illumination correction pipeline. Recently,

Neji et al. [67] proposed a binarization model called Doc-Attentive-GAN. The core idea is to use

attention maps to support the generator’s focus on the transformation from the input domain to

the binarized image version. Finally, Zhang et al. [103] presented a unified model for multiple docu-

ment image restoration tasks, including DIB and DIE . The authors present one feature extraction

method per task to yield a unified input format, which is then restored using a transformer-based

architecture called Restormer [99].

3.2.2 Document Image Enhancement

Significant advancements have been made in the field of DIE recently. Das et al. [16] introduced

a refinement network based on a stacked U-Net architecture, as outlined in their work titled De-

warpNet. The proposed network aims to predict a shading map, which is subsequently applied
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Lu et al. [58] 2010 - - ✓ - -

Su et al. [82] 2012 - - ✓ - -

Lins et al. [50] 2017 - - ✓ - -

Almeida et al. [3] 2018 - - ✓ - -

Lins et al. [51] 2019 multiple various ✓ - -

Calvo-Zaragoza and Gallego [8] 2019 SAE AE ✓ - -

Das et al. [16] 2019 DewarpNet U-Net - ✓ -

Li et al. [46] 2019 DocProj CNN - ✓ -

Souibgui and Kessentini [81] 2020 De-gan GAN ✓ - -

Lin et al. [48] 2020 BEDSR-Net CNN + CGAN - ✓ -

Kang et al. [35] 2021 CMU-Nets U-Net ✓ - -

Feng et al. [21] 2021 IllTr Transformer - ✓ -

Souibgui et al. [79] 2022 DocEnTr Transformer ✓ - -

Gonwirat and Surinta [26] 2022 Deblurgan-cnn GAN + CNN ✓ - -

Xue et al. [96] 2022 FDRNet CNN - ✓ -

Wang et al. [88] 2022 UDoc-GAN GAN - ✓ -

Souibgui et al. [80] 2023 Text-DIAE AE ✓ - -

Nachappa et al. [66] 2023 - - ✓ - -

Zhang et al. [101] 2023 GCDRNet U-Net - ✓ -

Neji et al. [67] 2024 Doc-Attentive-GAN GAN ✓ - -

Zhang et al. [103] 2024 DocRes Transformer ✓ ✓ -

Kumari and Das [39] 2024 DocTLNet CNN - ✓ -

Hertlein and Naumann [30] (ours) 2023 IllTrTemplate Transformer - ✓ ✓

Table 3.2: Overview over the related work on illumination correction. We list our publications for com-
pleteness.

to the dewarped image using element-wise division. Li et al. [46] proposed a convolutional net-

work with residual layers to infer the illumination-corrected image directly. In 2021, Feng et al.

[21] introduced a transformer encoder-decoder structure for document image enhancement called

IllTr. Their approach splits the input document image into a sequence of patches, which are then

processed individually and stitched together afterwards. Xue et al. [96] proposed to remove illu-

mination artifacts by transforming the input image and a blank paper to the Fourier space and

then replacing the lower frequencies in the input image with the frequencies of the blank paper.

In contrast to the previous works, Lin et al. [48] and Wang et al. [88] focus on GAN s for DIE .

Both works put a preparation network in front of their DIE network, whose task is to detect global

priors such as the document background color or global illumination. Furthermore, Zhang et al.

[101] present a stacked U-Net architecture with multiple losses at different scales. The prior U-Net

processes a down-scaled version of the document in order to capture global context, whereas the

latter U-Net focuses on the details. In 2024, Kumari and Das [39] present DocTLNet, a network
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for geometric dewarping and illumination correction. The latter uses a CNN with skip connec-

tions. Lastly, there is DocRes, the unified approach for multiple document image improvement

tasks (including DIE) by Zhang et al. [103]. See Section 3.2.1 for a brief explanation.

3.2.3 Discussion

In this thesis, we propose a document image enhancement approach called IllTrTemplate. Our ap-

proach integrates reference templates as an additional prior in contrast to the previous approaches.

To the best of our knowledge, there is no other work that leverages reference templates for illu-

mination correction in the deep learning era. The work of Xue et al. [96] comes closest to the

idea of templates, since they replace the low-frequency components of the dewarped image with

the respective components of a blank paper. Thus, the blank paper can be considered a primitive

template as it provides information about the expected appearance. In contrast to this work,

we integrate and leverage full reference templates, so our references contain not only information

about the expected structures and text in the document but also information regarding the true

colors of the document.

Similar to many related works [16, 46, 21, 96, 66, 39], we consider the illumination correction as a

downstream task after geometric dewarping. Since geometric dewarping is not entirely solved, there

are still some geometric distortions in the input images for illumination correction. In contrast to

the previous works, we investigate the effects of the remaining geometric distortions at different

levels.

3.3 Datasets

In order to train and evaluate deep learning models, there is a need for realistic large-scale datasets.

Over the years, numerous datasets for geometric dewarping and illumination correction have been

created and, in many cases, published. We list relevant datasets and their key characteristics in

Table 3.3. For each dataset, the table denotes the authors, year of publication, dataset name,

number of samples, and whether the dataset is generated synthetically or not. Furthermore, we

state the following binary flags:

1. Public Availability. The first flag indicates whether the dataset was made public. Note that

a few datasets are intended to be public but cannot be downloaded at the time of writing.

2. 3D. The 3D flag indicates whether the document deformations are in 3D or 2D.

3. Crumples. With the third flag, crumples, we indicate the existence of crumples in the de-

formed documents since they are the hardest kind of deformation due to their fine-grained

displacements.

4. High Resolution. The high-resolution flag is true if at least one side of the document images

has a resolution of 1000 pixels or higher. For the downstream task of information extraction,

text readability is essential, which requires high-resolution images.

5. Pixel-wise GT. With flag five, we indicate whether a dataset has per-pixel ground truth

annotations for geometric dewarping, i.e., a forward or backward map.
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6. Flat Document. The sixth flag indicates the availability of the pristine flat document for each

warped document.

7. Reference Templates. And lastly, we show whether reference templates are available for each

sample in the respective dataset.

Note that we could not determine all values in the table for unpublished or unavailable datasets.

We marked those values with ?.

The datasets can be divided into three principal categories based on their generation process: (1)

synthetic, (2) real, and (3) hybrid. The following sections give more details on the datasets and

the differences between them.

3.3.1 Synthetic datasets

Since synthetic data generation can be fully automated, synthetic datasets are generally larger than

real-world datasets. In literature, there are eight datasets with at least 10k samples [61, 16, 62,

93, 55, 23, 20, 100] and only two with fewer samples [46, 4]. Another advantage of synthetic data

generation is that there is full knowledge about the ground truth dewarping available. Thus, all

synthetic datasets, without exception, provide the ground truth per-pixel dewarping annotations.

There are two fundamental ways to generate synthetic samples: 2D and 3D. The 2D approaches

take a flat mesh and apply various 2D deformations to the mesh in order to generate the ground

truth deformation, which is then applied to a flat document image [61, 92, 4, 93, 55, 100]. One

example of such a 2D deformation could be shifting control points and proportional editing of

the surrounding mesh. On the other hand, 3D-based synthetic dataset generation pipelines use a

3D rendering engine in order to simulate the document under configurations that are as realistic

as possible [16, 46, 62, 23, 20, 45]. When comparing the 2D and the 3D-based approaches, the

former method is significantly faster to compute whilst still generating reasonably realistic samples.

On the contrary, 3D-based methods are highly computationally expensive but generate the most

realistic synthetic samples since the rendering engine can simulate the physical piece of paper and

realistic lighting conditions. Moreover, another significant difference to the previous datasets was

introduced by Li et al. [45] and Zhang et al. [100]. The datasets resulting from the two works

both provide details about the layout of the warped document in the form of segmentation masks

and labels. This layout information is suitable for training models to recognize and consider the

layout blocks in the document. However, these annotations cannot be used to generate reference

templates, as they do not distinguish between fixed layout elements (e.g., logos) and content-

dependent layout elements (e.g., shipping addresses).

3.3.2 Real datasets

Since the capturing process of real document datasets cannot be fully automated and consequently

requires manual labor, the dataset sizes are generally significantly smaller than synthetic datasets.

In literature, we found eight datasets with less than 1.1k samples [61, 24, 96, 55, 23, 20, 66, 108]

and only three larger datasets [60, 100, 107]. Moreover, the larger datasets are still relatively

small compared to synthetic datasets. Generating real datasets generally includes capturing real-

world physical documents with cameras and associating these warped images with the pristine

versions of the document, either the unprinted digital version or a scan of the physical document.

Unlike simulated data, all real datasets lack precise per-pixel ground truth annotations. This is
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Ma et al. [61] 2018 DocUNet 100k synthetic - - - - ✓ ✓ -

Ma et al. [61] 2018 DocUNet Bench. 130 real ✓ ✓ - ✓ - ✓ -

Das et al. [16] 2019 Doc3D 100k synthetic ✓ ✓ ✓ - ✓ - -

Li et al. [46] 2019 DRIC 2450 synthetic ✓ ✓ - ✓ ✓ ✓ -

Markovitz et al. [62] 2020 CREASE 15k synthetic - ✓ ✓ ✓ ✓ - -

Das et al. [17] 2020 Doc3DShade 90k hybrid ✓ ✓ - - - - -

Xie et al. [92] 2020 DIWF 80k synthetic - - - ✓ ✓ ✓ -

Bandyopadhyay et al. [4] 2021 RectiNet 8k synthetic - - - ? ✓ ? -

Xie et al. [93] 2021 DDCP 30k synthetic - - - ✓ ✓ ✓ -

Garai et al. [24] 2021 WDID 258 real ✓ ✓ - ✓ - ✓ -

Ma et al. [60] 2022 DIW 5k real ✓ ✓ ✓ - - - -

Xue et al. [96] 2022 WarpDoc 1020 real ✓ ✓ ✓ ✓ - ✓ -

Liu and Liu [55] 2022 ADIU-syn 10.8k synthetic - - - ? ✓ ✓ -

Liu and Liu [55] 2022 ADIU-real 200 real - ✓ - ? - ✓ -

Feng et al. [23] 2022 DIR300 train 100k synthetic - ✓ ✓ - ✓ ✓ -

Feng et al. [23] 2022 DIR300 test 300 real ✓ ✓ ✓ ✓ - ✓ -

Li et al. [45] 2023 SP ? synthetic - ✓ ✓ ? ✓ ? -

Verhoeven et al. [85] 2023 UVDoc 20k hybrid ✓ ✓ ✓ ✓ ✓ ✓ -

Zhang et al. [100] 2023 DocAlign12k 12k synthetic - - - ? ✓ ✓ -

Zhang et al. [100] 2023 DocAligner-applied 2.5k real ✓
*

✓ ✓ ✓ ✓
†

✓ -

Feng et al. [20] 2023 UDIR train 100k synthetic - ✓ ✓ - ✓ ✓ -

Feng et al. [20] 2023 UDIR test 195 real ✓ ✓ - ✓ - ✓ -

Nachappa et al. [66] 2023 multiple 958 real ✓
*

✓ ? ✓ - ? -

Zhang et al. [107] 2024 DocReg 12.5k real ✓
*

✓ ? ✓ ✓
†

✓ -

Zhang et al. [108] 2024 WarpDoc-R 840 real ✓
*

✓ ✓ ✓ ✓
†

✓ -

Hertlein et al. [31] (ours) 2023 Inv3D 25k synthetic ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hertlein et al. [31] (ours) 2023 Inv3DReal 360 real ✓ ✓ ✓ ✓ - ✓ ✓

Table 3.3: Overview over the related datasets on geometric dewarping and illumination correction. We
list our datasets for completeness. The public availability information is stated as of November
9, 2024. Attributes marked with the ? operator indicate unknown values due to the dataset’s
unavailability to the public. Datasets marked with ✓

* are intended to be publicly accessible
but are currently unavailable due to technical issues. Datasets marked with ✓

† have estimated
per-pixel annotations instead of true flow fields. Parts of this table were previously published in
[31].
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because even for humans, it is unclear where a pixel from the warped domain should correspond

in the flat domain. Due to this problem, most real datasets do not provide any per-pixel ground

truth annotations [61, 24, 60, 96, 55, 23, 66, 20], which poses a unique challenge for training and

evaluation of AI models. Recently, three datasets were proposed to circumvent the lack of per-pixel

annotations [100, 107, 108]. Zhang et al. [100] first train a model on synthetic data, then apply the

trained model on real data to obtain the pixel alignment, and lastly, retrain their model with the

newly generated real-world dataset. Differently, Zhang et al. [107] and Zhang et al. [108] propose

document registration approaches, i.e. given a warped document and the flat image as input,

the goal is to find the true per-pixel annotation. Document registration methods are the closest

approach in the literature to our concept of using reference templates for document dewarping. In

document registration, a flat, pristine version of the document is available for inference, whereas

our approach relies solely on template images that can be prepared in advance. It is crucial to note

that all three approaches to determining the true per-pixel annotations yield approximated flow

fields whose quality depends on the performance of the employed models. However, this problem

does not exist for synthetic data, as true per-pixel annotations can be extracted from the simulation

process.

3.3.3 Hybrid datasets

Hybrid datasets [17, 85] combine synthetic and real dataset generation techniques. The idea is to

capture and isolate the lighting conditions in real settings and apply those to synthetic textures.

This approach enables the generation of large-scale datasets while simultaneously enabling realistic

illumination. The most significant difference between the datasets of Das et al. [17] and Verhoeven

et al. [85] is that the former lacks dewarping ground truth and, therefore, is limited to illumination

correction, while the latter can be used for both dewarping and illumination correction.

3.3.4 Discussion

In this work, we propose two datasets: (1) a synthetic dataset called Inv3D with 25k samples and

(2) a real dataset with 360 samples called Inv3DReal. In contrast to all prior work, both datasets

provide the correct reference template along with the warped document and the flat document. To

the best of our knowledge, there are no datasets for document dewarping and illumination correc-

tion that include said reference templates. The synthetic dataset is based on the rendering pipeline

of Doc3D [16], which is why the dataset characteristics are largely similar to the ones of Doc3D.

The main differences are the document type, dataset size, resolution of the warped document, and

the availability of a reference template. Like most real datasets, our dataset Inv3DReal is relatively

limited in size and does not provide per-pixel annotations. However, unlike synthetic datasets, it

does not contain rendering artifacts which might affect the generalization of models trained on

synthetic data to real-world applications. Contrary to the widely used benchmark DocUNet [61],

our dataset is generated systematically by applying different deformation categories per document

to allow for a comparison based on the deformation type.
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3.4 Summary

In this chapter, we reviewed related work on geometric dewarping and illumination correction,

covering both the approaches and the datasets, and highlighted how our contributions relate to

them. To the best of our knowledge, our key idea of utilizing a priori known reference templates

is entirely novel in the field of deep learning. We focused our research on related work from the

years 2018 and newer since the deep learning field is rapidly evolving, and thus, older publications

lose relevance quickly.

In Section 3.1, we reviewed the literature on geometric dewarping techniques and showed the need

for new approaches capable of leveraging additional information. Furthermore, we compared our

novel contributions, GeoTrTemplate and DocMatcher, with the existing methods. To facilitate this

comparison, we categorized the geometric dewarping approaches based on five key characteristics:

multiscale, patch-based, line-based, iterative, and template-based. Section 3.2 focused on related

work in illumination correction, divided into document image binarization and document image

enhancement. Our literature review showed a research gap in the field of illumination correction,

which we aim to fill with our novel approach IllTrTemplate. We compared our approach to the

existing methods and highlighted the differences. Lastly, in Section 3.3, we listed and categorized

datasets for geometric dewarping and illumination correction, describing their characteristics us-

ing nine attributes. We highlighted the differences between existing datasets and our proposed

datasets, Inv3D and Inv3DReal.
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4
Problem Analysis

As shown in the related work (see Chapter 3), there is no suitable dataset for geometric dewarping

and illumination correction using reference templates. We fill this research gap by creating a large-

scale dataset with full annotations and reference templates for model training called Inv3D. In

addition, we create an evaluation dataset named Inv3DReal, consisting of samples captured in a

real-world setting.

First, we start this chapter by analyzing the requirements for the tasks of geometric dewarping

and illumination correction in Section 4.1. We differ between the requirements for training and

evaluation datasets. Thereafter, we discuss the advantages and disadvantages of synthetic and real

data generation approaches in Section 4.2. Based on this analysis, we justify using the respective

technique for the data generation tasks at hand.

4.1 Requirements

This section covers the requirements for a suitable dataset to address the tasks of document image

dewarping and illumination correction. Both tasks require an RGB image W ∈ R
h0×w0×3 as input

showing the surface of a potentially deformed document, where w0 and h0 are the width and height

of the image, respectively. For a complete listing of all deformations considered in this thesis, please

refer to Section 1.1. The input image W must fully show the document sheet, as the geometric

dewarping cannot reconstruct all cut-off parts. See Figure 4.1 for an example of an input image.

We denote the corresponding flatbed document image as Î ∈ R
h1×w1×3 with w1 and h1 being the

width and height of the flatbed document image, respectively. It shows the filled document in its

pristine condition, i.e., the condition before printing and warping the document sheet. The flatbed

document image can be obtained by digitizing a physical document using a scanner or rendering

a digital document. The objective for document image enhancement, i.e., the combination of

geometric dewarping and illumination correction, is to determine the mapping from W to Î, i.e.,

the function f such that f(W) = Î. Since we employ supervised deep learning methods, the

dataset must provide the desired flatbed image Î as ground truth for the training process. See

Figure 4.1 for an example.

Since we want to leverage a-priori-provided information in the form of reference templates for both

tasks, a suitable dataset must also provide these templates. A reference template is defined as

an RGB image T ∈ R
w1×h1×3 showing all information shared between all instances of a specific

document category or design. That is, the references templates display visual elements such as

table lines, logos, background colors, and more. In addition, reference templates contain labels

used to indicate the document’s structure, such as “Bill To:”. Note that the dimensions and the
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Input: Warped Image W

:

Output: Flatbed Document Î

Figure 4.1: Display of the initial input image and the desired image after perfect geometric dewarping and
illumination correction.

Flatbed Document Î

=

Template T

+

Information Delta

Figure 4.2: Decomposition of a flatbed document into a reference template and matching information delta.

aspect ratios of the template T and the input image W do not necessarily match due to the image-

capturing process by the camera. Given by the nature of the reference template, the aspect ratio

of the template image T corresponds to the aspect ratio of the original document sheet. Figure 4.2

shows an example of a flatbed document Î, as well as its decomposition in a reference template

T and its corresponding information delta. The information delta is an image that highlights all

the additional information present in the document but absent in the template, such as shipping

address or invoice number.

Since the reference template does not contain any information about a template instance, it can

be provided before attempting to geometrically dewarp and correct the lighting. Thus, it can be

used as an input for both tasks at hand.

4.1.1 Training Requirements

We aim to solve both tasks using supervised deep learning. Therefore, our training dataset Inv3D

needs to fulfill additional requirements.
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4.1 Requirements

First, our dataset needs to be sufficiently large to train deep learning models without overfitting

them. The required number of samples depends highly upon the problem and the model employed;

thus, it is usually determined empirically.

Secondly, the data must represent the entire domain to ensure that the model can effectively learn

to address the complete problem space. This is achieved by ensuring much variety in the training

data. The evaluation on a test dataset usually shows if the model is capable of transferring the

learned knowledge to realistic settings.

Thirdly, we must provide the ground truth supervision signals for supervised DL training. For

geometric document dewarping, the ground truth annotations are defined as a dense coordinate

mapping as previously introduced in Chapter 2, namely the forward map F̂ and the backward map

B̂. The former defines the transformation from the warped domain to the flatbed domain, while

the latter maps the domains in the reverse direction.

Our second task, illumination correction, requires ground truth knowledge about the original colors

of the document. This annotation must be given per pixel. We refer to the map containing ground-

truth color values as the albedo map A ∈ R
ha×wa×3, where wa and ha are the width and height of

the albedo map, respectively. An albedo map, as defined in the context of computational graphics,

contains the base color of the rendered objects, which equals the color of the object in a bright,

evenly-distributed environment1.

In addition to the ground truth annotations defined above, further per-pixel annotations can

benefit a deep learning model, as more supervision signals can support the learning process. For

instance, the dataset provides the 3D coordinates of the document for each pixel in the image. That

knowledge can be used to train a 3D reconstruction module. Helpful annotations are, amongst

others, depth maps, normal maps, reconstruction maps, word coordinate maps, warped angles

maps, curvature maps, and text masks. In chapter 5, we provide a detailed overview of the

annotations provided in our dataset. See Figure 5.3 for examples of those annotations.

4.1.2 Evaluation Requirements

To measure the capability of our approaches to solve both tasks, we need an evaluation dataset

that is entirely independent of the training dataset. For this dataset, it is crucial to resemble the

target domain as closely as possible to derive conclusions from the results. Optimally, the samples

are directly drawn from a real-world application. Compared to the training dataset, the evaluation

dataset can be considerably smaller.

Provided the ground truth backward map B̂, evaluating the geometric dewarping approaches is

straightforward as one could compare it directly with the generated backward map B using the

L2 distance. Unfortunately, this kind of annotation is virtually impossible for real-world samples

since it would require a human annotator to define an alignment between the warped and the

flatbed domain for each pixel individually. Given the difficulties in obtaining the ground truth

backward maps, we rely on alternative evaluation metrics for the geometric dewarping task, which

are based on the comparison of the dewarped image Idwp and the flatbed image Î. Therefore, we

can eliminate the need for the backward map as a requirement for the evaluation dataset.

1 https://www.a23d.co/blog/difference-between-albedo-and-diffuse-map Accessed 19th of December 2024
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4 Problem Analysis

Synthetic Data

+ easy to generate

+ large-scale data

+ pixel wise annotations

+ no privacy issues

+ no physical setup required

- creates artifacts

vs.

Real Data

+ realistic data

- not scalable

- expensive

- privacy issues

- physical setup required

- no pixel wise annotations

Figure 4.3: Advantages and disadvantages of synthetic versus real data generation.

4.2 Synthetic vs. real data

There are two fundamental ways of data generation: synthetic and real. Both ways have their

unique set of advantages and disadvantages. In this section, we discuss them and justify using

each technique to generate our novel datasets Inv3D and Inv3DReal. See Figure 4.3 for comparing

both techniques.

The first technique, synthetic data generation, attempts to mimic real-world data as closely as pos-

sible through simulations, models, and rendering techniques. Using this method, synthetic warped

documents could be generated by creating fake but realistic appearing documents before projecting

them to 3D meshes. Since this process can be fully automated and does not require a physical

setup, it is easy to generate a large-scale dataset. In addition, synthetic data generation allows

computation of full ground truth annotations, particularly all pixel-wise annotations introduced

in Section 4.1. Crucially, the synthetic data samples only closely resemble the real domain but

are not captured in real scenarios. Therefore, the synthetic data does not contain any information

from real personas. This fact is important for sharing the dataset with the research community, as

there are no privacy-related concerns. While synthetic data generation has many positive aspects,

there is also a considerable downfall. There is always a difference between the simulated and the

real-world domain when simulating data since the simulations are not perfect. This difference is

also called “Sim-To-Real Gap” and could potentially reduce the utility of models trained on sim-

ulated data in the real world. That gap may be represented by non-matching data distributions

between both domains, for instance, overly light or dark renderings or rendering artifacts in the

rendered image that would not occur in a real-world setting.

The second technique collects the data from existing use cases in the real world. For our task

of generating a dataset of warped documents, this technique requires collecting real invoices from

companies and capturing them twice: once with a scanner and once with a smartphone. While

this method might yield the most realistic data, many disadvantages exist. First, there are no

pixel-wise annotations, as it is unclear which pixel in the warped image matches which pixel in

the flatbed image. Manually annotating this would require extreme effort since an image has vast

amounts of pixels. It is often infeasible for a human to annotate this. The human would need to

align each pixel in the warped image with the corresponding pixel in the flatbed image, which is

particularly difficult for the white areas in the document. Secondly, in contrast to the simulated

data, real invoices from existing companies or other personas usually contain private data subject

to the respective country’s data regulations. This could prevent a dataset from being published.
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4.2 Synthetic vs. real data

Thirdly, and most importantly, this data generation process is not scalable for creating a large-scale

dataset, as it is not fully automated and relies on costly human labor. Therefore, only a small

dataset can be generated using this technique.

Since both techniques have their own set of advantages and disadvantages, we decided to employ

both for different use cases. Our new training dataset, Inv3D, must be large-scale and have full

ground-truth annotations. Therefore, we chose to generate our training data synthetically. For the

evaluation dataset Inv3DReal, we combined both techniques. We could not use real invoices since

we aimed to provide the dataset to the research community. That is why we decided to use synthetic

techniques to generate the flatbed invoices. In order to generate a realistic evaluation dataset, we

decided to employ the second technique for warping the invoices, i.e., printing, deforming, and

finally capturing them by hand. This ensures that there are no rendering artifacts in the samples.

The warping method inherently does not provide pixel-wise ground truth annotations. However,

this lack of pixel-wise ground truth annotations is acceptable since the evaluation methods selected

do not necessarily require a true backward mapping B̂.
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5
Inv3D: Synthetic training data

This chapter describes our methodology for generating our novel training dataset Inv3D. In order

to create a large-scale dataset with full ground truth annotations and reference templates, we

employ synthetic data generation approaches.

Our approach is split into three stages: (1) base template generation, (2) instance generation, and

(3) instance warping. In the first stage - base template generation - we search for publicly available

invoice templates on the web and prepare them for the subsequent stages. The instance generation

takes the prepared base templates, generates random content in random formats, and renders a

flatbed invoice image. Lastly, we project the flatbed invoice images to 3D meshes. For a complete

overview of the data generation pipeline, see Figure 5.1.

This chapter is based on the following publication:

Publication

Felix Hertlein et al. “Inv3D: a high-resolution 3D invoice dataset for template-guided

single-image document unwarping”. In: International Journal on Document Analysis and

Recognition 26.3 [2023], pp. 175–186. doi: 10.1007/S10032-023-00434-X

In the following, we describe each stage in detail.

Base
Template

Generation

Instance

Generation

Instance

Warping

Convert to

webpage

Replace content

with tags

Random

content

generation

Replace tags

Random

appearance

changes

Image

rendering

3D-Projection using Blender

similar to Doc3D

Figure 5.1: Overview of the Inv3D dataset generation pipeline

https://doi.org/10.1007/S10032-023-00434-X


5 Inv3D: Synthetic training data

5.1 Base Template Generation

In order to create convincingly realistic invoices, we collected publicly available invoice templates

for entrepreneurs in standard text processing formats. By converting them to HTML documents,

we can manipulate given formats and contents through simple text modifications while preserving

their overall layout. We replaced all exemplary content provided by the input document with

machine-readable tags such as {{ seller.company.name }}. Thus, our system can automatically

insert the correct content at the correct position within the invoice web page as intended by the

invoice template creators. In total, we collected and prepared 100 different invoices, which form

the basis for the subsequent stages.

5.2 Instance Generation

Creating a realistic invoice instance is the first step in creating a dataset sample. We generate ran-

dom content from an invoice web template and apply random appearance changes before rendering

the invoice instance files.

Random content generation. We randomly create fake sales orders and personas that resemble

real invoices as closely as possible using existing libraries1 and the E-Commerce Kaggle dataset

[10]. To achieve high realism, we retain the data coherency during the generation process and fit

the data to the layout constraints imposed by the web page template, i.e., the number of rows

available. Additionally, we generate random representations of the data to increase its variance,

e.g., different date formats. Since we provide the generated content in a structured manner, its

text representation and position in the document, our dataset can be used for the information

extraction task.

Random appearance changes. We increase the visual variance by applying random modifications

to the invoice web templates, thus reducing the potential for overfitting. We employ color and font

substitutions and random font size scaling. Furthermore, if present, we replaced the logo of the

given invoice document with a random logo image from the Large Logo Dataset [74] and altered

the document margin.

Rendering. To create a fake invoice sample, the random content is filled into the randomly modified

web templates and rendered as an image in A4 format. Furthermore, we create three auxiliary

images using JavaScript and CSS manipulations: information delta, template, and text mask. The

information delta depicts all randomly generated texts. The template image shows everything

except the information delta, hence the overall structure of the given document and static text.

The third and last auxiliary images contain all the text in the invoice document. See Figure 5.2

(a) to (d).

Additionally, we provide two types of ground truth information: the true word list and relevant

image areas. The latter describes which information is expected to be at which position within the

document. Figure 5.2e visualizes the relevant areas. These ground truth annotations are relevant

for tasks other than image dewarping, such as information extraction and document understanding.

1 https://faker.readthedocs.io/en/master/
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5.3 Instance Warping

(a) (b) (c)

(d) (e)

Figure 5.2: A synthetically generated invoice sample. From a to e: full document, information delta,
template, text mask, and relevant area visualization.

5.3 Instance Warping

The next step in the dataset generation process is mapping flat invoices to deformed sheets of paper

in 3D and creating 2D renderings (see Figure 5.3a). We project our invoices to the meshes from

Doc3D [16] using Blender2. For the environment maps, we used the Laval Indoor HDR dataset [25].

In contrast to the Doc3D dataset, we rendered our samples with a considerably higher resolution

to represent the real-world scenario better. We chose 1600x1600 instead of the 448x448 pixels used

by Doc3D.

This procedure generates the rendering itself (Figure 5.3a) and various additional ground truth

maps, namely an albedo map (Figure 5.3b), depth map (Figure 5.3c), normal map (Figure 5.3d),

reconstruction map (Figure 5.3e), UV map (Figure 5.3f) and, world coordinate map (Figure 5.3g).

In addition to the previously mentioned ground truth maps, we create and provide four more maps

to facilitate our dataset’s usage and reduce the need for computation-intensive calculations. The

first is a high-resolution backward map (BM) defined in Chapter 2. From Blender, we can directly

extract the forward map, also known as the UV map, in the computer graphics community. Since

2 https://www.blender.org/
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5 Inv3D: Synthetic training data

the UV map generated by Blender is incomplete in the border region of the texture, we used nearest-

neighbor extrapolation to fill the missing pixels in the backward map. The other auxiliary maps

are relevant for CREASE [62], namely per-pixel orientation angles (see Figure 5.3h), curvature

estimations (see Figure 5.3i), and text masks (see Figure 5.3j).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 5.3: The 3D warped document and its nine supervision signals. From (a) to (j): warped document,
albedo map, depth map, normal map, reconstruction map, UV map, WC map, warped angles,
curvature map, and text mask.

5.4 Design Decisions

Since we use more than one external resource (invoice documents, logos, environments, object

meshes, and fonts), we must define the dataset train, validate, and test split before creating the

dataset. We split all resources according to our split ratios (66.6% train, 16.7% validation, 16.7%

test) and assigned the resource split to each split, respectively. This way, we prevent information

leakage between these three splits by using resources in more than one split at a time. Note that

the fonts were split on font level instead of style level. Furthermore, we split the meshes according

to their generation. Most meshes were created by modifying a recorded parent mesh [16]. We split

all meshes by their parent mesh to keep a clear separation between splits.
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5.5 Summary and Discussion

5.5 Summary and Discussion

In this chapter, we presented our methodology for generating the Inv3D dataset. This dataset

fulfills all requirements on a training dataset as listed in the previous chapter Section 4.1. Therefore,

this chapter answers the research question one:

RQ1: Data Acquisition

How can we generate a large-scale, high-resolution dataset of document images with

ground truth annotations for geometric dewarping and illumination correction with cor-

responding reference templates?

With its 25,000 samples, our new dataset Inv3D serves as a large-scale dataset of document images

W and its flatbed correspondence Î. It includes complete ground truth annotations, precisely

the true backward map B̂, the true forward map F̂, and additional supervision signals. Lastly

and most importantly, each sample comes with a reference template T, which can be used for

template-based geometric dewarping and illumination correction.

We published the dataset at: https://publikationen.bibliothek.kit.edu/1000161884.
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6
Inv3DReal: Real-world evaluation data

In the previous chapter, we introduced the training dataset Inv3D. While this dataset is suitable for

training models, we need an independent dataset for evaluation. Crucial for the evaluation dataset

is that it is as realistic as possible. In this chapter, we describe the methodology of generating

an evaluation dataset called Inv3DReal. Contrary to the training dataset, Inv3DReal is closer to

real-world conditions, as it consists of pictures taken by a smartphone camera. We generate the

flatbed invoices similarly to the Inv3D invoices, but instead of rendering them, we print them out,

apply deformations, and take pictures of them. This way, we avoid any 3D rendering artifacts and

can evaluate the performance of dewarping models under realistic conditions.

This chapter is based on the following publication:

Publication

Felix Hertlein et al. “Inv3D: a high-resolution 3D invoice dataset for template-guided

single-image document unwarping”. In: International Journal on Document Analysis and

Recognition 26.3 [2023], pp. 175–186. doi: 10.1007/S10032-023-00434-X

6.1 Methodology

Inv3DReal consists of 360 pictures displaying printed and altered invoices taken by a smartphone

camera under different lighting conditions and backgrounds. We randomly selected 20 samples

from the synthetic test dataset as the basis and applied six different deformations (perspective,

curled, fewfold, multifold, crumples easy, crumples hard) inspired by Das et al. [16], as well as

three different settings (bright, colored, shadow). We provide examples in Figure 6.1. The bright

setting (Figure 6.1h) displays the documents on a gray background with daylight incidence. The

second setting (Figure 6.1i) displays the document on a white background sheet with RGB lighting.

Lastly, we defined the shadow setting (Figure 6.1j) as a document in front of a wooden surface

with multiple shadows falling onto the document.

6.2 Summary and Discussion

We complete the data generation task by creating an evaluation dataset called Inv3DReal. Since the

dataset was created by taking pictures of warped documents, it does not contain any 3D rendering

artifacts and, thus, is closer to the real use case. Because the documents showing Inv3DReal are

synthetically generated invoices, there are no data privacy concerns that could hinder a publication.

https://doi.org/10.1007/S10032-023-00434-X
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6.1: Random sample of the real-world dataset used for benchmarking the Inv3D dataset. First
image: flatbed invoice. Images (b) to (g) show the deformations: perspective, curled, fewfold,
multifold, crumples easy, and crumples hard. Images (h) to (j) showcase the lighting settings:
bright, colored, and shadow.

In contrast to the training dataset Inv3D, there are no ground-truth backward maps B̂ and forward

maps F̂, as well as other supplementary pixel-wise annotations. The evaluation of the models will

be based on the dewarped image B(W) and the flatbed image Î, along with the texts detected in

both images.

We published Inv3DReal at: https://publikationen.bibliothek.kit.edu/1000161884.
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7
Problem Formalization

Given the problem that documents within the camera-captured images are not flat, we need to

find a way to dewarp them such that the resulting image resembles the flatbed document images.

Since the documents can be arbitrarily deformed, we need to find a way to model this deformation.

In this chapter, we formalize the problem of geometric dewarping and introduce the necessary

terminology in Section 7.1 and discuss the evaluation of geometric dewarping approaches in Sec-

tion 7.2. Additionally, we connect the formal problem definition to the research questions defined

in Chapter 1.

7.1 Geometric Dewarping

The task of geometric dewarping has two inputs: (1) a RGB image W ∈ R
h0×w0×3 showing a

warped document, and (2) a reference template image T ∈ R
h1×w1×3 showing the general structure

of the flatbed document. Given those images, the task is to find a mapping of pixel locations from

the warped image W to a new image D ∈ R
h1×w1×3, such that the pixels in D correspond

to the pixels in the flatbed document image Î for identical positions. We denote a mapping of

pixel locations B ∈ [0, 1]hb×wb×2, thus, the dewarped image can be generated by applying the

pixel mapping to the dewarped image Î = B(W). For a visualization of the backward map, see

Figure 2.6.

Formally, we can describe the geometric dewarping task as follows:

R
h0×w0×3 ×R

h1×w1×3 → [0, 1]hb×wb×2

(W,T) 7→ B

Note that the task of geometric dewarping only attempts to relocate all pixels from the warped

image to the dewarped image but does not change the color value of each individual pixel. There-

fore, the optimal result of the geometric dewarping is an image that resembles the flatbed image

Î closely but is not identical due to the illumination changes by the environment and the falsifi-

cation of colors by cameras. The example in Figure 7.1 shows a warped document and associated

template, along with its (nearly) perfectly dewarped document image.

We can now connect the formal problem definition to the research questions defined in Chapter 1.

Two questions (RQ2.1 and RQ2.3) focus on geometrically dewarping document images, which are

defined as follows:



7 Problem Formalization

Warped document W

&

Template T

→

DewarpedImage D

Figure 7.1: Example of a nearly perfect geometric dewarping.

RQ2.1: Implicit Geometric Dewarping

How can we dewarp document images using a reference template to improve the quality

of the document images?

and

RQ2.3: Explicit Geometric Dewarping

How can we dewarp document images with a reference template by explicitly leveraging

the template information to improve the quality of the document images?

Both research questions aim to find the backward map B given the warped image W and the

reference template image T, such that the dewarped image B(W) resembles the perfect flatbed

image Î. The difference between the two research questions lies in the method employed to perform

the dewarping. The former question aims to find a learning-based method which allows the model to

leverage the information contained in the reference template image T freely. The latter question,

however, focuses on an explicit approach, i.e., a multi-stage model with explicit intermediate

representations. Intermediate stages can be, for example, the extraction of the document contour

or the estimation of structural or text lines. This approach is better interpretable, as the model

generates humanly understandable intermediate results.

7.2 Evaluation of Geometric Dewarping

While there are a few established metrics for geometric dewarping, they all come with at least

one problem, making them unsuitable for measuring the dewarping performance of a given model.

Since we cannot use a ground truth backward map B̂ for measuring the model performance, as

there is no such information for real-world data samples, we base the evaluation on the comparison

of the (partially) dewarped image Idwp and the flatbed image Î. The task of finding a suitable

metric can, therefore be formalized as the search for a function Ψ with
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7.2 Evaluation of Geometric Dewarping

Ψ: R
h1×w1×3 ×R

h1×w1×3 → [0, 1]

(Idwp, Î) 7→ ψ

where ψ denotes the real-valued error in geometric dewarping.

In research question RQ2.2, we aim to find such metric for measuring the performance of geometric

dewarping approaches, which does overcome the limitations of existing metrics. The research

question is defined as follows:

RQ2.2: Dewarping Metric

How can we evaluate the quality of the geometric dewarping process with regard to text

readability and positional awareness?
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8
Implicit Reference Template Leverage

In this chapter, we aim to solve RQ2.1, i.e., the geometric dewarping of document images with addi-

tional reference templates using an implicit method. Implicit in this context means we provide the

additional information of reference templates to a deep learning model and let the model determine

how to leverage the novel information as effectively as possible. We build our approach upon the

existing dewarping model GeoTr by Feng et al. [21]. Essentially, they extract visual features from

the warped image and employ an attention-based model to combine the information contained in

all image regions. We extend this model by extracting visual features from the template image and

providing them to the attention model. Thus, the enlarged model can attend in-between warped

image and template features and consequently integrate the information contained in the template

image.

This chapter is based on the following publication:

Publication

Felix Hertlein et al. “Inv3D: a high-resolution 3D invoice dataset for template-guided

single-image document unwarping”. In: International Journal on Document Analysis and

Recognition 26.3 [2023], pp. 175–186. doi: 10.1007/S10032-023-00434-X

We start by introducing the approach in Section 8.1, before explaining the evaluation process in

Section 8.2. In Section 8.3, we present the results of our approach and discuss them in Section 8.4.

8.1 Approach

This section presents our novel approach for image dewarping by leveraging structural templates

at training and inference time. We extend the transformer-based state-of-the-art model GeoTr

introduced by Feng et al. [21] to incorporate the a priori known structural information represented

through the invoice templates. In the following, we refer to our new model as GeoTrTemplate

and its extension as GeoTrTemplateLarge. See Figure 8.1 for a schematic. Our model receives

the warped image W ∈ R
h0×w0×3 and the template image T ∈ R

h1×w1×3. Both inputs are scaled

to a fixed resolution of 288 × 288 for GeoTrTemplate and 600 × 600 for GeoTrTemplateLarge

before applying a geometric head H individually to each image. The head H creates deep image

representations with 36×36 positional features in a 128-dimensional space. For GeoTrTemplate, we

employ the geometric head proposed by Feng et al. [21]. We define the geometric head for our large

model as a slice of the EfficientNet B7 noisy student model [94], namely the first four convolutional

blocks followed by a custom convolutional layer. The features of the warped image H(W) and the

template H(T) are concatenated, forming a combined input representation R ∈ R
36×36×256. We

https://doi.org/10.1007/S10032-023-00434-X


8 Implicit Reference Template Leverage

then apply the Transformer Encoder and Decoder from Feng et al. [21] and their Geometric Tail

module to upsample the resulting backward map. For details regarding the modules employed, see

the original paper. The output is a backward map B ∈ [0, 1]288×288×2. Our loss function is defined

as the L1-norm between the output backward map B and the true backward map B̂.

Transformer
Encoder-Decoder

Geometric
Head

Geometric
Head

UpsamplingConcatenate Dewarp

GeoTrTemplate

Figure 8.1: Information flow of our model GeoTrTemplate. The architecture extends the GeoTr model by
Feng et al. [21].

8.2 Evaluation

In this section, we present details on the evaluation. First, we list and explain the employed metrics.

Thereafter, we discuss the baselines, and finally, we give details on the used hyperparameters.

8.2.1 Metrics

To evaluate our approach, we employ the established metrics in the field of document image

dewarping, as introduced in Section 2.3. Namely, we use the visual metrics MS-SSIM [90], LPIPS

[104], and LD [97], as well as the text-based metrics ED [43] and CER [1].

8.2.2 Baseline selection

We compare our results to the baselines DewarpNet [18], excluding the refinement network, and

GeoTr [21]. Document dewarping can be decomposed into two subtasks, geometric dewarping

and illumination correction. The prior remaps all pixel locations whereas the latter alters the per

pixel colors to remove shading and environmental light effects. As our model focuses exclusively

on geometric dewarping, we selected our baselines to use geometric dewarping only, to make a

fair comparison. The usage of an illumination correction model is decoupled from the geometric

dewarping, thus can be appended to all baselines and our model. Since the refinement network of

DewarpNet [16] and IllTr [21] are illumination correction networks, we argue that omitting these

networks is well-founded.

8.2.3 Hyperparameters

We trained all models up to 300 epochs with an early stopping patience of 25 epochs based on the

validation mean squared error between B and B̂. All other hyperparameters depend on the model
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8.3 Results

type. We used the parametrization published by the original authors to reproduce their results

as closely as possible. For GeoTrTemplate, we used a batch size of 8, the AdamW optimizer [57]

with an initial learning rate of 10−3 and the OnceCycleLR scheduler [77] with a maximum learning

rate of 10−3. Note that for the training of GeoTr, GeoTrTemplate and GeoTrTemplateLarge we

employed gradient clipping to increase the training stability. We clipped the global gradient norm

to a value of 1.

DewarpNet [16] and GeoTr [21] employ different background augmentation strategies to boost the

model performances. DewarpNet replaces the warped image background with randomly selected

textures from the Describable Textures Dataset [13] during training. GeoTr learns a light semantic

segmentation network [71] in order to remove the background beforehand. We kept the original

backgrounds to enable a fair comparison of both approaches and our models. Furthermore, we

augmented all images for training using color jitter with a random change of up to 20 % in

brightness, contrast, saturation, and hue, respectively. Note that the input image resolution differs

on the individual model due to architectural constraints. In particular, DewarpNet receives images

with 128×128 pixels, whereas GeoTr and GeoTrTemplate use images with a resolution of 288×288

pixels and GeoTrTemplateLarge the resolution of 600 × 600 pixels.

8.3 Results

This section presents and interprets our quantitative and qualitative results, as well as our ablation

study on the importance of reference templates.

8.3.1 Quantitative Results

Table 8.1 shows the quantitative results of our approach and the baseline methods evaluated on

our new dataset Inv3DReal. We include the identity backward map for reference, thus creating

a lower bound for the scores. As expected, all approaches outperform the identity baseline in all

metrics by a large margin. Our experiments show that GeoTr is superior to DewarpNet without

the refinement network in all metrics and training datasets. When comparing the two models

with respect to the used training dataset, we conclude that training on the Inv3D dataset slightly

improves the evaluation results compared to training on Doc3D. This effect is expected since

Inv3D is more similar to Inv3DReal than Doc3D. The best results by a large margin yielded our

models GeoTrTemplate and GeoTrTemplateLarge in all metrics, especially for the visual evaluation

metrics. The local distortion improves by 23.4 % and 26.1 %, respectively, compared to the runner-

up GeoTr trained on Inv3D. These results show the effectiveness of our approach.

We also train the baseline models on Doc3D and evaluate on the established DocUNet benchmark

[61]. The experiment shows that our implementation can closely reproduce the reported results.

The difference is likely due to differences in the image augmentation methods that were applied in

the original paper, e.g., we omit the random background replacement of DewarpNet in our setting.

We choose to apply the exact same image augmentations for all approaches to allow for a fair

comparison between them. See Table 8.2 for a direct comparison of our results with the reported

numbers.

When comparing the absolute number of the DocUNet benchmark and our Inv3DReal benchmark,

we observe that the DocUNet evaluations are closer to the optimum for most metrics, which
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Model Train Dataset ↑MS-SSIM ↓LD ↓LPIPS ↓ED ↓CER

Identity - 0.44 (0.10) 36.75 (13.80) 0.60 (0.10) 533 (169) 0.83 (0.21)

DewarpNet (w/o ref) Doc3D 0.56 (0.11) 26.10 (11.50) 0.42 (0.12) 384 (182) 0.59 (0.25)

DewarpNet (w/o ref) Inv3D 0.55 (0.11) 25.33 (10.56) 0.43 (0.12) 387 (176) 0.60 (0.24)

GeoTr Doc3D 0.56 (0.11) 23.27 (10.35) 0.40 (0.12) 357 (185) 0.55 (0.26)

GeoTr Inv3D 0.56 (0.11) 22.81 (9.98) 0.41 (0.12) 365 (181) 0.57 (0.25)

GeoTrTemplate (ours) Inv3D 0.64 (0.12) 17.46 (10.62) 0.32 (0.13) 349 (185) 0.54 (0.26)

GeoTrTemplateLarge
(ours)

Inv3D 0.65 (0.12) 16.86 (10.46) 0.31 (0.13) 327 (184) 0.51 (0.26)

Table 8.1: Quantitative evaluation of our new model GeoTrTemplate on Inv3DReal with respect to the
training dataset. Values in brackets denote standard deviations.

indicates that our benchmark is more challenging to solve for given approaches. Note that the

edit distance on DocUNet is higher on Inv3DReal because DocUNet images contain more text on

a large margin. Therefore, the OCR engine yields long texts, leading to a high absolute number

of insertions, deletions, and replacements for DocUNet.

Model ↑MS-SSIM ↓LD ↓LPIPS ↓ED ↓CER

DewarpNet (w/o ref) 0.45 (0.12) 10.15 (7.49) 0.32 (0.11) 1180 (1318) 0.30 (0.22)

DewarpNet (w/o ref, orig) 0.47 ( - ) 8.98 ( - ) - 1289 ( - ) 0.31 (0.25)

GeoTr 0.45 (0.12) 8.65 (6.11) 0.31 (0.10) 892 (1254) 0.23 (0.24)

GeoTr (orig) - 8.38 ( - ) - 935 ( - ) 0.31 ( - )

Table 8.2: Comparison of our implementation with the numbers reported by the original papers trained
on Doc3D and evaluated on the DocUNet benchmark [61]. Values in brackets denote standard
deviations.

To better understand the characteristics of each approach, we provide an in-depth evaluation of our

model GeoTrTemplate based on Inv3DReal. We average the evaluation data per deformation class

and per lighting setting. The results are shown in Table 8.3. According to most metrics, the curled

deformation appears to be the most straightforward task, whereas the crumples hard represents

the most challenging class to dewarp. Interestingly, the LD does not agree with other metrics as

stronger deformations lead to better results with regard to the LD metric. When we compare the

three different environment settings, it appears that bright is the easiest, whereas shadow is the

hardest according to most metrics. Similar to the deformation evaluation, we observe the inverse

order according to the local distortion.

For a quantitative evaluation of DewarpNet [16], and GeoTr [21] on Inv3DReal with regard to the

different modifications, see Table 8.3.

8.3.2 Qualitative Results

Figure 8.2 displays three selected samples from Inv3DReal, as well as the dewarping results from

DewarpNet [16], GeoTr [21], our model GeoTrTemplateLarge, and the original invoice document.

When comparing DewarpNet and GeoTr, we observe that both models have problems correcting
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Modification ↑MS-SSIM ↓LD ↓LPIPS ↓ED ↓CER

perspective 0.69 (0.12) 20.92 (12.15) 0.27 (0.12) 316 (191) 0.49 (0.26)

curled 0.70 (0.09) 19.74 (11.75) 0.26 (0.11) 301 (173) 0.47 (0.25)

fewfold 0.66 (0.10) 18.70 (9.67) 0.30 (0.11) 335 (184) 0.52 (0.26)

multifold 0.61 (0.11) 18.84 (11.00) 0.34 (0.12) 367 (165) 0.57 (0.23)

crumples easy 0.64 (0.11) 12.75 (7.33) 0.31 (0.11) 357 (206) 0.56 (0.31)

crumples hard 0.52 (0.10) 13.82 (8.65) 0.46 (0.11) 417 (175) 0.64 (0.21)

bright 0.69 (0.11) 17.74 (10.39) 0.25 (0.11) 272 (177) 0.42 (0.25)

color 0.66 (0.10) 19.41 (11.20) 0.37 (0.14) 329 (185) 0.51 (0.25)

shadow 0.56 (0.10) 15.24 (9.88) 0.35 (0.10) 446 (149) 0.69 (0.20)

Table 8.3: Detailed evaluation of GeoTrTemplate on our new benchmark Inv3DReal split by modification
category. Values in brackets denote standard deviations.

(a) Input (b)
DewarpNet
(w/o ref)

(c) GeoTr (d)
GeoTrTemplate-

Large (ours)
(e) Original

Figure 8.2: Qualitative evaluation of DewarpNet [16] without refinement network, GeoTr [21], and our
model based on selected samples of Inv3DReal.

the line straightness. A comparison of GeoTrTemplateLarge and GeoTr indicates better global

positioning and straighter lines when using the template.
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8.3.3 Ablation Study

We conducted an ablation study to measure the influence of different types of structural information

on the model performance. For our study, we altered the templates in three different ways and

trained our model from scratch using the altered template as input. The modifications are as

follows:

White Template. The template image is entirely white and thus contains no additional information

over the warped input image.

Text Only. The template image for this ablation contains all texts visible on the original template

image (see Figure 5.2c), but no other structures such as lines or images. Note that all texts were

converted to black to be visible after removing the background colors. The final template ablation

is a black and white image.

Structure Only. We removed all textual information from the original template image (see Fig-

ure 5.2c), such that only the structural information remains.

The evaluation results on the Inv3DReal dataset are shown in Table 8.4. The white template

ablation performs the poorest of all ablations. The absolute metrics values are comparable to the

GeoTr model trained on Inv3D as shown in Table 8.1. This performance is as expected since both

experiments receive the same information as input and have a fairly similar network structure.

According to the visual metrics, the structure-only ablation and the text-only ablation boost the

performance of our model in each case by a few points, but the combination of both yields the

best overall performance. This finding indicates a correlation between the model performance and

the amount of a priori known information about the target structure. For the text metrics, while

there is no significant change of ED and CER values, the structure-only ablation performs best by

a small margin. Overall, we see a more significant improvement in the visual metrics compared

to the text-based metrics, which indicates that adding structural information primarily helps to

improve global positioning rather than fine-grained details.

To further investigate the template’s influence on the performance, we conducted a second ablation

test. For this, we trained the GeoTrTemplate model using the Inv3D dataset and selected random

templates during inference. The results are shown in Table 8.4. The comparison of choosing a ran-

dom vs. the correct template shows that the correct template selection is crucial for performance.

Indeed, falsely selecting a template results in degraded performance compared to not providing

additional information (white template).

Ablation ↑MS-SSIM ↓LD ↓LPIPS ↓ED ↓CER

White Template 0.56 (0.11) 22.50 (10.34) 0.40 (0.12) 345 (183) 0.54 (0.26)

Structure only 0.61 (0.12) 19.76 (10.09) 0.34 (0.13) 341 (186) 0.53 (0.26)

Text only 0.60 (0.11) 18.71 (10.32) 0.35 (0.13) 347 (186) 0.54 (0.26)

Full 0.64 (0.12) 17.46 (10.62) 0.32 (0.13) 349 (185) 0.54 (0.26)

Random template 0.54 (0.11) 29.42 (11.65) 0.44 (0.12) 355 (178) 0.55 (0.25)

Table 8.4: Ablation study of GeoTrTemplate on Inv3DReal by gradually removing template information
for training and inference. We separately evaluated the importance of correct template choice
by randomly selecting templates only during inference. Values in brackets denote standard
deviations.
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8.4 Summary and Discussion

In this chapter, we presented two novel models, GeoTrTemplate and GeoTrTemplateLarge, which

leverage the additional information given by reference templates. They achieve this implicitly using

the attention mechanism. We conducted a detailed evaluation study to compare our new models

with the state-of-the-art approaches DewarpNet [16] and GeoTr [21]. Our empirical analysis showed

that both outperform the baseline methods significantly, in particular, the GeoTrTemplateLarge

model improves the local distortion of GeoTr by 26.1 %. Nevertheless, the absolute values for text

detection show that further research is needed to solve this task robustly and consistently.

In this chapter, we addressed the RQ2.1:

RQ2.1: Implicit Geometric Dewarping

How can we dewarp document images using a reference template to improve the quality

of the document images?

The research question is answered as we improved the quality of the dewarped document images

over the previous state of the art, GeoTr, achieved through the use of reference templates with

our GeoTrTemplate model and its larger version. By ablating our model with reduced template

information, we show that the information inside the reference templates is crucial for improving

the dewarping results.
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9
Matched Normalized Character Error Rate

In this chapter, we address the problem of adequately evaluating the performance of document

image dewarping. We start by reviewing the current evaluation metrics and their limitations, then

introduce our new metric, the matched normalized Character Error Rate (mnCER), and explain

how it addresses the shortcomings of the previous metrics.

This chapter is based on the following publication:

Publication

Felix Hertlein et al. “DocMatcher: Document Image Dewarping via Structural and Tex-

tual Line Matching”. In: Proceedings of the IEEE/CVF Winter Conference on Applica-

tions of Computer Vision. 2025

We start by defining the problem and the limitations of the current evaluation metrics in Section 9.1.

In Section 9.2, we introduce our new metric mnCER and explain how it overcomes the limitations

of the current metrics. Finally, we summarize and discuss the new metric in Section 9.3.

9.1 Problem

There are five established metrics for document image dewarping: (1) Multiscale Structural Sim-

ilarity (MS-SSIM ), (2) Learned Perceptual Image Patch Similarity (LPIPS), (3) Local Distortion

(LD), (4) Edit Distance (ED), and (5) Character Edit Rate (CER) [16, 21]. See Section 2.3 for the

definitions.

Since the ground truth backward map B̂ is assumed to be unknown, all metrics are based on the

comparison of the dewarped image D := B(W) and the true flatbed image Î. The established

metrics can be divided into two categories: (1) visual metrics and (2) text-based metrics.

Visual metrics operate directly on these two images on a pixel level. MS-SSIM extracts statistical

features from the input images, while LPIPS extracts deep-learning-based features that can be

compared to assess image similarity. For LD, the dense optical flow between both images is cal-

culated and combined using the L2 metric. The assumption is that an effective image dewarping

yields a flow with small displacements and, thus, a small overall metric value. All visual metrics

have in common that they only focus on the visual features and disregard the text readability

of the documents entirely. Since the text in the images contains most of the document informa-

tion, evaluating the text readability is crucial for a suitable document image enhancement metric.

Neglecting text readability within the visual metrics can result in surprising evaluation scores.

For example, a dewarping model that positions pixels roughly in the correct regions but shuffles
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neighboring pixels might still achieve a decent evaluation score, as the visual features largely align.

This outcome is counter-intuitive, as such a model produces images with unreadable text due to

the absence of fine-grained details required for text interpretation. Therefore, the visual metrics

are not suitable as a single metric to judge the dewarping capabilities of a dewarping approach.

In contrast to visual metrics, the text-based metrics compare the extracted text from the dewarped

image t(D) and the true flatbed image t(̂I). While the text-based metrics focus on text readability,

they are overly sensitive to the positions of the recognized words. Structured documents, such as

invoices, have text spread across the 2D document, and for the text-based metrics, these texts are

linearized into a 1D sequence. Therefore, even slight changes in the position of the text can lead

to a considerable change in the metric value. Additionally, text-based metrics do not capture the

absolute positioning of the text in 2D space, which is crucial for the semantic interpretation of the

text, especially if reference templates are available. To address these limitations, we introduce a

novel metric that we call the matched normalized Character Error Rate (mnCER).

9.2 Approach

Given two images, the dewarped image D and the ground truth image Î, we first extract the words

from both images using the OCR engine docTR [65]. Each word w is retrieved with its text tw
and its bounding box bw in normalized image space [0, 1]× [0, 1]. This yields two sets of words WD

and WÎ for the dewarped and the ground truth image, respectively.

We then match the words from WD to WÎ based on the spatial locality of each word in WF latImage

and each word in WD. We define the locality measurement as follows:

locality(bu, bi) =

{

IoU(bu, bi) if IoU(bu, bi) > 0

−d(bu, bi) if IoU(bu, bi) = 0
(9.1)

where bu and bi are the bounding boxes of the words wu and wi in WD and WÎ, respectively, and

d(bu, bi) is the minimal euclidean distance between the bounding boxes. The value range of the

locality measurement is, therefore, [−
√

2, 1] since the optimal intersection over union (IoU ) is 1

and the largest distance possible is
√

2 within the normalized image domain. We then search a

bipartite matching of words from WD to WÎ that maximizes the sum of the locality measurements

for each word in WD and each word in WÎ using the Hungarian Assignment algorithm [38]. The

assignment is denoted by M ⊆ WD ×WÎ. See Figure 9.1 for an example of the word matching.

Given the matched words, we then compute the normalized character error rate (nCER) as men-

tioned in [42] for each matched word wu and wi as follows:

nCER(wu, wi) =
S + I +D

S + I +D + C
(9.2)

where S, I, D, and C are the number of substitutions, insertions, deletions, and correct characters,

respectively. In contrast to the CER, the nCER ranges between 0 and 1, where 0 is the optimal

score.
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Our new metric mnCER is then defined as the average nCER overall matched words in M and a

penalty value for each unmatched ground truth word in WÎ:

mnCER =
1

|WÎ|





∑

(wu,wi)∈M

nCER(wu, wi) + |WÎ| − |M |



 (9.3)

where |WÎ| is the number of words in WÎ and |M | is the number of matched words in M . The

penalty value for unmatched words equals the worst possible nCER value, which is 1. The overall

mnCER ranges between 0 and 1, where 0 is the optimal score.

(c)

(a)

(b)

Figure 9.1: Example of the locality-based word matching for the mnCER calculation. Images (a) and
(b) show the detected bounding boxes bÎ and bD, respectively. Image (c) displays the word
matchings M .

9.3 Summary and Discussion

The new metric mnCER combines the advantages of both visual and text-based metrics while

also avoiding their respective problems. Since it operates on the detected text in the images, it is

sensitive to fine-grained dewarping errors that would make the document unreadable. At the same

time, the metric does not suffer from the linearization problem, as there is no need to linearize the

73



9 Matched Normalized Character Error Rate

detected words. This leads to smooth evaluation scores with regard to minor changes in the word

bounding box detections. Since we decided to employ the normalized Character Error Rate instead

of the standard version, our metric is bound between 0 and 1, which facilitates the evaluation of

document dewarping approaches on an absolute level. Furthermore, the metric behaves as expected

for missing text: said text cannot be matched with a ground truth word and, therefore, will be

included in the final score by a penalty term of one, i.e., the maximal penalty.

We answer the RQ2.2 on the evaluation of the quality of dewarping approaches with regard to text

readability and positional awareness:

RQ2.2: Dewarping Metric

How can we evaluate the quality of the geometric dewarping process with regard to text

readability and positional awareness?

The presented novel metric mnCER fulfills both requirements on a dewarping metric. It is sensitive

to text-readability by comparing words from both images. In addition, the metric incorporates

the positions of the words in the dewarped image D and the flatbed reference image Î, which are

crucial for the downstream task of information extraction. The accurate dewarping of words and

correct matching with the ground truth words allows for a semantic interpretation of the dewarped

words based on their location within the template.
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Explicit Reference Template Leverage

In this chapter, we approach the problem of geometric dewarping from another angle. Our first

solution - presented in Chapter 8 - takes an implicit approach to this problem, i.e., letting the

model figure out how to leverage the information inside a reference template. Contrary to this

approach, we seek a novel method of utilizing this information for geometric dewarping, using a

multistage pipeline, where we can interpret all intermediate results. Unlike the implicit approach,

we explicitly guide the model to use the reference template information for dewarping.

When comparing a warped document and the corresponding reference template as humans, we

intuitively make connections between the visual elements like logos, words, or structural lines seen

in both images. Using these connections, we can deduce where the warped elements must move

and how they must be deformed to align with the reference template. To make that possible for

AI , we need to solve a series of tasks: (1) find the document in the warped image, (2) detect

all lines in the warped image and the template, (3) match the lines based on their positions and

visual appearance and (4) utilize the knowledge of the matched lines to generate a dense backward

mapping. Given the matches of visual elements in both images, we can create a backward map

that straightens lines from the warped domain and moves them to the correct location within the

flatbed domain. See Figure 10.1 for an illustration of this idea.

Figure 10.1: Illustration demonstrating the idea of line detection and matching for document image de-
warping.
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This chapter is based on the following publication:

Publication

Felix Hertlein et al. “DocMatcher: Document Image Dewarping via Structural and Tex-

tual Line Matching”. In: Proceedings of the IEEE/CVF Winter Conference on Applica-

tions of Computer Vision. 2025

We begin by introducing the methodology of our approach in Section 10.1, followed by a section on

the evaluation details (Section 10.2). In Section 10.3, we present the results of our approach and

compare them to the state-of-the-art methods. Finally, we conclude the chapter with a summary

and a discussion of the results in Section 10.4.

10.1 Approach

Our approach consists of several stages, as illustrated in Figure 10.2. First, the background is

removed from the input image. Subsequently, we detect the structural and textual lines in the

warped document image and use them to pre-dewarp the document using a homography transfor-

mation. We then employ our document dewarping model GeoTrTemplateLarge twice to initially

dewarp the document before we apply our new line-based dewarping method. This method detects

structural and textual lines in the pre-dewarped document and matches them to the template lines.

Given these line correspondences, we construct a dense transformation map and apply it to the

pre-dewarped document to obtain the final dewarped document. We describe each stage in detail

below.

Line-based Predewarping Line-based Dewarping

Warped Image W0

Document
Detector

Line
Detector

Pre-
dewarping

GeoTr-
Template-

Large

Line
Detector

Line
Matcher

Line De-
warping

W1
L(W1) W2 W3

L(W3) M(W3)

Dewarped
Image U

Template T

2x

Figure 10.2: Overview of the proposed approach. First, the background is removed from the input image.
Then, the structural and text lines are extracted from the background-removed image. We use
the detected lines to pre-dewarp the image and then match the detected lines to the template
lines. Given the line matches, we compute the dense backward map and apply it to the input
image.
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10.1.1 Document Detector

Given a warped document image W0 ∈ R
h×w×3, the first step is to remove the background from

the image. The subsequent steps do not have to deal with the noise in the background. We

achieve this by fine-tuning the state-of-the-art segmentation model Segment Anything (SAM) [36]

on Inv3D for the semantic segmentation task. We set a total of two classes: the document class and

the background class. For fine-tuning, we freeze SAM’s image and prompt encoder and only train

the mask decoder of the ViT-L model. The image input resolution is set to 1024 × 1024 pixels.

The output of the model is a binary mask that segments the document from the background. We

then apply the mask to the input image to remove the background. Let W1 ∈ R
h×w×3 represent

the resulting image with the background removed.

10.1.2 Line Detector

Our line detector follows the approach of Lal et al. [40]. They treat the line detection task as

an instance segmentation problem and propose a transformer-based model using masked attention

called LineFormer. We train our own version of the LineFormer model on the Inv3D dataset for the

task of structural and textual line detection. Since the Inv3D dataset does not provide structural

line annotations, we generate the line annotations based on the optimal image Î using the Canny

edge detector [9]. For training the LineFormer model, our lines need to be given a thickness.

Structural lines are given a thickness of 3 pixels as proposed by the original work, while the

thickness of textual lines is determined automatically by the area covered by the text. We extend

the augmentations of LineFormer by adding photometric distortions, random mesh distortion, and

randomly overlaying images of the Describable Textures Dataset [13] from the categories stained

and wrinkled to improve the transfer from simulated to real-world images. In contrast to the

original LineFormer model, we extract 2D line paths instead of mathematical functions. Given the

binary mask for each object candidate, we apply the skeletonization algorithm [105] to limit the

line thickness to a maximum of one pixel. We find our 2D line path by converting the binary map

to a graph, where each line pixel is a node and two nodes are connected if they are neighboring and

search for the longest path within said graph. Figure 10.3 visualizes the 2D line path detection.

Warped Image Mask Skeletonized Mask Detected Line

Figure 10.3: Visualization of the 2D line path detection. For better visibility, we display only a cutout of
the warped image and the line detection artifacts.

In a post-processing step, we remove duplicate lines and lines with a length below a certain thresh-

old. We denote the detected lines as L(Wi) for Wi being the input image.
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10.1.3 Pre-Dewarping

To simplify the problem, we pre-dewarp the image using the detected lines by estimating a ho-

mography transformation. We base the pre-dewarping on the detected structural and textual

lines instead of the document outline, as the document outline is not always correctly detected in

complex cases. The idea behind our homography estimation is to axis align all detected lines as

precisely as possible. For structural text lines, any axis is suitable, while for textual lines, we need

to consider the horizontal axes.

Given a set of detected lines L, we estimate the homography matrix H by minimizing the following

objective function:

arg min
H

∑

l∈L

[

∥p(l,H)∥2 · min
r∈R

angle(p(l,H), r)
]2

(10.1)

with

p(l,H) = projectH(approximate(l)) (10.2)

where approximate(·) maps a 2D line path the best fitting line using linear regression and R are

the axis-aligned unit vectors to compare to. For text lines, R are the two horizontal unit vectors,

while for structural lines, R are the four unit vectors. See Figure 10.4 for a visualization of the

pre-dewarping optimization.

−1 1

−1

1

l ∈
Lp(

l,
H

)

r1 ∈ R

r2 ∈ R

r3 ∈ R

r4 ∈ R

Figure 10.4: Visualization of the pre-dewarping optimization.

The homography matrix is constructed as follows:

H =









h11 h12 h13

h21 h22 h23

h31 h32 h33






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


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0

0
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
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



(10.3)
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R =

[

cos(α) −sin(α)

sin(α) cos(α)

]

S =

[

1 s

0 1

]

(10.4)

Thereby, it allows for rotation by an angle α, shear by a scalar s, and projection using the scalars v0

and v1. Since our objective function contains multiple local minima with respect to the rotation α,

we search for a suitable initial value denoted as α0 ∈
[

−π

2
,
π

2

]

by densely evaluating the objective

function with fixed shear and projection.

For stability, we minimize the objective function using constrained optimization, where the vari-

ables are restricted within the bounds: α ∈
[

α0 − π

4
, α0 +

π

4

]

, and v0, v1 ∈
[

−1−3, 1−3
]

. Given the

minimized homography matrix Ĥ, we set the scaling and translation values such that the whole

document is still inside the image after applying the homography transformation. We apply the

final transformation to the background-removed image W1, which results in W2. See Figure 10.2

for an example.

10.1.4 Template-based Document Dewarping

We use the previously introduced template-based document dewarping model GeoTrTemplateLarge

to dewarp the image W2. It is based on an encoder-decoder architecture on top of deep embeddings

of the input and template image. The attention mechanism allows the model to connect template

information with the dewarped image. Thereby, it integrates the template information implicitly.

Our approach leverages the dewarping capabilities of GeoTrTemplateLarge before we add our more

explicit line-based dewarping approach. We apply GeoTrTemplateLarge twice to the pre-dewarped

image W2 to obtain the initial dewarped image W3.

10.1.5 Line Matcher

Given the initially dewarped image W3 and the template image T, we aim to match the detected

lines L(W3) to the template lines. To achieve this, we encode the line features and match them

using the state-of-the-art local feature matcher LightGlue [49]. The line encoding consists of

multiple parts: a visual encoding, a positional encoding, and an optional text encoding. See

Figure 10.6 for a visualization of the line encoding. For the prior two encodings, we extend the

input image W3 with a n-dimensional sinusoidal position encoding [89]. In our case, we set the

dimensionality to 8, which results in an 11-dimensional input image. For each line l ∈ L(W3)

and its width, we transform the line mask from Euclidean to Frenet coordinates [91]. The Frenet

coordinates of a given pixel (x, y) are given by the distance d along the line and the distance

o orthogonal to the line. When transforming the line mask to Frenet coordinates, we obtain a

compact representation of the line rl ∈ R
256×8×11, which entails information about the line shape,

position, and visual appearance.

Figure 10.6 shows an example of the visual and positional line features after transforming them

from Euclidean to Frenet coordinates.

We split the Frenet line encoding into eight chunks of 8×8 pixels and apply a vision transformer [19]

to the patch sequence, yielding a deep line embedding with 256 dimensions. For text lines, we use a
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⊕
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Figure 10.5: Visualization of the line encoding.

pre-trained OCR model called docTR [65] to extract the text within the Frenet space and encode

it with a simple MLP with two hidden layers, also resulting in a 256-dimensional vector. The

concatenation of the vision transformer and the text encoding then gives the full line representation.

To match warped and template line embeddings, we use the local feature matcher LightGlue [49].

We train our model on the Inv3D dataset with the same hyperparameters as in the original pa-

per. At inference time, we remove false matches by filtering out matches with a log assignment

probability below the threshold t, matches without matching line types, and text matches without

a common substring of at least three characters. We set the log assignment probability threshold

to t = −1. This post-processing step reduces the number of false matches and thus improves the

final dewarping result. We denote the matches as M(W3). See Figure 10.2 for an example.
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Visual line features

Positional line features

Figure 10.6: Visualization of a line encoding in Frenet space.

10.1.6 Line Dewarping

Given the matches M(W3), we construct a dense coordinate mapping to dewarp the image. We

denote this mapping, called forward map, as F ∈ [0, 1]
512×512×2

. We start with the identity

transformation and iteratively enhance the forward map by incorporating line correspondences.

This is done by adding point correspondences and interpolating the missing vectors using Delaunay

Triangulation [41]. The construction of the forward map F consists of three stages: known matches,

support points, and unmatched lines. Figure 10.7 shows the construction of the forward map at

each stage.

1. Project matches. In the first stage, we consider the known matches in descending order of as-

signment probability. For each match, we densely sample point correspondences along the warped

and template line and add them to the forward map, thus forcing the pixels at the point correspon-

dences to their location on the template. For text lines, we generate the point correspondences for

both x and y coordinates. As for the structural lines, we only add either the x- or the y-coordinates

to the forward map, depending on the template line direction. This is because structural lines only

constrain the position in one direction. For example, if the structural line is horizontal, we only

add the y-coordinates to the forward map.

2. Support points. For the second stage, we add support points outside the convex hull of all

correspondences to reduce the interpolation error. Delaunay triangulation outside the convex hull

of the correspondences (and within the image bounds) creates pixel shifts due to the triangular

nature of the interpolation. Our goal with the support points is to retain the straightness of the

image in those regions. To achieve this, we project the convex hull points to the left/right or

top/bottom of the image space, depending on the gradient direction of each channel. Figure 10.7

shows an example of the support points.

3. Unmatched lines. In stage three, we want to utilize the knowledge about all detected but

unmatched lines. To achieve this, we project the unmatched lines with the current forward map

and straighten the lines in the dewarped space. This allows us to project the unmatched lines

similar to stage 1 and, thus, enforce the straightness of the unmatched lines in the final projection.

Since the line matcher occasionally produces false matches, we need to ensure that these false

matches do not influence the final dewarping. To achieve this, we check the validity of the forward
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map during the iterative construction and reject all matches or lines that contradict our invariant.

We define the invariant as follows: for each position in the forward map, the gradient must not

exceed a range of valid values. We set the lower bound to 0 and the upper bound to 0.0025,

respectively. This effectively limits the maximum compression and stretching for each part of the

image and, thus, disregards extreme cases. Due to the minor imprecisions of the line detector,

our constructed forward map contains minor artifacts that can lead to text distortion. In the final

step, we apply a mean smoothing kernel to the backward map to retain the text readability.

We denote the final forward map as F. By inverting the forward map, we obtain the backward

map B and apply it to the pre-dewarped image W3. This yields the final dewarped image U.

10.2 Evaluation

We evaluate our new approach, DocMatcher, on Inv3DReal (see Chapter 6) on the established

metrics MS-SSIM , LD, LPIPS , ED, CER, as well as our novel metric mnCER. See Section 2.3

for details on the established metrics and Chapter 9 for the novel metric. Note that we changed

the OCR engine from Tesseract [78] to docTR [65] for the evaluation of the text-based metrics, as

docTR outperforms Tesseract by a large margin.

We compare DocMatcher with our previous work GeoTrTemplateLarge and other related works on

geometric dewarping, namely DewarpNet [16] (w/o refinement network), GeoTr [21], as well as the

baseline method identity, where no geometric dewarping was applied to the warped input image.

Please note that we employed the DewarpNet without the refinement network, as it is designed

to perform illumination correction. Since geometric dewarping and illumination correction are

separate problems that can be applied independently, leaving the refinement network out yields a

fair comparison of the methods.

10.3 Results

This section presents the results of our approach evaluated on the Inv3DReal dataset. We compare

our approach to the identity mapping as a baseline, as well as our previously described document

dewarping model GeoTrTemplateLarge, and the related works GeoTr [21] and the DewarpNet [16]

without refinement network. Note that the latter two papers present an approach for document

image dewarping in combination with illumination correction. Since our paper focuses on document

image dewarping, we only compare against the dewarping part of the models. Furthermore, it is

important to note that of our baselines, only the model GeoTrTemplateLarge utilizes a template

image for dewarping. The other models are template-free and learn the dewarping based on the

input image only. To the best of our knowledge, no other recent model uses a template image for

document image dewarping.

The following section presents the quantitative and qualitative results, as well as an ablation study.

10.3.1 Quantitative Results

The quantitative results of our approach are shown in Figure and Table 10.1. When comparing our

approach to the state-of-the-art models - GeoTr, DewarpNet, and GeoTrTemplateLarge and the
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Figure 10.7: Construction of the forward map F for the line-based dewarping shown at multiple stages.

baseline identity mapping, we can observe that our approach outperforms all models in all metrics.

The comparison with our previous approach GeoTrTemplateLarge shows a significant improvement

of 9.6 % in MS-SSIM , 11.8 % in LPIPS , 32.6 % in LD, 40.2 % in mnCER, 12.87 % in ED, and 11.68

% in CER. In particular, the metrics LD and mnCER show the most significant improvements.

Both metrics include the positioning of the elements in the dewarped image, indicating that the

positioning of the text and visual elements improved significantly. The visual metrics MS-SSIM

and LPIPS also show a considerable improvement, indicating that the dewarped image looks closer

83



10 Explicit Reference Template Leverage

MS-SSIM ↑ LPIPS ↓ LD ↓ mnCER ↓ ED ↓ CER ↓

Identity 0.44 (0.10) 0.6 (0.10) 36.77 (13.54) 0.78 (0.14) 394.64 (140.81) 0.63 (0.19)

DewarpNet
(w/o ref) [16] 0.55 (0.11) 0.42 (0.12) 25.27 (10.37) 0.58 (0.17) 254.92 (131.39) 0.41 (0.19)

GeoTr [21] 0.56 (0.11) 0.41 (0.12) 23.25 (10.16) 0.52 (0.18) 192.46 (118.88) 0.31 (0.18)

GeoTrTemplate-
Large (previous) 0.65 (0.12) 0.31 (0.13) 16.82 (10.31) 0.28 (0.18) 128.33 (99.09) 0.20 (0.15)

DocMatcher (ours) 0.71 (0.12) 0.27 (0.12) 11.34 (8.26) 0.17 (0.13) 111.81 (79.56) 0.18 (0.13)

Table 10.1: Quantitative results of our approach DocMatcher in comparison to the state of the art on the
Inv3DReal dataset. All models were trained on Inv3D and evaluated on Inv3DReal. The values
are given as mean and standard deviation.

to the original image. For the text-based metrics ED and CER, we also observe an improvement,

but it should be noted that these metrics suffer from the linearization problem explained above and

thus are not as reliable as the mnCER metric. Notably, the absolute numbers for the text-based

metrics are significantly lower than those reported in our previous work, GeoTrTemplateLarge.

This is due to the change of the OCR engine from Tesseract to docTR, which handles challenging

conditions better.

Overall, the results indicate that our approach is capable of dewarping document images more

accurately than the previous state-of-the-art models.

10.3.2 Qualitative Results

We show the qualitative results of our approach compared to the state-of-the-art models for several

selected samples in Figure 10.8. The first column displays the input image, whereas the last column

presents the original image. The second to fifth columns show the results of the models DewarpNet

(w/o ref) [16], GeoTr [21], GeoTrTemplateLarge, and our new approach DocMatcher, respectively.

We cropped the same region for all images to simplify the comparison. Thereby, it is easier to see

the differences in the positioning of the text and visual elements.

In these examples, we can observe that this approach yields dewarped images, which are visually

closer to the original image than the other models. The overall positioning of the elements and

the straightness are improved, even under challenging lighting conditions (top row) or strong

deformations (bottom row).

We also show the intermediate stages of our approach in Figure 10.9. From image (a) to (f),

we display the input image, the background-removed image, the homography transformation, the

GeoTrTemplateLarge dewarping, the line matcher (2x), and the final dewarped image, respectively.

In this example, the background removal did not correctly remove all of the background since the

differentiation between the document foreground and background is challenging. Since the pre-

dewarping step is not dependent on accurate background removal, the following steps are not

overly affected. This demonstrates the advantage of content-based dewarping as in our approach

compared to outline-based dewarping.

We want to point out that the line-based dewarping stage can generate black artifacts at the border

of the dewarped images. That effect can occur when the line-based dewarping moves the pixels

closer to the center, and no pixels outside the image boundary can fill the gap. We experimented

with filling these artifacts by the color value of the nearest valid pixel. This variant yields a MS-

SSIM of 0.72, a LPIPS of 0.26, a LD of 15.04, a mnCER of 0.17, an ED of 111.74 and a CER of
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(a) Input (b) DewarpNet (w/o ref) (c) GeoTr

(d) GeoTrTemplateLarge (prev.) (e) DocMatcher (ours) (f) Original

(a) Input (b) DewarpNet (w/o ref) (c) GeoTr

(d) GeoTrTemplateLarge (prev.) (e) DocMatcher (ours) (f) Original

Figure 10.8: Qualitative evaluation of the state of the art and our approach based on selected samples of
Inv3DReal.

0.18. When comparing it to our proposed variant, we observe a significant change in LD, while

the other metrics remain roughly the same. This sensitivity to the border artifacts indicates that

the metric LD is not robust to small changes in the image content.

We also show the least successful dewarpings per metric in Figure 10.10. The reasons for the bad

metrics differ depending on the metric. Heavy crumples or blurry images appear to be the most
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(a) (b) (c)

(d) (e) (f)

Figure 10.9: Visualization of intermediate dewarping stages within our proposed approach. From (a) to (f):
input image W0, background-removed image W1, pre-dewarped image W3, initially dewarped
using GeoTrTemplateLarge (2x) W4, and the final output U

challenging for our approach. Overall, the dewarped images still appear reasonably well dewarped,

even in the worst cases. This indicates that there are no extreme failure cases.

10.3.3 Ablation Study

To evaluate the impact of the individual components of our approach, we conduct an ablation

study. We ablate the full model piece by piece until we reach the base model GeoTrTemplateLarge

[31] and evaluate the performance on the Inv3DReal dataset. We compare the full model to

the following ablations: (1) without the line-based dewarping, (2) without the second inference of

GeoTrTemplateLarge, (3) without the line-based pre-dewarping and finally without the background

removal (4). The last ablation is equal to the model GeoTrTemplateLarge itself.

Figure 10.11 presents the ablation results. The first ablation, w/o line-based dewarping, shows

significant degradation in LD and more minor degradation in mnCER. All other metric values are

roughly the same as the full model. For the second ablation, w/o second GeoTrTemplateLarge, we

find the most prominent degradation in mnCER. The third ablation, w/o line-based pre-dewarping,

shows significant degradation in all metrics, especially in mnCER. Finally, the last ablation, w/o

background removal, shows minor degradation in most metrics. While this step appears to have

the least effect, it still contributes to the model’s overall performance. This indicates that all
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MS-SSIM (0.36) LPIPS (0.69) LD (38.12)

mnCER (0.74) ED (359) CER (0.59)

Figure 10.10: Least successful dewarpings in Inv3DReal with our approach per metric.

components are relevant to the full model. Considering the varying degrees of degradation among

the metrics and ablations, it is reasonable to assume that each component has its own merits.

10.3.4 Susceptibility to Errors

In this section, we investigate the susceptibility of our approach to errors in the intermediate

stages of our pipeline. To that end, we design two experiments: The first experiment examines

the influences of incorrect mask detection by the document detector. During inference, we rotate

the detected document mask around its center by a random angle drawn uniformly from the

interval [−α, α]. For the second experiment, we investigate the effect of incorrect line detections

on the subsequent stages. Therefore, we randomly generate distractor lines during line detection

by merging existing lines and adding them to the detected lines.

The results of the error susceptibility experiment are shown in Table 10.2. The rotation of the

document masks and the addition of distractor lines show little effect for small changes. For

significant changes, the impact of the added errors differs on the kind of error. Distractor lines

seem to hardly influence the overall performance, while the mask rotation shows a decline in all

metrics. However, it should be noted that even at the maximum rotation, the visual metrics

and mnCER are still better than our previous approach, GeoTrTemplateLarge, and significantly

better than all other benchmarks. The degradation in the text metrics might be caused by loss of
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Figure 10.11: Ablation study for our proposed approach DocMatcher. We remove parts of the model piece
by piece until we have only the GeoTrTemplateLarge [31] remaining.

MS-SSIM↑ LPIPS↓ LD↓ mnCER↓ ED↓ CER↓

R
ot

at
e

α = 25° 0.68 0.30 12.0 0.23 145 0.23

α = 20° 0.68 0.29 11.6 0.21 141 0.23

α = 15° 0.69 0.28 11.6 0.18 129 0.21

α = 10° 0.70 0.28 11.3 0.17 124 0.20

α = 5° 0.71 0.27 11.3 0.17 116 0.19

ours 0.71 0.27 11.3 0.17 112 0.18

D
is

tr
ac

to
rs

5% 0.71 0.27 11.5 0.17 115 0.18

10% 0.70 0.28 11.5 0.17 113 0.18

15% 0.70 0.28 11.5 0.18 111 0.18

20% 0.70 0.28 11.8 0.18 112 0.18

25% 0.70 0.28 11.7 0.19 117 0.19

Table 10.2: Results of the error susceptibility experiment.

information through incorrect masking. Overall, our approach shows robustness against errors in

intermediate stages.

10.4 Summary and Discussion

In this chapter, we proposed a novel approach for geometric dewarping using reference templates

that explicitly leverage the additional information in the reference template.
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It utilizes a template image to guide the dewarping process and achieves state-of-the-art results

on the Inv3DReal dataset. We leverage the line orientation for a robust, content-based image pre-

dewarping stage to reduce the pixel shift distance. Furthermore, we associate the lines between the

warped and template image and leverage these associations to construct a dense transformation

field that is capable of moving the document pixels to their correct position. We evaluated our

approach on the Inv3DReal dataset and compared it to the state-of-the-art models. The results

show that our approach outperforms the previous best model, GeoTrTemplateLarge, in all met-

rics, especially in LD and mnCER. We conducted an ablation study to evaluate the impact of

the individual components of our approach. Furthermore, we performed two experiments on the

susceptibility of intermediate errors and showed that our approach is robust against these errors.

In this chapter, we addressed the research question RQ2.3:

RQ2.3: Explicit Geometric Dewarping

How can we dewarp document images with a reference template by explicitly leveraging

the template information to improve the quality of the document images?

Our approach, DocMatcher, answers this question since it explicitly leverages the reference tem-

plate information in the form of detected and matched lines to geometrically correct the warped

document images. Our results show that the explicit approach outperforms our implicit geometric

dewarping model proposed in RQ2.1.
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Problem Formalization

In the previous part, Geometric Dewarping, we searched for a method to remove the geometric

distortions induced by photographing the document using a smartphone. This effort tackled the

challenge categories Camera Distortions and Paper Distortions as defined in Section 1.1.

Building upon the results of the previous part, we address the remaining challenge group: Lighting.

In this group, we face the problems of ambient light and shadows, which are also captured by the

smartphone. For an optimal representation of the original document, we are interested in a version

of the captured and dewarped document that resembles the pristine document as closely as possible.

To this end, we formulate the research question as follows:

RQ3: Illumination Correction

Given the partially dewarped document images, how can we correct the illumination to

improve the quality of the document images?

Note that the problem of illumination correction is usually approached after geometrically dewarp-

ing a document image. Despite all advances in geometric dewarping, the results of that stage still

contain warpings since the dewarping approaches are not perfect. Crucially, our investigation on

illumination correction needs to cope with imperfectly geometrically dewarped images.

This chapter is based on the following publication:

Publication

Felix Hertlein and Alexander Naumann. “Template-guided Illumination Correction for

Document Images with Imperfect Geometric Reconstruction”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision Workshops. IEEE, 2023,

pp. 904–913. doi: 10.1109/ICCVW60793.2023.00097

Since we assume to have reference templates available for geometric dewarping, we can also leverage

this a priori knowledge for illumination correction. The template image contains information about

the document’s true colors, easing the illumination correction task since a correction model does

not need to guess the output colors. Figure 11.1 gives a brief overview of the task of illumination

correction of imperfectly dewarped document images using reference templates.

https://doi.org/10.1109/ICCVW60793.2023.00097
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Figure 11.1: Overview of the illumination correction task of imperfectly dewarped document images using
reference templates.

Given an imperfectly geometrically dewarped document image Idwp := B(W), where B is an

imperfect backward mapping as defined in [31] and a warped document image W, our goal is to

find a mapping φ from Idwp to Iill such that all illumination effects are removed from the image:

φ : R
h×w×3 → R

h×w×3

Idwp 7→ Iill

More specifically, our model is supposed to predict the (partially) dewarped albedo map Iill :=

B(A) for an albedo image A which corresponds pixel-wise to the warped image W. Note that

the goal for our model is to learn solely the illumination correction task and not to complete

the partial geometric dewarping. Therefore, we define the ground truth image as the partially

dewarped albedo map B(A) instead of the perfect flat document.

B B

φT

( )

×

W A

Idwp T Iill

Figure 11.2: Visualization of the illumination correction problem.
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To facilitate the learning task for our model, we leverage a priori known information about the

image structure given as a template image T ∈ R
h×w×3. Formally, this is described as follows:

φT : R
h×w×3 ×R

h×w×3 → R
h×w×3

(Idwp,T) 7→ Iill

See Figure 11.2 for a visualization of the illumination correction problem.
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Given the problem of illumination correction for imperfectly dewarped document images, we pro-

pose a novel approach to leverage a priori known information about the image structure in this

chapter. For this purpose, we introduce a model that can exploit the visual cues provided by

a reference template image to improve the illumination correction performance. Since there are

multiple ways to incorporate the template information, we will investigate two different approaches

with a total of four variants.

This chapter is based on the following publication:

Publication

Felix Hertlein and Alexander Naumann. “Template-guided Illumination Correction for

Document Images with Imperfect Geometric Reconstruction”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision Workshops. IEEE, 2023,

pp. 904–913. doi: 10.1109/ICCVW60793.2023.00097

We begin by proposing our novel approach to the problem of illumination correction in Section 12.1.

Following up, we present our evaluation details in Section 12.2, including the training and eval-

uation datasets, as well as the employed metrics. In Section 12.3, we show the quantitative and

qualitative results of our approach, as well as three ablation studies. We conclude this chapter

with a summary and discussion in Section 12.4.

12.1 Approach

We base our architecture on the state-of-the-art document image enhancement model IllTr [21]. It

was published by Feng et al. [21] as part of the image dewarping and illumination correction model

named DocTr. We briefly summarize the model architecture of IllTr in the following:

Since the partially dewarped documents Idwp contain high-frequency signals, IllTr avoids scaling

the input to a fixed size. Instead, the document is split into slightly overlapping patches with a

fixed size of p×p pixels and processed individually before being stitched together afterwards. Each

patch Pimg ∈ R
p×p×3 is then preprocessed by a convolutional module called Illumination Head.

This module extracts visual features from a single patch Pimg by convoluting and downsampling.

The resulting feature vector is then flattened into a sequence of tokens fi ∈ R
N×c with c = 512 and

N =
p

8
∗ p

8
. Using a transformer encoder-decoder structure, IllTr encodes the global relationship

between the features fi and generates global-aware representations before decoding them to a low-

resolution prediction fj ∈ R
p

8
×

p

8
×c. Finally, a learnable module called Illumination Tail upsamples

https://doi.org/10.1109/ICCVW60793.2023.00097
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the low-resolution features fj to generate the final high-resolution patch prediction fk ∈ R
p×p×3.

For more details see the original work by Feng et al. [21].

Our architecture processes the input image similarly to IllTr in patches of size p×p before stitching

them together in the end. In contrast to the prior work, we have a priori visual information in

templates T available. To exploit this information, we propose two different variants:

1. The template T is scaled to a fixed size of p×p pixels. We refer to this template representation

as TPfull. Since TPfull is created using the full template, it contains all low-frequency signals

but misses the fine-grained details.

2. We crop a window of (p + 2m) × (p + 2m) pixels from the template T for a margin of m

pixels such that the p × p center region corresponds to the image patch region Pimg. We

then scale the cropped window to our fixed size of p× p pixels. We refer to the scaled patch

as TPpad=m. This cropping method captures the local template context for a given image

patch. Since the alignment of Idwp and T is not pixel-wise correct due to the imperfect

dewarping B, cropping at the exact same coordinates might not contain the relevant visual

features for the given image patch. We introduced the margin m to tackle this problem.

Each variant encodes information about the visual template structure in a p× p patch referred to

as TPx. See Figure 12.1 for a visualization of the patch extraction variants.

Given an image patch Pimg and a template patch TPx, we apply one independent Illumination

Head per patch, which yields two sequences of features fi ∈ R
N×c and ti ∈ R

N×c. We concatenate

the sequences fi and ti to ci ∈ R
2N×c before applying the same encoder structure as IllTr. This

allows the model to attend between the image features, as well as cross relations between image

and template features. That way, the model is conceptually capable of integrating prior visual cues

provided by the template image in the intermediate feature representation.

Before applying the decoder module, as in IllTr, we discard half of the intermediate features from

the encoder since we are only interested in predicting a single image patch. Finally, we apply the

Illumination Tail similar to IllTr to upsample the output features.

As for the loss function, we adhere to the original and combine the L1 loss with the perceptual

loss, also known as VGG loss, [76] using a weighting factor λ.

Ltotal = L1 + λLV GG (12.1)

12.2 Evaluation

In this section, we explain how we train and evaluate our model. First, we discuss the datasets we

use, as described in Section 12.2.1. Then, we review the evaluation metrics we employ, which are

explained in Section 12.2.2. Finally, we provide details on the implementation of our approach, as

outlined in Section 12.2.3.

12.2.1 Datasets

In the following, we present both our training and evaluation dataset.
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input image Idwp template T

image patch template

full

template

pad=0

template

pad=64

template

pad=128

Figure 12.1: Visualization of a single image patch and the corresponding template patches for the different
variants. The graphic shows three template patches for the padded crop variant with margin
m = {0, 64, 128}, respectively.

12.2.1.1Training Dataset

We train the models on our Inv3D dataset (see Chapter 5). In Inv3D, each sample has its distinct

template, leading to a one-to-one match of warped images and templates during training. Since

the dataset contains fully warped document images and our target domain is partially dewarped

document images, we apply the ground truth backward transformation B̂ partially to the warped

image W and the warped albedo map A. The parameter α ∈ [0, 1] scales the amplitude of the

backward map. B̂0(W) corresponds to the input image W and B̂1(W) equates to the perfectly

dewarped document image containing solely illumination effects. See Figure 12.2 for an example

of various dewarping progressions. Note that we explicitly use random values α drawn from a

uniform distribution between 0 and 1 during training to simulate the imperfect geometric dewarping

from the preceding dewarping stage instead of using perfectly dewarped documents. Training on
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partially dewarped documents is crucial to ensure the model’s robustness to imperfect geometric

dewarping.

α = 0.0 α = 0.25 α = 0.5 α = 0.75 α = 1.0

Figure 12.2: Depiction of the Inv3D dataset with partial dewarpings B̂α. The upper row shows the input
images, while the lower row illustrates the corresponding ground truth illumination-corrected
counterparts.

12.2.1.2Evaluation Dataset

For evaluation, we use the real-world dataset Inv3DReal (see Chapter 6) and geometrically dewarp

it using our model GeoTrTemplateLarge (see Chapter 8). This way, we can evaluate our models

in a realistic setting, as our models are intended to be applied after the geometric dewarping step.

We refer to the dewarped dataset as Inv3DRealDewarp in the following.

Additionally, we use the test split of our synthetic dataset Inv3D to conduct ablation studies, as

it offers a more controlled environment for evaluation. In the following, we refer to this dataset as

Inv3DTest.

12.2.2 Evaluation Metrics

All metrics employed compare the model output Iill with a reference image of identical resolu-

tion. For the synthetic evaluations, the reference image is the identically warped ground truth

albedo image Î. Due to the absence of a ground truth backward map for the real-world dataset

Inv3DRealDewarp, we cannot compare the model output against a pixel-aligned and perfectly illu-

minated image. Instead, we evaluate the model’s performance by comparing it to the ground truth

flatbed image, which serves as the closest available approximation. All images have a resolution of

2200 × 1700 pixels.

We assess the models using four metrics, namely MS-SSIM [90], LPIPS [104], ED, and CER. See

Section 2.3 for the definitions.
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12.2.3 Implementation Details

We attempt to keep the hyperparameters as close as possible to the original work IllTr [21]. The

patch size p is set to 128 pixels, and the overlap between two patches to 16 pixels, similar to IllTr.

The loss weight λ from Equation 12.1 is 10−5 and we set the batch size to 24. For training, we

employed the AdamW optimizer [57] with an initial learning rate of 10−4 and a StepLR scheduler1

with a step size of 20 and a gamma of 0.3. Contrary to IllTr, we do not stop training after 35 epochs

and continue it until there is no further improvement for 25 continuous epochs measured by the loss

Ltotal in Equation 12.1 on the validation data split. To improve the resilience to different lighting

variations, we employ a random color jitter during training with random brightness, contrast,

saturation, and hue.

12.3 Results

In this section, we present the results of our experiments. The sections 12.3.1 and 12.3.2 compare

our models with the state-of-the-art quantitatively and qualitatively, respectively. Section 12.3.3

presents three ablation studies for detailed insights into the best-performing model.

12.3.1 Quantitative Results

Table 12.1 lists the quantitative results of our approach in comparison to the state-of-the-art model

IllTr [21] and the identity baseline. First, we observe that all models trained on Inv3D outperform

the baseline in all metrics. The IllTr model trained on DocProj yields a lower MS-SSIM value

than the baseline method and, thus, indicates a degradation in visual similarity. When comparing

IllTr trained on DocProj [46] with the same model trained on Inv3D, it is apparent that the

training on Inv3D is superior in all metrics. This could be attributed to the smaller domain gap

for Inv3D to our evaluation dataset and the training process with partially dewarped documents.

When comparing IllTr to our model IllTrTemplate, we find that IllTrTemplate surpasses IllTr in

all variants and metrics. Within our four variants, there is no clear best model based on the set

of all metrics. The visual metrics MS-SSIM and LPIPS indicate that a padding of 128 pixels

works best, while the text metrics ED and CER favor a padding of 0 pixels as the most favorable

choice. With an LPIPS of 0.221, the variant with 128 pixel padding achieves a 15 % relative

improvement in contrast to the original model Inv3D trained on the same data. Thus, this model

is recommended for document archival and retrieval. For the text metrics, the variant with 0 pixels

padding achieves a relative improvement of 6.3 % for ED and CER and is therefore beneficial for

information extraction.

12.3.2 Qualitative Results

Figure 12.3 shows randomly selected images from the evaluation dataset Inv3DRealDewarp. Look-

ing at the illumination correction results, we observe that all models, IllTr and IllTrTemplate,

generate patchy artifacts to some degree. More precisely, the individual patches do not always

agree on a common background color, which leads to visible patches within the stitched image.

1 https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html
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Model Template Train Dataset ↑MS-SSIM ↓LPIPS ↓ED ↓CER

Identity — — 0.711 (0.094) 0.324 (0.111) 329.1 (184.6) 0.512 (0.264)

IllTr [21] — DocProj [46] 0.651 (0.133) 0.306 (0.118) 306.4 (151.2) 0.477 (0.213)

IllTr [21] — Inv3D [31] 0.718 (0.154) 0.260 (0.095) 264.6 (161.0) 0.412 (0.229)

IllTrTemplate (ours) full Inv3D [31] 0.736 (0.109) 0.234 (0.086) 257.9 (159.7) 0.402 (0.227)

IllTrTemplate (ours) pad=0 Inv3D [31] 0.731 (0.107) 0.231 (0.085) 247.9 (156.3) 0.386 (0.221)

IllTrTemplate (ours) pad=64 Inv3D [31] 0.760 (0.144) 0.226 (0.082) 251.4 (161.7) 0.391 (0.226)

IllTrTemplate (ours) pad=128 Inv3D [31] 0.762 (0.137) 0.221 (0.082) 251.3 (159.8) 0.392 (0.227)

Table 12.1: Evaluation of our model IllTrTemplate on the Inv3DRealDewarp dataset. Values in brackets
denote the standard deviation across all test samples.

This finding is likely due to the independent illumination correction for each patch before stitching

them together in the end. The illumination corrections of IllTr trained on DocProj [46] (col-

umn (b)) show stronger artifacts around the shadow borders than those trained on Inv3D, which

indicates a lack of hard shadows in the DocProj dataset.

The comparison of IllTr and IllTrTemplate demonstrates the effectiveness of adding template infor-

mation for color reconstruction. All IllTrTemplate variants seem to incorporate the original colors

provided by the templates in their illumination correction output. Thus, the reconstructed images

appear to be more similar to the original. Note, since no ground truth backward mappings B̂ are

available for the real-world dataset Inv3DReal, the reference image does not contain any warping.

When considering the last two rows, we observe that all models struggle with removing the fine-

grained creases. This is likely caused by the domain gap between the synthetically generated

dataset Inv3D and the real-world evaluation dataset Inv3DReal.

12.3.3 Ablation Studies

In the following, we conduct a series of ablation studies. We consider only the model IllTrTemplate

with a padding of 128 pixels as it is the best-performing model according to the LPIPS metric.

12.3.3.1Ablation 1: Categorization

We split the Inv3DRealDewarp dataset samples into their different categories depending on the

type of document sheet modification and environment setting during recording. Table 12.2

shows the results for IllTrTemplate with 128 pixels padding trained on Inv3D and evaluated

on Inv3DRealDewarp. For the document modification type, we observe that crumpleseasy im-

proves most according to all metrics. Crumpleshard seems to be the hardest modification type,

which coincides with the qualitative findings that hard creases are not corrected properly. When

considering the dataset split by environment setting, it becomes apparent that the majority of

metrics, except for MS-SSIM , collectively affirm that the color environment is comparatively less

challenging, whereas the shadow setting poses the greatest difficulty. The latter also aligns with

the observations of the qualitative analysis, wherein the presence of harsh shadows resulted in the

generation of more pronounced artifacts.
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Figure 12.3: Qualitative results of state-of-the-art IllTr [21] and our model IllTrTemplate. The samples were
drawn randomly from Inv3DRealDewarp. The left column shows the input images Idwp. The
rightmost column shows the optimal image B̂(A). The center columns depict the illumination
corrected images per model B(W).
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Model ↑MS-SSIM ↓LPIPS ↓ED ↓CER

perspective 0.770 (0.153) 0.210 (0.089) 244.9 (163.9) 0.381 (0.227)

curled 0.768 (0.124) 0.199 (0.073) 239.9 (175.4) 0.380 (0.264)

fewfold 0.770 (0.139) 0.209 (0.070) 259.4 (170.4) 0.402 (0.233)

multifold 0.757 (0.151) 0.230 (0.088) 256.9 (157.5) 0.398 (0.221)

crumpleseasy 0.797 (0.115) 0.190 (0.055) 225.5 (166.0) 0.352 (0.235)

crumpleshard 0.711 (0.124) 0.289 (0.075) 281.2 (120.7) 0.440 (0.172)

bright 0.751 (0.142) 0.221 (0.088) 251.6 (163.9) 0.392 (0.230)

color 0.766 (0.137) 0.213 (0.083) 229.1 (163.0) 0.355 (0.225)

shadow 0.770 (0.131) 0.230 (0.075) 273.3 (150.5) 0.430 (0.222)

Table 12.2: Ablation 1: The Inv3DRealDewarp dataset is partitioned into categories based on their respec-
tive modifications (upper part) and environment settings (lower part). The depicted results
have been generated by our model IllTrTemplate with a padding of 128 pixels. Values in
brackets denote the standard deviation within each category.

12.3.3.2Ablation 2: Dewarping Importance

To gain insights into the importance of the quality of the preceding geometric dewarping step on

the illumination correction, we evaluate the test split of Inv3D with varying degrees of dewarping.

See Figure 12.2 for an example of various dewarping progressions.

Table 12.3 shows the results of this ablation study. The absolute values of the visual metrics MS-

SSIM and LPIPS exhibit a remarkable closeness to their respective optimum. This indicates the

near-perfect illumination correction of the test split of Inv3D. Meanwhile, the text metrics ED and

CER continue to exhibit considerably high values. This implies an imprecise reconstruction of high-

frequent signals within the image since the fine-grained details are crucial for text recognition. In all

metrics except for MS-SSIM , the best results were achieved using the perfect geometric dewarping

with α = 1. Since the visual metrics are already near their optimum, there is no steep decrease in

performance when considering α < 1. Note that the remarkably high CER values for low α values

are due to the limited OCR performance of Tesseract in the reference image Îα.

Dewarp factor α ↑MS-SSIM ↓LPIPS ↓ED ↓CER

0.0 (fully warped) 0.992 (0.038) 0.058 (0.019) 202.8 (149.2) 2.725 (17.091)

0.2 0.981 (0.016) 0.046 (0.019) 207.9 (145.4) 3.952 (21.332)

0.4 0.979 (0.015) 0.045 (0.020) 216.4 (137.4) 1.637 (7.349)

0.6 0.978 (0.014) 0.043 (0.021) 220.2 (150.2) 1.245 (7.544)

0.8 0.978 (0.014) 0.040 (0.022) 212.0 (158.8) 0.673 (3.270)

1.0 (fully dewarped) 0.982 (0.014) 0.030 (0.026) 194.9 (171.9) 0.472 (1.104)

Table 12.3: Ablation 2: We investigate the importance of the dewarp factor α. All results were obtained
by our model IllTrTemplate with 128 pixel padding on a subset of 360 samples of Inv3DTest.
Values in brackets denote the standard deviation across all test samples.
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12.3.3.3Ablation 3: Error Distribution

In a third ablation study, we examine the error distribution over all samples in the evaluation

dataset Inv3DRealDewarp. Since the imperfections in the geometric dewarping step affect the

illumination step, we classified all input samples in three categories severely flawed, flawed, and

moderate depending on the severity of the dewarping errors. Images in the first category contain

large areas showing the background instead of the document. In the flawed category, there is less

background visible, but the document still does not cover the entire image. The last category

includes all samples where, at minimum, the outline has been accurately mapped. Figure 12.4

shows examples of the categories.

Moderate Flawed Severely flawed

Figure 12.4: Samples of Inv3DRealDewarp with the highest LPIPS value per imperfection category for
IllTrTemplate with 128 pixel padding. The upper row depicts input images, and lower row
shows the results after illumination correction.

Figure 12.5 plots the distribution of LPIPS values over the samples of Inv3DRealDewarp after the

illumination correction. The histogram shows that severely flawed geometric dewarpings give the

highest metric values. Since our IllTrTemplate model solely corrects the illumination and does not

complete the partial geometric dewarping, this finding is to be expected.
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Figure 12.5: Distribution of the LPIPS error over all Inv3DRealDewarp samples given by the IllTrTemplate
model with a padding of 128 pixels. All samples are classified depending on the severity of
the dewarping errors.

12.4 Summary and Discussion

In this chapter, we tackled the problem of illumination correction for imperfectly dewarped docu-

ment images using reference templates. This question was formulated in RQ3:

RQ3: Illumination Correction

Given the partially dewarped document images, how can we correct the illumination to

improve the quality of the document images?

We presented two methods for incorporating the template information using a transformer encoder-

decoder architecture. To evaluate the effectiveness of additional template images, we conducted

a comparative analysis against the state-of-the-art model IllTr [21]. We assessed a total of four

new template-based models, specifically the full template model and the cropped template models

with paddings of 0, 64, and 128 pixels. We measured the performance using multiple metrics and

observed a relative improvement of 15 % LPIPS and 6.3 % CER error compared to IllTr. A series

of ablation studies were conducted that revealed a domain gap between the synthetically generated

dataset, Inv3D, and the evaluation dataset, Inv3DRealDewarp.

With the proposed model IllTrTemplate, we can answer the RQ3. All four variants surpass the

performance of the previous state-of-the-art model IllTr [21]. Thus, we found a method to im-

prove illumination correction for partially dewarped document images with the help of reference

templates.
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13
Conclusion and Outlook

In this thesis, we investigated document image enhancement methods using reference templates.

Specifically, we addressed the tasks of geometric dewarping and illumination correction, i.e., the

removal of pixel distortions and correction of illumination changes induced by the camera-based

image-capturing process. To this end, we created a training and evaluation dataset in Part III and

conducted an investigation on geometric dewarping in Part IV. In Part V, we tackled the problem

of illumination correction under the assumption of imperfect geometric dewarping. In this chapter,

we summarize and discuss the thesis (Section 13.1) before concluding the work with an outlook

over future work in Section 13.2.

13.1 Summary and Discussion

Since business workflows in many countries still rely on printed document sheets, there is a need

to digitize them in order to transition from a physical to a digital workflow. Example domains are

the retail industry, insurance sector, healthcare system, etc. In order to digitize paper sheets, there

are three fundamental ways: (1) human labor, (2) scanners combined with AI , and (3) cameras

combined with AI . The third option, cameras combined with AI , is the least expensive option and

offers great flexibility at the same time. However, using a camera as the image capturing method

introduces inherent challenges in AI processing and interpretation compared to the scanner-based

approach. These challenges comprise camera and paper deformations, as well as external lighting

influences. In this thesis, we explored methods to overcome these challenges by transforming

camera-captured images into scan-like images, enabling more effective downstream analysis of the

documents.

Our approach to improving the automated geometric dewarping and illumination correction capa-

bilities is based on the key idea that the human mind leverages prior knowledge about the expected

document structure to perform these tasks. In order to provide additional information to a machine

learning model, we introduced the concept of reference templates, i.e., RGB images displaying the

expected structure of the document without any instance-specific information. We formulated our

hypothesis as follows:

Hypothesis: Reference Templates

Additional information about the expected document structure and visual appearance can

be leveraged to improve the document image enhancement process.



13 Conclusion and Outlook

We structured our research into six parts: (1) introduction (2) preliminaries, (3) data generation,

(4) geometric dewarping, (5) illumination correction, and (6) synthesis.

Part I introduced the topic by discussing the motivation and the research goal first. We then

analyzed the challenges in the research topic before presenting the key idea and hypothesis. Fur-

thermore, we presented and explained the research questions, followed by an overview of the

contributions made in this work.

Part II presented the preliminaries of our work, which include the foundational concepts and

related research necessary for understanding our work. The foundations are divided into three

sections: First, we discuss the various methods of coordinate transformations employed. Second,

we outline the deep learning architectures used throughout this work. Third, we provide details on

the evaluation metrics established in prior research. In the related work, we provide an overview

of the research area grouped into three subareas: available datasets, geometric dewarping, and

illumination correction. Furthermore, we set the prior work in context with our contributions and

discuss the value added.

Part III focuses on the problem of the unavailability of a suitable dataset for this research (RQ1).

We formalize the requirements for a dataset for geometric dewarping and illumination correction

using reference templates. Based on these requirements, we present our approach to generating a

synthetic, large-scale, and high-resolution training dataset called Inv3D. It comprises three steps:

base template generation, instance generation, and instance warping. In addition, we present a

second dataset, Inv3DReal, which is used for evaluation. Both datasets, as well as the generation

code, are publicly available.1

Part IV investigates the problem of correcting geometric distortions in document images. The

document image-capturing process using a camera introduces geometric distortions due to the

camera’s projection and the physical deformations of the document sheet. We explored two meth-

ods for document image dewarping leveraging reference templates: an implicit (RQ2.1) approach

and an explicit (RQ2.3) approach. We proposed a model called GeoTrTemplate, which utilizes an

attention mechanism to determine how to leverage the information within the reference templates

and showed that it outperforms all previous dewarping models without reference templates. The

second approach explicitly exploits the knowledge of the reference templates by extracting visual

and textual lines from the input images and the template images, and thereafter matches both sets

of lines in order to infer the geometric dewarping map. By using explicit representations in inter-

mediate steps, this approach decomposes the complex task of geometric dewarping into a series

of simpler tasks. Our new model, DocMatcher, outperforms all previous models without reference

templates, as well as our first model, GeoTrTemplate, across all metrics by a significant margin.

We published the code and weights for both models online.2

Finally, we answered the question of how to evaluate the quality of geometric dewarping approaches

with regard to text readability and positional awareness (RQ2.2). Since all previously employed

metrics either suffer from the text linearization problem or the insensitivity of text readability, we

proposed a novel metric called mnCER, which addresses both problems.

1 Datasets: https://publikationen.bibliothek.kit.edu/1000161884

Code: https://github.com/FelixHertlein/inv3d-generator
2 GeoTrTemplate: https://github.com/FelixHertlein/inv3d-model

DocMatcher: https://felixhertlein.github.io/doc-matcher
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13.2 Future Work

Part V is concerned with the correction of the illumination in document images, assuming they

have been partially dewarped beforehand (RQ3). The document capturing process using a camera

leads to undesirable illumination artifacts like ambient light and shadows, which need to be re-

moved to improve text readability using AI . We introduced a new model, IllTrTemplate, designed

to integrate reference template information using a transformer encoder-decoder architecture. To

explore different approaches for integrating reference templates, we proposed four variants of Ill-

TrTemplate. We show that our proposed model improves the automated text readability compared

to the previous state-of-the-art model IllTr, which does not leverage template information. Our

code and model weights are available online.3

In conclusion, our hypothesis on the benefit of reference templates for geometric dewarping and

illumination correction of document images is confirmed. We presented several methods for both

tasks, each improving its respective task by utilizing reference templates. Our experiments show

that adding information about the expected document structure and visual appearance can be

leveraged to improve the document image enhancement process.

13.2 Future Work

Our research has shown that reference templates can be beneficial for document image dewarping

and illumination correction. In future research, the information provided in the reference templates

could be leveraged not only to improve the enhancement of document images but also for down-

stream tasks such as information extraction. Given the knowledge about the expected structure of

a document, one could exploit it by creating a semantically biased OCR engine for highly accurate

text detection. For example, given the information that a date is expected in a specific area, a

semantically biased OCR approach could reject invalid dates such as the 71st day of a month and

instead parse it as the next likely one, i.e., the 11th. Thus, using the reference template information

might improve the robustness of information extraction systems.

Another research direction could focus on the applicability of document image enhancement sys-

tems using reference templates. For now, a potential user has to select the template associated with

a given document from a pool of available document types by hand. A machine learning model

could automate this task by selecting the correct template given the warped document image as

input. This would increase the usability of template-based approaches, as it provides a faster and

more convenient experience for the user.

As stated in the introduction (Section 1.1), we focused in this work on the challenges Camera Dis-

tortions, Paper Distortions, and Lighting. In addition to these challenges, further influences could

affect the document sheet and image-capturing process. These include partially destroyed docu-

ments, stains of additional substances, e.g., coffee, and blur while image capturing. Future work

could investigate whether the current models can handle these additional influences sufficiently

well. In case the results are not sufficient, there is a need for more research in this direction.

Lastly, we want to highlight the potential for integrating multimodal foundation models like

CLIP [72] in the image dewarping and illumination correction process. Their implicit general

knowledge of documents and (limited) logical reasoning might benefit geometric dewarping and

3 IllTrTemplate: https://github.com/FelixHertlein/illtrtemplate-model
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illumination correction. Since these models are prone to hallucination, they are unsuitable for di-

rect information extraction. Nevertheless, one could leverage their general knowledge to generate

a better backward map, dewarp the image, and then use OCR for the text extraction. Since the

foundation model is used exclusively for backward map generation and not text extraction, the

risk of hallucination is significantly reduced.
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