KIT | KIT-Bibliothek | Impressum | Datenschutz

Synthesis‐Driven Functionality in High‐Entropy Materials

Khandelwal, Anurag D. 1; Mathew, George ORCID iD icon 1; Bhattacharya, Subramshu; Colsmann, Alexander ORCID iD icon 2,3; Marques, Gabriel Cadilha 1; Botros, Miriam 1; Strauss, Florian 1; Xing, Jiangyuan 1; Raju, John Silvister; Ponnusamy, Arivazhagan; Aghassi-Hagmann, Jasmin ORCID iD icon 1; Brezesinski, Torsten ORCID iD icon 1; Schweidle, Simon ; Breitung, Ben ORCID iD icon 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
3 Materialwissenschaftliches Zentrum für Energiesysteme (MZE), Karlsruher Institut für Technologie (KIT)

Abstract:

Since their discovery in 2015, high-entropy oxides have introduced a paradigm shift in materials science, unveiling a class of compounds with exceptional structural and functional versatility. These high-entropy materials (HEMs) offer exciting opportunities as next-generation alternatives to conventional materials, owing to the synergistic interplay of multiple principal elements that results in enhanced stability, tunability, and multifunctionality. Their unique atomic configurations enable the design of materials with high surface areas and abundant active sites for catalysis, mechanically robust structures for energy storage, or tunable band gaps for electronic and optoelectronic devices. However, the vast compositional space of HEMs presents both a challenge and an opportunity. Meaningful property design requires a deep understanding of how synthesis routes influence structure–property relationships. In this review, a comprehensive overview of established and emerging synthesis strategies for HEMs, focusing on how each method affects resulting structural, electronic, electrochemical, and optical characteristics, is provided. Key process parameters that can be tailored to optimize material performance are highlighted. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186833
Veröffentlicht am 13.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Lichttechnisches Institut (LTI)
Materialwissenschaftliches Zentrum für Energiesysteme (MZE)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 06.11.2025
Sprache Englisch
Identifikator ISSN: 1613-6810, 1613-6829
KITopen-ID: 1000186833
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Weitere HGF-Programme 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Small
Verlag John Wiley and Sons
Band 21
Heft 44
Seiten Art.-Nr.: e01703
Vorab online veröffentlicht am 30.09.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page