
Learning Versatile Skills using
Reinforcement Learning

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Mevlüt Onur Celik
geb. in Erlenbach am Main

Tag der mündlichen Prüfung: 24. Oktober 2025
1. Referent: Prof. Dr. Gerhard Neumann
2. Referent: Prof. Dr. Dieter Büchler

Abstract

Very early in life, humans learn how to complete a task in various ways. For instance, we
are not restricted to only using our right hand to grasp a mug at its handle, but can also
do so with our left hand and grasp it at the mug’s bottom or top part. This intuitive ability
to solve a task in versatile ways is a key feature of why humans are highly adaptive to
new situations and environments. Once the mug’s handle is broken, we can still grasp it
at a di�erent place and continue using it.

Based on the way humans solve a task, a natural motivation is to equip robots with such
versatile skills to enable higher �exibility and adaptability in the real world, in which
the environment constantly changes. Especially in the context of reinforcement learning
(RL), this versatile skill discovery is interesting as there is no human expert required.
Yet, most known RL methods are based on Gaussian parameterized policies that can not
represent multimodal distributions, a key feature for learning versatile skills. Therefore,
this thesis proposes methods for equipping robots with versatile skills using reinforcement
learning for Mixture of Experts (MoE) and di�usion policies. Both policy representations
can represent multimodal distributions.

First, we propose a method for learning MoE policies in the episode-based maximum
entropy RL (ERL) setting, where each expert is a contextualized motion primitive. The
proposed objective allows each expert to shape its own curriculum by learning a per-expert
context distribution such that the experts become an expert in their respective responsible
context region. We then extend these MoEs to highly non-linear experts and energy-based
per-expert models to enable more complex representations thereby reducing the number
of experts required to successfully solve a task. Finally, we propose a step-based maximum
entropy reinforcement learning (SRL) algorithm that can train a di�usion-based policy to
solve high-dimensional control tasks. Training di�usion policies are a natural alternative
to MoEs as they have proven to be very e�ective in representing multimodal distributions
while stable training. Yet, they are not straightforward to apply in the SRL setting because
they do not have a tractable marginal entropy.

i

Zusammenfassung

Sehr früh im Leben lernen Menschen, eine Aufgabe auf verschiedene Arten zu lösen.
Beispielsweise sind wir nicht darauf beschränkt, eine Tasse nur mit der rechten Hand
am Gri� zu greifen, sondern können dies auch mit der linken Hand tun und ihn an der
Unterseite oder Oberseite greifen. Diese intuitive Fähigkeit, eine Aufgabe auf vielseitige
Weise zu lösen, ist ein entscheidendes Merkmal dafür, warum Menschen sich so gut an
neue Situationen und Umgebungen anpassen können. Selbst wenn der Gri� des Bechers
abbricht, können wir ihn an einer anderen Stelle greifen und weiter benutzen.

Ausgehend davon, wie Menschen Aufgaben lösen, liegt es nahe, Roboter mit solchen viel-
seitigen Fähigkeiten auszustatten, um eine höhere Flexibilität und Anpassungsfähigkeit
in der realen Welt zu ermöglichen, in der sich die Umgebung ständig verändert. Gera-
de im Kontext des Reinforcement Learning (RL) ist die Entdeckung solcher vielseitiger
Fähigkeiten besonders interessant, da kein menschlicher Experte benötigt wird. Die meis-
ten bekannten RL-Methoden basieren jedoch auf gaußförmig parametrierten Policies,
die keine multimodalen Verteilungen darstellen können – ein zentrales Merkmal zum
Erlernen vielseitiger Fähigkeiten. Daher schlägt diese Arbeit Methoden vor, um Roboter
mit vielseitigen Fähigkeiten auszustatten, wobei Reinforcement Learning mit Mixture of
Experts (MoE) und di�usionsbasierte Policies zum Einsatz kommt. Beide Repräsentationen
können multimodale Verteilungen abbilden.

Zunächst schlagen wir eine Methode zum Erlernen von MoE-Policies im episodenbasierten
Maximum Entropy RL (ERL) Fall vor, bei der jeder Experte eine kontextualisierte Motion
Primitive darstellt. Das vorgeschlagene Optimierungsziel erlaubt es jedem Experten, sein
eigenes Curriculum zu gestalten, indem eine kontextspezi�sche Verteilung pro Experte
gelernt wird, sodass jeder Experte auf den für ihn zuständigen Kontextbereich spezialisiert
wird. Anschließend erweitern wir diese MoEs um hochgradig nichtlineare Experten und
Energy Based Modelle pro Experte, um komplexere Repräsentationen zu ermöglichen
und somit die Anzahl der für die erfolgreiche Lösung einer Aufgabe benötigten Experten
zu reduzieren. Abschließend stellen wir einen schrittbasierten Maximum Entropy RL
Algorithmus (SRL) vor, mit dem eine di�usionsbasierte Policy trainiert werden kann,
um hochdimensionale Regelungsaufgaben zu lösen. Di�usionsbasierte Policies sind eine
natürliche Alternative zu MoEs, da sie sich als sehr e�ektiv in der Darstellung multimodaler
Verteilungen bei gleichzeitig stabilem Training erwiesen haben. Allerdings sind sie im SRL
Fall nicht einfach anwendbar, da sie keine berechenbare marginale Entropie besitzen.

iii

Acknowledgements

First, I would like to deeply thank my advisor Geri, who always supported me throughout
my doctoral journey. Your feedback on my work was always very helpful and often got
me out of a dead end. I admire your patience with which you calmly responded to my
(often unfounded) concerns about my work and always gave me very helpful advice. After
these conversations, I always felt more motivated and relaxed and was able to focus again
on the actual topics in my research. Especially at the beginning of my doctoral journey,
these discussions were very helpful in learning and improving scienti�c thinking. Your
commitment and support at all times of day and even during your holidays helped me
immensely to get this far. This also applies to rebuttal phases in the peak of summer,
during which you took the time to call and help me despite being on vacation. Not to forget
your relaxed and friendly manner, which has rubbed o� on the group and contributed to a
pleasant working atmosphere.

I would like to thank all my colleagues, and those who had already completed their doctor-
ates for the great time during the doctoral journey. The lunches and co�ee breaks together
were always very entertaining and often helped me clear my mind. The discussions with
you were also very insightful, and I was able to learn a lot from you. The beginning of
my doctoral journey in Tübingen with Philipp B. and Max turned out to be very pleasant
and instructive despite the circumstances. Thank you for that beginning and the time that
followed, which came with interesting discussions. I also thank Philipp B. for the great
collaboration, during which I learned many interesting things. Furthermore, I would like
to thank Aleks, with whom I not only had a very great collaboration, but also shared an
o�ce, which contributed to a very pleasant working atmosphere. Not to forget your very
helpful improvements to my texts; your writing skills are remarkable. I would also like
to thank Fabian O. for his helpful discussions, very useful code-level tips, and the great
collaboration. Bruce, I also thank you for the great collaborations, helpful tips and tricks,
and the good shared dinners in local Asian restaurants. I would also like to thank Denis,
who was one of the �rst students I had the opportunity to supervise and later as a collegue
with whom I had very interesting and insightful discussions, especially in the area of
di�usion models. The discussions were always very instructive, and the collaboration
very pleasant. Not to forget the joint kickboxing sessions, which I will always remember
as a strenuous but very fun and enjoyable time. David, I also thank you for the great
collaboration and your easygoing nature, which always contributed to a pleasant working
environment. I also thank Nic for the great and enjoyable time in our shared o�ce after
the �rst move, during which I learned a lot about 3D printing and bicycles. Your technical
expertise is remarkable. I also thank Tai, Huy, Philipp D., Niklas, Hongyi, Balázs, Emiliyan,
Enes, Max N., Xinkai, Vaisakh, and Michael for the very pleasant working atmosphere

v

Zusammenfassung

and the great time in the group. Finally, I would like to thank Rudi, who always gave me
helpful advice and with whom collaboration was always very enjoyable.

At this point, I would also like to thank Mirkan, Jan, and Baran, with whom the time
during our studies was always entertaining and fun. During our joint study sessions,
the discussions were always very insightful and helped me better understand the topics.
Additionally, I would like to thank my friends. The time spent together was always very
entertaining and helped me take my mind o� the work.

I am deeply grateful to my parents, Ayse and Ali, and my sisters, Meltem and Bahar,
who played a major role in enabling me to get this far. Your emotional support and
unconditional backing always helped me keep going, even when things weren’t going well.
Your e�orts to make life as easy as possible for me so that I could focus on my work helped
me enormously. Thanks to you, I was even able to make it this far in the �rst place.

A particularly big and heartfelt thanks goes to my wife, Zülal. You have been by my side
since my bachelor’s thesis and have shared all the highs and lows with me, especially
during the PhD. I am deeply grateful that you always had the patience to stay by my side,
supported me unconditionally, and always made the time enjoyable. Your adaptation to
the circumstances, your understanding of my work, and your patience helped me focus on
the PhD and �nish it in the �rst place.

Lastly, I would like to thank Dieter Büchler who has agreed to be my second referee and I
would like to thank the PhD committee who have agreed to be the examiners.

vi

Contents

Abstract . i

Zusammenfassung . iii

List of Figures . xi

List of Tables . xiii

1. Introduction . 1
1.1. Thesis Contributions and Structure . 4

1.1.1. Specializing Versatile Skill Libraries using Local Mixture of Experts 5
1.1.2. Acquiring Diverse Skills using Curriculum Reinforcement Learn-

ing with Mixture of Experts . 6
1.1.3. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning 6

2. Foundations . 9
2.1. General Notation . 9
2.2. Step-Based Reinforcement Learning (SRL) 9

2.2.1. The Markov Decision Process . 10
2.2.2. Step-Based Reinforcement Learning Objective 11
2.2.3. Step-Based Reinforcement Learning Loop 13
2.2.4. Step-Based Reinforcement Learning Methods 14

2.3. Episode-Based Reinforcement Learning (ERL) 18
2.3.1. Episode-Based Reinforcement Learning Objective 20
2.3.2. Episode-Based Reinforcement Learning Methods 21

2.4. Maximum Entropy Reinforcement Learning 23
2.4.1. Step-Based Maximum Entropy Reinforcement Learning 24
2.4.2. Episode-Based Maximum Entropy Reinforcement Learning . . . 25

2.5. Advancing Reinforcement Learning using Curriculum Learning 25
2.6. Policy Representations . 27

2.6.1. Motion Primitives . 27
2.6.2. Mixture of Experts . 28
2.6.3. Di�usion Models . 30

2.7. Optimizing Latent Variable Models via Variational Inference 32
2.7.1. Variational Inference for Latent Variable Models 33
2.7.2. Variational Inference for Mixture Models 33
2.7.3. Variational Inference for Di�usion Models 34

vii

Contents

2.7.4. Connection to Episode-Based Maximum Entropy RL 35
2.7.5. Connection to Step-Based Maximum Entropy RL 35

2.8. Mutual Information Based Skill Discovery 36

3. Specializing Versatile Skill Libraries using Local Mixture of Experts 37
3.1. Introduction . 38
3.2. Related Work . 39
3.3. Specializing Versatile Mixture of Expert Models 41

3.3.1. Maximum Entropy Skill Learning with Curriculum 42
3.3.2. Lower-Bound Decomposition for Expert Distributions 43
3.3.3. Lower-Bound Decomposition for Context Distributions and Prior

Weights . 44
3.4. Experiments . 46

3.4.1. Ablation Studies . 46
3.4.2. Simulated Robotic Experiments 47
3.4.3. A Comparison Between Episode-Based and Step-Based Reinforce-

ment Learning . 49
3.5. Conclusion . 51

4. Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture
of Experts . 53
4.1. Introduction . 54
4.2. Preliminaries . 56
4.3. Related Work . 58
4.4. Diverse Skill Learning . 60

4.4.1. Energy-Based Model For Automatic Curriculum Learning 60
4.4.2. Updating the Mixture of Experts Model 61
4.4.3. How does Diversity Emerge? . 62

4.5. Experiments . 63
4.5.1. Environments . 64
4.5.2. ACL Bene�ts . 65
4.5.3. Analyzing the Performance and Diversity 66

4.6. Conclusion and Future Work . 67

5. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning 69
5.1. Introduction . 70
5.2. Related Work . 71
5.3. Preliminaries . 73

5.3.1. Maximum Entropy Reinforcement Learning 73
5.3.2. Denoising Di�usion Policies . 74

5.4. Di�usion-Based Maximum Entropy RL 75
5.4.1. Control as Inference for Di�usion Policies 75
5.4.2. Di�usion-based Policy Iteration 77
5.4.3. DIME: A Practical Di�usion RL Algorithm 78
5.4.4. Implementation Details . 79

viii

Contents

5.5. Experiments . 80
5.5.1. Performance Comparisons . 81
5.5.2. Ablation Studies . 82
5.5.3. Multimodality Analysis . 84

5.6. Flexibility of DIME’s Framework . 86
5.7. Conclusion and Future Work . 88

6. Conclusion . 89
6.1. Summary . 89
6.2. Discussion and Outlook . 91

Bibliography . 93

A. Appendix for Chapter 3 . 109
A.1. Derivations . 109

A.1.1. Maximum Entropy Skill Learning with Curriculum 109
A.1.2. Lower-Bound Decomposition for Expert Distributions 110
A.1.3. Lower Bound Decomposition for Per-Expert Context Distributions 110
A.1.4. Lower Bound Decomposition for Prior Weights 111

A.2. Algorithmic Details . 112
A.3. Experimental Details . 112

A.3.1. Ablation Studies . 114
A.3.2. Beer Pong . 114
A.3.3. Table Tennis . 116

B. Appendix for Chapter 4 . 121
B.1. Additional Information to Self-Paced Diverse Skill Learning with MoE . 121
B.2. Additional Related Work . 122
B.3. Additional Information to Diverse Skill Learning 122

B.3.1. The Parameterization of the Mixture of Experts (MoE) Model . . 122
B.3.2. Using Motion Primitives in the Context of Reinforcement Learning 123
B.3.3. Algorithm Details . 123

B.4. Experimental Details . 124
B.4.1. Environment Details . 124
B.4.2. Hopper Jump . 126
B.4.3. Extended 5-Link Reacher Task . 129
B.4.4. Robot Mini Golf Task . 129

B.5. Additional Evaluations . 130
B.6. Hyperparameters . 131

C. Appendix for Chapter 5 . 139
C.1. Derivations . 139
C.2. Proofs . 140
C.3. Environments . 142
C.4. Implementation Details . 142

ix

Contents

C.5. List of Hyperparameters . 144
C.6. Additional Experiments . 146

x

List of Figures

1.1. Challenges and Contributions Overview. 5

2.1. Step-Based Reinforcement Learning (SRL) Loop. 13
2.2. Episode-Based Reinforcement Learning (ERL) Loop. 19

3.1. Importance of the responsibilities in the augmented rewards and comparison
to HiREPS. 45

3.2. Beer Pong (BP) and Table Tennis (TT) Experiments. 47
3.3. Versatile Strikes for the Table Tennis (TT) Experiment 49
3.4. The reacher’s tip needs to reach the red goal position. Adapted from Brockman

et al. (2016). 49
3.5. A Comparison of episode-based to step-based Policy Search. 51

4.1. The Sampling Procedure for Di-SkilL . 55
4.2. How does Diversity Emerge? . 63
4.3. a) (left top) Hopper Jump Task HJ. (Top right) Box Pushing with Obstacle

(BPO). (Bottom Left) Robot Mini Golf (MG). (Bottom right) Robot table tennis
(TT). 65

4.4. Performance on the a) HJ (Hopper Jump) b) BPO (Box Pushing with Obstacle),
c) TT-H (Table Tennis Hard), and d) MG (Robot Mini Golf) tasks. 66

4.5. Di-SkilL’s Diverse Skills for the Box Pushing with Obstacle BPO Task. 67
4.6. Di-SkilL’s Diverse Skills for the Table Tennis Hard TT-H task. 67

5.1. The e�ect of the reward scaling parameter U 74
5.2. Learning Curves on Gym Benchmark Suite and Varying the Number of Di�u-

sion Steps. 80
5.3. Training curves on DMC’s dog, humanoid tasks, and the hand environments

from the MYO Suite. 81
5.4. Reward Scaling Sensitivity and Di�usion Policy Bene�t 82
5.5. Comparison to Di�usion Baselines with and without Distributional & on the

Ant-v3 and Humanoid-v3 tasks. 83
5.6. Ablation on Distributional Q. 84
5.7. Learning Multimodal Behaviors with DIME. 85
5.8. Flexibility of the DIME framework and comparison to BRO on more environ-

ment interactions. 86

A.1. Expected Mixture Entropies on Beer Pong Task 116
A.2. Expected Mixture Entropies and performance on the table tennis task. . . . 118

xi

List of Figures

B.1. Probabilistic Graphical Models (PGMs) and Visualization of Sharp Discontin-
uous Context Distributions. 121

B.2. Additional Diverse Skills for the Box Push Obstacle Task learned by Di-SkilL. 131
B.3. Additional Analysis of the Hopper Jump (HJ) task. 131
B.4. Di-SkilL’s Diverse Skills for the TT-H task. 132

C.1. Considered Environments. 142
C.2. Learned V parameters. 146

xii

List of Tables

A.1. Hyperparameters of our algorithm for all environments. 113
A.2. Hyperparameters of HiREPS for all environments. 113
A.3. Hyperparameters of LaDiPS. 114
A.4. Hyperparameters of our algorithm for the reacher environment. 118
A.5. Hyperparameters of PPO for the reacher environment. Note that U is the

learning rate, N is the number of rollouts, W is the discount factor, K is the
batch size, n is the clip value for the importance ratio. The layer structure is
for both: the policy network as well as the value function network. 119

B.1. Hyperparameters for SVSL on TT . 131
B.2. Hyperparameters for Di-SkilL and BBRL on TT. 133
B.3. Hyperparameters for Di-SkilL, BBRL, LinDi-SkilL, and PPO on 5LR. 134
B.4. Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the Hard Table

Tennis Task (TT-H). 135
B.5. Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the Hopper Jump

Task (HJ). 136
B.6. Hyperparameters for Di-SkilL, BBRL, LinDi-SkilL, and PPO for Box Pushing

Obstacle task (BPO). 137
B.7. Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the mini golf task. 138

C.1. Observation and Action Space Dimensions for Various Training Environments 143
C.2. Hyperparameters of DIME and all di�usion-based algorithms for all benchmark

suits. 145
C.3. Hyperparameters of DIME and Gaussian-based algorithms for all benchmark

suits. 145

xiii

1. Introduction

When humans complete a task, they typically do so in various and di�erent ways rather
than strictly adhering to a single pattern. For instance, we do not always grasp a mug in
the same manner or with the same hand. Although these variations in task execution seem
trivial to humans, they provide important adaptability, enabling us to respond e�ectively
to di�erent situations. If our right hand is injured, we easily switch to grasping a mug
with our left hand. Similarly, if the mug’s handle breaks, we naturally adapt by grasping it
from the bottom, or the top. Importantly, humans rarely need to relearn behaviors entirely
from scratch simply due to situational changes. This versatile behavior also �nds clear
expression in sports. Consider table tennis, where players deliberately vary their striking
styles, such as alternating between forehand and backhand strokes in similar situations,
making their play less predictable and enhancing their competitive advantage. The human
capacity for multimodal behavior results from versatile skills acquired throughout life,
allowing tasks to be solved precisely through multiple approaches.

Inspired by this human characteristic, equipping robots with similar versatile skills is
a central motivation for this thesis. Particularly compelling is the ability for robots to
autonomously discover versatile skills without relying on human expert data that is usually
costly because experts are not always available and access to robots is restricted. Hence, the
primary question is how robots can discover versatile skills using reinforcement learning
(RL).

RL emerges as a suitable learning paradigm for this purpose, as it enables policies to be
trained purely through environmental interactions, removing dependence on humans.
From an RL agent’s perspective, acquiring versatile or diverse behaviors carries several
distinct advantages. First, the ability to represent multimodal skills can lead to improved
exploration and therefore to improved sample e�ciency because exploring other modes
that potentially lead to better performance is unlikely once the commonly used unimodal
Gaussian policy converges to a speci�c mode. Second, versatile skills can contribute to
policy robustness, enabling quick adaptation to environmental changes by discarding
invalid behaviors in favor of alternatives within a diverse skill repertoire. Lastly, versatile
skills o�er strategic bene�ts in competitive environments such as robot table tennis by
minimizing predictability, a principle illustrated by the varied strokes in table tennis as
mentioned earlier.

However, realizing such versatile skills requires policy representations that are expressive
enough to represent multimodal distributions. Mixture of Experts (MoE) policies and
di�usion-based policies are two classes of models that belong to such expressive policy
representations, though their optimization is complex and requires tailored RL algorithms.

1

1. Introduction

Furthermore, deciding the appropriate RL paradigm for acquiring these skills is important.
RL algorithms broadly fall into two categories which is distinguished based on their
exploration and policy optimization strategies: step-based reinforcement learning (SRL)
and episode-based reinforcement learning (ERL).

SRL is the traditional framework that optimizes expected returns in Markov Decision
Processes (MDPs) (Bellman, 1957), typically under in�nite horizon conditions. Because the
exploration occurs directly in the raw action space at every time step, SRL methods tend
to generate jittery trajectories and often su�er from local exploration in the state space,
especially at the beginning of the learning process, possibly leading to suboptimal solutions
(Li et al., 2024a; Ra�n et al., 2022). On the upside, these methods are sample e�cient
because they can leverage the temporal structure in the data to update the policy, making
them particularly suitable for tasks with informative, dense reward signals. Additionally,
they are well-studied and most known breakthroughs in RL such as autonomous acquisition
of human-level performance in board games (Mnih et al., 2015; Silver et al., 2016), real
world robot manipulation tasks (Levine et al., 2016), high-precision robot learning tasks
like robot table tennis (Büchler et al., 2022) or sim-to-real transfer in robotic locomotion
tasks (Tan et al., 2018; Hoeller et al., 2024) are attributed to SRL methods.

Conversely, ERL methods operate on a higher abstraction level by directly exploring the
parameters of a controller. A prevalent parametrization of such controllers uses motion
primitives (Schaal et al., 2005; Paraschos et al., 2013; Li et al., 2023), that, deterministically
generate an entire trajectory for a �xed horizon. Because exploration occurs once at the
start of each episode, ERL generates time-correlated exploration with smooth trajectories
that usually lead to a wider exploration of the state space (Li et al., 2024a; Otto et al.,
2023). Those properties make ERL methods well suited to tasks where sparse, or time-
delayed rewards are present. Additionally, ERL methods do not require Markovian reward
structures because they treat the optimization as a black-box RL problem. This feature
allows a more intuitive reward design based on how humans also assess the performance
of a task. For instance, if the task is to jump as high as possible, the performance feedback
of a jump should be the maximum height achieved during the whole jump, i.e. it is based
on retrospective data rather than the sum of heights at each time step, which would be
a common Markovian reward. However, ERL methods tend to be less sample e�cient
because they treat each evaluation of an episode and its corresponding return as a single
sample.

This thesis focuses on enabling robots to learn versatile skills within both SRL and ERL
frameworks, speci�cally leveraging the maximum entropy RL objective to incentivize
exploration. More precisely, in the �rst part, we focus on learning MoE policies (Bishop,
2006) in the context of ERL. Because of the aforementioned properties of ERL, it is a suitable
setting for learning multimodal skills using MoE policies, where we take inspiration
from advances in the �eld of variational inference (Arenz et al., 2020) and propose a
decomposition of the maximum entropy ERL objective that allows us to train each expert
individually. For e�ective training, we extend the objective with automatic curriculum
learning to ensure that each expert can shape their own pace of learning and can focus

2

1. Introduction

on context1 regions it favors by gradually increasing its responsible region of the context
space. Additionally, this curriculum avoids discarding experts and collapsing them into
only a few experts that dominate the mixture model (Bacon et al., 2017). This automatic
curriculum learning is achieved by a learnable per-expert Gaussian distribution over the
context space. Optimizing both, the expert and the context distributions leads to a policy
with two levels of hierarchy and allows the whole model to learn versatile skills.

Based on the same objective, we propose extending the method to the more expressive
energy-based per-expert context distributions and deep networks as expert representations.
The energy-based distributions can represent sharp discontinuities and multi-modality in
the context space (Florence et al., 2022), which are a common case in real world applications,
as the task space is usually de�ned in a �nite space. For example, the surface of a table might
be the goal position to place a mug. Here, the table’s edges de�ne the sharp boundaries of
the context space and additionally, there might be some invalid context regions within
the table because of objects that block the space. However, training those energy-based
models is not straightforward because of the intractable normalization constant of the
energy-based distribution. We propose a sample-based approximation of the normalization
constant by sampling contexts from the environment’s true context distribution through
environment resets without execution. Subsequent importance sampling based on the
per-expert energy-based context distribution allows each expert to shape its curriculum
but now with the big advantage that the contexts are inherently valid as they come from
the true context distribution and edges of the context space are properly represented
because of the energy-based distribution’s high expressiveness. In conjunction with highly
non-linear experts, this expressiveness leads to a signi�cantly reduced number of required
experts to cover the whole context space and consequently achieve good performance
compared to the method proposed before.

Finally, we propose using di�usion-based policies in the context of SRL as an approach
capable of representing multimodal distributions. Di�usion models have recently gained
a lot of attention due to their ability to represent complex multimodal distributions in
high-dimensional spaces while the training procedure is very stable. However, training
di�usion models in the context of maximum entropy RL is not straightforward because
the objecive requires calculating the marginal entropy. This statistic is intractable, which
motivates us to take inspiration from recent advances in approximate inference with
di�usion models (Berner et al., 2024) to propose a tractable lower-bound on the maximum
entropy objective. This lower bound allows us to backpropagate the gradients through
the di�usion process. The resulting method is a policy iteration scheme that provably
converges to the optimal policy.

The next section summarizes the challenges addressed in this thesis and provides an
overview of the contributions alongside the structure of the document.

1 Contexts de�ne the task, e.g. the goal position an object needs to be put, or the goal landing position of a
ball on the opponent’s table side in table tennis. In theory they can also de�ne physicall parameters such
as friction values. This thesis focuses on the task de�ning aspect.

3

1. Introduction

1.1. Thesis Contributions and Structure

From the previous discussion, we can extract the following three challenges that need to
be addressed in order to enable robots to learn versatile skills using RL.

Challenge 1 (C1): Representation and Training of Multimodal Policies. Learning versatile
skills requires policy representations that can capture multimodal distributions. While
high-capacity representations such as Mixture of Experts (MoE) and di�usion models
exist and are well-studied mostly in the supervised learning paradigm, training them
in the context of reinforcement learning (RL) is not straightforward and requires novel
RL methods that are adapted to the respective policy representation. Additionally, the
expressiveness of the policy representation can only be exploited if the RL method explicitly
incentivizes discovering di�erent modes, which needs to be addressed in the RL algorithm
alongside e�cient training.
Addressed in Chapters 3, 4 and 5

Challenge 2 (C2): Retaining Multimodalities. Some modes of a multimodal policy might
lead to a higher return compared to other modes earlier in the RL training process. In
this case, the RL algorithm increases the likelihood of choosing these modes more often,
thereby biasing the policy towards this skill. The consequence is an imbalance in the
collected training data where some modes are overrepresented, leading to a more frequent
update of those modes, which again increases the likelihood of choosing this mode in the
next iteration even more. The result is that already discovered modes might get discarded
during training, leading to a mode collapse (Bacon et al., 2017) and preventing the learning
of versatile skills. This is a challenge that needs to be addressed in RL algorithms for
learning versatile skills.
Addressed in Chapters 3 and 4

Challenge 3 (C3): Non-Linear Adaptation. Non-linear adaptation to inputs is a key feature
why deep reinforcement learning (DRL) has been successful in recent years (Mnih et al.,
2015). This non-linear adaptation has been adressed in the context of RL with unimodal
Gaussian policies (Haarnoja et al., 2018b), but it is a challenge to obtain and successfully
train multimodal policies with non-linear adaptation in each mode. Additionally, solving
Challenge 2 involves optimizing for input distributions over the task-de�ning context
space. However, this context space usually has hard non-linearities that require special
parameterization for successful representation.
Addressed in Chapters 4 and 5

Structure of the Thesis. In Chapter 2 we provide the necessary foundations for the thesis,
including a brief introduction to RL and RL methods, the general idea of curriculum
learning, and used policy representations throughout this thesis. As the used objectives
draw parallels to the variational inference literature, we also provide a brief introduction

4

1.1. Thesis Contributions and Structure

Challenge 3Challenge 2Challenge 1

Chapter 3 Chapter 4 Chapter 5

Challenges in Learning Versatile Skills

Figure 1.1.:Challenges and Contributions Overview. The �gure summarizes the challenges for learning
versatile skills as described in this section. Furthermore, we provide an overview of the contributions of each
chapter to address the respective challenges. We have highlighted the main contributions of each chapter
using a bold, red rectangle whereas the challenges that are also addressed alongside the main contributions
are drawn in black rectangles. In Chapter 3 the main focus is on addressing Challenge 1 and Challenge 2,
whereas the main focus in Chapter 4 is on addressing Challenge 3 alongside Challenge 1 and Challenge 2. In
Chapter 5 we propose a solution for Challenge 1 using di�usion-based policies, which addresses Challenge 3
as well.

to variational inference and how to optimize latent variable models in this framework.
Chapter 3 and 4 present the methods for learning versatile skills using MoE, where Chapter
3 contributes addressing the Challenges 1 and 2 and Chapter 4 contributes addressing the
Challenges 1,2, 3. Chapter 5 presents an actor-critic method for learning di�usion-based
policies in the context of SRL and aims to address Challenges 1 and 3 speci�cally tailored
for di�usion models. Finally, in Chapter 6 we summarize this thesis and provide an outlook
for future research.

Following the content description of each chapter, Fig. 1.1 summarizes the challenges and
provides an overview where each of the presented challenges is addressed in the thesis.
The �gure also emphasizes the challenges a chapter focuses on in more detail, indicating
the main contributions using a bold, red rectangle.

The following three sections are reprints of the abstracts of the respective publications this
thesis is based on. Those publications are discussed in Sections 3, 4 and 5 in more detail.

1.1.1. Specializing Versatile Skill Libraries using Local Mixture of Experts

Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, Gerhard Neumann

A long-cherished vision in robotics is to equip robots with skills that match the versatility
and precision of humans. For example, when playing table tennis, a robot should be capable

5

1. Introduction

of returning the ball in various ways while precisely placing it at the desired location.
A common approach to model such versatile behavior is to use a Mixture of Experts
(MoE) model, where each expert is a contextual motion primitive. However, learning such
MoEs is challenging as most objectives force the model to cover the entire context space,
which prevents specialization of the primitives resulting in rather low-quality components.
Starting from maximum entropy reinforcement learning (RL), we decompose the objective
into optimizing an individual lower bound per mixture component. Further, we introduce
a curriculum by allowing the components to focus on a local context region, enabling the
model to learn highly accurate skill representations. To this end, we use local context
distributions that are adapted jointly with the expert primitives. Our lower bound advocates
an iterative addition of new components, where new components will concentrate on
local context regions not covered by the current MoE. This local and incremental learning
results in a modular MoE model of high accuracy and versatility, where both properties
can be scaled by adding more components on the �y. We demonstrate this by an extensive
ablation and on two challenging simulated robot skill learning tasks. We compare our
achieved performance to LaDiPS and HiREPS, a known hierarchical policy search method
for learning diverse skills.

1.1.2. Acquiring Diverse Skills using Curriculum Reinforcement Learning
with Mixture of Experts

Onur Celik, Aleksandar Taranovic, Gerhard Neumann

Reinforcement learning (RL) is a powerful approach for acquiring a good-performing policy.
However, learning diverse skills is challenging in RL due to the commonly used Gaussian
policy parameterisation. We propose Diverse Skill Learning (Di-SkilL), an RL method for
learning diverse skills using Mixture of Experts, where each expert formalizes a skill as
a contextual motion primitive. Di-SkilL optimizes each expert and its associate context
distribution to a maximum entropy objective that incentivizes learning diverse skills in
similar contexts. The per-expert context distribution enables automatic curricula learning,
allowing each expert to focus on its best-performing sub-region of the context space. To
overcome hard discontinuities and multi-modalities without any prior knowledge of the
environment’s unknown context probability space, we leverage energy-based models to
represent the per-expert context distributions and demonstrate how we can e�ciently
train them using the standard policy gradient objective. We show on challenging robot
simulation tasks that Di-SkilL can learn diverse and performant skills.

1.1.3. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
Gerhard Neumann

Maximum entropy reinforcement learning (MaxEnt-RL) has become the standard approach
to RL due to its bene�cial exploration properties. Traditionally, policies are parameterized

6

1.1. Thesis Contributions and Structure

using Gaussian distributions, which signi�cantly limits their representational capacity.
Di�usion-based policies o�er a more expressive alternative, yet integrating them into
MaxEnt-RL poses challenges-primarily due to the intractability of computing their marginal
entropy. To overcome this, we propose Di�usion-Based Maximum Entropy RL (DIME).
DIME leverages recent advances in approximate inference with di�usion models to derive a
lower bound on the maximum entropy objective. Additionally, we propose a policy iteration
scheme that provably converges to the optimal di�usion policy. Our method enables the use
of expressive di�usion-based policies while retaining the principled exploration bene�ts
of MaxEnt-RL, signi�cantly outperforming other di�usion-based methods on challenging
high-dimensional control benchmarks. It is also competitive with state-of-the-art non-
di�usion based RL methods while requiring fewer algorithmic design choices and smaller
update-to-data ratios, reducing computational complexity.

7

2. Foundations

This chapter reviews the key concepts required to understand the work presented in this
thesis. We begin with the fundamentals and notation of the step-based reinforcement
learning (SRL) framework (Section 2.2). Next, we introduce episode-based reinforcement
learning (ERL) (Section 2.3). Section 2.4 examines the maximum entropy reinforcement
learning (RL) objective, followed by an overview of curriculum learning in RL (Section
2.5). In Section 2.6 we discuss the policy representations that are relevant for learning
versatile skills. Finally, we conclude this chapter with an overview of optimizing latent
variable models using Variational Inference together with a discussion on the parallels to
maximum entropy RL (Section 2.7).

2.1. General Notation

Throughout the rest of this thesis scalars are denoted as single variables e.g., 0, vectors
are denoted by bold lowercase letters, e.g., a, and matrices by bold uppercase letters, e.g.,
A. We will use subscripts to denote the time step in the reinforcement learning loop, e.g.,
aC is the action at time step C , whereas superscripts indicate the internal time steps of
the di�usion model, e.g., a: is the latent action at di�usion step : . In general we will use
greek letters to denote parameters of a function or distribution, e.g., c) is a policy with
parameters) . However, we might also need to use superscripts to denote the parameters
of a function or distribution, e.g., c) especially in the context of di�usion models.

Deviating notations will be stated in the text to maintain clarity.

2.2. Step-Based Reinforcement Learning (SRL)

We introduce the fundamentals of step-based reinforcement learning (SRL) in the following
section, where we start by de�ning the Makrov Decision Process (MDP) in Section 2.2.1
and continue with the SRL’s policy and objective de�nition together with related quantities
such as the value functions in Section 2.2.2. Using these information, we provide a general
overview of the SRL learning loop in Section 2.2.3. Finally, we conclude this section with a
discussion on SRL methods in Section 2.2.4. We take inspiration from Sutton and Barto
(2018) and Kober et al. (2013) for the de�nitions in this section.

9

2. Foundations

2.2.1. The Markov Decision Process

Most well-known step-based reinforcement learning (SRL) algorithms are based on the
Markov Decision Process (MDP) which is formally de�ned as the tuple (S,A,P,R, d0).
In the following we will introduce and de�ne the components of the MDP.

State Space. At time step C , the agent is in a state sC ∈S that contains all information
required for the agent to make an optimal decision. For example in robotics, this state can
include the robot’s global pose, internal joint angles, and the positions of relevant objects
such as the position of a target object that needs to be manipulated. Depending on the
task, S may be discrete or continuous, though continuous spaces are more common in
robotic environments.

Action Space. The agent takes an action 0C ∈ A at time step C to interact with the
environment, where the action space is de�ned by A and can be discrete or continuous
depending on the task. For instance, in robotic tasks the robot can be controlled in di�erent
ways, e.g., by setting target joint positions or velocities which are then executed by a low-
level controller that turns these targets into torques. In this thesis, we focus on continuous
state-action spaces, as the most common practice in robotics.

Dynamics. The environment returns the next state sC+1 after executing the action aC in
the current state sC . The next state sC+1 is determined by the probability density of the
transition dynamics P : S × A × S → [0,∞) and is commonly unknown to the agent in
RL. We de�ne the transition dynamics as

? (sC+1 |sC , aC) = P (s′ = sC+1 |s = sC , a = aC) , (2.1)

where in some tasks the dynamics can also be deterministic.

Reward. Similarly, the agent is unaware of the reward function A : S × A → R that
evaluates the agent’s decision. Throughout this thesis, we will denote the reward function
as A (sC , aC), or simply as AC as an evaluation of the action aC in the state sC at time step C . In
general, the reward function can also just depend on the state A (sC), or it can also include
the next state A (sC , aC , sC+1). We will restrict ourselves to the more common case A (sC , aC) in
this thesis.

Initial state. Once the environment terminates, a new state is randomly sampled from
the initial state distribution s0 ∼ d0. The initial state distribution is detrmined by the
environment and is unknown to the agent.

10

2.2. Step-Based Reinforcement Learning (SRL)

Markov Property. A key feature the MDP framework satis�es is the Markov property
which is formalized as

? (sC+1 |sC , aC , sC−1, aC−1, ...s0) = ? (sC+1 |sC , aC). (2.2)

Intuitively, this means that the current state sC encodes all information needed to determine
the environment’s next state when exectuing action aC and does not require any past
information. If the agent does not observe the environment’s whole state information, the
Markov property is not satis�ed anymore and additional techniques are required to infer
the environment’s state based on the sensory input from the past. This setup is known as
the Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998) and
a common case of a POMDP is image-based RL. Here, the agent only observes images
from the current scene and has to estimate the environment’s state based on these images.
Although conducted experiments in this thesis include tasks where the Markov property
is not satis�ed in the sense that the reward depends on retrospective state information,
those tasks are restricted to the episode-based RL setting which inherently can handle
these situations (Section 2.3).

Based on the de�nitions above, next we can formulate the general objective of the SRL
framework.

2.2.2. Step-Based Reinforcement Learning Objective

Based on the MDP, we can de�ne the policy, the general objective and related quantities
for optimizing the policy in the step-based reinforcement learning (SRL) framework.

Policy. Commonly, deep neural networks are used to parameterize a mapping from a
current state sC to an action aC ∈ A. This mapping is referred to as the policy c : S → A.
Although deterministic policies aC = c (sC) have been proposed in the past (Silver et al.,
2014; Lillicrap et al., 2016), stochastic policies c (aC |sC) that map to a probability density
have gained more attention recently as they allow controlling the exploration behavior of
the policy in the optimization (Haarnoja et al., 2018b; Abdolmaleki et al., 2018). Unless
noted otherwise, throughout this thesis a subscript denotes the learnable parameters of
the policy, e.g., c) is a policy with parameters) .

Trajectory. The trajectory 3 = (s0, a0, s1, a1, ...) is de�ned as the sequence of state-action
pairs induced by the policy c and the environment’s dynamics through the relation

?c (3) = d (s0)
∞∏
C=0

? (sC+1 |sC , aC)c (aC |sC). (2.3)

Hence rolling out a trajectory 3 in the environment is equivalent to sampling from ?c (3).

11

2. Foundations

SRL Objective. The objective of an RL agent is to �nd a policy c that maximizes the
expected accumulated reward

� (c) = E?c [� (3)] =
∫
3
� (3)?c (3)33 , with � (3) =

∞∑
C=0

W CA (sC , aC), (2.4)

where W ∈ [0, 1) is the discount factor. The in�nite sum over the rewards in Eq. 2.4 can
lead to in�nite returns, such that W is used to reduce the importance of future rewards and
consequently allows learning a useful policy.

State Value Function. The state value function + c (s) is de�ned as the expected return
when starting in state s and following the policy c afterwards. Formally this is written
as

+ c (s) = E?c [�C |sC = s] = E?c

[∞∑
:=0

W:A (sC+: , aC+:)
��sC = s

]
∀s ∈ S. (2.5)

It is a useful quantity to evaluate the quality of a state s under the policy c . When
parameterized, the quality of the state can be assessed without the need to evaluate the
policy, which is a key feature in most policy gradient methods (see Section 2.2.4).

State-Action Value Function or Q-Function. With a similar interpretation as the state
value function, the state-action value function &c (s, a) is de�ned as the expected return
when starting in state s, executing action a and then following the policy c afterwards

&c (s, a) = E?c [�C |sC = s, aC = a] = E?c

[∞∑
:=0

W:A (sC+: , aC+:)
��sC = B, aC = 0] ∀s ∈ S, a ∈ A .

(2.6)

The Q-function provides a useful measure for assessing the quality of a state-action pair
(s, a), where the action a does not need to be coming from the current policy c) . This
di�erence to state value functions makes the state-action value function a quantity that is
speci�cally useful for o�-policy RL methods.

The value functions can be recursively de�ned using the Bellman equations (Bellman,
1957) as

+ c (sC) = E0C∼c
[
A (sC , aC) + WEsC+1∼? [+ c (sC+1)]

]
, (2.7)

&c (sC , aC) = A (sC , aC) + WEsC+1∼?,aC+1∼c [&c (sC+1, aC+1)] , (2.8)
&c (sC , aC) = A (sC , aC) + WEsC+1∼? [+ c (sC+1)] . (2.9)

These recursive equations have been used for developping many RL algorithms (see Section
2.2.4)

12

2.2. Step-Based Reinforcement Learning (SRL)

Environment
AC+1

BC+1

Agent

BC

AC
0C

Figure 2.1.: Step-Based Reinforcement Learning (SRL) Loop. In time-step C the agent observes a state BC
and selects an action 0C , which is executed in the environment. Based on the transition dynamics ? (sC+1 |sC , aC)
the environment transitions to a new state sC+1 and returns a reward AC+1 that is calculated by the reward
function A (s, a) and that de�nes the task. Using the per-step data points consisting of the tuple (sC , aC , AC , sC+1),
the agent updates its policy c to maximize the expected cumulative reward. SRL is based on the Markov
Decision Process (MDP) framework, in which the the state sC contains all information to describe the whole
system such that no retrospective information is required. All relevant quantities such as the transition
dynamics and the reward function rely on this Markov property. This image is inspired and adapted from
Sutton and Barto (2018).

AdvantageFunction. The advantage function�c (s, a) is de�ned as the di�erence between
the Q-function and the Value function

�c (sC , aC) = &c (sC , aC) −+ c (sC). (2.10)

Intuitively, the advantage function quanti�es how much better an action aC is than the
expected value of the state sC under the policy c . It is a widely used quantity especially in
the policy gradient methods (see Section 2.2.4) because it allows reducing the variance of
the gradient estimates without a�ecting the gradient.

With the formal de�nitions of the MDP and the SRL objective, we can now provide an
general overview of the SRL learning loop, which is the core of the SRL algorithms de�ned
in Section 2.2.4.

2.2.3. Step-Based Reinforcement Learning Loop

The core concept of step-based reinforcement learning (SRL) relies on the interaction
between an agent and an environment. At each discrete time step C , an agent observes
a state sC and selects an action aC according to its policy c) . The environment then
returns a new state sC+1 and a reward signal AC that are induced by the transition dynamics
? (sC+1 |sC , aC) and the reward function A (sC , aC), respectively. The agent’s objective is to
learn a policy c\ that maximizes the expected cumulative reward (Eq. 2.4) based solely on
those per-step information (Sutton and Barto, 2018).

In most practical settings the agent is unaware of the transition dynamics ? or the reward
function A . However, because the task is encoded in A , maximizing the accumulated

13

2. Foundations

reward yields behavior that solves the task. For instance, if the reward equals the negative
Euclidean distance to a goal, then maximizing this reward drives the agent to that goal.
The output of an RL algorithm is a policy c)★ that maps states to actions and solves the
task optimally. Figure 2.1 illustrates the learning loop.

This learning loop can be related to the concept of trial and error (Klopf, 1972, 1975)
which gives rise to the exploration-exploitation trade-o�, a key challenge in RL. Intuitively,
choosing actions that lead to high immediate rewards is the optimal behavior. However, in
certain tasks, this strategy might lead to suboptimal behavior, necessitating the agent to
explore actions leading to state-action regions that yield less immediate reward but higher
cumulated rewards in the future (Sutton and Barto, 2018). Considering the goal-reaching
example, the agent might need to �rst avoid an obstacle to reach the goal position, but
this path might not yield the highest immediate reward if the agent �rst needs to move
away from the goal position.

This exploration-exploitation trade-o� is one of the reasons why RL is distinguished
from supervised and unsupervised learning. However, also the available data structure
is di�erent in RL. Supervised learning assumes a �xed dataset of labeled input-output
pairs, while unsupervised learning seeks structure in unlabelled data. In contrast, in RL
the agent needs to maximize a reward signal by interacting with the environment and has
to generate its data based on its current knowledge. Because the agent might not have
experienced enough, the aforementioned trade-o� between exploration and exploitation
arises, which additionally distinguishes RL from other machine learning paradigms.

2.2.4. Step-Based Reinforcement Learning Methods

Finding an optimal strategy can be achieved by maximizing the objective in Eq. 2.4. Broadly
there are two main approaches, namely the Value-Based and the Policy Search methods.
Within these approaches, the algorithms are further distinguished into on-policy and
o�-policy methods. On-policy methods optimize a policy using data generated by that
same policy, whereas o�-policy methods can use data generated by a di�erent policy to
optimize the current policy. We will discuss the evolution and nowadays most known
methods in the following subsections.

2.2.4.1. Value-Based Methods

Among the �rst methods are Dynamic Programming (DP) (Bellman, 1966) based ap-
proaches. Here, Value Iteration and Policy Iteration are both based on the Bellman principle
of optimality (Bellman, 1966) and iteratively improve the value function and policy until
convergence. DP-based methods require knowing the transition dynamics (Kober et al.,
2013), such that no exploration is needed, and they usually work only for low-dimensional
discrete systems because the learning iterations need to be done over all states and actions.
An exception for the continuous case is the Linear Quadratic Regulator (LQR) (Kober et al.,
2013).

14

2.2. Step-Based Reinforcement Learning (SRL)

However, the exact dynamics of a system are known in rare cases which in this case can be
leveraged to learn optimal policies. For example in board games, the transition dynamics
have been leveraged in the learning leading to impressive results where an agent achieved
human-level performance (Silver et al., 2016, 2018).
In the more common case, the transition dynamics and the reward function are unknown
thus hindering the application of classical dynamic programming. However, a Monte Carlo
estimate can be used to estimate the expectation under the transition dynamics, which is
done in Temporal Di�erence Learning based methods.

Temporal Di�erence Learning (TD-Learning). TD-Learning (Sutton, 1988) updates the
Value function using an incremental change of the current value and a sample based
estimate of the next value referred to as XC

+ c (sC) = + c (sC) + U (A (sC , aC) + W+ c (sC+1) −+ c (sC))︸ ︷︷ ︸
Temporal di�erence error XC

, (2.11)

where U is a step size parameter. Hence, by using the temporal di�erence, TD-Learning
bootstraps the new + c (sC) from the current value estimates + c (sC+1). Usually, only one
transition sample is obtained for each state. However, TD Learning can be extended to
multiple samples over time bridging the pure DP approach with Monte Carlo methods.
This variant is referred to as TD(_) (Sutton and Barto, 2018).

Early works have used the temporal di�erence learning in the on-policy setting known
as SARSA (Rummery and Niranjan, 1994; Sutton and Barto, 2018), and in the o�-policy
setting known as Q-learning (Watkins, 1989; Watkins and Dayan, 1992). In Q-learning,
the Q-function update is independent of the data-generating policy, because the backup
calculates the optimal Q-value for the next state to update the current Q-value

& (sC , aC) = & (sC , aC) + U
(
A (sC , aC) + W max

aC+1
& (sC+1, aC+1) −& (sC , aC)

)
. (2.12)

This key di�erence makes Q-learning an o�-policy method. However, because a broad
range of the states need to be visited for a precise update and because the optimal 0C+1
needs to be calculated for each backup, those methods are usually restricted to discrete
state-action spaces. Additionally, in their plain form, they do not scale to high-dimensional
state-action spaces. Nonetheless, with the era of deep learning the latter was successfully
addressed by Deep Q-Networks (DQN) (Mnih et al., 2015) that uses neural networks
to approximate the Q-function. For successful training of these high-capacity function
approximators, DQN uses the squared loss

!(V) = EsC ,aC ,AC ,sC+1∼D

[(
A (sC , aC) + W max

aC+1
& V̄ (sC+1, aC+1) −&V (sC , aC)

)2
]
, (2.13)

with an additional target network & V̄ to stabilize the training and a replay bu�er D, in
which past experiences are saved, to improve sample e�ciency and avoid catastrophic for-
getting. In later works several extensions of DQN have greatly in�uenced the �eld of deep

15

2. Foundations

RL methods, among which double Q-learning (Van Hasselt et al., 2016) or distributional
RL (Bellemare et al., 2017) are the most known. A full summary of all key extensions is
given in the work by Hessel et al. (2018).

Value-Based methods optimize the RL objective in Eq. 2.4 relying on the value functions+ c

or &c but do not explicitly parameterize the policy c) . In contrast, policy search methods
follow the approach of directly optimizing the policy c) to maximize the expected return
in Eq. 2.4.

2.2.4.2. Policy Search Methods

Policy Search methods parameterize the policy c) and optimize their parameters)
commonly based on the Policy Gradient

) 8+1 =) 8 + U∇) � (c)) (2.14)

=) 8 + U
∫
g

∇)?c)� (3)33 , (2.15)

to maximize the expected return in Eq. 2.4. However, evaluating the integral in Eq. 2.15 is
intractable because evaluating � (3) for every possible 3 is not possible. Therefore, the
REINFORCE algorithm (Williams, 1992) reformulates the policy gradient as an expectation
using the relation ∇)?c) (3) = ?c) (3)∇) log?c) (3)

∇) � (c)) =
∫
g

?c) (3)∇) log?c) (3)� (3)33 (2.16)

≈ 1
#

#∑
8=0
∇) log?) (3 8)� (3 8) (2.17)

=
1
#

#∑
8=0

(
∇)

(
log d (s80) +

∑
C

log? (sC+1 |sC , aC) + logc\ (aC |sC)
)) (∑

C

W CA (s8C , a8C)
)

(2.18)

=
1
#

#∑
8=0

(∑
C

∇) logc) (a8C |s8C)
) (∑

C

W CA (s8C , a8C)
)
, (2.19)

such that the gradient can be estimated using Monte Carlo samples 3 8 ∼ ?c) (3). Obtaining
the state-action formulation instead of the trajectory formulation in Eq. 2.19 requires
applying the logarithm rules to Eq. 2.3 and noting that the initial state distribution d (s)
and the transition dynamics ? (sC+1 |sC , aC) do not depend on) such that the gradient w.r.t.
) vanishes.
However, due to the stochasticity inherent to the policy and the transition dynamics,
the gradient estimator in Eq. 2.19 has a high variance. An important extension to the

16

2.2. Step-Based Reinforcement Learning (SRL)

REINFORCE algorithm is therefore the Policy Gradient Theorem (Sutton et al., 1999a)
which leverages the temporal structure of the return

∇) � (c)) ≈
1
#

#∑
8=0

∑
C

∇) logc) (aC |sC)
(∑
:

W:A (s8
:
, a8
:
)
)

(2.20)

=
1
#

#∑
8=0

∑
C

∇) logc) (aC |sC)
(
C−1∑
:=0

W:A (s8
:
, a8
:
) +

∑
:=C

W:A (s8
:
, a8
:
)
)

(2.21)

=
1
#

#∑
8=0

∑
C

∇) logc) (aC |sC)
(∑
:=0

W:A (s8
C+: , a

8
C+:)︸ ︷︷ ︸

&
c)>;3 (s8C ,a8C)

)
, (2.22)

where the last line follows from the fact that rewards at time steps < C , i.e., past rewards, do
not depend on the current action ai

t, thereby are unimportant for the gradient estimate. In
addition to the Policy Gradient Theorem, subtracting a baseline 1 (sC) from the Q-function
reduces the variance of the gradient estimate further (Peters and Schaal, 2008)

∇) � (c)) ≈
1
#

#∑
8=0

∑
C

∇) logc) (a8C |s8C)
(∑
:=0

W:A (s8
C+: , a

8
C+:) −

∑
:=0

W:1 (s8
C+:)

)
, (2.23)

where a common choice for the baseline is the state value function 1 (BC) = + c>;3 (BC), which
leads to the advantage function �c (s, a) as de�ned in Section 2.2.2.
The advantage function is a key concept in policy gradient methods and is widely used in
most successful algorithms such as PPO (Schulman et al., 2017). Most commonly, advanced
methods such as the Generalized Advantage Estimate (GAE) (Schulman et al., 2016) are
used to estimate the advantage values.

However, simply optimizing the policy parameters) using the gradient estimate in Eq. 2.23
poses several challenges. Commonly, the policy is parameterized as a Gaussian distribution
that enables controlling the exploration behavior. However, the policy can still converge
into a local optimum as the exploration of the policy is reduced too fast because the
objective does not provide an incentive to keep the exploration. Furthermore, it can be
challenging to �nd a good step size U for the policy update, as the gradient is inversely
scaled with the variance of the policy which might lead to high gradients the smaller the
variance becomes.

Trust Region Methods. Those challenges gave rise to Trust Region Methods which
constrain the policy update in each iteration using a trust region constraint (Peters et al.,
2010; Schulman et al., 2015, 2017; Otto et al., 2021). Most commonly the Kullback-Leibler
(KL) divergence between the old policy c)>;3 and the new policy c) is used to constrain the
policy update. Due to its simple implementation and great performance PPO (Schulman

17

2. Foundations

et al., 2017) is nowadays the most well-known on-policy policy gradient method. Its
optimization problem is formalized as

max
)
Ec)>;3

[
min

(
c) (aC |sC)
c)>;3 (aC |sC)

�c)>;3 (sC , aC), clip
(
c) (aC |sC)
c)>;3 (aC |sC)

, 1 − n, 1 + n
)
�c)>;3 (sC , aC)

)]
.

(2.24)

Here, the trust region is approximated using a clipped surrogate objective where the ratio
of the old and new policy is bounded by a clipping hyperparameter n . However, PPO
requires careful implementation details such as normalizing the observations and rewards
to achieve good performance (Engstrom et al., 2020). Therefore, more recent works such
as Trust Region Projection Layers (TRPL) (Otto et al., 2021) propose a more principled
way by using a di�erentiable trust region layer to satisfy the trust region constraint per
state. Formally, TRPL maximizes the constrained optimization problem

max
)
Ec)>;3

[
c) (aC |sC)
c)>;3 (aC |sC)

�c)>;3 (sC , aC)
]

s.t. KL
(
c) (·|s) | |c)>;3 (·|s)

)
∀s ∈ S, (2.25)

by augmenting the policy with an additional layer that projects the policy parameters)
into the trust region.

So far, the discussed policy gradient methods are on-policy methods, as they optimize the
policy using data generated by that same policy. However, in Eq. 2.23, it is also possible
to approximate the state-action value function &c (sC , aC) using a parameterized function
together in conjunction with the state value function + c (sC). In this case, the RL method
is usually categorized into the �eld of Actor-Critic methods (Sutton and Barto, 2018).
Actor-Critic methods have gained more attention in the context of o�-policy RL methods
in the past years. Those methods update the Q-function and the policy using data from
a replay bu�er D that stores past transitions from previous iterations (Haarnoja et al.,
2018b; Abdolmaleki et al., 2018; Fujimoto et al., 2018). Among those methods Soft Actor
Critic (SAC) (Haarnoja et al., 2018b) has proven a stable and well-performing algorithm
which we will discuss in Section 2.4 in more detail.

2.3. Episode-Based Reinforcement Learning (ERL)

This section summarises the foundations of episode-based reinforcement learning (ERL)
and continues with the discussion of the objective in ERL in Section 2.3.1. We conclude
the discussion on ERL with an overview of ERL methods in Section 2.3.2. In the following,
we take inspiration and follow Deisenroth et al. (2013) for the discussion of this section.

From Section 2.2 it is clear that step-based RL (SRL) algorithms explore by adding noise
sampled from a zero mean and adaptive variance normal distribution to the action in each
time step. This is a convenient exploration strategy, because it is easy to implement and
works well in many tasks, especially with informative per-step reward signals.

18

2.3. Episode-Based Reinforcement Learning (ERL)

g, 2

Agent
for C = 1, ...,)

0C = c\ (BC)
\

2′

BC+1BC

0C

'(\, 2) Trajectory-Level
Return
� (g, 2)

Environment

Figure 2.2.: Episode-Based Reinforcement Learning (ERL) Loop. At the beginning of each episode,
the agent samples a parameter) from the policy c8 () |c) which �xes the parameters of the deterministic
low-level controller aC = c) (sC) for the whole episode. This low-level controller is used to interact with
the environment until the episode ends resulting in a trajectory 3 , which is used together with the context
c to obtain a trajectory-level return � (3 , c). This trajectory-level return assesses the performance of the
parameter) in the context c and is therefore referred to as '() , c). Notably, the return� (3 , c) can have any
structure, e.g., it can be a Markovian return with a �xed horizon) or a non-Markovian return that requires
the whole trajectory 3 to generate an assessment. Together with '() , c), a new context c′ that is coming
from the environment after the episode ends, is returned to the agent. ERL considers the interaction with the
environment together with the evaluation of the parameter) as black box, which is why the corresponding
parts are colored in black. The samples used for updating the policy c8 () |c) in each learning iteration are
summarized as the tuple (c,) , '), hence, the exploration in ERL is done in the parameter space) once at the
beginning of each episode.

However, in step-based RL the exploration in the action and state-space is not time-
correlated and typically not across all degrees of freedom which might lead to suboptimal
and ine�cient exploration mainly caused by jerky actions (Ra�n et al., 2022; Li et al.,
2024a). Instead of perturbing the actions in each time step, we can perturb the parameters
) of a deterministic policy c) (sC) at the beginning of an episode and keep those parameters
�xed for the rest of the �nite episode.
Most commonly, Motion Primitives (MPs) (Schaal, 2006; Ijspeert et al., 2013; Paraschos
et al., 2013; Li et al., 2023) are used as the deterministic policy representations. MPs repre-
sent a desired trajectory 3des by a higher level abstraction in the parameter space which
signi�cantly reduces the search space (see Section 2.6.1 for a more detailed description).
This approach implies a time-correlated and smooth exploration on a trajectory level,
which is especially useful in robotics where jerky actions might damage the robot (Ra�n
et al., 2022; Li et al., 2024a). Exploring the parameters) of this underlying deterministic
policy c\ (sC) is referred to as episode-based RL (ERL). Although, ERL methods are not
only restricted to the application of MPs as the deterministic policy c) representation, this
thesis focuses on MP applications in ERL only (Chapters 3 and 4).

19

2. Foundations

The interaction loop of an ERL agent is illustrated in Figure 2.2, where we have colored
the right part of this Figure in black to inidicate that ERL treats this part as black box and
is also referred to as black box reinforcement learning approach therefore. This black-box
characteristic allows a �exible structure in the return function and is not restricted to
the Markov property, a feature that allows a more intuitive reward design for achieving
the desired behavior. For example an environment’s return to an agent that is tasked to
jump as high as possible can be de�ned as the maximum height reached during the whole
episode, which is a non-Markovian return because it requires retrospective information.
This return is more intuitive than a per-step reward such as the height reached at each
time step. These features frame ERL a useful tool for learning versatile skills, which we
show in the Chapters 3 and 4.

In general, ERL de�nes a context conditioned search distribtuion c8 () |c) over the pa-
rameters) of the deterministic policy c) (sC), where 8 are the parameters of the search
distribution. Those parameters of the search distribution are then optimized following the
ERL objective, which we are going to discuss next.
Please note that although in ERL the policy is the deterministic low-level controller
aC = c) (sC), we will refer to the search distribution c8 () |c) as the policy in the context of
ERL in the reminder of this document, as common in literature.

2.3.1. Episode-Based Reinforcement Learning Objective

The objective for the episode-based RL setting can be formalized as

� (c8) = E? (c)
[∫

)
c8 () |c)

∫
3
?) (3 |2)� (3 , c)333)

]
(2.26)

= E? (c)

[∫
)
c8 () |c)'() , c)3)

]
, (2.27)

where c ∈ C is a continuous context variable that speci�es the task to be solved, e.g. a
position to which an object needs to be moved and is de�ned by the context distribution
? (c) speci�ed by the environment and is unknown to the agent.

The aforementioned �exible return structure � (3 , c) becomes more present in Eq. 2.26.
Here, the optimization problem is independent of the exact de�nition of � as it is a black
box optimization problem. For example, � (3 , c) can be of Markovian nature with a �xed
horizon T

� (3 , c) =
)∑
C=0

W CA (sC , aC , c), (2.28)

or it can have any non-Markovian structure.

In Eq. 2.26 we have expressed the return � (3 , c) in terms of the trajectory 3 , which is a
useful de�nition for understanding the quality assessement of a parameter) . However, we
will use the more common de�nition of the return as '() , c) in Eq. 2.27 for the reminder

20

2.3. Episode-Based Reinforcement Learning (ERL)

of this thesis, as it directly illustrates the dependence on the parameters) and it is more
compact to write.

One observation the objective in Eq. 2.27 reveals is that ERL treats each context-parameter-
return tuple () , c, '() , c)) as a sample for updating the parameters 8 of c8 () |c). Yet, each
evaluation corresponds to executing the parameter) on the system for a whole episode
to obtain the return '() , c). Because ERL does not make use of the temporal structure
resulting from the interaction with the environment, they are sample ine�cient compared
to SRL methods.

2.3.2. Episode-Based Reinforcement Learning Methods

Obtaining a policy c8 () |c) that maximizes the objective in Eq. 2.27 has been tackled from
di�erent optimization perspectives in the literature. As in the step-based RL setting, the
Policy Gradient approach has been widely researched in the episodic case (Sehnke et al.,
2010). However, as the optimization in Eq. 2.27 is considered as a black box optimization
problem, it also permits using gradient-free stochastic optimization methods that have
been widely used in the context of episode-based RL.

2.3.2.1. Policy Gradient Methods

Similar to the REINFORCE algorithm in the step-based RL setting, the policy gradient
version in the episode-based RL setting can be formulated as

∇8 � (c8) =
∫

? (c)
∫
)
∇8c8 () |c)'() , c)3)3c (2.29)

=

∫
? (c)

∫
)
c8 () |c)∇8 logc8 () |c)'() , c)3)3c (2.30)

≈
#∑
8=0
∇8 logc8 () 8 |c8)'() 8, c8). (2.31)

Following the same motivation as stated in Section 2.2.4.2, we can include a baseline 1 (2)
to reduce the variance of the gradient estimate in Eq. 2.31. Commonly the pendant to the
value function in the step-based RL setting is used as a baseline, i.e. 1 (c) = + c (c), where
+ c (c) =

∫
)
c8 () |c)'() , c), which leads to the advantage function

�c () , c) = '() , c) −+ c (c), (2.32)

and �nally to the episode-based policy gradient estimate

∇8 � (c8) ≈
#∑
8=0
∇8 logc8 () 8 |c8)�c () 8, c8). (2.33)

21

2. Foundations

The policy gradient in the episode-based RL setting was employed in early works such
as (Peters and Schaal, 2008; Sehnke et al., 2010) and has been extended to the natural
gradient using evolution strategies (ES) (Wierstra et al., 2014). More recently it has been
shown to work well in more complex policy parameterizations c8 () |c), such as deep
neural networks (Bahl et al., 2020; Otto et al., 2023). Notably, the work by Otto et al. (2023)
has extended the policy gradient approach to the trust-region constrained pendant of the
step-based RL setting (Otto et al., 2021) for deep networks. It optimizes the objective

� (c8) = E? (c),c8>;3
() |2)

[
c8 () |c)
c8>;3
() |c)�

c8>;3 () , c)
]

s.t. KL
(
c8 (·|c) | |c8>;3

(·|c)
)
≤ n ∀c ∈ C.

(2.34)

Optimizing the policy gradient objective using a trust region constraint is speci�cally
important as small changes in the parameter 8 usually have a big impact on the result
and therefore, the policy change should be constrained during updates (Otto et al., 2023).
This optimization approach is particularly relevant to this thesis, as it is used in Chapter 4
to optimize single experts for learning versatile skills.

Later works have extended the policy gradient approach to use segments of the trajectory
3 for improved sample e�ciency (Li et al., 2024a) and further introduced o�-policy updates
(Li et al., 2025).

2.3.2.2. Gradient-Free Methods

Trust-Region Based Methods. Similar to the trust-region based policy gradient approach
(Otto et al., 2023), Contextual Relative Entropy Policy Search (CREPS) (Kupcsik et al., 2013;
Daniel et al., 2012) proposes optimizing a trust-region constrained optimization problem

max
c8

∫
? (c)

∫
c8 () |c)'() , c)3)3c (2.35)

s.t. E? (c)
[
KL

(
c8 () |c) | |c8>;3

() |c)
)]

(2.36)∫
c () |c)3) = 1∀c. (2.37)

The notable di�erence of this approach to TRPL (Eq. 2.34) is that CREPS does not employ
the trust region constraint for each context c ∈ C as TRPL (see Eq. 2.34) and it does
not rely on a gradient-based approach for �nding the optimal policy c∗8 () |c). Instead,
CREPS provides a closed-form solution for the optimal policy c∗8 () |c) that follows from
the Lagrangian formulation (Boyd and Vandenberghe, 2004) as

c∗8 () |c) ∝ c8>;3
() |c) exp

(
'() , c)
_

)
, (2.38)

where _ is the Lagrangian multiplier to the trust region constraint and + (c) is the value
function for the context c. The optimal Lagrangian multiplier _ is given by optimizing
the corresponding dual function. However, this closed-form solution does not permit

22

2.4. Maximum Entropy Reinforcement Learning

a parametric representation of the policy such that additionally a weighted maximum
likelihood estimation (MLE) needs to be done to �t a parameterized policy. CREPS’ main
drawback is therefore that it is not guaranteed that the new parametric policy obeys the
trust region constraint.

Because of this reason, Abdolmaleki et al. (2015) and Tangkaratt et al. (2017) propose ap-
proximating the numerator in the exponential of Eq. 2.38 using a second order polynomial
model such that a parametric closed form solution for cl () |c) can be obtained. Because
of the second-order model, this method is referred to as Contextual Model Based Relative
Entropy (CMORE) method and has been shown to obtain improved results over CREPS.
It is of particular relevance to this thesis, as it is used in Chapter 3 for learning a linear
expert that can solve multiple tasks. Yet, it is important to note that CMORE is restricted
to linear policies and was therefore not used in Chapter 4 for optimizing highly non-linear
policies.

Evolutionary Strategies. Another gradient-free approach for stochastic optimization
problems are methods based on Evolutionary Strategies (ES) (Whitley et al., 1993; Hansen
and Ostermeier, 2001; Igel, 2003; Salimans et al., 2017; Abdolmaleki et al., 2019). However,
these methods are usually hard to apply in the contextual episode-based RL setting as
they do not take the context c into account when evaluating the parameters) . Hence,
parameters that have returned a good return for one context c1 might not lead to high
returns for another context c2 (Otto et al., 2023). A notable di�erence is contextual CMA-
ES (Abdolmaleki et al., 2019) which is a contextual extension of the CMA-ES algorithm
(Hansen and Ostermeier, 2001), but is restricted to linear policies.

2.4. Maximum Entropy Reinforcement Learning

In the well-known fully-observable MDP from Section 2.2.1 and the corresponding RL
objective in Eq. 2.4 the optimal policy c∗) (aC |sC) is deterministic (Sutton and Barto, 2018).
However, often times a stochastic policy c) (aC |sC) that spans a distribution over the possible
actions and simultaneously maximizes the expected return is preferred. The maximum
entropy RL framework provides a principled way to learn such stochastic policies by
augmenting the reward with the entropy of the policy distribution. This objective not
only leads to a distribution over actions but also encodes a notion of controlling the
exploration of the policy within the objective and hence does not require explicit treatment
of exploration, e.g., by adding noise to the action of a deterministic policy (Lillicrap et al.,
2016; Fujimoto et al., 2018) or as in the more common case initializing the policy as a
distribution with high entropy and carefully restricting the information loss per iteration
by additional techniques such as bounding the Kullback Leibler divergence in intermediate
iterations (Kakade, 2001; Schulman et al., 2015, 2017; Otto et al., 2021; Peters et al., 2010).
Additionally, it is shown that optimizing the maximum entropy RL yields robust policies
against perturbations in the reward signal and the environment dynamics (Eysenbach and
Levine, 2022), which is particularly useful in real world situations.

23

2. Foundations

This thesis heavily relies on the advantages of the maximum entropy RL objective in terms
of exploration for learning versatile and diverse skills, which is why we will present it in
more detail in the following for the step-based and episode-based setting.

2.4.1. Step-Based Maximum Entropy Reinforcement Learning

In the step-based RL setting, the maximum entropy RL objective is de�ned as

� (c)) = E?c

[∞∑
C=0

W C (A (sC , aC) + UH (c) (·|sC)))
]
, (2.39)

where U ≥ 0 is an entropy scaling parameter that controls the trade-o� between maxi-
mizing the task reward A (sC , aC) and the entropyH (c) (·|sC)) of the policy. Consequently,
higher U values lead to more exploration, whereas U = 0 recovers the standard RL objective
in Eq. 2.4.

With the entropy-augmented objective in Eq. 2.39, also the state-action value function
&c (sC , aC) for state sC ∈ S and action aC ∈ A in time step C changes and is de�ned as the
soft Q-function &csoft(sC , aC) as (Haarnoja et al., 2017)

&csoft(sC , aC) = A (sC , aC) + E?c

[∑
:=1

W: (A (sC+: , aC+:) + UH (c) (·|sC+:)))
]
, (2.40)

and its corresponding soft value function + c
soft(sC) as

+ c
soft(sC) = U log

∫
exp

(
1
U
&soft(sC , a′)

)
3a′. (2.41)

The optimal policy that maximizes the maximum entropy RL objective is then given as
the energy-based distribution (Ziebart, 2010; Haarnoja et al., 2017)

c∗(aC |sC) = exp
(

1
U

(
&csoft(aC , sC) −+

c
B> 5 C
(sC)

))
. (2.42)

These relations are particularly important in Chapter 5, where a Policy Iteration scheme
for the di�usion-based policy with tailored de�nitions are derived.

Among the known algorithms that optimize the maximum entropy RL objective in the
continuous state-action domain is Soft Q-Learning (Haarnoja et al., 2017) which leverages
advanced sampling techniques such as Stein variational gradient descent (Wang and
Liu, 2016) to train a sampling network to sample from the optimal energy-based policy
distribution in Eq. 2.42. However, training the sampling network involves importance
sampling which is known to have high variance, especially in high-dimensional tasks
(Messaoud et al., 2024).

Therefore, this framework was extended to a tractable family of parameterized policies
in Soft Actor Critic (SAC) (Haarnoja et al., 2018b) which is among the most well-known

24

2.5. Advancing Reinforcement Learning using Curriculum Learning

maximum entropy RL algorithms. SAC learns a soft Q-function&5 (s, a) de�ned as 2.40 and
is therefore categorized as an o�-policy actor-critic method. SAC’s ease of implementation
and great performance has motivated researchers to build upon this algorithm to e.g. scale
the network sizes in RL (Nauman et al., 2024), or improve the performance (Bhatt et al.,
2024) using batch normalization techniques.

In fact, it can be shown that framing the reinforcement learning problem as a probabilistic
inference problem leads to a solution that optimizes the maximum entropy objective
(Levine, 2018). Related to this, works in the �eld of optimal control have formulated the
optimization problem as an approximate inference problem (Toussaint, 2009; Todorov,
2008; Rawlik et al., 2012), or used the maximum entropy principle to learn the reward
function in the context of inverse reinforcement learning (Ziebart et al., 2008).

In Section 2.7.5 we reformulate the maximum entropy RL objective as approximate in-
ference. This relation has provided us with inspiration from recent advancements in the
�eld of approximate inference with di�usion models (e.g. (Berner et al., 2024; Richter and
Berner, 2024)) and has led to developping Di�usion-based Maximum Entropy RL (DIME)
in Chapter 5.

2.4.2. Episode-Based Maximum Entropy Reinforcement Learning

The maximum entropy RL objective can also be applied to the episode-based RL setting

� (c8) = E? (c)
[∫

c8 () |c) ('() , c) + UH (c8 (·|c)) 3)
]
. (2.43)

Here, instead of maximizing the entropy of the policy in the raw action space aC as in the
step-based RL case, the entropy of the policy c8 over the parameters) is maximized. This
implies that this objective tries to �nd all possible parameters) that maximize the return
'() , c). As in Section 2.4.1, the entropy scaling parameter U ≥ 0 controls the trade-o�
between maximizing the return and the entropy of the policy.

In Section 2.7.4 we show that the Variational Inference (VI) objective draws parallels to
the maximum entropy RL objective. We build on this observation and leverage techniques
from variational inference (Arenz et al., 2018, 2020; Becker et al., 2020) to optimize Mixture
of Experts (MoE) policies in Sections 3 and 4 for learning diverse and versatile skills on a
trajectory level.

2.5. Advancing Reinforcement Learning using Curriculum
Learning

Numerical continuation methods (Allgower and Georg, 1990) are a class of numerical
methods that try to �nd the optimal solution of a target function by �rst optimizing a
smoothed version of the target and then gradually optimizing less smoothed versions of the

25

2. Foundations

target function using the found solution from the previous iteration. Motivated by these
methods, Bengio et al. (2009) introduced curriculum learning as a learning paradigm that
improves the learning process by presenting the learning agent with a sequence of tasks
that are ordered by their di�culty. Many works have built upon this learning framework
and have shown improved results in various domains where the curriculum was either
de�ned in the increasing complexity of the model (Karras et al., 2018; Morerio et al., 2017;
Sinha et al., 2020), or in the increasing task complexity (Florensa et al., 2017; Lotter et al.,
2017; Sara�anos et al., 2017). Most commonly those methods expect the curriculum to
be de�ned beforehand and do not consider the agent to adapt the curriculum during the
learning process. Automatic curriculum adaptation is also known as Self-Paced Learning
and is the more convenient way for the user as it is not required to de�ne the pace of the
di�culty of the tasks.

Self-Paced Learning. Self-Paced Learning is a crucial part of this thesis for acquiring
versatile and diverse skills as discussed in Chapters 3 and 4. More concretely, the methods
presented in the Chapter 3 and 4 take inspiration from the following objective to address
Challenge 2

� (c8) = Ec8 (c)
[∫

c8 () |c)'() , c)3)
]
− VKL

[
c8 (c)

����? (c)] , (2.44)

where the notable di�erence to the standard episode-based RL objective in Eq. 2.27 is
the di�erence in the expectation over the context distribution that goes over a learnable
distribution c8 instead of the environment’s context distribution ? (c) and the augmented
KL regularization that incentivizes c8 to be near to the true distribution ? (c) of the
environment. The scaling parameter V controls the trade-o� between maximizing the
return and minimizing the KL regularization and can be seen as the hyperparameter that
controls the di�culty of the tasks in the curriculum. Higher V values encourage full
coverage of the true context distribution, i.e. all possible tasks, whereas lower V values
encourage the agent to choose contexts that are easier to solve and lead to higher returns.
This objective was proposed in the work by Klink et al. (2020a) and has shown to work
well in the episode-based RL setting.

Notably, the objective in Eq. 2.44 assumes that the agent can de�ne the task, i.e., which
context c to solve next during training time, which is generally not the case in the standard
RL setting, where the context is de�ned by the environment. However, intuitively this
assumption makes sense as humans also consider easier tasks �rst during learning and
transfer their knowledge to harder tasks later on. We therefore, consider this assumption
as reasonable and useful for enabling self-paced learning. During test time, the agent only
observers contexts from the environment’s context distribution ? (c).

We take this objective as inspiration in Chapters 3 and 4 and show how we can use
it to learn a per-expert curriculum which successfully covers the whole context space
minimizing the KL augmentation in Eq. 2.44. A more detailed review of curriculum
learning approaches in reinforcement learning is discussed in Chapter 4.

26

2.6. Policy Representations

2.6. Policy Representations

Most commonly, Gaussian parameterized policies in both the step-based and episode-
based RL settings are used to represent the policy c) (aC |sC) and c8 () |c) respectively. In
both setups, the mean - is a function of the state sC , or context c, and is most commonly
parameterized by a neural network. The covariance Σ is either a learnable matrix, or a
function of the state sC , or context c. Gaussian policies are the most common choice for
representing policies as they are easy to implement and have tractable statistics, i.e. their
likelihoods can be evaluated in closed form. Consequently optimizing their parameters is
usually convenient.

However, in some cases, it is bene�cial to use more complex policy representations such as
for improved exploration, or, for capturing multi-modality that lead to completely di�erent
behaviors for the same task.

In the following, we �rst discuss Motion Primitives, a common representation for trajec-
tories used in episode-based RL methods. Subsequently, we discuss two classes of latent
variable models. We start with Mixture of Experts (MoE) models that we leverage as policy
representations in Chapters 3 and 4 to learn versatile and diverse skills, and continue
presenting di�usion-based models that can be seen as discrete latent variable models and
that hold the promise to learn complex and multi-modal policies. In Chapter 5 we show
how di�usion-based policies can be trained in the maximum entropy RL framework.

2.6.1. Motion Primitives

Motion Primitives (MPs). (MPs) are an elegant class of approaches that can represent
the behavior of an agent using a parameterized trajectory in a compact way which is
why they are broadly used in episode-based RL. Depending on the control domain of the
robot, either positions can directly be set as actions, or some tracking controller can be
used to follow the trajectory. MPs successfully abstract a trajectory such that they can
be represented in a lower dimensional space, which signi�cantly reduces the complexity
of the search problem. Additionally, the resulting trajectory is smooth and continuous, a
particularly important property in robotics to avoid jerky actions (Ra�n et al., 2022; Li
et al., 2023).

One of the approaches to MPs is Dynamic Movement Primitives (DMPs) (Schaal, 2006;
Ijspeert et al., 2013). Given a parameter \ , DMPs generate a trajectory by integrating the
second order di�erential equation

W2 ¥~ (C) = U (V (6 − ~ (C)) − W ¥~ (C)) + 5\ (G), with 5\ (G) = Gq (G))\, (2.45)

where ~ = ~ (C), ¤~ = d~/3C, ¥~ = d2~/3C2 are the position, velocity, and acceleration of the
system at time step t,6 is the goal attractor for the state of the system, U and V are the spring-
damper constants and W is the time constant that controls the execution speed. By adapting
the parameters \ , the integrated trajectory can be manipulated over the forcing function

27

2. Foundations

5\ (G). The in�uence of the forcing function is controlled over the exponentially decaying
phase variable G (C) = exp (−UG/WC). Here, q (G) are basis functions that are �xed in the
learning process. While DMPs provide an elegant framework for generating trajectories for
any starting position ~ (0) by de�nition, they require integrating the di�erential equation
for each trial of \ , which makes them computationally expensive.

An alternative approach to DMPs are Probabilistic Movement Primitives (ProMPs)
(Paraschos et al., 2013), which provide a probabilistic framework to capture the distribution
over trajectories. Capturing the distribution over trajectories in terms of the parameters
) is particularly useful in the context of imitation learning where a training set over
trajectories 3 is given. However, in RL this is an uncommon situation, but in contrast to
DMPs, the trajectory generation for a speci�c realization of the parameter) is particularly
convenient through the linear relation

3 = 5)) , (2.46)

where 5 are the basis functions over the time steps. This linear relation makes trajec-
tory generation computationally e�cient and easy to implement in the context of RL.
A drawback of ProMPs is that they do not provide an intuitive way to start a trajectory
from arbitrary initial positions, requiring careful treatment by e.g. always starting the
trajectory from the origin and adding a di�erence to the initial state of the system instead of
considering the absolute state trajectory. Nevertheless due to their ease how the trajectory
is generated in Eq. 2.46, we have used ProMPs as a controller parameterization in Chapters
3 and 4.

Finally, Probabilistic Dynamic Movement Primitives (ProDMPs) (Li et al., 2023) unify
the ideas and advantages of both approaches to ProDMPs by pre-calculating expensive
numerical integration in DMPs and leveraging the linear relation of data generation in
ProMPs, where we refer the interested reader to the detailed description in their work by
Li et al. (2023). Important to notice for this thesis is that ProDMPs generate a trajectory
3 similar to the way ProMPs do, but also allow to generate the trajectory from arbitrary
initial conditions and additionally allow learning a goal attractor g which was not possible
in ProMPs and is particularly useful in goal-conditioned RL tasks. We consider ProDMPs
as a controller representation in Chapter 4.

2.6.2. Mixture of Experts

Modeling complex distributions can be done using a superposition of simpler distributions
such as mixture models. The next paragraph is going to discuss mixture models, where
we take inspiration and follow the de�nitions similar to Bishop (2006).

28

2.6. Policy Representations

Mixture Models. Mixture models provide a principled formalization for the idea of a
superposition of simpler distributions and are categorized into the �eld of discrete latent
variable models. Formally, a mixture model over a random variable x is de�ned as

? (x) =
#∑
>

? (>)? (x|>), (2.47)

where > = 1, 2, ..., # is a discrete latent variable that is the index specifying the compo-
nent of the mixture model, and ? (>) is a categorical distribution ? (>) = Cat(?1, ?2, ..., ?#)
assigning a probability to each component > . The conditional distribution ? (x|>) is the
component distribution. Mixture models are a widely used model for representing complex
distributions because given a su�ciently large number of components # , they can approx-
imate any complex distribution (Bishop, 2006) and they can usually be trained e�ectively
in parallel. Their easy structure gives room for interpretability, as each component > is
usually responsible for a subset of the data.

Most commonly, the components ? (x|>) are parameterized as a Gaussian distribution such
that the model in Eq. 2.47 becomes a Gaussian Mixture Model (GMM).

In Chapter 3 we will use GMMs as a parameterized distribution over the context c to
represent a curriculum. However, we will also consider mixture models as a policy
representation in Chapter 3 and 4, where those chapters refer to the context conditioned
mixture model from Eq. 2.47 as Mixture of Experts (MoE).

Following Eq. 2.47 we can write an MoE distribution over the parameters) given a context
c as

c8 () |c) =
#∑
>=1

c (> |c)c8 () |>, c), (2.48)

where c (> |c) is the responsibility given the context c and c8 () |>, c) is the expert distribu-
tion for the component > given context c. We will consider Gaussian experts

c8 () |>, c) = N() |f8>
(c),Σ>) (2.49)

with either linear relationship in f8 in Chapter 3, or a non-linear relationship using neural
networks in Chapter 4. In general, we will not write 8> to indicate the parameters of
the expert > but simply write 8 as it contains all parameters of the whole model and
the discrete latent variable > assigns the respective parameters within 8 to the expert
distribution c8 () |>, c).

The responsibility c (> |c) assigns each expert > a probability for a given c. This probability
measure indicates which expert c8 () |>, c) is responsible for c. The responsibility plays a
major role in learning versatile and diverse skills as will be discussed in detail in Chapter
3.

Discrete latent variable models such as MoEs can be used to approximate complex and
untractable distributions. A common approach for optimizing the parameters of the MoE

29

2. Foundations

is by formulating this approximate inference as an optimization problem. In Section
2.7 we present the general objective for optimizing MoEs in the context of approximate
inference and discuss parallels to the episode-based maximum entropy RL objective (Section
2.4.2) which we leverage to optimize MoE policies in Chapter 3 and 4. In these chapters
each expert of the MoE policy represents a skill using contextualized Motion Primitive
Parameters (Section 2.6.1).

2.6.3. Di�usion Models

Di�usion models are continuous-time stochastic processes (Song et al., 2021). A general
stochastic di�erential equation (SDE) on the time interval [0,)]

3xC = g(xC)3C + fC3BC (2.50)

describes the path of the random variable xC over time C , where g : R3 × [0,)] → R3
is the drift term, f : [0,)] → R+ is the di�usion coe�cient and (BC)C∈[0,)] is a Brownian
motion. The goal is to �nd a suitable g and f together with a suitable initial condition x)
such that the �nal distribution of x0 approximates a target distribution ? (x0) (Berner et al.,
2024).

Various variants of di�usion models together with a suitable optimization scheme have
been proposed in the literature (Song et al., 2021; Vargas et al., 2024; Richter and Berner,
2024; Blessing et al., 2025a,b; Vargas et al., 2023). We refer the interested reader to the
survey by Blessing et al. (2024).

In this thesis, we consider Denoising Di�usion Models, where a forward, or noising process
is given by the Ornstein-Uhlenbeck (OU) process (Särkkä and Solin, 2019)

3xC = −VCxC3C + [
√

2VC3BC , x0 ∼ ? (x0), (2.51)

with the di�usion coe�cient V : [0,)] → R+, Brownian motion (BC)C∈[0,)] , and a target
distribution ? (x0). We refer to the marginal density of this forward process at time step
C as ®?C . This process is referred to as noising process because for a suitable V , the initial
distribution ?) (G)) ≈ N (0, [2�) is approximately a zero-mean Gaussian distribution.

The corresponding time-reversal, or backward generative process to the process in Eq. 2.51
is given by the SDE

3xC =
(
−VCxC3C − 2[2VC∇ log ®?C (xC)

)
+ [

√
2VC3BC , x) ∼ N(0, [2�), (2.52)

which starts at time step) and runs backward in time (Anderson, 1982), and the marginal
density of this backward process at time step C is de�ned as ®?C . This process is referred to
as the time-reversal process because the marginal densities of the processes in Equations
2.51 and 2.52 at time C align, i.e. ®?C = ®?C ∀C ∈ [0,)].

Therefore, �rst sampling x) ∼ N(0, [2�) and simulating the process in Eq. 2.52 generates
samples from the target distribution ? (x0). However, most commonly, (∇ log ®?C (xC))C∈[0,)]

30

2.6. Policy Representations

are not known, requiring an approximation of the score function ∇ log ®?C (xC), which then
needs to be trained using a suitable optimization scheme. In supervised learning settings,
samples of the target distribution ? (x0) are available, which can be used to train the score
function using a score matching objective (Song et al., 2021). Yet in the context of RL, the
target distribution is not known and requires generating those samples with the current
policy. However, this process requires further formulations for a tractable objecive.

While learning of a parameterized function 5)C as an approximation for the score∇ log ®?C (xC)
in continuous time is considered in the approximate inference literature (Berner et al.,
2024; Nusken et al., 2024), this thesis focuses on the discrete-time formulation in Chapter
5 which is more accessible to the RL community as it does not require knowledge in
stochastic calculus.

As detailed in Chapter 5, the SDEs in Equations 2.51 and 2.52 can be discretized using the
Euler-Maruyama method (Särkkä and Solin, 2019), that lead to the joint distributions of
the noising and denoising process as

®?0:# (x0:#) = ®?0(x0)
#−1∏
==0
®?=+1|= (x=+1

��x=) (2.53)

®?0:# (x0:#) = ®?# (x#)
#∏
==1

®?=−1|= (x=−1��x=), (2.54)

where ®?=+1(x=+1
��x=) and ®?=−1|= (x=−1��x=) are Gaussian kernels that follow from the dis-

cretization of the SDEs in Equations 2.51 and 2.52 using the Euler-Maruyama method (see
Section 5.4). We refer to the time step of the marginal distribution as a subscript and the
time step of the random variable as a superscript.

With the discretization of the SDEs, we can interpret the marginal distribution of the
backward di�usion process as a continuous latent variable model

®?0(x0) =
∫
®?0:# (x0:#)3x1:# , (2.55)

where the latent variables are the time-discretized random variables x1:# .

Similar to discrete latent variable models such as MoEs (Section 2.6.2), continuous latent
variable models can be optimized by formulating approximate inference as an optimization
problem. In Section 2.7 we present the general objective for optimizing di�usion models
in the context of approximate inference and discuss parallels to the step-based maximum
entropy RL objective which we leverage to optimize di�usion policies in Chapter 5.

Please note that an extension to conditional di�usion models as considiered in RL and in
this thesis is straightforward by conditioning the marginal distributions on a state s. The
corresponding notation is introduced in Chapter 5 in Section 5.3.2.

31

2. Foundations

2.7. Optimizing Latent Variable Models via Variational
Inference

In this thesis we propose reinforcement learning (RL) methods to optimize Mixture of
Experts (MoEs) and di�usion-based policies for learning versatile skills using the maximum
entropy RL objective for episode-based RL (ERL) and step-based RL (SRL) respectively.
Those methods take inspiration from the Variational Inference (VI) literature, in which
approximate inference is framed as an optimization problem (Murphy, 2012) and has tight
connections to the maximum entropy RL objective. Therefore, this section aims to give
an overview of the connection of the VI objective to the maximum entropy RL objective.
For presenting the following section, we take inspiration and follow Bishop (2006) and
Murphy (2012).

Variational Inference seeks to optimize the parameters of a tractable distribution ? (x) such
that a target distribution @(x) is approximated. The target distribution is intractable and
unknown, but it is assumed that samples x can be evaluated on the unnormalized target
density @̃(x). While any distance and divergence measure � (? (x) | |@(x)) can be used as
objective, the reverse Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) is from
particular interest for this thesis. Using the KL, the objective is de�ned as

arg min
? (x)

KL (? (x) | |@(x)) = arg min
? (x)

∫
? (G) log ? (x)

@(x)3x. (2.56)

Because the target distribution can be evaluated on samples x up to the normalizing
constantZ, the objective is rewritten as

arg min
? (x)

KL (? (x) | |@(x)) = arg min
? (x)

∫
? (G) log ? (x)

@̃(x)3x + logZ, (2.57)

where logZ is independent of G and can be ignored in the optimization therefore.

Similarly, we write the objective for the conditional case as the expected KL

arg min
? (x|c)

E? (c) [KL (? (x|c) | |@(x|c))] = arg min
? (x|c)

E? (c)

[∫
? (x|c) log ? (x|c)

@(x|c)3x
]
, (2.58)

where c is a context to the system. Following the same reasoning as for the marginal case,
the target distribution @(x|c) can be evaluated up to a normalizing constantZ(c), leading
to the objective

arg min
? (x|c)

E? (c)

[∫
? (x|c) log ? (x|c)

@̃(x|c)3x + logZ(c)
]
. (2.59)

By observing that logZ(c) is independent of x, we can ignore it during the optimization.

32

2.7. Optimizing Latent Variable Models via Variational Inference

2.7.1. Variational Inference for Latent Variable Models

Simply inserting a latent variable model ?) (x) =
∫
?) (x, z)3z into the Objective in Eq.

2.56 results in an objective that is not straightforward to optimize because the integral
over the latent variable appears in the logarithm (Bishop, 2006; Arenz et al., 2018).

Instead, the chain rule for the KL divergence (Cover, 1999) can be used to rewrite the
objective as

KL (?) (x) | |@(x)) = KL
(
?) (x, z) | |@5 (x, z)

)︸ ︷︷ ︸
L() ,5)

−E?) (x)
[
KL

(
?) (z|x) | |@5 (z|x)

)]︸ ︷︷ ︸
J (5,))

, (2.60)

which introduces the KL between the joint distributions ?) (x, z) and @5 (x, z) and the
expected KL over the posterior distributions ?) (z|x) and @5 (z|x), where @5 (z|x) is also
referred to as the variational distribution. Note that the joint distribution @5 (x, z) still
relates to the target distribution @(x) by

@5 (x, z) = @5 (z|x)@(x). (2.61)

The optimization of the objective in Eq. 2.56 is tractable and can be done in an Expectation-
Maximization (EM) like scheme (Dempster et al., 1977).

In the M-step, the parameters 5 are �xed and the parameters) of the latent variable model
?) (x) are optimized by

) 8+1 = arg min
)
L() , 5 (8)), (2.62)

and in the E-step, the parameters) are �xed and the parameters 5 of the variational
distribution @5 (z|x) are optimized by

58+1 = arg min
5
J (5,) (8)), (2.63)

where 8 denotes the iteration of the optimization.

2.7.2. Variational Inference for Mixture Models

For discrete latent variable models such as Mixture of Experts (MoEs) (Section 2.6.2),
the latent variable model ?) (x) from Section 2.7.1 becomes ?) (x) =

∑#
>=1 ?) (x, >) =∑#

>=1 ?) (x|>)?) (>) as de�ned in Eq. 2.47 ,where the latent variable z is renamed to > to
better re�ect the option, or component.

The optimization follows the same scheme as from Section 2.7.1, but the E-step can now
be calculated in closed form. By observing that the KL divergence J is minimal when

33

2. Foundations

the arguments are equal, it is obvious that the optimal variational distribution @5 (> |x) is
given by the posterior ?) (> |x)

@5 (8+1) (> |x) = ?) (8) (> |x) =
?) (8) (x|>)?) (8) (>)∑#
>=1 ?) (8) (x|>)?) (8) (>)

. (2.64)

This optimization is also proposed in the work by Arenz et al. (2018, 2020), where the
optimization of a Gaussian Mixture Modell (GMM) is framed as a policy search problem. In
Chapter 3 we take inspiration from this work and extend it to optimizing contextual Mixture
of Experts (MoE) policies, but additionally augment the optimization with automatic
curriculum learning (Section 2.5).

2.7.3. Variational Inference for Di�usion Models

For the Denoising Di�usion Model from Section 2.6.3, the latent variable model ?) (x)
from Section 2.7.1 is given by ?) (x) =

∫
®?)0:# (x0:#)3x1:# , where the latent variable z is

renamed to x1:# to re�ect the time-discretized random variables and the actual variable x
is given by x0. Please note that we have abused the notation and used a superscript) in
the backward process ®?)0:# (x0:#) to indicate that the backward process ®?)0:# (x0:#) contains
the parameters) of the approximated score model that we seek to optimize.

As the noising process ®?0:# (x0:#) starts at the target distribution @(x0), the marginal distri-
butions at = > 0 are a well suited choice for the variational distribution @5 (x1:# |x0), which
is justi�ed as the variational distribution is free to choose. Hence, the joint distribution
@5 (x, z) from Section 2.7.1 in Eq. 2.60 is given by ®@0:# (x0:#), where we have restated the
joint forward distribution ®? to ®@, to align with the notation in the decomposed objective
in Eq. 2.60.

Additionally, as the noising process ®@0:# (x0:#) is an Ornstein-Uhlenbeck process, it does
not have learnable parameters 5, and de�nes the optimal kernels at each di�usion step
already. This reduces the optimization of the di�usion model to only the M-step

arg min
)

KL
(
®?)0:# (x0:#) | | ®@0:# (x0:#)

)
(2.65)

= arg min
)

E ®?)0:# (x0:#)

[
log ®?# (x#) +

#∑
==1

log
®?)=−1|= (x=−1 |x=)
®@= |=−1(x= |x=−1) − log@(x0)

]
, (2.66)

where we have abused the notation and used a superscript) in the backward process
®?)0:# (x0:#) to indicate that the parameters) are optimized.

Optimizing the denoising di�usion model under this objective was proposed in the time-
continuous setting by Richter and Berner (2024) and written in the time-discrete setting
for example by Blessing et al. (2024). We take inspiration from this objective and propose
optimizing a di�usion-based policy in the maximum entropy RL setting for the step-
based RL case in Chapter 5, where we adapt the Policy Iteration scheme for the entropy
augmented objective tailored to the di�usion model.

34

2.7. Optimizing Latent Variable Models via Variational Inference

2.7.4. Connection to Episode-Based Maximum Entropy RL

It is easily observable that maximizing the maximum entropy episode-based reinforcement
learning Objective in Eq. 2.43 is equivalent to minimizing the KL divergence

!(8) = E? (c)
[
KL

(
c8 () |c)

��������exp ('() , c)/U)
/ (c)

)]
, (2.67)

where / (c) is the (unknown) partition function that is independent of) and can be
neglected in the optimization therefore. Comparing this objective to the conditional
variational inference Objective in Eq. 2.58 we can see that the Eq. 2.67 has the same
structure as Eq. 2.58 where the target distribution @(G |2) is given by exp ('() ,c)/U)

/ (c) . This
relation draws parallels of the episode-based maximum entropy RL setting to the variational
inference problem.

2.7.5. Connection to Step-Based Maximum Entropy RL

Recall the optimal policy for the step-based maximum entropy RL objective from Section
2.4.1 is given by

c∗(aC |sC) = exp
(

1
U

(
&csoft(aC , sC) −+

c
B> 5 C
(sC)

))
. (2.68)

The underlying objective to this optimal policy is given by

!()) = Es∼d (s)

[
KL

(
c) (a|s)

�������� (exp
(
&csoft(s, a)/U

)
// (s)

))]
, (2.69)

with / (s) =
∫

exp (&soft(s, a)/U) 3a being the partition function that is independent
of a. Comparing this objective to the variational inference objective in Eq. 2.58 we
observe that Eq. 2.69 has the same structure where the target distribution @(G |2) becomes
exp

(
&csoft(s, a)/U

)
// (s). Yet, when calculating the optimal c∗ to the objective in Eq. 2.69,

the solution is di�erent from the one in Eq.2.68

c∗(a|s) = exp
((
&csoft(s, a)/U

))
// (s). (2.70)

However, by noting that+ c
soft(s) = U log/ (s) (see Eq. 2.41 in Section 2.4.1), we can rewrite

this solution as

c∗(a|s) = exp
((

1
U

(
&csoft(s, a) −+

c
soft(s)

)))
, (2.71)

which is the same as the optimal policy in Eq. 2.68.

This relates the step-based maximum entropy RL objective to the variational inference
problem, allowing us to take inspiration from the approximate inference with di�usion
models literature.

35

2. Foundations

2.8. Mutual Information Based Skill Discovery

In this thesis we consider discovering versatile skills that can solve a task in a variety of
ways. As mentioned earlier in Section 2.2, the task is encoded in the reward function which
we aim to maximize. However, there is also a �eld of research that considers discovering
skills in the absence of a reward function. Here, usually the goal is to discriminate the
states s into di�erent skills that are encoded using a latent variable z. Most commonly,
the mutual information between the latent variable and the state is maximized to obtain
distinct skills

� (z, s) =
∫

? (z, s) log ? (z, s)
? (z)? (s)3z3s (2.72)

= H(? (z)) − E? (s) [H (? (z|s))] (2.73)
= H(? (s)) − E? (z) [H (? (s|z))] . (2.74)

Eq. 2.73 reveals the intuition of the mutual information. A high value for the mutual
information indicates that the state s leads to less uncertainty in z on average, as the
expected entropy E? (s) [H (? (z|s))] is small, whereas a small value indicates that the
uncertainty over z is high and hence, observing s does not lead to much information about
z. We can summarize that the mutual information encodes a measure on the uncertainty of
a random variable z given another random variable s. Due to the symmetry of the mutual
information, this relation applies to the reverse case in Eq. 2.74 too.

Many methods in unsupervised skill discovery proposed in the literature base their objec-
tive on the mutual information (Laskin et al., 2021; Eysenbach et al., 2019; Campos et al.,
2020; Lee et al., 2019; Liu and Abbeel, 2021). Most often, the mutual information between
the states s or the trajectories 3 and the skills z is considered. Yet, most commonly these
methods rely on the varational formulation of the mutual information that provides a
tractable lower bound to the Eq. 2.73. This lower bound is required because the posterior
in the expectation E? (s) [H (? (z|s))] can not be evaluated. Instead, the lower bound allows
to optimize a parameterized approximation ?5 (z|s) that can be evaluated (Eysenbach et al.,
2019).

While the mutual information is an interesting objective for discovering distinct skills, it
does not consider speci�c task rewards and hence these methods can learn a set of skills
that are not useful for solving a speci�c task. Therefore, they usually choose a speci�c skill
to solve a downstream task after discovering as many di�erent skills as possible without
a reward function. Instead, in this thesis we are interested in disocvering versatile skills
that can solve a given task, instead of discovering skills in an unsupervised manner.

36

3. Specializing Versatile Skill Libraries
using Local Mixture of Experts

In this chapter we aim to address the Challenges 1, and 2, which we state in a concise version
below.

Mixture of Experts (MoE) models are particularly well-suited for acquiring versatile skills,
as they can represent arbitrary complex distributions with a su�cient number of experts
(Bishop, 2006). In the following, we consider MoEs with linear experts as policy represen-
tations, where each expert is a contextualized motion primitive. Additionally, we extend
the model with a context distribution that is composed of per-expert context distributions
that allow each expert to shape its own curriculum in the context space. The training
of the resulting MoE policy is based on the curriculum augmented maximum entropy
episode-based reinforcement learning (ERL) objective (Sections 2.4.2 and 2.5).

Simply updating the MoE policy with the maximum entropy objective is challenging, as
the entropy term of the mixture model hinders the training of the experts independently
(Bishop, 2006; Arenz et al., 2018). Inspired by previous work on variational inference
(Arenz et al., 2018, 2020), this work tackles this problem by decomposing the maximum
entropy objective for ERL into an individual lower bound that allows optimizing each
expert independently. The resulting per-expert lower bound has a per-expert entropy
bonus that encourages the experts to cover as much as possible of the motion-primitive’s
parameter space while maximizing the expected return. Additional reward augmentations
that naturally arise through the decomposition of the objective ensure that the experts
discover di�erent modes of the parameter space incentivizing them to learn versatile
behaviors. Hence, the decomposition for MoE policies addresses Challenge 1.

This decomposition of the objective into per-expert lower bounds naturally also provides an
individual objective for updating the per-expert context distribution in a higher hierarchy.
The per-expert context distribution is parameterized as a Gaussian and allows each expert
to shape their own curriculum in the context space by favoring contexts from regions that
are easier to solve for this expert during training, thereby allowing to become an expert in
the respective local context region. Once the current contexts are solved reliably, the per-
expert context distribution is incentivized to increase its entropy, thereby covering more
of the context space. This incentive is provided by an entropy bonus for the per-expert
context distribution that emerges from the lower bound, alongside an augmented term
that punishes the current per-expert context distribution if it occupies a region that is
already covered by another expert. The per-expert context distribution is a key component
to address the second challenge (Challenge 2) because if each expert would have been

37

3. Specializing Versatile Skill Libraries using Local Mixture of Experts

forced to cover the entire context space, the few experts that are performing better would
dominate the MoE model, because RL increases the likelihood of choosing decisions that
yield a higher return. Consequently, the MoE model discards the other experts, which leads
to a mode collapse (Bacon et al., 2017) and prevents learning versatile skills. Automatic
curriculum learning prevents this mode collapse.

The aforementioned decomposition of the objective and the automatic curriculum shaping
using the per-expert context distribution address the Challenges 1 and 2 from Section 1.1,
which is restated in a shorter version for the convenience of the reader in the following.

Challenge 1 (concise): Representation and Training of Multimodal Policies. Discovering
versatile skills in reinforcement learning (RL) with multimodal policy representations
such as Mixture of Experts (MoEs) models, requires novel RL algorithms that train these
expressive policies e�ciently and explicitly encourage the exploration of di�erent modes.

Challenge 2 (concise): RetainingMultimodalities. Modes that yield higher returns earlier
during the reinforcement learning (RL) training process might dominate the policy, leading
to an overrepresentation of these modes and therefore to a collapse of the other modes.
This mode collapse prevents learning versatile skills and needs to be addressed.

The following work was published as Specializing Versatile Skill Libraries using Local
Mixture of Experts (Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, Gerhard Neumann
2021) in the 5th Conference on Robot Learning, CoRL 2021. Reprinted with permission of the
authors. Wording, notation and formulations were revised in several places.

3.1. Introduction

Human motor skills are precise and versatile, which allows us to perform motor tasks
in di�erent ways while achieving a consistent movement quality. For example, when
playing table tennis, we can hit the ball in various ways while still targeting a speci�c
landing point of the ball on the opponent’s side of the table. Another example is grasping
an object which lies behind an obstacle. We can grasp even small objects precisely with
di�erent grasp types while avoiding the obstacle. Such versatile skills are crucial if we
want to employ robots in unstructured and dynamically changing environments. Such
skills, often represented as movement primitives, were already successfully learned for
challenging robot learning tasks, e.g., the ball-in-a-cup (Kober and Peters, 2014; Klink et al.,
2020a) task, by a variety of policy search algorithms (Deisenroth et al., 2013). Yet, most of
these algorithms cannot �nd multiple, versatile, and precise solutions to the multi-modal
solution space, as they usually assume a Gaussian policy (Abdolmaleki et al., 2019; Klink
et al., 2020a; Deisenroth et al., 2013; Kupcsik et al., 2013).

In this paper, we model versatile behavior with contextual skill libraries of motion primi-
tives (Paraschos et al., 2013; Ijspeert et al., 2002), formalized by Mixtures of Experts (MoEs).

38

3.2. Related Work

Here the context de�nes task properties, e.g., reaching di�erent goal positions or di�erent
friction parameters of an object to manipulate (Kupcsik et al., 2013). Our goal is to learn
versatile skills, i.e., di�erent movement styles to solve a given context. Given a context, the
MoE �rst selects an expert, i.e., a motion primitive, to execute. Subsequently, the expert
adjusts the primitive’s parameters and a controller executes the primitive. Such models are
already commonly used (Daniel et al., 2012; End et al., 2017). Yet, the quality and versatility
of the learned skill libraries remain limited using existing algorithms. Most algorithms are
based on expectation-maximization (EM) (Dempster et al., 1977; Bishop, 2006) techniques
(Daniel et al., 2012), and su�er from local optima and mode averaging (Bishop, 2006) which
prevents the single experts from specializing in a local context region. Moreover, existing
algorithms (Daniel et al., 2012; End et al., 2017) do not explicitly optimize the versatility of
the library. Hence, they often yield degenerated libraries with only a single movement
style. We propose a new objective for learning contextual, precise, and versatile MoE
models based on a maximum entropy formulation. We also introduce a learnable context
distribution, which provides a curriculum for each expert of the MoE model. We use a
variational lower bound (Arenz et al., 2018) to decompose the objective into individual
updates for the experts and their related local context distributions, allowing the experts
to specialize in local regions of the context space and preventing mode averaging. Due to
the curriculum, the MoE does not have to cover the whole context space during training,
which prevents the averaging e�ects that negatively a�ect most other approaches. Yet,
not covering the whole context space leads to poor performance for some contexts, which
is also undesirable. Thus, we introduce a heuristic-free mechanism to add new experts
during training until the whole context space is covered. Hence our algorithm provides
a modular approach that learns highly precise and versatile skills that cover the whole
context space.

We evaluate our approach in a simulated beer pong and a table tennis environment. Both
environments allow di�erent motion styles to solve the tasks, which are discovered by our
algorithm. Moreover, we present ablation studies showing the importance of the single
elements and hyperparameters of our algorithm.

3.2. RelatedWork

Contextual Episodic Policy Search. Episodic policy search (Deisenroth et al., 2013)
aims at maximizing the expected return by optimizing the parameters) of a controller,
e.g., a motion primitive (Schaal et al., 2005; Paraschos et al., 2013). Most approaches use
a stochastic search distribution c ()) over the parameter space and aim to optimize the
expected return under this search distribution (Deisenroth et al., 2013), i.e.,

max
c ())
Ec ()) ['())],

where '()) = ∑
C AC is the summed reward over a whole episode obtained when executing

controller parameter) . As it is common in the literature, we will denote c ()) as our
policy even though it only indirectly chooses the control actions of the agent by selecting

39

3. Specializing Versatile Skill Libraries using Local Mixture of Experts

the controller parameters) . Di�erent optimization schemes such as policy gradients
(Sehnke et al., 2010), natural gradients (Wierstra et al., 2014), stochastic search strategies
(Hansen and Ostermeier, 2001; Mannor et al., 2003) or trust-region optimization techniques
(Daniel et al., 2012; Abdolmaleki et al., 2015) have been used. Researchers extended these
approaches to the contextual setting (Tangkaratt et al., 2017; Abdolmaleki et al., 2019),
where the search distribution c () |c) now depends on a context vector c which describes
the task, e.g., a goal location to reach. The contextual objective is typically formalized as

max
c () |c)

E? (c)
[
Ec () |c) ['() , c)]

]
,

where ? (c) is the given distribution over context vector and the rewards now also depends
on the context. Klink et al. (2020a) introduce a curriculum into contextual policy search.
By having an adaptable distribution over the contexts, they allow the agent to concentrate
on easy-to-solve contexts �rst and then generalize to the whole context space. We refer the
reader to Section 2.3 for an in-depth discussion of episode-based reinforcement learning.

Versatile Skill Learning. The Hierarchical Relative Entropy Policy Search (HiREPS)
algorithm (Daniel et al., 2012) extends the classical Relative Entropy Policy Search (REPS)
approach (Peters et al., 2010) to MoEs, which allows learning versatile skills in a contextual
episodic policy search setting. In a similar approach, Layered Direct Policy Search (LaDiPS)
(End et al., 2017) also uses MoE policies, but builds on Model-Based Relative Entropy
Policy Search (MORE) (Abdolmaleki et al., 2015) instead of REPS. Both HiREPS and LaDiPS
address the same problems as our approach, yet there are also considerable di�erences. First,
HiREPS jointly optimizes the whole mixture model and introduces an additional constraint,
which bounds the entropy loss of the responsibilities in each iteration. This constraint
is crucial for obtaining versatile and well-performing solutions. LaDiPS uses separate
updates for the di�erent parts of the mixture but also relies on additional constraints,
where the entropy of the gating is lower bounded with a constant value. In contrast, for
our approach, the objective and separate updates of the individual mixture parts follow
naturally from the maximum entropy formulation. Second, neither HiREPS nor LaDiPS
uses a curriculum for training. Thus, in both approaches, the MoE always has to cover the
whole context space and, hence, the components cannot specialize.

Variational Inference. Our work is also related to several recent advances in variational
inference (Arenz et al., 2018, 2020; Becker et al., 2020). It is well known that maximum
entropy RL is equivalent to inference in an appropriate probabilistic model (Levine, 2018).
Similar to previous works (Neumann et al., 2011; Haarnoja et al., 2018b), we exploit this
relation and draw inspiration from recent research into variational inference and density
estimation for Gaussian mixture models and MoEs (Arenz et al., 2018, 2020; Becker et al.,
2020). We reformulate the lower bound objectives introduced in those approaches for
our maximum entropy RL setting and extend them with a curriculum for the mixture
components.

Related Step-Based Approaches. In the step-based setting, the policy does not learn
a function from contexts to parameters of an episodic controller but directly maps from
system states to actions and the policy updates are performed with the information from

40

3.3. Specializing Versatile Mixture of Expert Models

each time-step. Practitioners often use deep neural networks to parameterize step-based
policies, giving rise to the �eld of deep RL. In this context, versatile policy learning is
also a very active research area (Eysenbach et al., 2019; Kumar et al., 2020; Osa et al.,
2021; Campos et al., 2020). These approaches use a similar MoE model where the mixture
component is only chosen at the beginning of an episode. Yet, the component is chosen
randomly without conditioning on a context or state variable. Moreover, these approaches
reformulate a mutual information based objective into a maximum entropy objective while
we develop a more direct maximum entropy maximization.

Curriculum Learning. Researchers also worked on introducing curricula into deep RL.
In a �rst approach Ghosh et al. (2018) proposed partitioning the initial state distribution
using clustering. They then learn individual policies for each partition while keeping the
partitioning �xed. Strictly, this is not a curriculum as the partitioning is not adjusted,
yet it still allows specialization of the individual policies in di�erent regions of the state
space. To automatically generate and adapt a curriculum for deep RL approaches, Klink
et al. (2020b) extended their approach from the episodic setting (Klink et al., 2020a) to
the step-based setting. Yet, neither of these approaches addresses versatility. While we
follow an episode-based approach, both methodologies have their bene�ts and limitations
(Deisenroth et al., 2013) which are, however, not the focus of this paper. We o�er further
discussion and quantitative comparison to a step-based approach for a common benchmark
in the experiments, therefore.

Options. A related hierarchical approach is the options framework (Sutton et al., 1999b;
Bacon et al., 2017; Riemer et al., 2018). The options framework extends the standard MDP
to a semi-MDP to include a temporal abstraction of low-level control policies. Given
a termination condition, the executed low-level policy can be terminated and another
can be turned on. Our policy structure can be seen as a simpli�cation of the options
framework where the option is only selected at the beginning of each episode. Yet, the
options framework does not explicitly address learning versatile skills.

3.3. Specializing Versatile Mixture of Expert Models

To allow versatile solutions, we employ a Mixture of Experts (MoE) model as policy
representation which is given as c () |c) = ∑

> c (> |c)c () |c, >), where c (> |c) is the gating
distribution, assigning a probability to expert > given the context c and c () |c, >) is the
expert distribution for expert > , which adapts the motion primitive’s parameters) to the
given context c. In this section, we derive a lower bound to optimize each expert and its
corresponding context distribution independently. In order to implement a curriculum
over the context c, we also introduce a learned context distribution c (c) = ∑

> c (c|>)c (>),
which is also a mixture model speci�ed by the per-expert context distribution c (c|>) and

41

3. Specializing Versatile Skill Libraries using Local Mixture of Experts

the expert weights c (>). By applying Bayes’ Rule to replace the gating distribution c (> |c),
we can now rewrite the general mixture of experts model as

cl () |c) =
∑
>

cl (c|>)cl (>)
cl (c)

cl () |c, >), (3.1)

where l contains the learnable parameters of each expert c () |c, >), per-expert context
distribution c (c|>) and the gating distribution c (>). This policy de�nition allows each
expert > to adjust its curriculum by explicitly optimizing for cl (c|>) (Section 3.3.3) and thus
concentrating on a local region in the context space. We model the experts cl () |c, >) as a
linear conditional Gaussian distribution and the per-expert context distribution cl (c|>) as
a Gaussian. The prior weights c (>) de�ne a categorical distribution.

To keep notation uncluttered, we do not write the subscript l to indicate the learnable
parameters of a distribution throughout the next sections, but we simply denote every
probability distribution which is adaptable through the optimization process with c as it is
part of our policy c () |c). Furthermore we show the full derivations for the next sections
in the Appendix A.1.

3.3.1. Maximum Entropy Skill Learning with Curriculum

We consider a maximum entropy objective (Ziebart, 2010; Levine, 2018) for episodic policy
search, i.e.,

max
c () |c)

E? (c)
[
Ec () |c) [R(c,))] + UH [c () |c)]

]
, (3.2)

where ? (c) is the task speci�c context distribution, R(c,)) is the reward function,
H(c () |c)) = −

∫
)
c () |c) logc () |c)3) the entropy and c () |c) is our MoE model. The

reward maximization enforces preciseness while the entropy bonus enforces versatility.
However, the standard maximum entropy objective does not allow each mixture expert to
create its own curriculum, since an optimization over the per-expert context distributions
c (c|>) is not given. Inspired by the work from Klink et al. (2020a), we extend and modify
the objective to

max
c () |c),c (c)

Ec (c)
[
Ec () |c) [R(c,))] + UH [c () |c)]

]
− VKL (c (c) ‖ ? (c)) , (3.3)

whereU and V are scaling parameters, H(c () |c)) = −
∫
)
c () |c) logc () |c)3) is the entropy

and KL (c (c) ‖ ? (c)) =
∫

c c (c) log c (c)
? (c)3c denotes the KL-divergence. Note the di�erence

in the optimization variables compared to Eq. 3.2. The Kullback-Leibler (KL) term ensures
that the context distribution c (c) is close to the task speci�c context distribution ? (c) while
c (c) can choose to have low probability in regions of the context space where the MoE
model is performing poorly. Note that this objective is similar to the negative I-projection
of the joint distribution c (c,)) used in variational inference. Here, we also exploit the
properties of the I-projection for learning the context distribution – the I-projection is

42

3.3. Specializing Versatile Mixture of Expert Models

mode seeking instead of mode-averaging and therefore allows for specialization on a local
context area. Yet, the given objective is di�cult to optimize for mixture models as the
sum over the mixture experts is appearing inside the log terms of the entropy and the KL.
However, similar to Arenz et al. (2018), we can replace c () |c) in Objective 3.3 with our
mixture model and apply Bayes theorem to arrive at

max
c (c,))
Ec (>),c (c|>)

[
Ec () |c,>)

augmented reward for expert >︷ ︸︸ ︷[
R(c,)) + U logc (> |c,))

]
+

augmented reward for context distributions︷ ︸︸ ︷
V log? (c) + (V − U) logc (> |c)

]
(3.4)

+ UEc (>),c (c|>)
[
H [c () |c, >)]

]
+ VEc (>)

[
H [c (c|>)]

]
+ VH [c (>)] .

The exact derivations are given in the Appendix A.1. Note that Eq. 3.4 is equivalent to
Eq. 3.3, yet, instead of the entropy for the whole mixture model, it now contains en-
tropy terms for each hierarchy layer of the MoE model, i.e., H [c () |c, >)], H [c (c|>)] and
H [c (>)], which are much simpler to compute. We also introduced log responsibilities
c (> |c,)) = c () |c, >)c (> |c)/c () |c) and c (> |c) = c (c|>)c (>)/c (c), occurring in the aug-
mented rewards. They return a high negative reward for expert > , if the context-parameter
pair (c,)) or the context sample c is already covered by another expert, pushing the expert
to uncovered regions of the parameter space or context space respectively. Yet, the regions
for the experts will still overlap due the entropy bonuses for c () |c, >) and c (c|>). Without
this reward augmentation, each expert could be optimized completely independently in
Eq. 3.4 using a maximum entropy objective. However, in this case, all experts would
concentrate on learning the best solution irrespective of whether this solution has already
been covered by another expert. Yet, the log responsibilities still hinder us from optimizing
each expert c () |c, >) and its corresponding per-expert context distribution c (c|>) inde-
pendently, since the sum over o from the mixture models c (c), c () |c) respectively appears
in the log term. In the following sections we show, how we can overcome this limitation
by introducing a lower bound inspired by variational inference (Arenz et al., 2018). As we
consider each possible context as equally important, ? (c) is assumed uniformly distributed
in a given interval in the following and thus, can be neglected in the objective.

3.3.2. Lower-Bound Decomposition for Expert Distributions

In order to maximize the Objective in Eq. 3.4 for each expert c () |c, >) individually, we
can �rst extract the terms which only depend on c () |c, >) for a speci�c > as

max
c () |c,>)

Ec (c|>),c () |c,>) [R(c,)) + U logc (> |c,))] + UEc (c|>) [H [c () |c, >)]] . (3.5)

The responsibilities are still hindering us to optimize each expert c () |c, >) independently.
However, similar to Arenz et al. (2018), we can obtain a tight lower-bound by introducing a
variational distribution c̃ (> |c,)) and replacing the responsibilities in Eq. 3.5 with c̃ (> |c,)).
This variational distribution is �xed during the optimization and can be computed accord-
ing to the last policy model allowing us to update each expert independently. It is easy

43

3. Specializing Versatile Skill Libraries using Local Mixture of Experts

to show that after the update of the variational distribution c̃ (> |c,)) = cold(> |c,)), the
introduced lower bound is tight. Please refer to the appendix. The resulting lower bound
is a standard maximum entropy RL objective with an additional reward augmentation
of U log c̃ (> |c,)) and thus can be optimized with any suitable Policy Search algorithm.
Here we use a maximum-entropy-adjusted version of contextual MORE (Tangkaratt et al.,
2017).

3.3.3. Lower-Bound Decomposition for Context Distributions and Prior
Weights

To update c (c|>) for a speci�c > , we extract the relevant terms from Objective 3.4
max
c (c|>)
Ec (c|>) [!2 (>, c) + (V − U) log c̃ (> |c)] + VH (c (c|>)) , (3.6)

where !2 (>, c) = Ec () |c,>)
[
R(c,)) + U log c̃ (> |c,))

]
+ UH [c () |c, >)] corresponds to the

expected augmented maximum entropy objective of expert c () |c, >) in context c and
c̃ (> |c) = cold(> |c) is a second variational distribution, which we introduced to be able to
optimize for each c (c|>) individually. Similarly to the previous section, the objective given
in Eq. 3.6 is a tight lower bound to the original objective where the responsibilities c (> |c)
are used instead of c̃ (> |c). We approximate the integral over) with a single sample, as
we typically only have a single parameter sample per context available. Yet, as we still
have the outer expectation Ec (c|>) in Eq. 3.6 which we approximate by multiple context
samples, the whole Monte-Carlo estimation of the expectations is still unbiased and with
low variance. After the optimization step (Eq. 3.6), we obtain the optimal solution c∗(c|>)
and tighten the bound by setting c̃ (> |c) = c∗(> |c) and c̃ (> |c,)) = c∗(> |c,)). Again, this
lower bound corresponds to an augmented maximum entropy RL objective and thus, we
can updated it with any suitable policy search method. Like Arenz et al. (2018), we use an
adjusted version of MORE (Abdolmaleki et al., 2015).

Finally, we can formulate the objective for updating the expert weights c (>), which
resembles a lower bound of the original Objective 3.4 and corresponds to the highest
hierarchy in our update scheme. The objective is given as

max
c (>)

∑
>

c (>)
[
Ec (c|>) [!2 (>, c) + (V − U) log c̃ (> |c)] + VH (c (c|>))

]
+ VH (c (>)) , (3.7)

which is a maximum entropy RL objective for categorical distributions. Here, we use REPS
(Peters et al., 2010).

To summarize, we split the initial objective in Eq. 3.4 into di�erent hierarchies, allowing us
to optimize the di�erent terms in our mixture model individually. Starting by �rst updating
the experts c () |c, >) using the maximization problem in Eq. 3.5, we can optimize for the
per-expert context distributions c (c|>) with Objective 3.6 after tightening the bound. The
experts c () |c, >) adjust the movement primitive parameters) given a context c, while the
per-expert context distributions c (c|>) ensure that the experts only see context samples
from a local context region. Finally, we update the weight distribution c (>) using Eq.
3.7.

44

3.3. Specializing Versatile Mixture of Expert Models

U = 10−4

V = 1.0

(a) aug. reward, U = 10−4

U = 0.5
V = 1.0

(b) aug. reward, U = 0.5 (c) aug. reward
U = 10−4

V = 0.5

(d) no aug. reward (e) HiREPS (f) no aug. reward

Figure 3.1.: Importance of the responsibilities in the augmented rewards and comparison to
HiREPS. A snapshot of the learned policies of the planar reaching task for a 2-dim context space (il-
lustrated in (c) and (f)) by considering log c̃ (> |c,)), log c̃ (> |c) ((a)+(b)+(c)) and neglecting the auxiliary
distributions ((d)+(f)). In ((a)+(b)+(c)) we can learn more diverse solutions (a) + (b) and cover the whole
2d-context space (c) with di�erent entropy bonuses, whereas the solutions in ((d)+(f)) show nearly the same,
partially invalid solutions by going through the red rectangles (obstacles) (d) and are not able to cover the
whole context space (f) leading to poor generalization performance. The solutions by HiREPS (e) indicate
less versatility compared to the solutions (a) + (b). Note that each color indicates a di�erent expert and the
red dots indicate the 6 chosen context vectors used for sampling.

Algorithmic Details and Addition of Experts. We initialize our algorithm with only one
expert and incrementally add experts, and their corresponding context distributions,
randomly. We �x all experts except for the newly added one and optimize it for iterations
to let it discover new solutions in yet undiscovered context regions. For updating c () |c, >)
(Objective 3.5) we sample from the local context distribution c (c|>). By also updating
c (c|>) according to Objective 3.6, the experts can adjust their curriculum and search for
their favored context regions. After iterations we add a new expert and repeat the
procedure. Due to the augmented rewards, the new expert will focus on undiscovered
solutions and the local context distribution will cover uncovered areas of the context
space. Note that such a simple adding procedure is only possible due to the mode-seeking
properties of the I-projection, as the experts do not need to average over multiple modes
but can specialize on a local context region. We also �x the weights c (>) to be uniformly
distributed among all experts during learning, since otherwise experts which are already
fully trained might dominate the optimization. By allowing to �ne-tune all experts every�
iterations, the previously added experts can adjust to the newly added ones. After �nishing
adding experts, we update the weights c (>) at the end of our optimization procedure. The
variables and the number of experts added in total are task-dependent. Please note
that we need to restrict the updates of the local context distributions c (c|>) to a the valid
region of the context space by introducing punishment terms in the reward function. We
describe the algorithm and the respective punishments in more detail in the Appendix A.2
and A.3.

45

3. Specializing Versatile Skill Libraries using Local Mixture of Experts

3.4. Experiments

We start by investigating the importance of the di�erent terms of the objectives derived in
Section 3.3 and subsequently evaluate the versatility and precision of the learned skills on
simulated robot beer pong and table tennis experiments.

We conclude our experiments with a discussion on episode-based RL (ERL) and step-based
RL (SRL) by comparing our method to PPO in di�erent scenarios. This comparison is to
highlight the advantages of each approach and does not focus on presenting versatile skills
which is the main focus of the experiments before.

In Appendix A.3 we report all hyperparameters.

3.4.1. Ablation Studies

We investigate the importance of the augmented rewards on a 10-link planar reaching task
with two-dimensional context space. For this purpose, we update the expert distributions
c () |c, >) and the corresponding context distributions c (c|>) by optimizing the objectives
in Eq. 3.5 and Eq. 3.6 with i) considering the responsibilities (as given by our algorithm) and
ii) by setting log c̃ (> |c,)) and log c̃ (> |c) to zero. Furthermore, we compare the solutions
found by our method to the solutions found by the SOTA method HiREPS.

Versatility is Induced by theAugmentedRewards. In the 10-link planar reaching task
(see Fig. 3.1a) the robot has to reach the red dots with its end-e�ector in a 2-dim context-
space, while avoiding the rectangle-shaped obstacles. By adding 60 experts, we have
trained both versions (i and ii) over 15 seeds/trials and have chosen the best performing
parameter constellations (Fig. 3.1a for i), Fig. 3.1d for ii)). We then picked the �rst model
and sampled for each of the shown six contexts vectors (red dots) 100 samples and plotted
the corresponding mean of each sampled expert. The plots for i) (Fig. 3.1a + Fig. 3.1b)
show versatile – several modes to the same context – and precise – small distance of
end-e�ector (green dot) to goal (red dot), while avoiding obstacles– solutions while fully
covering the context space (Fig. 3.1c). A trend of covering more modes with higher U
can also be seen in (Fig. 3.1b). For the case without the responsibilities ii) (Fig. 3.1d), the
solutions are not precise and invalid –reaching through the obstacles–. As Fig. 3.1f shows,
the context distributions focus on easy-to-solve context regions (top and bottom part) and
do not cover the full context space, leading to extrapolated solutions from experts that are
not trained for these contexts (red dots).

Comparison to HiREPS. We pick the best performing model among 15 seeds/trials after
hyperparameter optimization. In Fig. 3.1e the mean solutions of the sampled experts –
sampled in the same way as before – can be seen. HiREPS shows less diverse and qualitative
solutions, where only 3 of the 60 experts were chosen in total.

46

3.4. Experiments

0 0.5 1 1.5 2 2.5 3
·106

−3

−2

−1

0

Number Episodic Samples

M
ea

n
Re

w
ar

ds

Ours (SVSL)
HiREPS
LaDiPS

(a) Rewards- BP

0 1 2 3 4 5
·1060

2

4

6

Number Episodic Samples

M
ea

n
Re

w
ar

ds

Ours (SVSL)
HiREPS
LaDiPS

(b) Rewards- TT

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
−2.2

−2

−1.8

−1.6

−1.4

−1.2

x

y

(c) Context-Space BP

−1 −0.5 0 0.5 1

−0.5

0

0.5

x

y

(d) Context-Space TT

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-1.2

-1.4

-1.6

- 1.8

-2.0

-2.2

x

y

0.0

0.2

0.4

0.6

0.8

1.0

(e) Successes BP Ours

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-1.2

-1.4

-1.6

- 1.8

-2.0

-2.2

x

y

0.0

0.2

0.4

0.6

0.8

1.0

(f) Successes BP HiREPS

0 0.5 1.0 1.5 2.0 2.5 3.0
0.4

0.6

0.8

1

1.2

1.4

1.6

Time [s]

Ba
ll

H
ei

gh
t[

m
]

Component 32
Component 64
Component 36

(g) Ball Trajectories BP (h) Environments

Figure 3.2.:Beer Pong (BP) and Table Tennis (TT) Experiments. In the BP experiment –left of (h)– the
robot has to throw the red ball into a cup on the table. In the TT experiment –right of (h) – the robot hast to
return the ball to the opponent’s table side. The learned mixture of expert (MoE) models show high quality
of the skills, re�ected in the high reward values (a + b) and dense coverage of the context spaces, i.e., the
2-dim. position of the cup (c) for BP and the 4-dim desired outgoing landing and incoming landing ball
positions (d) for TT. For BP we also compare the success rates (92% in average) of our approach (e) and
HiREPS (75% in average) (f) throughout the context space, where we consider a trial successful if the ball
goes into the cup. For BP versatile skills induce versatile ball trajectories for a given context (g). Versatile
strikes for the TT experiment are shown in Fig. 3.3.

3.4.2. Simulated Robotic Experiments

We test and compare our algorithm on simulated Beer Pong and Table Tennis environments
in MuJoCo (Todorov et al., 2012), where we have chosen HiREPS (Daniel et al., 2012) and
LaDiPS (End et al., 2017) as baselines. Both methods are suitable baselines since they are
contextual policy search algorithms and consider optimizing a mixture model. Throughout
our experiments we choose probabilistic movement primitives (ProMP) (Paraschos et al.,
2013) as policy representation, where depending on the weights) desired trajectories are
generated and subsequently tracked with a PD-controller. In our experiments, given a
context c, the experts c () |c, >) adjust the weight vector and the length of the trajectory,
which are summarized in the vector) . We consider non-Markovian rewards, in which the
reward depends on the history of state and actions. This type of reward function is not
applicable to common step-based RL methods which build on Markovian properties. As
for analyzing the results of the experiments, we focus on the questions i) how does our
algorithm perform compared to SOTA baselines, ii) are we able to cover the whole context
space, and iii) are we able to learn versatile skills?

Beer Pong. The goal of the Barret WAM robot is to throw the red ball into the cup on the
table. The 2-dim contexts resemble the position of the cup on the table. We incrementally
add 70 experts in our method, while HiREPS and LaDiPS directly start with 70 experts.

47

3. Specializing Versatile Skill Libraries using Local Mixture of Experts

We have run all algorithms over 20 seeds/trials and report the performance in Fig. 3.2a1,
where we plot the mean reward with two times the standard error. While HiREPS already
converges after around half a million samples, our approach can quickly outperform it.
Since LaDiPS uses intra-option learning, it outperforms our method in terms of sample
e�ciency. However, with the increasing number of experts, we achieve a higher end-
reward indicating that we can learn more qualitative solutions. Our algorithm allows to
cover the whole context space with the learned per expert context distributions (see Fig.
3.2c) resulting in a high end-reward. This performance is re�ected in Fig. 3.2e, where we
have divided the context space into a �ne grid and sampled 100 times for each context an
expert from which we have executed the mean. We repeated that for all 20 di�erent models
and plot the mean success rate of throwing the ball into the cup. We did the same procedure
for HiREPS in Fig. 3.2f. We can observe that HiREPS has much darker rectangles, showing
that the success rate in these context regions is low. Although versatility is encouraged in
the joint space of the robot, di�erent joint trajectories often yield di�erent ball trajectories.
Given one context, in Fig. 3.2g we show the z-coordinates of the ball trajectories over time
resulting from sampling 20 times from the MoE model. Each expert leads to a di�erent
number of "ball-jumps". In Appendix A.3.2.1 we qualitatively show that we can learn more
versatile solutions than LaDiPS and report that we can achieve a much higher expected
mixture entropy (Fig. A.1), which indicates that our solutions are versatile.

Table Tennis. The task of the robot is to return di�erent incoming balls to desired targets
on the opponent’s table side in di�erent ways. We consider a four dimensional context
space, including ball’s initial serve position and ball’s target landing position (right and left
half of table Fig. 3.2d). For both parts of the context, we �x the z position and vary the x and
y coordinates. We incrementally add 50 experts in our method, while HiREPS and LaDiPS
directly start with 50 experts. We have run all algorithms over 20 seeds/trials and report
the performance in Fig. 3.2b1, in which the mean reward with two times the standard error
is plotted. The per-expert context distributions are spread among the context space (Fig.
3.2d) and allow each expert to locally specialize on a context region. This high coverage
of the context space allows for a high reward achievement, outperforming HiREPS and
LaDiPS. In Fig. 3.3, we show three di�erent striking skills sampled from our trained MoE
model, for a �xed context, i.e., �xed serving and desired ball position. The �rst two skills
use the green side of the racket to hit the ball (forehand), while the third skill uses the red
side of the racket (backhand) to hit the ball. In contrast to the second strike, the �rst one
performs a smash-like strike and ends it with the red side of the racket pointing to the
camera.

1 To re�ect the model’s true performance, the lastly added expert was excluded from testing, since it is not
fully trained yet and would not be chosen by the model if c (>) would not be a uniform-distribution.

48

3.4. Experiments

Figure 3.3.:Versatile Strikes for the Table Tennis (TT) Experiment illustrated for a �xed context. The
robot can hit the (yellow) ball in various ways, also indicated through the di�erent colors of the racket sides.
Note that the red and yellow dots on the table are markers for the serving and desired landing position
respectively.

3.4.3. A Comparison Between Episode-Based and Step-Based
Reinforcement Learning

In Sections 2.2 and 2.3 whe have discussed the core concepts of step-based Reinforcement
Learning (SRL) and episode-based Reinforcement Learning (ERL) approaches. SRL meth-
ods explore in the raw action space in each time-step, while ERL methods explore in the
parameter space of the controller (Deisenroth et al., 2013) leading to correlated exploration
with smooth trajectories (Li et al., 2024a). Here, we employ ProMPs as controller parame-
terization (Paraschos et al., 2013). While this exploration might yield bene�ts, usually SRL
methods are more sample e�cient as they can leverage the temporal structure to update
the policy. Hence, it is interesting to compare these approaches. More speci�cally, we
compare the performance of our algorithm against PPO, a well-known deep reinforcement
learning method (Schulman et al., 2017). We want to analyze when episodic exploration is
bene�cial over step-based exploration and vice-versa for di�erent sparsity levels of the
reward.

Figure 3.4.: The reacher’s tip needs to
reach the red goal position. Adapted
from Brockman et al. (2016).

The 5-Link Reacher. For this purpose, we use the
Reacher task from OpenAI gym (Brockman et al., 2016),
in which a planar robot has to reach a goal position with
its tip. In order to consider a more di�cult task, we ex-
tend the original reacher set-up and show the considered
environment in Fig. 3.4. First, we increase the number of
links from two to �ve and we �x the initial state position
to be initialized on the horizontal to the left (see Fig. 3.4),
instead of initializing on the horizontal to the right side
as it is in the original version. Furthermore, we �x the
initial joint velocity to be zero. For the original 2-Link

49

3. Specializing Versatile Skill Libraries using Local Mixture of Experts

case, the goal reaching space is the circle around the agent’s base, whereas in our case we
consider the right half-circle around the agent’s base, where the radius is the agent’s total
length. By initializing the agent on the left side and only considering goal positions on the
right side, we make the task harder. We compare our method to PPO algorithm (Schulman
et al., 2017) and use the implementation from Ra�n et al. (2019).

Task Rewards. In order to examine the di�erent policy search strategies we consider
three di�erent Markovian reward functions in the same set-up. The �rst reward function
AC is given by Brockman et al. (2016) and encodes task information, i.e. the tip distance to
the goal, in each time-step as

AC (s, a) = −||t(s) − g| |2 −
∑
8

02
8 , (3.8)

where s is the current state, a is the current action, C (s) is the tip’s current position and g
is the goal position. One episode lasts) = 200 steps.

The second reward function is given as

AC (s, a) =
{
−∑

8 0
2
8 , if C < 190

−||t(s) − g| |2 −
∑
8 0

2
8 , if C ≥ 190 . (3.9)

Characteristic for this reward function is that it will only return task information, i.e.
tip-distance to goal, in the last 10 steps of the episode.

The third reward function is given as

AC (s, a) =
{
−∑

8 0
2
8 −

∑
8 E

2
8 , if C < 198

−500 · | |t(s) − g| |2 −
∑
8 0

2
8 − 1000 ·∑8 E

2
8 , if C ≥ 198 , (3.10)

where v is the joint velocity at time-step C . This reward function is very similar to the
reward function from Eq. 3.9. However, it only returns task information in the last two
steps of the episode, which makes the task very di�cult. The reward functions in Eq.
3.9 and Eq. 3.10 can be motivated from the optimal control point of view. There, usually
controllers with minimum energy consumption are seeked giving rise to punishments to
taken control actions in the �rst steps as it is done by the proposed reward functions in
Eq. 3.9 and Eq. 3.10.

Observation and Contexts. For PPO we use the same observation space as described
in Brockman et al. (2016), but for the Objective 3.9 and Objective 3.10 we augment this
observation space with the current time-step C . The context c for our method is given
through the two-dimensional goal position vector g.

50

3.5. Conclusion

0 1 2 3 4 5 6 7 8
·107

−140

−120

−100

−80

−60

−40

−20

Number Environment Interactions

M
ea

n
Re

w
ar

ds

Ours (SVSL)
PPO

(a) Performances for Reward 3.8

0 1 2 3 4 5 6 7 8
·107

−2
−1.8
−1.6
−1.4
−1.2
−1
−0.8
−0.6
−0.4
−0.2

0

Number Environment Interactions

M
ea

n
Re

w
ar

ds

Ours (SVSL)
PPO

(b) Performance for Reward 3.9

0 1 2 3 4 5 6 7 8
·107−1,200

−1,000

−800

−600

−400

−200

0

Number Environment Interactions

M
ea

n
Re

w
ar

ds

Ours (SVSL)
PPO

(c) Performance for Reward 3.10

Figure 3.5.:A Comparison of Episode-Based to Step-Based Policy Search. We compare our episode-
based policy search method to the popular PPO. We analyze the performance on three di�erent reward
types. For (a) we consider the reward in Eq. 3.8. Here, task-information such as the distance to the goal are
returned in each time-step.. For (b) we consider the reward in Eq. 3.9. Here, task-information are returned in
the last 10 steps of the episode, complicating exploration. For (c) we consider the reward in Eq. 3.10, where
only at the last 2 time-steps reward information are returned, which makes the task even harder. The curves
show the mean and two times the standard error.

Comparison. We report the average performance and two times the standard error over
20 seeds/trials for each experiment in Fig. 3.5. The performances for the reward function
in Eq. 3.8 are shown in Fig. 3.5a. Clearly, PPO outperforms our algorithm, indicating that
task information in each time-step helps exploring in the raw action space to �nd solutions.
The performances for the reward function in Eq. 3.9 is shown in Fig. 3.5b. While PPO also
performs well, we can observe that our algorithm can make use of the exploration in the
parameter space and outperform PPO. This e�ect can be seen much more clearly for the
reward funcion in Eq. 3.10. Fig. 3.5c shows that PPO has clear problems to solve this task.
For the settings given by the reward functions in Eq. 3.9 and Eq. 3.10 exploration in the
parameter space as done by episodic policy search methods lead to better performance,
whereas exploration in the raw action space leads to converging to a local optimum.

3.5. Conclusion

We proposed a new objective for learning contextual and versatile Mixtures of Experts
(MoE) models. We based our objective on a maximum entropy formulation to increase the
versatility of the solutions and introduced a curriculum to allow the experts to specialize.
Our formulation also allows for easy online adaptation of the model complexity during
training. We conducted an ablation to show the importance of the individual parts of
our objective. Further, we showed that our method learns precise and versatile solutions
and outperforms the baseline on sophisticated simulated robotic tasks. This work aims to
present a mathematically well-founded method and demonstrates its general feasibility
on various challenging tasks. Currently, the major drawback of our approach is sample
e�ciency, as we do not share experience between the experts. We intend to address this
issue in future work, e.g., by intra-option learning. Another direction for future research is
extending the approach to more complex models, such as non-linear mixtures of experts.

51

3. Specializing Versatile Skill Libraries using Local Mixture of Experts

We expect to need fewer experts to cover the whole context space with more complex
expert model representations.

52

4. Acquiring Diverse Skills using
Curriculum Reinforcement Learning
with Mixture of Experts

In this chapter we aim to address the Challenges 1, 2 and 3, which we restate in a summarized
version below.

The method proposed in the following reuses the ideas of decomposing the objective
and introducing an automatic curriculum learning from Chapter 3 thereby addressing
Challenge 1 and Challenge 2 in the episode-based reinforcement learning (ERL) setting.
However, a more detailed focus here is to address Challenge 3 by extending the Mixture of
Experts (MoE) policy from Chapter 3 with energy-based per-expert context distributions
and deep neural networks as expert representations and proposing a tailored algorithm
for training the resulting policy.

More expressive per-expert context distributions are necessary because most applications
have a �nite context space leading to sharp discontinuities. For example, in an environment
where an agent is tasked to place an object on a table, the context space is bounded
by the edges of the table and additionally, it might have regions on the table where
placing the object is not possible, because other objects are in the way. Consequently,
the environment’s context distribution has sharp discontinuities at the edges of the table
and "holes" within the table, potentially leading to highly complex distributions that need
to be represented by the MoE’s per-expert context distribution. Yet, so far, Gaussian
parameterized context distributions in Chapter 3 were employed, which are not well
suited for those edge cases. In contrast, Energy-Based models (EBM) are a rich class
of distributions with high expressiveness that have proven favorable in those settings
(Florence et al., 2022), but are generally not straightforward to train.

We retain the objective from Chapter 3 thereby addressing Challenge 1, but introduce a
di�erent sampling scheme. By repeatedly resetting the environment (without executing
actions) we draw valid contexts directly from the environment’s context distribution and
use them to estimate the EBM’s normalizer and importance sample a subset of the drawn
contexts using the per-expert context distribution. Each expert’s per-expert EBM still
reallocates density toward high-reward contexts, preserving the automatic curriculum
learning (Challenge 2), while avoiding the design of additional guiding rewards to push the
context distribution to valid regions because the contexts are inherently valid. The resulting
per-expert context distribution is an EBM that is able to represent sharp discontinuities.
Additionally, this chapter extends the expert’s representation to a deep neural network,

53

4. Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts

enabling non-linear adaption of motion primitive parameters and optimizes these experts
with trust-region black-box RL (Otto et al., 2023) for stable updates. The extensions to a
per-expert energy-based distribution and deep expert representations address Challenge
3.

In summary, we address the Challenges 1,2, and 3 which we have worked out in Section
1.1. Below, we provide a shorter version of these challenges for the convenience of the
reader.

Challenge 1 (concise): Representation and Training of Multimodal Policies. Discovering
versatile skills in reinforcement learning (RL) with multimodal policy representations
such as Mixture of Experts (MoEs) models, requires novel RL algorithms that train these
expressive policies e�ciently and explicitly encourage the exploration of di�erent modes.

Challenge 2 (concise): RetainingMultimodalities. Modes that yield higher returns earlier
during the reinforcement learning (RL) training process might dominate the policy, leading
to an overrepresentation of these modes and therefore to a collapse of the other modes.
This mode collapse prevents learning versatile skills and needs to be addressed.

Challenge 3 (concise): Non-Linear Adaptation. Non-linear adaptation is a key feature
for successfully learning complex skills and requires to be ensured for each mode of the
multimodal policy. Additionally, highly non-linear shapes such as sharp discontinuities can
naturally arise in the context space, which require special parameterization for successful
representation.

The following work was published as Acquiring Diverse Skills using Curriculum Rein-
forcement Learning with Mixture of Experts (Onur Celik, Aleksandar Taranovic, Gerhard
Neumann 2021) in the Conference on 41st International Conference on Machine Learning,
ICML 2024. Reprinted with permission of the authors. Wording, notation and formulations
were revised in several places.

4.1. Introduction

Solving tasks in diverse manners enables agents to better adapt to unknown and challenging
situations. This diverse skill set is bene�cial in many scenarios, such as playing table tennis,
where applying di�erent strikes (e.g. backhand, forehand, or smashing) to similar incoming
balls is advantageous because the strike is less predictable for the opponent. Similarly,
in scenarios with environmental changes where learned skills might be infeasible over
time (e.g. grasping an object while avoiding obstacles), diverse skills provide additional
adaptivity by discarding these invalid skills and relying on alternatives. This property
makes them superior because complete relearning of skills is avoided.

54

4.1. Introduction

-o

�o
) ∼ N(-0, �o)

c
∼
?
(c
)

c)
∼
c
(c
|>
)c

∼
?(c)

>
∼
c(>|c)

c (> |c)

) · =

Trajectory Generation

c (c |>)

So
ftm

ax

During Training > = 1, ..., During Inference

>, c)

>, c

>

c) c

Figure 4.1.:The Sampling Procedure for Di-SkilL. During Inference the agent observes contexts c from
the environment’s unknown context distribution ? (c). The agent calculates the gating probabilities c (> |c)
for each context and samples an expert > resulting in (>, c) samples marked in blue. During Training we
�rst sample a batch of contexts c from ? (c), which is used to calculate the per-expert context distribution
c (c|>) for each expert > = 1, ..., . The c (c|>) provides a higher probability for contexts preferred by the
expert c () |c, >). To enable curriculum learning, we provide each expert the contexts sampled from its
corresponding c (c|>), resulting in the samples (>, c)) marked in orange. In both cases, the chosen c () |c, >)
samples motion primitive parameters) for each context, resulting in a trajectory g that is subsequently
executed on the environment. Before execution, the corresponding context, e.g., the goal position of a box,
needs to be set in the environment. This is illustrated by the dashed arrows, with the context in blue for
inference and orange for training.

Acquiring these diverse skill sets requires learning a policy that can represent multi-
modality in the behavior space. Recent advances in supervised policy learning have
demonstrated the potential of training high-capacity policies capable of capturing multi-
modal behaviors (Sha�ullah et al., 2022; Blessing et al., 2023; Chi et al., 2023; Jia et al., 2024).
These policies exhibit remarkably diverse skills and outperform state-of-the-art methods.
However, Reinforcement Learning (RL) is essential to acquire skills in cases where no
expert data is available, or data collection is expensive. Discovering multi-modal behaviors
using RL is challenging since the policies usually rely on Gaussian parameterization and
thus can only discover a single behavior.

We consider training agents that possess diverse skills, from which they can select to tackle
a speci�c task di�erently. For capturing these multi-modalities in the agent’s behavior
space, we employ highly non-linear Mixture of Experts policies. Furthermore, we use
automatic curriculum learning for e�cient learning, enabling each expert to focus on a
speci�c sub-region of the context space it favors. We introduce this curriculum shaping by
optimizing for an additional per-expert context distribution that is used to sample contexts
from the preferred regions to train the corresponding expert. Automatic curriculum
learning has proven to increase performance by improving the exploration of agents,
particularly in sparse-rewarded environments (Klink et al., 2022b).

We explore Contextual Reinforcement Learning in which a continuous-valued context
describes the task (Kupcsik et al., 2013). In the example of robot table tennis (see Fig.
4.3a), a context includes the desired ball landing positions on the opponent’s tableside

55

4. Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts

as well as physical aspects, such as the incoming ball’s velocity or friction properties.
In continuous context spaces, the curriculum shaping per-expert context distributions
are often parameterized as Gaussian (Klink et al., 2020a; Celik et al., 2021). However,
the agent is usually unaware of the context bounds, which makes additional techniques
necessary to constrain the distribution updates to stay within the context region (Celik
et al., 2021). Instead, we employ energy-based per-expert context distributions, which can
be evaluated for any context and e�ectively represent multi-modality in the context space.
Importantly, our model is trained solely using context samples from the environment that
are inherently valid. Our approach eliminates the need for additional regularization of the
context distribution and does not require prior knowledge about the environment. Due to
the overlapping probability distributions of di�erent per-expert contexts, our resulting
mixture policy o�ers diverse solutions for similar contexts with a high probability.

Recent research in RL has explored Mixture of Experts policies, but often these methods
either train the mixture in unsupervised RL settings and then select the best-performing
expert in the downstream task (Laskin et al., 2021; Eysenbach et al., 2019) or train linear
experts, limiting their performance (Daniel et al., 2012; Celik et al., 2021). Our inspiration
draws from recent advancements that have achieved diverse skill learning with a similar
objective. However, their approach involves linear expert models with Gaussian context
distributions. It requires prior knowledge of the environment to design a penalty term
when the algorithm samples contexts outside the environment’s bounds. These factors
restrict the algorithm’s performance and applicability when de�ning the context bounds
requires knowledge, such as forward kinematics in robotics.

To summarize, we introduce a novel RL method for learning a Mixture of Experts policy
that we refer to as Di-SkilL – Diverse Skill Learning (see Fig. 4.1). Our method can
generalize to the continuous range of contexts de�ned by the (unknown) environment’s
context distribution while learning diverse, and non-linear skills for solving a task de�ned
by a speci�c context. Importantly, our approach operates without any assumptions about
the environment. We show how we can learn multi-modal context distributions by training
an energy-based model solely on context samples obtained from the environment. On
multiple sophisticated simulated robot tasks, we demonstrate that we can learn diverse
skills while performing on par or better than baselines.

4.2. Preliminaries

Contextual Episode-based Policy Search (CEPS). We consider learning diverse skills
in the CEPS framework in which the continuous-valued context c ∈ C de�nes the task, e.g.
a goal location to reach. The context c ∼ ? (c) is observed from the agent and is drawn
from the environment’s unknown context distribution ? (c) at the beginning of each
episode. The agent’s search distribution c () |c) maps the context c to continuous-valued
controller parameters) ∈ Θ, which we represent as motion primitives (MP) (Schaal, 2006;

56

4.2. Preliminaries

Paraschos et al., 2013; Li et al., 2023) (see Appendix B.3). We denote c () |c) as the agent’s
policy as common in the literature and optimize it by maximizing the objective

max
c () |c)

E? (c)
[
Ec () |c) [R(c,))]

]
, (4.1)

where R(c,)) denotes the return of a whole episode after executing the MP parameter)
in context c. Due to the direct return optimization, CEPS does not require the Markov
assumption as in common MDPs and is therefore speci�cally suitable for tasks where the
formulation of a Markovian reward function is di�cult. We refer the reader to Section 2.3
for an in-depth discussion of episode-based reinforcement learning.

Mixture of Experts (MoE) Policy for Curriculum Learning. Due to their ability to
represent multi-modality, MoE policies are a favorable choice in diverse skill learning.
The common MoE policy c () |c) = ∑

> c (> |c)c () |c, >) (Bishop, 2006) contains the gating
distribution c (> |c) that is assigning probabilities to each expert > given context c during
inference. However, to enable automatic curriculum learning during training, a learnable
distribution c (c) = ∑

> c (c|>)c (>) is required that can explicitly choose and set context
samples in the environment, so each expert > can decide on which contexts it favors
training (Celik et al., 2021). Using Bayes’ rule c (> |c) = c (c|>)c (>)/c (c) the MoE is
rewritten as

c8 () |c) =
∑
>

c8 (c|>)c8 (>)
c8 (c)

c8 () |c, >), (4.2)

where we have introduced 8, that contains the learnable parameters of each expert
c () |c, >), the per-expert context distribution c (c|>) and the gating distribution c (>).

The per-expert context distribution c8 (c|>) can now be optimized and allows the expert
> to choose contexts c it favors. We model each c8 (c|>) as an energy-based model and
each c8 () |c, >) as a neural network returning a Gaussian distribution for a context c (see
Fig. 4.1 and Appendix B.3). However, to keep notation uncluttered, we do not write the
subscript 8 to indicate the learnable parameters of a distribution throughout the next
sections, but we simply denote every probability distribution which is adaptable through
the optimization process with c as it is part of our policy c () |c). The prior c (>) is set to
a uniform distribution throughout this work.

Self-Paced Diverse Skill Learning with MoE. Due to its ability to represent multi-
modality and automatic curriculum learning, the MoE model in Eq. 4.2 is a suitable
policy representation for discovering diverse skills in the same context-de�ned task. For
explicit optimization of this policy, we are using the KL-regularized Maximum Entropy RL
objective in CEPS (Celik et al., 2021)

max
c () |c),c (c)

Ec (c)
[
Ec () |c) [R(c,))] + UH [c () |c)]

]
− VKL (c (c) ‖ ? (c)) . (4.3)

The KL-term incentivizes the context distribution c (c) to match the environment’s distri-
bution ? (c) and can be prioritized during optimization by choosing the scaling parameter
V appropriately. The entropy of the mixture model incentivizes learning diverse solutions

57

4. Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts

(Celik et al., 2021) and can be prioritized with a high scaling parameter U . It is well-known
that this objective is di�cult to optimize for MoE policies and requires further steps to
obtain a tractable lower-bound (Celik et al., 2021)

max
c () |c,>)

Ec (c|>),c () |c,>) [R(c,)) + U log c̃ (> |c,))] + UEc (c|>) [H [c () |c, >)]] (4.4)

for the expert c () |c, >) updates and a lower-bound for the per-expert context c (c|>)
updates

max
c (c|>)

Ec (c|>) [!2 (>, c) + (V − U) log c̃ (> |c)] + VH (c (c|>)) , (4.5)

where !2 (>, c) = Ec () |c,>)
[
R(c,)) + U log c̃ (> |c,))

]
+ UH [c () |c, >)]. The variational dis-

tributions c̃ (> |c,)) = c>;3 (> |c,)) and c̃ (> |c) = c>;3 (> |c) arise through the decomposition
and are responsible for learning diverse solutions and concentrating on context regions
with small, or no support by c (c) (Celik et al., 2021). In every iteration, the variational
distributions are updated in closed form to tighten the bounds. Details of the equations
are in the Appendix B.1.

4.3. RelatedWork

Contextual Episode-based Policy Search (CEPS). CEPS is a black-box approach to
reinforcement learning (RL), in which the search distribution is the agent’s policy that maps
the contexts to controller parameters, typically represented as motion primitives (Schaal,
2006; Paraschos et al., 2013; Li et al., 2023). One of the noteworthy advantages of CEPS lies in
the independence of assumptions such as the Markovian property in common MDPs. This
characteristic renders it a versatile methodology, particularly well-suited for addressing
a diverse array of intricate tasks where the formulation of a Markovian reward function
is di�cult (Otto et al., 2023). CEPS has been explored by applying various optimization
techniques, including Policy Gradients (Sehnke et al., 2010), Natural Gradients (Wierstra
et al., 2014), stochastic search strategies (Hansen and Ostermeier, 2001; Mannor et al.,
2003; Abdolmaleki et al., 2019), and trust-region optimization techniques (Abdolmaleki
et al., 2015; Daniel et al., 2012; Tangkaratt et al., 2017), particularly in the non-contextual
setting. Researchers extended the setting by incorporating linear (Tangkaratt et al., 2017;
Abdolmaleki et al., 2019) and non-linear contextual adaptation (Otto et al., 2023; Li et al.,
2024a), leveraging the recently introduced trust-region layers for neural networks (Otto
et al., 2021). The work by (Li et al., 2024a) additionally introduces step-wise updates
to improve sample-e�ciency. However, all previously mentioned methods learn single-
mode policies and do not address acquiring diverse skills leveraging automatic curriculum
learning.

Curriculum Reinforcement Learning. Curriculum reinforcement learning can poten-
tially increase the performance of RL agents, especially in sparse-rewarded environments
(Tao et al., 2024) in which exploration is fundamentally di�cult. Adapting the environment
based on the agent’s learning process has been proposed by several works already, e.g.

58

4.3. Related Work

automatically generating sets of tasks or goals to increase the learning speed of the agent
(Florensa et al., 2017, 2018; Sukhbaatar et al., 2018; Zhang et al., 2020; Wöhlke et al., 2020;
Racaniere et al., 2020), or generating a curriculum by interpolating an auxiliary and known
distribution of target tasks (Klink et al., 2022b, 2020a,b, 2024). Works propose sampling a
training level from a prespeci�ed set of environments (Jiang et al., 2021b), or unsupervised
environment design (Jiang et al., 2021a; Dennis et al., 2020) based on the agent’s learning
process. The work by (Klink et al., 2022a) proposes improving the approximation of the
state-action value function by representing it as a sum of residuals acquired in previous
curriculum tasks. None of the above methods apply automatic curriculum learning on an
RL problem with an MoE policy, except for the work in (Celik et al., 2021). However, they
parameterize the curriculum distribution as Gaussian, su�ering from low representation
capacity and requiring knowledge about the environment’s context distribution. Instead,
we leverage energy-based models to avoid these shortcomings.

RL with Mixture of Experts (MoE). Ren et al. (2021) propose using MoE policy rep-
resentation and presents a novel gradient estimator to calculate the gradients w.r.t. the
MoE parameters. Huang et al. (2023) present a model-based RL approach to train latent
variable models. The work presents a novel lower bound for training the multi-modal
policy parameterization. Recently, Hendawy et al. (2024) proposed using MoEs for learning
a shared representation in multi-task reinforcement learning, whereas Akrour et al. (2021)
present how interpretable MoEs can be learned in continuous RL. These methods di�er
from our work in that they are not categorized in the CEPS framework, or are model-based
variants and do not use automatic curriculum learning techniques. In the CEPS framework,
RL with MoE policies has also been explored in the works by Daniel et al. (2012); End et al.
(2017), in which an MoE model with linear experts without automatic curriculum learning
is learned. Additional constraints need to be added to enforce diversity in the experts.
In the work by Tosatto et al. (2021) a mixture model is used to perform RL, however,
pre-recorded demonstration data is required to train the mixture model and no curriculum
learning is considered. Related method to MoEs, Product of Experts was used in Hansel
et al. (2023); Le et al. (2023) for motion generation.
The work by Celik et al. (2021) also uses MoE policies and relies on the maximum entropy
objective as we do, however, their method only considers linear experts with Gaussian
per-expert distributions which limits the performance and consequently requires many
experts to solve a task. Moreover, it requires environment knowledge to hand-tune a
punishment term to keep the optimization of the per-expert context distributions within
the context bounds.

Quality-Diversity Optimization (QDO). Learning diverse skills has also been explored
in the evolutionary strategy community, most notably with the MAP-Elites algorithm
(Cully et al., 2015), where behavioral descriptors are de�ned to distinguish the di�erent
learned motions. Extensions (Nilsson and Cully, 2021; Faldor et al., 2023a,b) have been
proposed to improve the performance of these methods. However, these methods can not
easily be applied to the contextual setting where di�erent controller parameters should be
chosen in di�erent situations such that post hoc adaptations (Keller et al., 2020; Faldor
et al., 2023b) are required. In contrast to QDO methods, in our work diversity measurement
naturally arises through the considered objective and does not need de�ning behavioral

59

4. Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts

descriptors. Moreover, Di-SkilL indirectly learns a gating distribution that selects the
expert after observing a context.

Unsupervised Reinforcement Learning (URL). URL also considers learning diverse
policies (Yang et al., 2024; Eysenbach et al., 2021; Laskin et al., 2021; Eysenbach et al., 2019;
Campos et al., 2020; Lee et al., 2019; Liu and Abbeel, 2021). The objective di�ers from ours
and skills are trained in the absence of an extrinsic reward. We discuss parallels in the
Appendix B.2.

4.4. Diverse Skill Learning

The common Contextual Episodic Policy Search (CEPS) loop (Kupcsik et al., 2013) with
a Mixture of Experts (MoE) policy representation learning observes a context c, and
then selects an expert > that subsequently adjusts the controller parameters) given
(c, >). We consider the same process during testing time, as shown in blue color in
Fig. 4.1 (see also Fig. B.1a). However, the procedure changes during training for Di-
SkilL as automatic curriculum learning requires that the agent can determine which
context regions it prefers to focus on. In this case, we observe a batch of context samples
from the environment’s context distribution ? (c). For each of these samples, every per-
expert context distribution c (c|>) calculates a probability, which results in a categorical
distribution over the contexts c. We use these probabilities to sample contexts c) for the
corresponding expert > resulting in (c) , >) sample pairs (see orange parts in Fig. 4.1 and
Fig. B.1b). Each chosen expert > provides Gaussian distributions over the motion primitive
parameters) by mapping the contexts c) to mean vectors -> and covariance matrices Σ>
using a parameterized neural network. We can now sample motion primitive parameters
) from these Gaussian distributions to generate trajectories g using a motion primitive
generator. These trajectories are subsequently executed on the environment (green color
in Fig. 4.1) and an episode return '() , c)) is observed and used for updating the MoE (see
Section 4.4.2). Yet, there exist several issues for a stable overall training of the MoE model,
which requires special treatment for each c (c|>) and c () |c, >). Algorithmic details and
parameterizations of the model can be found in the Appendix B.3.

4.4.1. Energy-Based Model For Automatic Curriculum Learning

To illustrate these issues, we consider a bounded, uniformly distributed two-dimensional
environment context distribution ? (c) (see example in the Appendix B.3 in Fig. B.1c). It is
challenging for a Reinforcement Learning (RL) agent to automatically learn its curriculum
c (c|>) within the valid context space (Celik et al., 2021). Hard discontinuities such as
steps often naturally arise in ? (c) due to the environment’s �nite support in real-world
environments. For instance, in an environment where the agent’s task is to place an
object in speci�c positions on a table, the probability of observing a goal position outside
the table’s surface is zero. This implies that a large subset of the context space has no
probability mass. Therefore, exploration in these regions might be di�cult if there is no

60

4.4. Diverse Skill Learning

guidance encoded in the reward. Even if it is guaranteed that c (c|>) only samples valid
contexts, it still needs to be able to represent multi-modal distributions, such as illustrated
in Fig. B.1d. This multi-modality can be present because of environmental circumstances
or simply if experts c () |c, >) prefer contexts in spatially apart regions. For the object
placing example, this could correspond to regions on the table where the object cannot be
placed due to obstacles or holes. We therefore require c (c|>) being able to represent i)
complex distributions, ii) multi-modality and iii) only explore within the valid context
bounds of ? (c). We propose parameterizing each per-expert distribution c (c|>) as an
energy-based model

c (c|>) = exp(5> (c))// (4.6)

to address the issues i) and ii), where the energy function q> is a per-expert learnable
neural network. Energy-based models (EBMs) have shown to be capable of represent-
ing sharp discontinued functions and multi-modal distributions (Florence et al., 2022).
Yet, they are hard to train and sample from due to the intractable normalizing constant
/ =

∫
c exp(5> (c))3c. We can circumvent and address these issues iii) by approximating the

normalizing constant with contexts c ∼ ? (c) as / ≈ ∑#
8=1 exp(q> (c8)). This approximation

is justi�ed as we can sample from ? (c) by simply resetting the environment without execu-
tion. Additionally, the EBM will encounter important parts of the context space during the
training by resampling a large enough batch of contexts c ∼ ? (c) in each iteration. Each
expert can therefore sample preferred contexts from the current batch of valid contexts by
calculating the probability for each of the contexts using c (c|>) as parameterized in Eq. 4.6.
Updating the parameters of the EBM can readily be addressed by the standard RL objective
for diverse skill learning, as described in the next section. It should be noted that explicit
models such as Gaussians, or Normalizing Flows (Papamakarios et al., 2021) can also be
used to parameterize c (c|>), but their support cannot be easily restricted to a bounded
space with hard discontinuities de�ned by the environment. Therefore, sampling from an
explicit c (c|>) can easily generate invalid contexts, especially if the valid distribution has
hard non-linearities.

4.4.2. Updating the Mixture of Experts Model

We update each expert c () |c, >) and its corresponding per-expert context distribution
c (c|>) by maximizing the objectives in Eq. 4.4 and in Eq. 4.5, respectively. These de-
composed objectives allow us to independently update both distributions and to retain
the properties of diverse skill learning from the objective in Eq. 4.3. However, updating
the distributions is not straightforward due to the bi-level optimization that leads to a
dependency on both terms. This is particularly challenging for the expert c () |c, >) as
the sampled contexts c can drastically change from one iteration to another if c (c|>)
changes too aggressively. The same applies for updating c (c|>) as calculating the objective
requires calculating an integral over) under the expectation of c () |c, >). For a stable
update for both distributions, we employ trust-region updates to restrict the change of both

61

4. Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts

distributions from one iteration to another. These updates have been shown to improve
the learning process (Peters et al., 2010; Schulman et al., 2015, 2017; Otto et al., 2021).

Expert Update. We parameterize each expert c () |c, >) with a single neural network and
update them by a trust-region constrained optimization

max
c () |c,>)

Ec (c|>),c () |c,>) [R(c,)) + U log c̃ (> |c,))] + UEc (c|>) [H [c () |c, >)]] (4.7)

s.t. KL (c () |c, >) ‖ cold() |c, >)) ≤ n ∀ c ∈ C,

where the KL-bound ensures that the expert c () |c, >) does not di�er too much from
the expert cold() |c, >) from the iteration before for each context c. The entropy bonus
H [c () |c, >)] incentivizes c () |c, >) to fully cover the parameter space while avoiding () , c)
regions that are covered by other experts > . The latter is guaranteed by c̃ (> |c,)) which
rewards () , c) regions that can be assigned to expert > with high probability. We e�ciently
update the experts using trust region layers (Otto et al., 2021, 2023).

Per-Expert Context Distribution Update. We consider the objective with the aug-
mented rewards as shown in Eq. 4.5 for updating each context distribution c (c|>). We
can not apply the trust region layers (Otto et al., 2021) in this case, as c (c|>) is a discrete
distribution over the context samples c8 parameterized by the EBM. Yet, we can still use
PPO (Schulman et al., 2017) for updating c (c|>) and simplifying our objective, as we can
now calculate many terms in closed form. For this, we rewrite the objective as

max
c (c|>)

∑
c8∼? (c)

c (c8 |>)!2 (>, c8) +
∑

c8∼? (c)
c (c8 |>)

(
(V − U) log c̃ (> |c8) − V logc (c8 |>)

)
(4.8)

and observe that all terms in the second sum can be calculated in closed form. Note that the
�rst term is approximated by resampling the context samples using c (c|>) since computing
!2 (>, c) requires calculating the integral over) under the expectation of c () |c, >) as
!2 (>, c) = Ec () |c,>)

[
R(c,)) + U log c̃ (> |c)

]
+ UH [c () |c, >)]. This expectation can only be

estimated for context vectors that are actually chosen by the component. The entropy
bonus in Eq. (4.8) incentivizes covering of the context space, while focusing on context
regions that are not, or only partly covered by other options. The latter is guaranteed by
c̃ (> |c) which assigns a high probability if expert > can be assigned to the context c.

4.4.3. How does Diversity Emerge?

From the Eq. 4.7 and Eq. 4.8 it is clear that diverse behaviors, represented by the experts,
emerge from the interplay of those terms in Eq. 4.7 and Eq. 4.8. We visually demonstrate
the meaning of the individual terms on the 5-Link Reacher task (see Fig. 4.2d). The Reacher
needs to reach a goal position in the two-dimensional space with its tip. In this task, a
context represents the goal position within the context space, visualized as a red circle
around the reacher’s �xed �rst joint (Fig. 4.2a). We trained Di-SkilL with 50 experts.

In Fig. 4.2a we show the high-probability regions of the individual per-expert context dis-
tributions c (c|>), by setting the color intensity proportional to this probability. Each color

62

4.5. Experiments

(a) (b) (c)

Goal
Tip

5Link-Reacher

(d)

Figure 4.2.: a) High-probability regions of the individual per-expert context distributions c (c|>), where
a color represents an expert > . The red circle marks the context space of goal-reaching positions for the
5-Link Reacher’s tip. The specialization of c (c|>) is induced by c̃ (> |c). b) Di�erent c (c|>) need to overlap
for learning diverse skills. This overlapping is induced by the entropy bonus H [c (c|>)]. c) Di�erent tip
trajectories sampled in the same contexts. The trajectories and the end joint constellation are in the same
color. The diversity in the parameter space is induced by c̃ (> |c,)). d) Visualization of the 5-Link Reacher
task (5LR).

represents an individual expert > . Each c (c|>) concentrates on a sub-region of the context
space such that the corresponding c () |c, >) becomes an expert there. This specialization
is incentivized by the term c̃ (> |c) in Eq. 4.8. However, for learning diverse behaviors for
the same context regions, it is necessary that the per-expert context distributions c (c|>)
overlap, which is motivated by the entropy term H [c (c|>)] in Eq. 4.8.

These overlapping context regions are visualized in Fig. 4.2b, where we count how many
experts > are active for each context. The �gure shows that more experts prefer regions
close to the initial position of the reacher, indicating that these contexts are easier to solve.
Despite the closeness to the reacher’s initial position, the agent does not have to exert
much energy to reach these points. Indeed, both aspects are present in the task’s reward
function (see Appendix B.4 for details), explaining why the left half plane of the context
space has fewer overlapping. However, the learned MoE has two or more experts active in
most parts of the context region. These experts di�er in their behavior (see Fig. 4.2 for
examples), which is motivated by the terms c̃ (> |c,)) and H [c () |c, >)] in Eq. 4.7.

4.5. Experiments

In our evaluations, we compare Di-SkilL against the baselines BBRL (Otto et al., 2023)
and SVSL (Celik et al., 2021). Whenever the environment satis�es the Markov properties,
we additionally compare against PPO (Schulman et al., 2017). BBRL and SVSL are suitable
baselines as they are state-of-the-art CEPS algorithms that can learn complex skills. BBRL
can learn highly non-linear policies leveraging trust region updates. SVSL learns a linear
Mixture of Experts (MoE) model and can capture multi-modality in the behavior space. We
consider challenging robotic environments with continuous context and parameter spaces.
The considered environments either have a non-Markovian reward function, i.e. require
retrospective data for calculation, or temporally sparse reward functions, increasing the
learning complexity due to more di�cult exploration.

63

4. Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts

We start by providing an overview of the benchmarking environments. In an ablation
study, we then show that automatic curriculum learning is an essential feature of Di-SkilL
to learn high-performing skills. Lastly, on �ve sophisticated robot simulation tasks we
report the performance of Di-SkilL against the baselines. The results show that Di-SkilL
performs on par, or better than the baselines on all tasks. In addition to the performance
analysis, we qualitatively show Di-SkilL’s learned diverse skills on the challenging table
tennis, box pushing, and reaching tasks.

4.5.1. Environments

The considered environments are visualizations in Fig. 4.3a. Throughout all environments,
we used ProDMPs (Li et al., 2023) to generate trajectories (see Appendix B.3). Detail
descriptions are provided in the Appendix B.4.

Table Tennis (TT). A 7-degree of freedom (DoF) robot has to learn fast and precise
motions to hit the ball to a desired position on the opponent’s side. The 4-dim. context
consists of the incoming ball’s landing position and the desired ball’s landing position on
the opponent’s side. The TT environment requires good exploratory behavior and has a
non-Markovian reward structure, making step-based approaches infeasible to learn useful
skills (Otto et al., 2023).

Table TennisHard (TT-H).We extend the TT environment to a more challenging version
by varying the ball’s initial velocity. This additionally increases the learning complexity,
as the agent now needs to reason about the physical e�ects of changed velocity ranges
and requires improved adaptability.

5-Link Reacher (5LR). The 5-Link reacher has to reach a goal position within all quad-
rants in the context space (see Fig. 4.2a) as opposed to the version in Otto et al. (2023),
where the multi-modality in the behavior space (see Fig. 4.2c) was avoided by constraining
the context space to the upper half of the context space. Additionally, the time-sparse
reward makes this task a challenging benchmark.

Hopper Jump (HJ). Presented in Otto et al. (2023) in which the Hopper (Brockman et al.,
2016) is tasked to jump as high as possible while landing in a goal position. The HJ has a
non-Markovian reward, making step-based RL methods unfeasible to learn useful policies
(Otto et al., 2023).

Box Pushing with Obstacle (BPO). A 7DoF robot is tasked to push a box to a target
position and rotation while avoiding an obstacle. In addition to the time-spare reward
(Otto et al., 2023), our version includes the obstacle and considers a larger range of the
box’s target position.

Robot Mini Golf (MG). The 7DoF robot has to hit the ball in an environment with two
obstacles (static, varying), such that it passes the tight goal. The context is the obstacle’s,
the goal’s, and the ball’s position. The MG environment has a non-markovian reward,
making step-based RL methods unfeasible to learn useful policies (Otto et al., 2023).

64

4.5. Experiments

Obstacle

Target Pos. & Orientation

Init. Box Pos.

Obstacle
Ball

Goal

Changes in
each episode

Racket

Goal Landing Pos.

Goal LandingReference

(a) Visualization of Environments

0 1 2 3 4 5

·106
0

0.2

0.4

0.6

0.8

1

Number of Episodic Samples

M
ea

n
Su

cc
es

sR
at

e

Di-Skill
Di-SkilLV2
Di-SkilLV3
SVSL
BBRL

(b)Mean Success Rate (TT)

0 1 2 3 4

·105

−40

−30

−20

−10

0

Number of Episodic Samples

IQ
M

M
ea

n
Re

tu
rn

Di-SkilL BBRL
LinDi-SkilL PPO

(c) IQM Mean Return (5LR)

Figure 4.3.: a) (left top) Hopper Jump Task (HJ). (Top right) Box Pushing with Obstacle (BPO). (Bottom
Left) Robot Mini Golf (MG). (Bottom right) Robot table tennis (TT). b) Ablation studies, showcasing the
need for automatic curriculum learning for Di-SkilL. BBRL and Di-SkilL can solve TT environment decently.
Di-SkilL’s variants without curriculum learning struggle to achieve a good performance. SVSL needs more
samples to achieve around 80% success rate, su�ering under the linear experts. c) Performance of Di-SkilL,
BBRL, LinDi-SkilL, and PPO on 5LR with sparse in-time rewards.

4.5.2. ACL Benefits

Automatic Curriculum learning (ACL) enables Di-SkilL’s experts to shape their curriculum
by explicitly sampling from preferred context regions. We analyze the importance of this
feature by comparing the performance of variants of Di-SkilL on the table tennis (TT)
task.

For both variants Di-SkilLV2 and Di-SkilLV3 we disable ACL by �xing the term induced
by the variational distribution to log c̃ (> |c) = 0 in Eq. 4.8 and by setting the entropy
scaling parameter V = 2000. Ignoring the variational distribution c̃ (> |c) during training
eliminates the intrinsic motivation of the per-expert context distribution c (c|>) to focus on
sub-regions in the context space that are not, or only partially, covered by any other c (c|>)
(Section 4.4.3). Setting V = 2000 incentivizes each c (c|>) to maximize its entropy, resulting
in a uniform distribution in the environment’s bounded context space. For Di-SkilL we
keep the ACL and set V = 4. We provide the same number of 50 context-parameter samples
per expert for Di-SkilLV2 and Di-SkilL, whereas Di-SkilLV3 receives 260 samples per expert
in each iteration. All variants possess 5 experts.
In Fig. 4.3b we report the mean success rates and the 95% con�dence interval for each
method on at least 4 seeds. Di-SkilLV2 converges to a much smaller success rate, and
Di-SkilLV3 needs more samples to reach the level of Di-SkilL. BBRL and Di-SkilL achieve
high success rates, while BBRL performs slightly better. SVSL shows worse performance,
even though the model has 20 experts. The results indicate that ACL is an essential feature
of Di-SkilL ensuring that Di-SkilL can learn high-perfroming skills with fewer samples.
Moreover, SVSL’s poor performance shows that Gaussian parameterized per-expert context
distributions that require additionally tuned punishment terms for guided updates are
together with linear experts incapable of achieving a satisfying performance.

65

4. Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts

Di-SkilL BBRL LinDi-SkilL PPO

0 1 2 3

·105

10

12

14

16

18

20

Number of Episodic Samples

IQ
M

Re
tu

rn

(a) IQM Mean Return (HJ)

0 0.5 1 1.5 2 2.5

·106
0

0.2

0.4

0.6

0.8

Number of Episodic Samples

IQ
M

Su
cc

es
sR

at
e

(b) IQM Success Rate (BPO)

0 0.5 1 1.5 2 2.5

·106
0

0.2

0.4

0.6

Number of Episodic Samples

IQ
M

Su
cc

es
sR

at
e

(c) IQM Success Rate (TT-Hard)

0 0.5 1 1.5 2

·106
0

0.2

0.4

0.6

Number of Episodic Samples

IQ
M

Su
cc

es
sR

at
e

(d) IQM Success Rate (MG)

Figure 4.4.: Performance on the a) HJ (Hopper Jump) b) BPO (Box Pushing with Obstacle), c) TT-H
(Table Tennis Hard), and d) MG (Robot Mini Golf) tasks. a) Di-SkilL performs on par with BBRL on the HJ
task. b) The multi-modality introduced by the obstacle in the box pushing task leads to worse performance
for BBRL than for Di-SkilL and LinDi-SkilL. PPO su�ers under the time-sparse reward setting. c) While
BBRL converges faster, Di-SkilL achieves a higher success rate eventually. d) Di-SkilL outperforms the
baselines on the MG task. LinDi-SkilL performs poorly on the non-Markovian rewarded tasks TT-H and
MG, indicating that highly non-linear policies are bene�cial.

4.5.3. Analyzing the Performance and Diversity

For a detailed analysis, we have evaluated all methods on 24 seeds for each environment
and algorithm and report the interquantile mean (IQM) with a 95% strati�ed bootstrap
con�dence interval as suggested by Agarwal et al. (2021). Please note that SVSL requires
designing a punishment function to guide the context samples in the environment’s valid
context region, which makes its application di�cult, especially if the context in�uences
the objects’ physics. We therefore propose comparing against LinDi-SkilL instead of SVSL.
LinDi-SkilL also has linear experts but bene�ts from Di-SkilL’s energy-based per-expert
context distribution c (c|>) eliminating the need for punishment functions.

The performance curve of the HJ task in Fig. 4.4a shows that Di-SkilL performs on par with
BBRL, while BBRL converges slightly faster. Both methods can solve the task, indicating
that the task doesn’t require diversity. We can also see that LinDi-SkilL achieves a similar
performance as BBRL and Di-SkilL, but needs more samples to converge. We provide
additional analysis of this task in Appendix B.5.

Fig. 4.4b shows the performance curves on the BPO task. The obstacle introduces multi-
modality in the behavior space which cannot be captured by a single-mode policy. This
multi-modality explains why DiSkilL and LinDi-SkilL outperform BBRL, while Di-SkilL still
achieves the highest success rate. PPO’s poor performance indicates that time-correlated
exploration as used with motion primitives is e�ective in sparse rewarded tasks.

A similar performance behavior can be observed in the 5LR task. In Fig. 4.3c we report the
achieved returns and observe that Di-SkilL outperforms BBRL due to the ability to capture
multi-modal behaviors (e.g. reaching from di�erent sides) while PPO su�ers from the
sparse rewarded setting. Moreover, LinDi-SkilL’s linear experts cause slow convergence,
indicating that more experts are needed to e�ectively cover the whole context space. For
both tasks, Di-SkilL’s diverse skills in the parameter space) induce di�erent behaviors.
Fig. 4.5 shows diverse box trajectories to several �xed goal and obstacle positions in the

66

4.6. Conclusion and Future Work

Figure 4.5.:Di-SkilL’s Diverse Skills for the Box Pushing with Obstacle BPO Task. The �gures visualize
diverse solutions to the same contexts c on a table (black rectangle). The red, thick rectangle represents the
obstacle. The 7DoF robot is tasked to push the box (shown in di�erent colors for each solution found) to the
goal box position (red rectangle with a green dot) and align the blue edges to match the orientation. The
context consists of the 2-dim. obstacle position, the 2-dim. goal position and the 1-dim. goal orientation
around the z-axis. We visualized successful box trajectories for each sampled skill from the same Di-SkilL
policy with 10 experts. The diversity learned in the parameter space results in di�erent box trajectories
ranging in position and orientation.

goal

ball

(a) Backhand Drive

goal

ball

(b) Forehand Drive

goal

ball

(c) Backhand Block

goal

ball

(d) Forehand Push

goal

ball

(e) Backhand Smash

Figure 4.6.: Di-SkilL’s Diverse Skills for the Table Tennis Hard TT-H task. We �xed the ball’s desired
landing position and varied the serving landing position and the ball’s initial velocity. Di-SkilL can return
the ball in di�erent striking types such as backhand or forehand strikes, where hitting the ball with the
green side of the racket is referred to as backhand and forehand otherwise. The shown striking styles are
captured from the same Di-SkilL policy that was trained with 10 experts.

BPO task, whereas Fig. 4.2c shows di�erent tip trajectories to several �xed goal positions
in the 5LR task.

The non-Markovian rewarded tasks (TT-H and MG) show that non-linear policies as
learned by BBRL and Di-SkilL are bene�cial. Di-SkilL and BBRL perform similarly well
on the TT-H task (see Fig. 4.4c), where Di-SkilL achieves a slightly higher end success
rate compared to BBRL. However, there is a clear performance gap between Di-SkilL and
BBRL on the MG task (see Fig. 4.4d) with Di-SkilL outperforming BBRL. In both tasks,
LinDi-SkilL performs worse than Di-SkilL and BBRL indicating that linear experts are
insu�cient for solving these tasks.

Di-SkilL can discover diverse striking styles in the table tennis task (TT-H). Fig. 4.6 shows
some of these learned skills. Additional strike visualizations are in Appendix B.5.

4.6. Conclusion and Future Work

In this paper, we propose Diverse Skill Learning (Di-SkilL), a novel method for learning
diverse skills using a contextual Mixture of Experts. Each expert automatically learns its

67

4. Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts

curriculum by optimizing for a per-expert context distribution c (c|>). We have demon-
strated challenges that arise through enabling automatic curriculum learning (ACR) and
proposed parameterizing c (c|>) as energy-based models (EBMs) to address these chal-
lenges. Additionally, we provided a methodology to e�ciently optimize these EBMs. We
also proposed using trust-region updates for the deep experts to stabilize our bi-level
optimization problem. In an ablation, we have shown that ACR is necessary for e�cient
and performant learning. Moreover, in sophisticated robot simulation environments, we
have shown that our method can learn diverse skills while performing on par or better
than the baselines. Currently, the major drawback of our approach is its inability to replan,
causing failures in the tasks if the robot even has small collisions with objects. We intend
to address this issue in future research. To improve the sample complexity of our approach,
we additionally plan to use o�-policy RL techniques.

68

5. DIME: Di�usion-Based Maximum
Entropy Reinforcement Learning

In this chapter we aim to address the Challenges 1 and 3 using di�usion-based policies, where
we restate the respective challenges in a concise version below.

Chapters 3 and 4 have focused on learning versatile skills using Mixture of Experts (MoE)
policies in the episode-based reinforcement learning (ERL) framework. However, training
MoEs can require intensive hyper-parameter tuning, and depending on the task, they
might require many experts to obtain a good performance. In contrast, di�usion models
(Song et al., 2021; Ho et al., 2020; Karras et al., 2022) have shown remarkable results in
generative modeling and representing highly complex multimodal distributions with a
single model in high-dimensional spaces. At the same time, their training is very stable
framing them as a user-friendly and promising alternative to MoE policies. However,
essential statistics such as the marginal entropy of the di�usion policy are intractable,
which makes key concepts such as exploration control or evaluating the maximum entropy
RL objective intractable.

In contrast to the previous chapters, this chapter considers step-based RL (SRL), which is
known to be more sample-e�cient than ERL and more commonly used in the RL literature.
We consider the maximum entropy RL objective (see Chapter 2.4) that is well studied and
has become the standard approach in RL due to its incentive for exploration. Similar to the
methods proposed in Chapters 3 and 4, we take inspiration from the approximate inference
with di�usion models literature and propose a tractable lower bound for the maximum
entropy RL objective for a policy iteration scheme. The resulting method can e�ectively
train a di�usion-based policy and performs favorably, especially on high-dimensional
control tasks, and importantly provides a framework for controlling the exploration for
di�usion models.

Due to their inherent representational capacity, di�usion models can naturally represent
multimodality and in conjunction with the proposed lower bound on the maximum
entropy RL objective, exploration and therefore, discovering new modes is incentivized.
Importantly, the proposed algorithm allows controlling the exploration behavior of the
di�usion policy and can be applied without much hyperparameter tuning. Because of these
features, this chapter addresses Challenge 1. Additionally, due to the di�usion model’s
principle, non-linear adaptation can be inherently represented, which addresses Challenge
3.

Challenges 1 and 3 from Section 1.1 are restated in a shorter version below for the conve-
nience of the reader.

69

5. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning

Challenge 1 (concise): Representation and Training of Multimodal Policies. Discovering
versatile skills in reinforcement learning (RL) with multimodal policy representations
such as di�usion models, requires novel RL algorithms that train these expressive policies
e�ciently and explicitly encourage the exploration of di�erent modes.

Challenge 3 (concise): Non-Linear Adaptation. Non-linear adaptation is a key feature for
successfully learning complex skills and requires to be ensured for each mode of the
multimodal policy.

The following work was published as DIME: Di�usion-Based Maximum Entropy Reinforce-
ment Learning (Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters,
Georgia Chalvatzaki, Gerhard Neumann) in the Conference on 42nd International Confer-
ence on Machine Learning, ICML 2025. Reprinted with permission of the authors. Wording,
notation and formulations were revised in several places.

5.1. Introduction

The maximum entropy reinforcement learning (MaxEnt-RL) objective augments the task
reward in each time step with the entropy of the policy (Ziebart et al., 2008; Toussaint,
2009; Haarnoja et al., 2017, 2018b). This objective has several favorable properties among
which improved exploration (Ziebart, 2010; Haarnoja et al., 2017) is crucial for RL. Recent
successful model-free RL algorithms leverage these favorable properties and build upon
this framework (Bhatt et al., 2024; Nauman et al., 2024) improving sample e�ciency
and leading to remarkable results. However, the policies are traditionally parameterized
using Gaussian distributions, signi�cantly limiting their representational capacity. On the
other hand, di�usion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021;
Karras et al., 2022) are highly expressive generative models and have proven bene�cial
in representing complex behavior policies (Reuss et al., 2023; Chi et al., 2023). However,
important metrics such as the marginal entropy are intractable to compute (Zhou et al.,
2024) which restricts their usage in RL. Because of this shortcoming, recent methods
propose di�erent ways to train di�usion-based methods in o�-policy RL. While these
methods are discussed in more detail in the related work section, most of them require
additional techniques to add arti�cial (in most cases Gaussian) noise to the generated
actions to induce exploration in the behavior generation process. Hence, they do not
leverage the di�usion model to generate potentially non-Gaussian exploration patterns
but fall back to mainly Gaussian exploration. Nonetheless, there have been signi�cant
advances in training di�usion-based models for approximate inference (Berner et al., 2024;
Richter and Berner, 2024). Since the policy improvement in MaxEnt-RL can also be cast as
an approximate inference problem to the energy-based policy Haarnoja et al. (2017), it is a
natural step to explore these parallels.

We propose Di�usion-Based Maximum Entropy Reinforcement Learning (DIME). DIME
leverages recent advances in approximate inference with di�usion models (Richter and

70

5.2. Related Work

Berner, 2024) to derive a lower bound on the MaxEnt objective. We propose a policy
iteration framework with monotonic policy improvement that converges to the optimal
di�usion policy. Additionally, building on recent o�-policy RL algorithms such as Cross-Q
(Bhatt et al., 2024) and distributional RL (Bellemare et al., 2017), we propose a practical
version of DIME that can be used for training di�usion-based RL policies. On 13 chal-
lenging continuous high-dimensional control benchmarks, we empirically validate that
DIME signi�cantly outperforms other di�usion-based baselines on all environments and
consistently outperforms other state-of-the-art RL methods based on a Gaussian policy
on 10 out of 13 environments, while being computationally more e�cient and requiring
less algorithmic design choices as the current state of the art baseline BRO (Nauman et al.,
2024).

5.2. RelatedWork

Maximum Entropy RL. The maximum entropy RL framework uses the entropy of the
policy at each time step as an additional objective, providing a principled way of inducing
exploration in the RL policy. It is di�erent from entropy regularized RL (Neu et al., 2017),
where the entropy of the policy is maximized only for the current time step. Haarnoja
et al. (2017) proposed Soft-Q Learning, where amortized Stein variational gradient descent
(Wang and Liu, 2016) (SVGD) is used to train a parameterized sampler that can sample from
the energy-based policy. SAC (Haarnoja et al., 2018b) proposes an actor-critic RL method
but frames the policy update as an approximate inference problem to the energy-based
policy using a Gaussian policy parameterization. SAC has been extended to energy-based
policies using SVGD in Messaoud et al. (2024), where the authors also propose a new
method to estimate the entropy in closed form. While SVGD is a powerful method for
learning an energy-based policy, it is harder to scale these approaches to high-dimensional
control problems. For improving exploration, LSAC (Ishfaq et al., 2025) proposes leveraging
Langevin Monte Carlo (Welling and Teh, 2011) in conjunction with a distributed critic
objective to sample a state-action value. Haarnoja et al. (2018a) proposes learning a latent
variable model as a policy representation, but relies on the change of variable formula to
express the density of the policy by calculating the Jacobian of the transformations. Recent
advances of SAC also de�ne the state-of-the-art in o�-policy RL in many domains, such as
CrossQ (Bhatt et al., 2024) and BRO (Nauman et al., 2024). CrossQ proposed removing the
target network by leveraging batch renormalization and BRO scales to large networks in
RL by using several methods such as optimistic exploration (Nauman and Cygan, 2023),
network resets (Nikishin et al., 2022), weight decay, and high update-to-data ratios.

Di�usion-Based Policies in RL. Early works have researched di�usion models in o�ine
RL (Lange et al., 2012; Levine et al., 2020) as trajectory generators (Janner et al., 2022) or
as expressive policy representations (Wang et al., 2023; Kang et al., 2023; Hansen-Estruch
et al., 2023; Chen et al., 2023; Ding and Jin, 2024; Mao et al., 2024; Fang et al., 2025; Lu et al.,
2023). More recently, di�usion models in online RL have become more popular. DIPO
(Yang et al., 2023) proposes training a di�usion-based policy using a behavior cloning

71

5. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning

loss. The actions in the replay bu�er serve as target actions for the policy improvement
step and are updated using the gradients of the Q-function ∇a& (s, a). DIPO has been
extended to develop methods for learning multi-modal behaviors (Li et al., 2024b) by
leveraging hierarchical clustering to isolate di�erent behavior modes. DIPO relies on
the stochasticity inherent to the di�usion model for exploration and does not explicitly
control it via an objective. QSM (Psenka et al., 2024) directly matches the policy’s score
with the gradient of the Q-function ∇a& (s, a). While their objective avoids di�erentiating
through the whole di�usion process, the proposed objective disregards the entropy of
the policy and, therefore, exploration. Consequently, QSM needs to add noise to the
�nal action of the di�usion process. More recently, DACER (Wang et al., 2024) proposed
using the data-generating process as the policy representation and backpropagating the
gradients through the di�usion process. However, they do not consider a backward process
as we do, and their objective for updating the di�usion model is based on the expected
Q-values only. To incentivize the exploration, DACER adds diagonal Gaussian noise to
the sampled actions, where the variance of this noise is controlled by a scaling term that
is updated automatically using an approximation of the marginal entropy by extracting
a Gaussian Mixture Model from the di�usion policy. Concurrently, QVPO (Ding et al.,
2024) proposed weighting their di�usion loss with their respective Q-values after applying
transformations. However, QVPO relies on sampling actions from a uniform distribution
to enforce exploration.

DIME distinguishes from prior works in that we use the maximum entropy RL framework
for training the di�usion policy, which was not considered before. This allows direct
control of the exploration-exploitation trade-o� arising naturally through this objective
without the need for additional approximations. DIME is leveraging the di�usion model
to generate non-Gaussian exploration actions which is in contrast to most other di�usion
RL approaches that still require including Gaussian or uniform exploration noise.

Approximate Inference with Di�usion Models. Early works on approximate infer-
ence with di�usion models were formalized as a stochastic optimal control problem using
Schrödinger-Föllmer di�usions (Dai Pra, 1991; Tzen and Raginsky, 2019; Huang et al., 2021)
and only recently realized with deep-learning based approaches (Vargas et al., 2023; Zhang
and Chen, 2021). Vargas et al. (2024); Berner et al. (2024) later extended these results to
denoising di�usion models. A more general framework where both forward and backward
processes of the di�usion model are learnable was concurrently proposed by Richter and
Berner (2024); Nusken et al. (2024). Recently, many extensions have been proposed, see
e.g. (Akhound-Sadegh et al., 2024; Noble et al., 2024; Ge�ner and Domke, 2023; Zhang
et al., 2023; Chen et al., 2025; Blessing et al., 2025b,a). Our work can be seen as an instance
of the sampler presented in Berner et al. (2024). However, our formulation allows using
di�erent di�usion samplers such as those presented in Richter and Berner (2024); Blessing
et al. (2025a), while we restrict ourselves in this work to the sampler presented in Berner
et al. (2024).

72

5.3. Preliminaries

5.3. Preliminaries

5.3.1. Maximum Entropy Reinforcement Learning

Notation We consider the task of learning a policy c : S × A → R+, where S and A
denote a continuous state and action space, respectively using reinforcement learning (RL).
We formalize the RL problem using an in�nite horizon Markov decision process consisting
of the tuple (S,A, A , ?, dc), with bounded reward function A : S × A → [Amin, Amax] and
transition density ? : S ×S ×A → R+ which denotes the likelihood for transitioning into
a state s′ ∈ S when being in s ∈ S and executing an action a ∈ A. We follow Haarnoja
et al. (2018b) and slightly overload dc which denotes the state and state-action marginals
induced by a policy c . Moreover, W ∈ [0, 1) denotes the discount factor. For brevity, we
use AC , A (sC , aC). Lastly, we denote objective functions that we aim to maximize as � and
minimize as L.

Control as inference. The goal of maximum entropy reinforcement learning (MaxEnt-
RL) is to jointly maximize the sum of expected rewards and entropies of a policy

� (c) =
∞∑
C=;

W C−;Edc [AC + UH(c (aC |sC))] , (5.1)

where H(c (a|s)) = −
∫
c (a|s) logc (a|s)da is the di�erential entropy, and U ∈ R+ con-

trols the exploration exploitation trade-o� (Haarnoja et al., 2017). To keep the notation
uncluttered we absorb U into the reward function via A ← A/U . De�ning the &-function
of a policy c as

&c (sC , aC) = AC +
∞∑
;=1

W ;Edc [AC+; + H (c (aC+; |sC+;))] , (5.2)

with &c : S × A → R, the MaxEnt objective can be cast as an approximate inference
problem of the form

L(c) = �KL

(
c (aC |sC)

���exp&c (sC , aC)
Zc (sC)

)
, (5.3)

in a sense that maxc � (c) = minc L(c).Here,�KL denotes the Kullback-Leibler divergence
and

Zc (s) =
∫

exp&c (s, a)da (5.4)

is the state-dependent normalization constant.

Policy iteration is a two-step iterative update scheme that is, under certain assumptions,
guaranteed to converge to the optimal policy with respect to the maximum entropy
objective. The two steps include policy evaluation and policy improvement. Given a policy
c , policy evaluation aims to evaluate the value of c . To that end, Haarnoja et al. (2018b)
showed that repeated application of the Bellman backup operator T c&: with

T c& (sC , aC) , AC + WE [& (sC+1, aC+1) + H (aC+1 |sC+1)] , (5.5)

73

5. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning

exp(Qπ/α)/Zπ N (0, I)t

(a) U < 1

exp(Qπ/α)/Zπ N (0, I)t

(b) U = 1

exp(Qπ/α)/Zπ N (0, I)t

(c) U > 1

Figure 5.1.:The e�ect of the reward scaling parameter U . The �gures in (a)-(b) show di�usion processes
for di�erent U values starting at a prior distribution N(0, �) and going backward in time to approximate the
target distribution exp (&c/U)//c . Small values for U (a) lead to concentrated target distributions with less
noise in the di�usion trajectories especially at the last time steps. The higher U becomes (b) and (c), the
more the target distribution is smoothed and the distribution of the samples at the last time steps becomes
more noisy. Therefore, the parameter U directly controls the exploration by enforcing noisier samples the
higher U becomes.

converges to &c as : →∞, starting from any & . To update the policy, that is, to perform
the policy improvement step, the &-function of the previous evaluation step, &cold is used
to obtain a new policy according to

cnew = arg min
c∈Π

�KL

(
c (aC |sC)

���exp&cold (sC , aC)
Zcold (sC)

)
, (5.6)

where Π is a set of policies such as a family of parameterized distributions. Note that
Zcold (sC) is not required for optimization as it is independent of c . Haarnoja et al. (2018b)
showed that for all state-action pairs (s, a) ∈ S × A it holds that &cnew (s, a) ≥ &cold (s, a)
ensuring that policy iteration converges to the optimal policy c∗ in the limit of in�nite
repetitions of policy evaluation and improvement.

5.3.2. Denoising Di�usion Policies

For a given state s ∈ S, we consider a stochastic process on the time-interval [0,)] given
by an Ornstein-Uhlenbeck (OU) process 1 (Särkkä and Solin, 2019)

daC = −VCaCdC + [
√

2VCdBC , 00 ∼ ®c0(·|s), (5.7)

with di�usion coe�cient V : [0,)] → R+, standard Brownian motion (BC)C∈[0,)] , and some
target policy ®c0. For C, ; ∈ [0,)], we denote the marginal density of Eq. 5.7 at C as ®cC and
the conditional density at time C given ; as ®cC |; . Eq. 5.7 is commonly referred to as forward
or noising process since, for a suitable choice of V , it holds that ®c) ≈ N(0, [2�). Denoising
di�usion models leverage the fact, that the time-reversed process of Eq. 5.7 is given by

daC =
(
−VCaCdC − 2[2VC∇ log ®cC (aC |s)

)
+ [

√
2VCdBC , (5.8)

1 Please note, for clarity, we slightly abuse notation by using C to denote the time in the stochastic process.
This should not be confused with the time step in RL. The distinction becomes clear when we discretize
the processes.

74

5.4. Di�usion-Based Maximum Entropy RL

starting from ®c) = ®c) ≈ N(0, [2�) and running backwards in time (Nelson, 2020; Anderson,
1982; Haussmann and Pardoux, 1986). For the backward, generative or denoising process
(Eq. 5.8), we denote the density as ®c . Here, time-reversal means that the marginal densities
align, i.e., ®cC = ®c C for all C ∈ [0,)]. Hence, starting from a) ∼ N(0, [2�), one can sample
from the target policy ®c0 by simulating Eq. 5.8. However, for most densities ®c0, the scores
(∇ log ®cC (aC |s))C∈[0,)] are intractable, requiring numerical approximations. To address this,
denoising score-matching objectives are commonly employed, that is,

LSM(\) = E
[
VC ‖ 5 \C (aC , s) − ∇ log ®cC |0(aC |a0, s)‖2

]
, (5.9)

where C is sampled on [0,)] and 5 \ denotes a parameterized score network (Hyvärinen
and Dayan, 2005; Vincent, 2011). For OU processes, the conditional densities ∇ log ®cC |0 are
explicitly computable, making the objective tractable for optimizing \ (Song et al., 2021).
Once trained, the score network 5 \ can be used to simulate the denoising process

daC =
(
−VCaCdC − 2[2VC 5

\
C (aC , s)

)
+ [

√
2VCdBC (5.10)

to obtain samples a0 ∼ c)0 that are approximately distributed according to ®c0. Here, c)C
denotes the marginal distribution of Eq. 5.10 at time C . While score-matching techniques
work well in practice, they cannot be applied to maximum entropy reinforcement learning.
This is because the expectation in Eq. 5.9 requires samples a0 ∼ ®c0 ∝ exp&c which are
not available. However, in the next section, we build on recent advances in approximate
inference to optimize di�usion models without requiring samples from a0, relying instead
on evaluations of &c .

5.4. Di�usion-Based Maximum Entropy RL

Here, we explain how di�usion models can be used within a maximum entropy RL frame-
work. To that end, we express the maximum entropy objective as an approximate inference
problem for di�usion models. We then use these results to introduce a policy iteration
scheme that provably converges to the optimal policy. Lastly, we propose a practical
algorithm for optimizing di�usion models.

5.4.1. Control as Inference for Di�usion Policies

Directly maximizing the maximum entropy objective

� (®c) =
∞∑
C=;

W C−;Edc
[
AC (sC , a0

C) + UH(®c0(a0
C |sC))

]
for a di�usion model is di�cult as the marginal entropy H(®c0(a|s)) of the denoising
process in Eq. 5.8 is intractable. Please note that we use superscripts for the actions to

75

5. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning

indicate the di�usion step to avoid collisions with the time step used in RL. Moreover, we
will again absorb U into the reward and use AC , A (sC , a0

C). To overcome this intractability,
we propose to maximize a lower bound. We start by discretizing the stochastic processes
introduced in Section 5.3.2 and use the results as a foundation to derive this lower bound.
Note that while similar results can be derived from a continuous-time perspective (see
e.g., Berner et al. (2024); Richter and Berner (2024); Nusken et al. (2024)), such derivation
would require a background in stochastic calculus, making it less accessible to a broader
audience.

The Euler-Maruyama (EM) discretization (Särkkä and Solin, 2019) of the noising (Eq. 5.7)
and denoising (Eq. 5.8) process is given by

a=+1 = a= − V=a=X + n= and (5.11)
a=−1 = a= +

(
V=a= + 2[2V=∇ log ®c= (a= |s)

)
X + b= (5.12)

respectively, with n=, b= ∼ N(0, 2[2V=X�). Here, X denotes a constant discretization step
size such that # =) /X is an integer. To simplify notation, we write a=, instead of a=X .
Under the EM discretization, the noising and denoising process admit the following joint
distributions

®c0:# (a0:# |s) = ®c0(a0 |B)
#−1∏
==0
®c=+1|= (a=+1

��a=, s), (5.13)

®c0:# (a0:# |s) = ®c# (a# |B)
#∏
==1

®c=−1|= (a=−1��a=, s), (5.14)

in a sense that ®c0:# and ®c0:# converge to the law of (aC)C∈[0,)] in Eq. 5.7 and 5.8, as X → 0,
respectively (Doucet et al., 2022). Here, ®c=+1|= and ®c=−1|= are Gaussian transition densities
that directly follow from Eq. 5.11 and 5.12.

To obtain a maximum entropy objective for di�usion models, we make use of the following
lower bound on the marginal entropy, that is,H(®c0(a0 |s)) ≥ ℓ ®c (a0, s), where

ℓ ®c (a0, s) = E ®c0:#

[
log
®c1:# |0(a1:# |a0, s)
®c0:# (a0:# |s)

]
. (5.15)

Please note that similar bounds have been used, e.g., in Agakov and Barber (2004); Tran
et al. (2015); Ranganath et al. (2016); Maaløe et al. (2016); Arenz et al. (2018), or, more
generally, follow from the data processing inequality (Cover, 1999). A derivation can be
found in Appendix C.1. From Eq. 5.15, it directly follows that

� (®c) ≥ �̄ (®c) =
∞∑
C=;

W C−;Edc
[
AC + ℓ ®c (a0

C , sC)
]
. (5.16)

Next, we cast Eq. 5.16 as an approximate inference problem to make the objective more
interpretable. To that end, let us de�ne the&-function of a denoising policy ®c with respect
to the maximum entropy objective �̄ as

& ®c (sC , a0
C) = AC +

∑
;=1

W ;Edc
[
AC+; + ℓ ®c (a0

C+; , sC+;)
]
, (5.17)

76

5.4. Di�usion-Based Maximum Entropy RL

with& ®c : S×A → R. With Eq. 5.17 we identify the corresponding approximate inference
problem as �nding ®c which minimizes (please see Appendix C.1 for derivation)

L̄(®c) = �KL
(
®c0:# (a0:# |s) | ®c0:# (a0:# |s)

)
, (5.18)

where the target policy, i.e., the marginal of the noising process in Eq. 5.13 is given by the
exponentiated &-function of the di�usion policy

®c0(a0 |s) = exp& ®c (s, a0)
Z ®c (s)

. (5.19)

Recall from Section 5.3.2 that we aim to time-reverse the noising process, that is, to ensure
for all states s ∈ S, it holds that ®c0:# = ®c0:# . Please note that this is precisely what Eq. 5.18
is trying to accomplish, i.e., we aim to learn a di�usion model ®c , such that the denoising
process time-reverses the noising process, and, in particular, has a marginal distribution
given by c0 = exp& ®c/Z ®c . Lastly, from the data processing inequality, it directly follows
that

�KL

(
®c0(a0 |s)

���exp& ®c (s, a0)
Z ®c (s)

)
≤ �KL

(
®c (a0:# |s) | ®c (a0:# |s)

)
, (5.20)

which shows the approximate inference problem in Eq. 5.18 indeed optimizes the same
inference problem stated in Eq. 5.3 (also see Section 2.7.1). Next, we will use these results
to develop a policy iteration scheme for di�usion models.

5.4.2. Di�usion-based Policy Iteration

We propose a policy iteration scheme for learning an optimal maximum entropy policy,
similar to Haarnoja et al. (2018b). However, here we restrict the family of stochastic actors
to di�usion policies ®c ∈ ®Π ⊂ Π. Throughout this section, we assume �nite action spaces
to enable theoretical analysis, but relax this assumption in Section 5.4.3. All proofs of this
section are deferred to Appendix C.1.

For policy evaluation, we aim to compute the value of a policy ®c . We de�ne the Bellman
backup operator as

T ®c& (sC , a0
C) , AC + WE

[
& (sC+1, a0

C+1) + ℓ ®c (a0
C+1, sC+1)

]
. (5.21)

Note that Eq. 5.21 contains the entropy-lower bound ℓ ®c . By applying standard convergence
results for policy evaluation (Sutton and Barto, 2018) we can obtain the value of a policy
by repeatedly applying T ®c as established in Proposition 5.4.1.

Proposition 5.4.1 (Policy Evaluation). Let T ®c be the Bellman backup operator for a di�u-
sion policy ®c as de�ned in Eq. 5.21. Further, let&0 : S ×A → R and&:+1 = T ®c&: . Then, it
holds that lim:→∞&

: = & ®c where & ®c is the & value of ®c .

77

5. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning

For the policy improvement step, we seek to improve the current policy based on its value
using the &-function. Formally, we need to solve the approximate inference problem

®cnew
= arg min

®c∈ ®Π
�KL

(
®c0:# (a0:# |s) | ®c old

0:# (a
0:# |s)

)
(5.22)

for all s ∈ S, where ®c old
0:# (a

0:# |s) is as in Eq. 5.13 with marginal density

®c old
0 (a0 |s) = exp& ®cold (s, a0)

Z ®cold (s)
. (5.23)

Indeed, solving Eq. 5.22 results in a policy with higher value as established below.

Proposition 5.4.2 (Policy Improvement). Let ®cold, ®cnew ∈ ®Π be de�ned as in Eq. 5.23 and
5.22, respectively. Then for all (s, a) ∈ S × A it holds that & ®cnew (s, a) ≥ & ®cold (s, a).

Combining these results leads to the policy iteration method which alternates between
policy evaluation (Proposition 5.4.1) and policy improvement (Proposition 5.4.2) and
provably converges to the optimal policy in ®Π (Proposition 5.4.3).

Proposition 5.4.3 (Policy Iteration). Let ®c0
, ®c 8+1, ®c 8, ®c∗ ∈ ®Π. Further, let ®c 8+1 be the policy

obtained from ®c 8 after a policy evaluation and improvement step. Then, for any starting
policy ®c0 it holds that lim8→∞ ®c 8 = ®c∗, with ®c∗ such that for all ®c ∈ ®Π and (s, a) ∈ S ×A it
holds that & ®c∗ (s, a) ≥ & ®c (s, a).

However, performing policy iteration until convergence is in practice often intractable,
particularly for continuous control tasks. As such, we will introduce a practical algorithm
next.

5.4.3. DIME: A Practical Di�usion RL Algorithm

To obtain a practical algorithm, we use a parameterized function approximation for the
&-function and the policy, that is, &5 and c) , with parameters 5 and) , respectively. Here,
c) is represented by a parameterized score network, see Eq. 5.10. To perform approximate
policy evaluation, we can minimize the Bellman residual,

�& (5) =
1
2E

[(
&5 (sC , a0

C) −&target(sC , a0
C)

)2
]
, (5.24)

using stochastic gradients with respect to 5. We provide implementation details in Section
5.4.4. Moreover, the expectation is computed using state-action pairs collected from
environment interactions and saved in a replay bu�er. For policy improvement, we solve
the approximate inference problem

L()) = �KL
(
c)0:# (a

0:# |s) | ®c0:# (a0:# |s)
)
, (5.25)

78

5.4. Di�usion-Based Maximum Entropy RL

where the target policy, i.e., the marginal of the noising process in Eq. 5.13 is given by the
approximate &-function

®c0(a0 |s) =
exp&5 (s, a0)
Z5 (s)

, (5.26)

where states are again sampled from a replay bu�er. Further expanding L()) yields

L()) = Ec)
[

logc)# (a
|s) −&5 (s, a0) +

#∑
==1

log
c)
=−1|= (a

=−1��a=, s)
®c= |=−1(a=

��a=−1, s)

]
+ logZ5 (B), (5.27)

showing thatZ5 is not needed to minimize Eq. 5.27 as it is independent of) . Moreover,
contrary to the score-matching objective (see Eq. 5.9) that is commonly used to optimize
di�usion models, stochastic optimization of L()) does not need access to samples a0 ∼
exp&5/Z5 , instead relying on stochastic gradients obtained via reparameterization trick
(Kingma, 2013) using samples from the di�usion model c) .

5.4.4. Implementation Details

Autotuning Temperature. We follow implementations like SAC (Haarnoja et al., 2018c)
where the reward scaling parameter U (also see Fig. 5.1) is not absorbed into the reward but
scales the entropy term. Choosing U depends on the reward ranges and the dimensionality
of the action space, which requires tuning it per environment. We instead follow prior
works (Haarnoja et al., 2018c) for auto-tuning U by optimizing

� (U) = U
(
Htarget − ℓ)H

)
, (5.28)

where Htarget is a target value for the mismatch between the noising and denoising
processes measured by the log ratio.

Autotuning Di�usion Coe�cient. Please note that the objective function in Eq. 5.27
is fully di�erentiable with respect to parameters of the di�usion process. As such, we
additionally treat the di�usion coe�cient V as a learnable parameter that is optimized
end-to-end, further reducing the need for manual hyperparameter tuning. Further details
on the parameterization can be found in Appendices C.4 and C.6.

&-function. Following Bhatt et al. (2024) we adopt the CrossQ algorithm, i.e., we use
Batch Renormalization in the Q-function and avoid a target network for calculating&target.
When updating the Q-function, the values for the current and next state-action pairs are
queried in parallel. The next Q-values are used as target values where the gradients are
stopped. Additionally, we employ distributional Q learning as proposed by Bellemare et al.
(2017). The details are described in Appendix C.4.

79

5. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning

DIME (ours) CrossQ QSM Di�-QL Consistency-AC DIPO QVPO DACER 32 16 8 4 2

0 0.2 0.4 0.6 0.8 1
·106

0

2,000

4,000

6,000

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(a) Ant-v3

0 0.2 0.4 0.6 0.8 1
·106

0

0.5

1.0

Number Env Interactions
IQ

M
M

ea
n

Re
tu

rn
(×

10
4)

(b) Humanoid-v3

0 0.5 1 1.5 2 2.5 3
·106

0

200

400

600

Number Env Interactions

IQ
M

Re
tu

rn

(c) Varying the Di�usion Steps

2 4 8 16 32
0

2

4

6

Number Di�usion Steps

M
ea

n
Ru

nt
im

e
in

H
ou

rs

(d) Runtime for 1M Steps

Figure 5.2.: Learning Curves on Gym Benchmark Suite (a)-(b). We compare DIME against various
di�usion baselines and CrossQ on the (a) Ant-v3 and (b) Humanoid-v3 from the Gym suite. While all
di�usion-based methods are outperformed by DIME, DIME performs on par with CrossQ on the Ant
environment. DIME performs favorably on the high-dimensional Humanoid-v3 environment, where it
also outperforms CrossQ. Varying the Number of di�usion steps (c)-(d). The number of di�usion steps
might a�ect the performance and the computation time. (d) shows DIME’s learning curves for varying
di�usion steps. Two di�usion steps perform badly, whereas four and eight di�usion steps perform similar
but still worse than 16 and 32 di�usion steps which perform similarly. (c) shows the computation time for
1MIO steps of the corresponding learning curves. The smaller the di�usion steps, the less computation time
is required.

5.5. Experiments

In a broad range of 13 sophisticated learning environments from di�erent benchmark
suits, ranging from mujoco gym (Brockman et al., 2016), deepmind control suit (DMC)
(Tunyasuvunakool et al., 2020), and myo suite (Caggiano et al., 2022), we compare DIME’s
performance against state-of-the-art RL baselines that employ di�usion and Gaussian
policy parameterizations. The considered environments are challenging locomotion and
manipulation learning tasks with up to 39-dimensional action and 223-dimensional obser-
vation spaces.

We consider QSM (Psenka et al., 2024), Di�usion-QL (Wang et al., 2023), Consistency-
AC (Ding and Jin, 2024), DIPO (Yang et al., 2023), QVPO (Ding et al., 2024), and DACER
(Wang et al., 2024) as baselines for di�usion-based policy representations.

Additionally, we compare against the state-of-the-art RL methods CrossQ (Bhatt et al.,
2024) and BRO (Nauman et al., 2024), where we have used the provided learning curves
from the latter. Both methods use a Gaussian parameterized policy and have shown
remarkable results.

Finally, we analyze DIME’s algorithmic features with an intensive ablation study where we
clarify the role of the reward scaling parameter U , the e�ect of varying di�usion steps, the
gained performance boost when using a di�usion policy representation over a Gaussian
representation, and the e�ect of employing distributional Q learning.

We have run the learning curves for 10 seeds using the o�cial code releases and report the
interquartile mean (IQM) with a 95% strati�ed bootstrap con�dence interval as suggested
by Agarwal et al. (2021).

80

5.5. Experiments

0 0.2 0.4 0.6 0.8 1
·106

0

200

400

600

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(a) Dog Run

0 0.2 0.4 0.6 0.8 1
·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(b) Dog Trot

0 0.2 0.4 0.6 0.8 1
·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(c) Dog Walk

0 0.2 0.4 0.6 0.8 1
·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(d) Dog Stand

0 0.2 0.4 0.6 0.8 1
·106

0

100

200

300

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(e) Humanoid Run

0 0.2 0.4 0.6 0.8 1
·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(f) Humanoid Walk

0 0.2 0.4 0.6 0.8 1
·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(g) Humanoid Stand

DIME (ours)
BRO
BRO (Fast)
CrossQ
QSM
Di�-QL
Consistency-AC
DIPO

0 0.2 0.4 0.6 0.8 1
·106

0

0.2

0.4

0.6

0.8

1

Number Env Interactions

IQ
M

Su
cc

es
sR

at
e

(h) Object Hold Hard

0 0.2 0.4 0.6 0.8 1
·106

0

0.2

0.4

0.6

0.8

1

Number Env Interactions

IQ
M

Su
cc

es
sR

at
e

(i) Reach Hard

0 0.2 0.4 0.6 0.8 1
·106

0

0.2

0.4

0.6

0.8

1

Number Env Interactions

IQ
M

Su
cc

es
sR

at
e

(j) Key Turn Hard

0 0.2 0.4 0.6 0.8 1
·106

0

0.2

0.4

0.6

0.8

1

Number Env Interactions

IQ
M

Su
cc

es
sR

at
e

(k) Pen Twirl Hard

Figure 5.3.: Training curves on DMC’s dog, humanoid tasks, and the hand environments from
the MYO Suite. DIME performs favorably on the high-dimensional dog tasks, where it signi�cantly
outperforms all baselines (dog-run) or converges faster to the �nal performance. On the humanoid tasks,
DIME outperforms all di�usion-based baselines, CrossQ and BRO Fast, and performs on par with BRO on the
humanoid-stand task and slightly worse on the humanoid-run and humanoid-walk tasks. In the MYO SUITE
environments, DIME performs consistently on all tasks, either outperforming the baselines or performing
on par.

5.5.1. Performance Comparisons

We consider environments with high-dimensional observation and action spaces from
three benchmark suits for a robust performance assessment (please see Appendix C.3).

Gym Environments. Fig 5.2a and Fig. 5.2b show the learning curves for the An-tv3 and
Humanoid-v3 tasks respectively. While the di�usion-based baselines perform reasonably
well on the Ant-v3 task with DIPO outperforming the rest, they are all outperformed by
DIME and CrossQ which perform comparably. On the Humanoid-v3 DIME achieves a
signi�cantly higher return than all baselines.

DMC: Dog and Humanoid Tasks (Fig. 5.3). We benchmark on DMC suit’s challenging
dog and humanoid environments, where we additionally consider BRO and BRO Fast as
a Gaussian-based policy baseline. BRO Fast is identical to BRO but di�ers only in the
update-to-data (UTD) ratio of two as DIME and CrossQ. Please note that we used the
online available learning curves provided by the o�cial implementation for BRO. DIME
outperforms all baselines signi�cantly on the dog-run environment and converges faster to

81

5. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning

10−01 10−02 10−03 10−04 10−05 10−08 10−09 10−12

0 0.5 1 1.5 2 2.5 3
·106

0

200

400

600

800

Number Env Interactions

IQ
M

Re
tu

rn

(a)

400 500 600 700 800
IQM Return

U
Va

lu
es

(b)

0 0.5 1 1.5 2 2.5 3
·106

0

200

400

600

Number Env Interactions

IQ
M

Re
tu

rn

Gaussian Policy
DIME

(c)

0 0.5 1 1.5 2 2.5 3
·106

0

200

400

600

800

Number Env Interactions

IQ
M

Re
tu

rn

Gaussian Policy
DIME

(d)

Figure 5.4.:Reward Scaling Sensitivity (a)-(b). The U parameter controls the exploration-exploitation
trade-o�. (a) shows the learning curves for varying values on DMC’s dog-run task. Too high U values
(U = 0.1) do not incentivize learning whereas too small U values (U ≤ 10−5) converge to suboptimal behavior.
(b) shows the aggregated end performance for each learning curve in (a). For increasing U values, the
end performance increases until it reaches an optimum at U = 10−3 after which the performance starts
dropping. Di�usion Policy Bene�t (c) and (d). We compare DIME to a Gaussian policy with the same
implementation details as DIME on the (a) humanoid-run and (b) dog-run tasks. The di�usion-based policy
reaches a higher return (a) and converges faster.

the same end performance on the remaining dog environments (see Fig. 5.3a - 5.3d). BRO
has slightly higher average performance on the humanoid-run and humanoid-walk (see Fig.
5.3f - 5.3e)) tasks indicating that DIME performs favorably on more high-dimensional tasks
like the dog environments and tasks from the myo suite. However, DIME’s asymptotic
behavior in the humanoid-run achieves slightly higher aggregated performance than BRO,
where we have run both algorithms for 3M steps (Fig. 5.8c). However, BRO requires full
parameter resets leading to performance drops during training and it is run with a UTD
ratio of 10 which is 5 times higher than DIME. This leads to longer training times. As
reported in their paper (Nauman et al., 2024), BRO needs an average training time of 8.5h,
whereas DIME trains in approximately 4.5h with 16 di�usion steps on the humanoid-run
with the same hardware (Nvidia A100).

MYO Suite (Fig. 5.3). Except for pen twirl hard (Fig. 5.3k), DIME consistently outperforms
BRO and BRO Fast in that it converges to a higher or faster end success rate. DIME also
consistently outperforms CrossQ in terms of the achieved success rates on all the tasks
except for the object hold hard task 5.3h, where DIME converges faster.

5.5.2. Ablation Studies

Exploration Control. The parameter U balances the exploration-exploitation trade-o�
by scaling the reward signal. We analyze the e�ect of this parameter by comparing DIME’s
learning curves with di�erent U values on the dog-run task from the DMC (see Fig. 5.4a).
Additionally, we show the performance of the last return measurements for each learning
curve in Fig. 5.4b. Too high U values (U = 0.1) do not incentivize maximizing the task’s
return, leading to no learning at all, whereas small values (U ≤ 10−5) lead to suboptimal
performance because the policy does not explore su�ciently. We can also see a clear
trend that starting from U = 10−12, the performance gradually increases until the best
performance is reached for U = 10−3.

82

5.5. Experiments

DIME (ours) DIME w/o DistrQ (ours) QSM Di�-QL Consistency-AC DIPO DACER QVPO

0 0.2 0.4 0.6 0.8 1
·106

0

2,000

4,000

6,000

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(a) Ant-v3

0 0.2 0.4 0.6 0.8 1
·106

0

0.5

1.0

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn
(×

10
4)

(b) Humanoid-v3

0 0.2 0.4 0.6 0.8 1
·106

0

2,000

4,000

6,000

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(c) Ant-v3 - w/o DistrQ

0 0.2 0.4 0.6 0.8 1
·106

0

0.5

1.0

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn
(×

10
4)

(d) Humanoid-v3- w/o DistrQ

Figure 5.5.:Comparison to Di�usion Baselines with (a)-(b) and without Distributional& (c)-(d) on
the Ant-v3 and Humanoid-v3 tasks. We provide the learning curves for distributional versions for
Di�-QL and Consistency-AC alongside DACER, which employs distributional Q by default on the Ant-v3 (a)
and Humanoid-v3 (b) tasks. DIME converges faster on the Ant-v3 (a) task to the same performance achieved
by DACER and outperforms all baselines on the more high-dimensional Humanoid-v3 (b) task. Additionally,
we compare DIME without distributional Q against the di�usion baselines without distributional Q on the
Ant-v3 (c) and Humanoid-v3 (d) tasks. DIME without distributional Q performs on par with the baselines
DIPO and QVPO on the Ant-v3 (c) and outperforms all baselines on the Humanoid-v3 (d).

Di�usion Policy Bene�t. We aim to analyze the performance bene�ts of the di�usion-
parameterized policy compared to a Gaussian parameterization in the same setup by only
exchanging the policy and the corresponding policy update. This comparison ensures
that the Gaussian policy is trained with the identical implementation details from DIME
as described in Sec. 5.4.4 and showcases the performance bene�ts of a di�usion-based
policy. Fig. 5.4c and 5.4d show the learning curves of both versions on DMC’s humanoid-
run and dog-run environments. The di�usion policy’s expressivity leads to a higher
aggregated return in the humanoid-run and to signi�cantly faster convergence in the
high-dimensional dog-run task. We attribute this performance bene�t to an improved
exploration behavior.

Number of Di�usion Steps. The number of di�usion steps determines how accurately
the stochastic di�erential equations are simulated and is a hyperparameter that a�ects
the performance. Usually, the higher the number of di�usion steps the better the model
performs at the burden of higher computational costs. In Fig. 5.2c we plot DIME’s
performance for varying di�usion steps on DMC’s humanoid-run environment and report
the corresponding runtimes for 1 Mio environment steps in Fig. 5.2d on an Nvidia A100
GPU machine. With an increasing number of di�usion steps, the performance and runtime
increases. However, from 16 di�usion steps on, the performance stays the same.

Analysis on Distributional Q Learning. DIME employs distributional Q Learning
(Bellemare et al., 2017) to represent the Q-function as a distribution over bins. We compare
DIME to baselines when using distributional Q Learning and when using the well-known
Bellman residual (see Eq. 5.24) for updating the parameters of the Q-function.

We start by comparing DIME with distributional Q learning against di�usion-based base-
lines that employ distributional Q learning. Fig. 5.5a and Fig. 5.5b show the learning
curves on the Ant-v3 and Humanoid-v3, respectively, where we compare against DACER,
a distributional Q variant of Di�-QL, and Consistency-AC. DIME converges faster to the
same performance as DACER on the Ant-v3 task and outperforms the baselines on the

83

5. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning

DIME (ours) DIME w/o DistrQ BRO BRO (Fast) CrossQ

0 0.2 0.4 0.6 0.8 1
·106

0

200

400

600

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(a) Dog Run

0 0.2 0.4 0.6 0.8 1
·106

0

200

400

600

800

1,000

Number Env Interactions
IQ

M
M

ea
n

Re
tu

rn

(b) Dog Trot

0 0.2 0.4 0.6 0.8 1
·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(c) Dog Walk

0 0.2 0.4 0.6 0.8 1
·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

(d) Dog Stand

Figure 5.6.: Ablation on Distributional Q. Comparison of DIME and DIME without employing distri-
butional Q (dashed line). While there is a small improvement when using distributional Q, DIME w/o
Distributional Q still performs on par, or better than BRO, which employs quantile distributional RL. DIME
w/o DistrQ outperforms CrossQ and BRO (Fast).

Humanoid-v3 task. In the setting without distributional Q Learning, i.e., when updating
the parameters using the residual Bellman function, DIME performs similarly to DIPO
and QVPO on the Ant-v3 task and outperforms all baselines on the higher-dimensional
Humanoid-v3 task (Fig. 5.5c and Fig. 5.5d).

Additionally, we compare DIME with and without distributional Q Learning on the four
dog environments from the DMC suite (Fig. 5.6), where we concentrate on the strong
baselines BRO (Nauman et al., 2024) and CrossQ (Bhatt et al., 2024). BRO employs quantile
distributional Q learning, whereas CrossQ uses the Bellman residual loss function for
updating the Q-function’s parameters. We have already observed that DIME with distri-
butional Q performs favorably over the baselines. Fig. 5.6 shows a small improvement
when using distributional Q. However, DIME without distributional Q (dashed line) still
performs on par, or better than BRO and consistently performs better than BRO (Fast) and
CrossQ. Please note that BRO and BRO (Fast) employ quantile distributional RL (Nauman
et al., 2024).

5.5.3. Multimodality Analysis

A key feature of di�usion models is their ability to model multimodal distributions. In
the context of reinforcement learning, this means that the policy is able to learn multiple
modes in the action space that can lead to multimodal behavior, i.e. versatile skills. So far
we have analyzed DIME’s performance on various benchmark tasks and its algorithmic
features, but not its ability to learn multimodal behaviors. In general, analyzing wether an
algorithm is able to acquire multimodal behavior is not straightforward, especially not
in the o�-policy setting. Here, the Q-function plays a crucial role because the policy is
updated based on the Q-values. If not multiple modes are present in the Q-function, it is
impossible for the policy to learn multimodal behavior. However, since the Q-function
is learned based on the data collected by the policy, one can argue that the policy plays
an important role for generating a good data distribution for optimizing the Q-function.
More precisely, the policy is responsible for exploring state-action regions that lead to
discovering those modes.

84

5.5. Experiments

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

150

125

100

75

50

25

0

25

50

V-
Va

lu
e

(a) U = 1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

20

0

20

40

60

80

100

120

140

V-
Va

lu
e

(b) U = 1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

20

40

60

80

100

120

140

160

180

200

V-
Va

lu
e

(c) U = 2.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

125

150

175

200

225

250

275

300

325

V-
Va

lu
e

(d) U = 3.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

220

240

260

280

300

320

340

360

380

400

V-
Va

lu
e

(e) U = 4.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

260

280

300

320

340

360

380

400

V-
Va

lu
e

(f) U = 5.0

Figure 5.7.:Analyzing DIME’s capabilities for learningmultimodal behaviors. On a two-dimensional
point mass task, we analze DIME’s ability to learn multimodal behaviors. The point mass starts at the origin
of the state space and is tasked to reach one of the four goals that are shown as red points. We approximate
the value function using the Q-function learned by DIME for di�erent U values. For this, we have uniformly
discretized the state space into a grid wtih 2500 points and evaluated 15 actions per state, sampled from the
policy to approximate the value function. Additionally, we have plotted the trajectories of the point mass for
50 rollouts. The rollouts were generated by executing the policy at the end of the training. Figures (a)-(f)
show a clear trent that the higher the U value, the more modes are discovered in both, the value function
and the resulting behavior, i.e. the trajectories of the point mass. This trend indicates that DIME is able to
learn multimodal behaviors for speci�c U values, which alligns with the intuition from Sec. 5.5.2, where we
have shown that higher U values lead to more exploration.

On a two-dimensional toy task we show that DIME is able to learn multimodal behaviors
depending on the U parameter, that controls the exploration-exploitation trade-o� as we
have clari�ed in Sec. 5.5.2. In the point mass task, the agent starts always at the origin, i.e.
the middle of the state space and is tasked to reach one of the four goals that are shown as
red points in Fig. 5.7. We visualize the value function learned by DIME for the di�erent U
values and plot the trajectories of the point mass when executing the policy at the end of
training as an upper layer on the value function visualization. Please note that the value
function is a sample-based approximated of DIME’s Q-function by sampling 15 actions per
state. We have discretized the state space that consists of the G,~ positions of the point
mass into a uniform grid with a total of 2500 points. The action corresponds to the delta
position on the G,~ position of the point mass.

From the �gures in Fig. 5.7 we can observe a clear trend. The higher the U value, the
more modes are present in both, the value function and the resulting behavior, i.e. the
trajectories of the point mass. This observation aligns with the intuition that the policy
is responsible for the exploration behavior to discover di�erent modes. Due to it’s high-

85

5. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning

0 0.2 0.4 0.6 0.8 1
·106

0

200

400

600

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

GB
DIME

(a) DMC’s Dog Run

0 0.2 0.4 0.6 0.8 1
·106

0

100

200

300

Number Env Interactions

IQ
M

M
ea

n
Re

tu
rn

GB
DIME

(b) DMC’s Humanoid Run

0 0.5 1 1.5 2 2.5 3
·106

0

200

400

600

Number Env Interactions

IQ
M

Re
tu

rn

BRO
DIME

(c) DMC’s Humanoid Run

Figure 5.8.:Flexibility of the DIME framework (a)-(b) and comparison to BRO (c) onmore environ-
ment interactions. As a proof of concept we have run experiments with the general bridge models (Richter
and Berner, 2024) where we compare its performance (GB) against the denoising di�usion policy here labeled
as DIME on the humanoid run task from the deepmind control suite. In (c) we compare DIME’s perfromance
agains BRO on the deempind control suite’s humanoid run task with more environment interactions.

expressivity, DIME is able to represent these multiple modes that are present in the learned
value function.

Fig. 5.7 not only shows that more modes are discovered the higher the U value becomes,
but it also shows that the higher U becomes, the exploration within one mode increases.
This can be clearly seen between the trajectories from Fig. 5.7e (U = 4.0) and Fig. 5.7f
(U = 5.0), where a broader state space is covered while rolling out the trajectory.

For learning those multimodal behaviors consistently, we have used a target network
for the Q-function to maintain the discovered modes, which otherwise were sometimes
degenerated once another mode with higher return was discovered. This is an indicator
that DIME needs to be extended to address Challenge 2 (Chapter 1) to consistently retain
the discovered modes.

5.6. Flexibility of DIME’s Framework

DIME’s maximum entropy reinforcement learning framework for training di�usion policies
is not speci�cally restricted to denoising di�usion policies but can be extended to general
di�usion policies. This can be realized using the General Bridges framework as presented
in Richter and Berner (2024). In this case, we can write the forward and backward process
as

daC = [f (aC , C) + Vu(aC , s, C)] dC +
√

2VCdBC , a0 ∼ ®c0(·|s), (5.29)
daC = [f (aC , C) − Vv(aC , s, C)] dC +

√
2VCdBC , a) ∼ N(0, �), (5.30)

with the drift and control functions f, u, v : R3 × [0,)] → R3 , the di�usion coe�cient
V : [0,)] → R+, standard Brownian motion (BC)C∈[0,)] and some target policy ®c0. Again
we denote the marginal density of the forward process as ®cC and the conditional density at
time C given ; as ®cC |; for C, ; ∈ [0,)]. The backward process starts from ®c) = ®c) ∼ N(0, �)
and runs backward in time where we denote its density as ®c .

86

5.6. Flexibility of DIME’s Framework

The respective discretizations using the Euler Maruyama (EM) (Särkkä and Solin, 2019)
method are given by

a=+1 = a= + [5 (a=, =) + Vu(a=, s, =)] X + n=, (5.31)
a=−1 = a= − [5 (a=, =) − Vv(a=, s, =)] X + b=, (5.32)

where n=, b= ∼ N(0, 2VX�), with the constant discretization step size X such that # =) /X
is an integer. We have used the simpli�ed notation where we write a= instead of a=X . The
discretizations admit the joint distributions

®c0:# (a0:# |s) = c0(a0 |B)
#−1∏
==0
®c=+1|= (a=+1

��a=, s), (5.33)

®c0:# (a0:# |s) = ®c# (a# |B)
#∏
==1

®c=−1|= (a=−1��a=, s), (5.34)

with Gaussian kernels

®c=+1|= (a=+1
��a=, s) = N(a=+1 |a= + [f (a=, =) + Vu(a=, s, =)] X, 2VX�), (5.35)

®c=−1|= (a=−1��a=, s) = N(a=−1 |a= − [f (a=, =) − Vv(a=, s, =)] X, 2VX�). (5.36)

Following the same framework presented in Section 5.4 , we can now optimize the controls
u and v using the same objective

L̄(u, v) = �KL
(
®c0:# (a0:# |s) | ®c0:# (a0:# |s)

)
, (5.37)

where the target policy at time step = = 0 is given as

c0(a0 |s) = exp& ®c (s, a0)
Z ®c (s)

. (5.38)

In practice, we optimize the control functions u and v using parameterized neural net-
works.

As a proof of concept, we have run experiments using the general bridge framework
within the maximum entropy objective as suggested in our work. The learning curves
can be seen in Fig. 5.8. While the denoising di�usion policy (DIME) performs better, the
general di�usion policy (GB) is able to learn, showcasing the genral usage of the proposed
framework. Additionally, the results show a potential for exploring di�erent di�usion
model types in the context of reinforcement learning.

87

5. DIME: Di�usion-Based Maximum Entropy Reinforcement Learning

5.7. Conclusion and Future Work

In this work, we introduced DIME, a method for learning di�usion models for maximum
entropy reinforcement learning by leveraging connections to approximate inference. We
view this work as a starting point for exciting future research. Speci�cally, we explored
denoising di�usion models, where the forward process follows an Ornstein-Uhlenbeck
process. However, approximate inference with di�usion models is an active and rapidly
evolving �eld, with numerous recent advancements that consider alternative stochastic
processes. For example, Richter and Berner (2024) proposed learning both the forward and
backward processes, while Nusken et al. (2024) further enhanced exploration by incorpo-
rating the gradient of the target density into the di�usion process. Additionally, Chen et al.
(2025) combined learned di�usion models with Sequential Monte Carlo (Del Moral et al.,
2006), resulting in a highly e�ective inference method. These approaches hold signi�cant
promise for further improving di�usion-based policies in RL. We have conducted already
presented experiments as a proof of concept on the framework from Richter and Berner
(2024) in Section 5.6, demonstrating the potential to further extensions. Finally, we note
that the loss function used in this work (see Eq. 5.25) is based on the Kullback-Leibler
divergence. However, in principle, any divergence could be used. For instance, the log-
variance divergence (Richter and Berner, 2024) has shown promising results in optimizing
di�usion models for approximate inference (Chen et al., 2025; Noble et al., 2024). Explor-
ing alternative objectives could lead to additional performance improvements. Another
interesting future research lies in investigating the e�ects of using more sophisticated
critic structures, such as transformers, as proposed by Li et al. (2025).

88

6. Conclusion

In this thesis, we have proposed methods for learning versatile and diverse skills for
robotics using reinforcement learning (RL). In the following, we summarize the main
contributions of this thesis and conclude with a discussion and an outlook for interesting
future directions.

6.1. Summary

We �rst started by identifying three challenges that occur when learning versatile skills. In
the following, we summarize those challenges.

Challenge 1 (C1). Challenge 1 deals with the representation and training of multimodal
policies. For learning versatile skills, we require multimodal policies that can represent
di�erent modes in the action space and that eventually lead to di�erent behaviors. We pro-
posed using Mixture of Experts (MoE) and di�usion policies as two classes of distributions
that can represent multimodality and are particularly suitable as policy representations.
However, training such policies is not straightforward and requires tailored algorithms.

Challenge 2 (C2). Challenge 2 deals with the problem of retaining multimodalities. This
challenge emerges because some modes are underrepresented in the collected training
data. This underrepresentation arises because those modes are not as progressed as others
in training and can consequently be discarded by the RL algorithm which increases the
likelihood of modes that lead to higher returns. We addressed this challenge by introducing
an automatic curriculum shaping methodology that ensures that each of the experts in an
MoE is guaranteed to become an expert in a speci�c context space.

Challenge 3 (C3). Finally, Challenge 3 deals with the problem of learning policies that can
adapt using highly non-linear mappings. This non-linear adaptation is required not only
for generating the actions by each expert or the di�usion policy but also in the context of
curriculum learning where the context distributions need to be expressive to represent
sharp discontinuities in the context space.

To address these challenges, we have proposed three algorithms that optimize MoE and
di�usion policies and are capable of learning versatile skills.

89

6. Conclusion

In Chapter 3 we have introduced Specializing Versatile Skill Libraries (SVSL). SVSL �rst
introduces an extension with a context distribution for automatic curriculum shaping
of the MoE and augments the episode-based maximum entropy objective for self-paced
learning (Section 2.5). As a second step, SVSL decomposes the objective into per-expert
objectives that allow the optimization of each expert of the MoE policy independently.
The per-expert context distributions are also updated alongside each expert in a higher
hierarchy of this decomposition and allow shaping a per-expert curriculum and therefore
allowing it to become an expert in a local context region. We have shown that the
emerging reward augmentations are essential for learning versatile skills and we have
demonstrated that SVSL is capable of learning versatile skills in complex robotics-simulated
environments, although only linear expert representations with a Gaussian-shaped context
distribution are used. Because of this decomposition and automatic curriculum learning,
SVSL addresses C1 and C2.

Next, we have introduced Acquiring Diverse Skills using Curriculum Reinforcement Learn-
ing with Mixture of Experts (Di-SKilL) (Chapter 4), which builds on SVSL’s objective and
extends its MoE policy with non-linear experts and energy-based representations for
the per-expert context distribution. This representation enhancement requires adapting
the optimization, especially for the per-expert context distribution because energy-based
models (EBM) are not straightforward to train due to their normalization constant. We
proposed sampling a batch of contexts from the environment’s context distribution by sim-
ply resetting the environment without execution. Those samples are used to approximate
the normalization constant of the EBM and for automatic curriculum learning, where the
per-expert distributions put higher probabilities to contexts they favor. Additionally, we
used the trust-region policy gradient approach (Otto et al., 2023) for updating the deep
experts. Thereby, Di-SkilL mainly focuses on C3 but also addresses C1 and C2 by using
the same decomposition as SVSL.

Finally, in Chapter 5 we have introduced Di�usion-Based Maximum Entropy Reinforcement
Learning (DIME), which proposes a tractable lower-bound to the step-based maximum
entropy RL objective for learning a di�usion-based policy. Di�usion models have recently
proven highly powerful models for generating high-dimensional data, while still repre-
senting highly multimodal distributions. Their distinct bene�t over MoE policies is that
they do not need several experts to represent multimodality, but can represent this using a
single model. Additionally, they do not require much hyperparameter tuning and are stable
in training. However, they are not straightforward to apply in the maximum entropy RL
setting because they do not have a tractable marginal entropy. Therefore, DIME proposes
a tractable lower bound to the step-based maximum entropy RL objective. The resulting
algorithm is a hyperparameter-light algorithm that e�ectively trains di�usion policies that
achieve state of the art performance on high-dimensional control tasks. Importantly, it
provides a principled way to control the exploration of the di�usion-based policy. DIME
mainly addresses C1 in the context of di�usion models and C3 due to its inherent non-linear
representation capabilities.

90

6.2. Discussion and Outlook

6.2. Discussion and Outlook

The �rst two algorithms, SVSL and Di-SkilL (Chapters 3 and 4), have shown that training
an MoE policy in the ERL setting leads to discovering versatile skills. While ERL has its
bene�ts in exploration, it is very sample ine�cient, usually requiring much more samples
than SRL counterparts. This is a main drawback of SVSL and Di-SkilL that limits their
application to real-world robotics. Therefore, analyzing their learning capabilities in the
context of o�-policy ERL settings is an interesting future direction. For instance, utilizing
a transformer-based critic in combination with Motion Primitives (MPs) based policy
representation has been proposed by Li et al. (2025) already and has shwon promising
performance. Yet, this approach requires the Markov properties restricting it to Markovian
reward functions. However, it is an interesting future direction to improve the sample
e�ciency of SVSL and Di-SkilL for real-world applications, especially in the context of
�ne-tuning policies.

On the other hand, the on-policy characteristic of SVSL and Di-SkilL makes them also
suitable candidates for sim-to-real transfer, which became very active research in the era
of highly parallelized simulators, where data generation is not a bottleneck anymore (Tan
et al., 2018; Hoeller et al., 2024). So far this has been approached mainly in the SRL setting,
but not in the ERL setting in the context of versatile skill learning setting. Therefore, this
research direction holds the promise to equip robots with versatile skills in simulation
and only �ne-tune them in the real world for minor adjustments. Their highly �exible
structure allows MoE policies to continuously add new skills over a lifetime, making them
a suitable policy representation for continual learning as well. In combination with the
sim-to-real transfer, this could yield a powerful framework for quickly providing robots
with new skills for new situations.

So far we have used a single network for each expert in the MoE policies for both, the
expert distribution and the context distribution in both algorithms SVSL and Di-SkilL.
While this provides the �exible structure mentioned earlier, it could also quickly lead to a
policy with too many experts such that the training becomes limited. Therefore, exploring
new architectures with a common, shared backbone for both the experts and the context
distributions is an important approach that needs to be analyzed. Extending this shared
structure to a more �exible policy representation for example by activating or deactivating
heads of the policy might be a step towards obtaining a compact, but still �exible policy
structure.

Finally, it is an interesting research question on how we can extend SVSL and Di-SkilL
to settings with semantic understanding. An intuitive approach is to use some of the
Vision Language Models (VLMs) that have shown impressive generalization capabilities
in robotics recently (Intelligence et al., 2025), but it is unclear how these models can be
used in these settings.

In contrast to SVSL and Di-SkilL, DIME (Chapter 5) is an o�-policy SRL algorithm that is
highly sample e�cient and can be considered in using real-world robotics applications.
However, so far it is unclear how applicable is DIME, especially because its inference time

91

6. Conclusion

is not analyzed yet. Although we didn’t use too many di�usion steps in the experiments,
the di�usion model can be a bottleneck in the control of tasks that require high-frequency
control. Additionally, although DIME’s training time is much less compared to some
state-of-the-art methods, there is still room for improvement, for scalable real-world
applications.

For instance, we can improve DIME’s training time by considering a di�erent objective for
updating the di�usion model. The current objecive requires backpropagating the gradients
through the whole di�usion process, which is computationally expensive and does not
scale to use cases with many di�usion steps. However, this drawback can be addressed
with objective functions that have been used in the �eld of variational inference. One such
objective is the Log Variance loss (Richter et al., 2020) that allows to generate samples
from any policy distribution other than the current policy, but still estimates the gradient
of the Kullback-Leibler (KL) Divergence as used in DIME. This feature of the objective
would allow DIME to use any samples from a di�erent process and therefore would not
require backpropagating through the whole chain.

During the analysis of DIME’s capabilities to learn versatile skills, we observed that a
target network for the critic is helpful because some of the modes might get lost otherwise.
This is an indicator that we have to adapt DIME to also address challenge C2. While the
target network is a �rst step towards this �x, it also restricts the algorithm as shown by
Bhatt et al. (2024) and slows down the training. One solution for this is to use a mixture
model for the initial noise distribution, where each mode is responsible for a mode of the
target distribution, similar as done by Blessing et al. (2025b) in the context of variational
inference. However, another interesting approach to this problem lies in using restricted
updates to the Q-distribution. DIME leverages a distributional critic and that opens various
options such as KL-regularized updates of the Q-function. In the context of this critic,
we could take inspiration from the automatic curriculum learning approach of SVSL and
Di-SkilL, but from the view of numerical continuation methods (Allgower and Georg,
1990) and start by optimizing a smoothed version of the critic and then gradually increase
the sharpness of the critic’s distribution, thereby ensuring to retain the modes.
Finally, extending DIME to �ne-tuning pre-trained models is a promising future direction
in RL in the era of large models and big data.

It remains an open question how RL in general will develop in the future and how we can
enable the developed methods to equip robots with versatile skills. This thesis aims to
provide a �rst step towards this goal.

92

Bibliography

A. Abdolmaleki, R. Lioutikov, N. Lua, L. Paulo Reis, J. Peters, and G. Neumann. Model-based
relative entropy stochastic search. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), pages 153–154, 2015.

A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller.
Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018.

A. Abdolmaleki, D. Simões, N. Lau, L. P. Reis, and G. Neumann. Contextual direct policy
search. Journal of Intelligent & Robotic Systems, 96(2):141–157, 2019.

F. V. Agakov and D. Barber. An auxiliary variational method. In Neural Information
Processing: 11th International Conference, ICONIP 2004, Calcutta, India, November 22-25,
2004. Proceedings 11, pages 561–566. Springer, 2004.

R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare. Deep reinforce-
ment learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

T. Akhound-Sadegh, J. Rector-Brooks, A. J. Bose, S. Mittal, P. Lemos, C.-H. Liu, M. Sendera,
S. Ravanbakhsh, G. Gidel, Y. Bengio, et al. Iterated denoising energy matching for
sampling from boltzmann densities. arXiv preprint arXiv:2402.06121, 2024.

R. Akrour, D. Tateo, and J. Peters. Continuous action reinforcement learning from a
mixture of interpretable experts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(10):6795–6806, 2021.

E. L. Allgower and K. Georg. Numerical Continuation Methods: An Introduction, volume 13
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, Heidelberg,
1990. doi: 10.1007/978-3-642-61257-2.

B. D. Anderson. Reverse-time di�usion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

O. Arenz, G. Neumann, and M. Zhong. E�cient gradient-free variational inference using
policy search. In International conference on machine learning, pages 234–243. PMLR,
2018.

O. Arenz, M. Zhong, and G. Neumann. Trust-region variational inference with gaussian
mixture models. Journal of Machine Learning Research, 21(163):1–60, 2020.

93

Bibliography

P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the
AAAI Conference on Arti�cial Intelligence, volume 31, 2017.

S. Bahl, M. Mukadam, A. Gupta, and D. Pathak. Neural dynamic policies for end-to-end
sensorimotor learning. Advances in Neural Information Processing Systems, 33:5058–5069,
2020.

P. Becker, O. Arenz, and G. Neumann. Expected information maximization: Using the
i-projection for mixture density estimation. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=ByglLlHFDS.

M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pages 449–458. PMLR, 2017.

R. Bellman. A markovian decision process. Journal of mathematics and mechanics, pages
679–684, 1957.

R. Bellman. Dynamic programming. science, 153(3731):34–37, 1966.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings
of the 26th annual international conference on machine learning, pages 41–48, 2009.

J. Berner, L. Richter, and K. Ullrich. An optimal control perspective on di�usion-based
generative modeling. Transactions on Machine Learning Research, 2024.

A. Bhatt, D. Palenicek, B. Belousov, M. Argus, A. Amiranashvili, T. Brox, and J. Peters.
Crossq: Batch normalization in deep reinforcement learning for greater sample e�ciency
and simplicity. In The Twelfth International Conference on Learning Representations, 2024.

C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

D. Blessing, O. Celik, X. Jia, M. Reuss, M. X. Li, R. Lioutikov, and G. Neumann. Information
maximizing curriculum: A curriculum-based approach for learning versatile skills. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

D. Blessing, X. Jia, J. Esslinger, F. Vargas, and G. Neumann. Beyond elbos: A large-scale
evaluation of variational methods for sampling. In Forty-�rst International Conference
on Machine Learning, 2024.

D. Blessing, J. Berner, L. Richter, and G. Neumann. Underdamped di�usion bridges
with applications to sampling. In The Thirteenth International Conference on Learning
Representations, 2025a.

D. Blessing, X. Jia, and G. Neumann. End-to-end learning of gaussian mixture priors for
di�usion sampler. In The Thirteenth International Conference on Learning Representations,
2025b. URL https://openreview.net/forum?id=iXbUquaWbl.

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

94

https://openreview.net/forum?id=ByglLlHFDS
https://openreview.net/forum?id=iXbUquaWbl

Bibliography

D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf, and J. Peters. Learning to play
table tennis from scratch using muscular robots. IEEE Transactions on Robotics, 38(6):
3850–3860, 2022.

V. Caggiano, H. Wang, G. Durandau, M. Sartori, and V. Kumar. Myosuite – a
contact-rich simulation suite for musculoskeletal motor control, 2022. arXiv preprint
arXiv:2205.00588.

V. Campos, A. Trott, C. Xiong, R. Socher, X. Giró-i Nieto, and J. Torres. Explore, discover
and learn: Unsupervised discovery of state-covering skills. In International Conference
on Machine Learning, pages 1317–1327. PMLR, 2020.

O. Celik, D. Zhou, G. Li, P. Becker, and G. Neumann. Specializing versatile skill libraries
using local mixture of experts. In Conference on Robot Learning, pages 1423–1433. PMLR,
2021.

H. Chen, C. Lu, C. Ying, H. Su, and J. Zhu. O�ine reinforcement learning via high-�delity
generative behavior modeling. In The Eleventh International Conference on Learning
Representations, 2023.

J. Chen, L. Richter, J. Berner, D. Blessing, G. Neumann, and A. Anandkumar. Sequential
controlled langevin di�usions. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=dImD2sgy86.

C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burch�el, and S. Song. Di�usion policy:
Visuomotor policy learning via action di�usion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.

A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like animals. Nature,
521(7553):503–507, 2015.

P. Dai Pra. A stochastic control approach to reciprocal di�usion processes. Applied
mathematics and Optimization, 23(1):313–329, 1991.

C. Daniel, G. Neumann, and J. Peters. Hierarchical relative entropy policy search. In
Arti�cial Intelligence and Statistics, pages 273–281. PMLR, 2012.

M. P. Deisenroth, G. Neumann, J. Peters, et al. A survey on policy search for robotics.
Foundations and trends in Robotics, 2(1-2):388–403, 2013.

P. Del Moral, A. Doucet, and A. Jasra. Sequential monte carlo samplers. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39
(1):1–22, 1977.

M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell, A. Critch, and S. Levine. Emergent
complexity and zero-shot transfer via unsupervised environment design. Advances in
neural information processing systems, 33:13049–13061, 2020.

95

https://openreview.net/forum?id=dImD2sgy86

Bibliography

S. Ding, K. Hu, Z. Zhang, K. Ren, W. Zhang, J. Yu, J. Wang, and Y. Shi. Di�usion-based
reinforcement learning via q-weighted variational policy optimization. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024.

Z. Ding and C. Jin. Consistency models as a rich and e�cient policy class for reinforcement
learning. In The Twelfth International Conference on Learning Representations, 2024.

A. Doucet, W. Grathwohl, A. G. Matthews, and H. Strathmann. Score-based di�usion meets
annealed importance sampling. Advances in Neural Information Processing Systems, 35:
21482–21494, 2022.

F. End, R. Akrour, J. Peters, and G. Neumann. Layered direct policy search for learning
hierarchical skills. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 6442–6448. IEEE, 2017.

L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry.
Implementation matters in deep policy gradients: A case study on ppo and trpo. In
International Conference on Learning Representations, 2020.

B. Eysenbach and S. Levine. Maximum entropy rl (provably) solves some robust rl problems.
In International Conference on Learning Representations, 2022.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. In International Conference on Learning Representations, 2019.

B. Eysenbach, R. Salakhutdinov, and S. Levine. The information geometry of unsupervised
reinforcement learning. In International Conference on Learning Representations, 2021.

M. Faldor, F. Chalumeau, M. Flageat, and A. Cully. Map-elites with descriptor-conditioned
gradients and archive distillation into a single policy. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 138–146, 2023a.

M. Faldor, F. Chalumeau, M. Flageat, and A. Cully. Synergizing quality-diversity with
descriptor-conditioned reinforcement learning. arXiv preprint arXiv:2401.08632, 2023b.

L. Fang, R. Liu, J. Zhang, W. Wang, and B. Jing. Di�usion actor-critic: Formulating
constrained policy iteration as di�usion noise regression for o�ine reinforcement
learning. In The Thirteenth International Conference on Learning Representations, 2025.

P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee,
I. Mordatch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot
Learning, pages 158–168. PMLR, 2022.

C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel. Reverse curriculum genera-
tion for reinforcement learning. In Conference on robot learning, pages 482–495. PMLR,
2017.

C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement
learning agents. In International conference on machine learning, pages 1515–1528. PMLR,
2018.

96

Bibliography

S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in
actor–critic methods. In J. G. Dy and A. Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML 2018), volume 80 of Proceedings of Machine
Learning Research, pages 1582–1591, Stockholm, Sweden, 2018. PMLR.

T. Ge�ner and J. Domke. Langevin di�usion variational inference. In International
Conference on Arti�cial Intelligence and Statistics, pages 576–593. PMLR, 2023.

D. Ghosh, A. Singh, A. Rajeswaran, V. Kumar, and S. Levine. Divide-and-conquer rein-
forcement learning. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=rJwelMbR-.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-
based policies. In International conference on machine learning, pages 1352–1361. PMLR,
2017.

T. Haarnoja, K. Hartikainen, P. Abbeel, and S. Levine. Latent space policies for hierarchical
reinforcement learning. In International Conference on Machine Learning, pages 1851–
1860. PMLR, 2018a.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: O�-policy maximum
entropy deep reinforcement learning with a stochastic actor. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 1861–1870. PMLR, 10–15 Jul 2018b.
URL http://proceedings.mlr.press/v80/haarnoja18b.html.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905, 2018c.

K. Hansel, J. Urain, J. Peters, and G. Chalvatzaki. Hierarchical policy blending as infer-
ence for reactive robot control. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 10181–10188. IEEE, 2023.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195, 2001.

P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and S. Levine. Idql: Implicit q-
learning as an actor-critic method with di�usion policies. arXiv preprint arXiv:2304.10573,
2023.

U. G. Haussmann and E. Pardoux. Time reversal of di�usions. The Annals of Probability,
pages 1188–1205, 1986.

A. Hendawy, J. Peters, and C. D’Eramo. Multi-task reinforcement learning with mixture of
orthogonal experts. In The Twelfth International Conference on Learning Representations,
2024.

M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,
B. Piot, M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement
learning. In Proceedings of the AAAI conference on arti�cial intelligence, volume 32, 2018.

97

https://openreview.net/forum?id=rJwelMbR-
http://proceedings.mlr.press/v80/haarnoja18b.html

Bibliography

J. Ho, A. Jain, and P. Abbeel. Denoising di�usion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

D. Hoeller, N. Rudin, D. Sako, and M. Hutter. Anymal parkour: Learning agile navigation
for quadrupedal robots. Science Robotics, 9(88):eadi7566, 2024.

J. Huang, Y. Jiao, L. Kang, X. Liao, J. Liu, and Y. Liu. Schrödinger-föllmer sampler: sampling
without ergodicity. arXiv preprint arXiv:2106.10880, 1, 2021.

Z. Huang, L. Liang, Z. Ling, X. Li, C. Gan, and H. Su. Reparameterized policy learning for
multimodal trajectory optimization. ICML, 2023.

A. Hyvärinen and P. Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

C. Igel. Neuroevolution for reinforcement learning using evolution strategies. In The 2003
Congress on Evolutionary Computation, 2003. CEC’03., volume 4, pages 2588–2595. IEEE,
2003.

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor
primitives. Technical report, 2002.

A. J. Ijspeert, J. Nakanishi, H. Ho�mann, P. Pastor, and S. Schaal. Dynamical movement
primitives: learning attractor models for motor behaviors. Neural computation, 25(2):
328–373, 2013.

P. Intelligence, K. Black, N. Brown, J. Darpinian, K. Dhabalia, D. Driess, A. Esmail, M. Equi,
C. Finn, N. Fusai, M. Y. Galliker, D. Ghosh, L. Groom, K. Hausman, B. Ichter, S. Jakubczak,
T. Jones, L. Ke, D. LeBlanc, S. Levine, A. Li-Bell, M. Mothukuri, S. Nair, K. Pertsch, A. Z.
Ren, L. X. Shi, L. Smith, J. T. Springenberg, K. Stachowicz, J. Tanner, Q. Vuong, H. Walke,
A. Walling, H. Wang, L. Yu, and U. Zhilinsky. c0.5: a vision-language-action model with
open-world generalization, 2025.

H. Ishfaq, G. Wang, S. N. Islam, and D. Precup. Langevin soft actor-critic: E�cient
exploration through uncertainty-driven critic learning. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?

id=FvQsk3la17.

M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with di�usion for �exible behavior
synthesis. In International Conference on Machine Learning, pages 9902–9915. PMLR,
2022.

X. Jia, D. Blessing, X. Jiang, M. Reuss, A. Donat, R. Lioutikov, and G. Neumann. Towards
diverse behaviors: A benchmark for imitation learning with human demonstrations. In
The Twelfth International Conference on Learning Representations, 2024.

M. Jiang, M. Dennis, J. Parker-Holder, J. Foerster, E. Grefenstette, and T. Rocktäschel.
Replay-guided adversarial environment design. Advances in Neural Information Process-
ing Systems, 34:1884–1897, 2021a.

98

https://openreview.net/forum?id=FvQsk3la17
https://openreview.net/forum?id=FvQsk3la17

Bibliography

M. Jiang, E. Grefenstette, and T. Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pages 4940–4950. PMLR, 2021b.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially
observable stochastic domains. Arti�cial intelligence, 101(1-2):99–134, 1998.

S. M. Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

B. Kang, X. Ma, C. Du, T. Pang, and S. Yan. E�cient di�usion policies for o�ine reinforce-
ment learning. Advances in Neural Information Processing Systems, 36, 2023.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved
quality, stability, and variation. In International Conference on Learning Representations,
2018.

T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the design space of di�usion-based
generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

L. Keller, D. Tanneberg, S. Stark, and J. Peters. Model-based quality-diversity search for
e�cient robot learning. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 9675–9680. IEEE, 2020.

D. P. Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

P. Klink, H. Abdulsamad, B. Belousov, and J. Peters. Self-paced contextual reinforcement
learning. In Conference on Robot Learning, pages 513–529. PMLR, 2020a.

P. Klink, C. D' Eramo, J. R. Peters, and J. Pajarinen. Self-paced deep reinforcement learning.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 9216–9227. Curran Associates,
Inc., 2020b.

P. Klink, C. D’Eramo, J. Peters, and J. Pajarinen. Boosted curriculum reinforcement learning.
In International Conference on Learning Representations, 2022a.

P. Klink, H. Yang, C. D’Eramo, J. Peters, and J. Pajarinen. Curriculum reinforcement
learning via constrained optimal transport. In International Conference on Machine
Learning, pages 11341–11358. PMLR, 2022b.

P. Klink, C. D’Eramo, J. Peters, and J. Pajarinen. On the bene�t of optimal transport for
curriculum reinforcement learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–15, 2024. doi: 10.1109/TPAMI.2024.3390051.

A. H. Klopf. Brain function and adaptive systems: a heterostatic theory. Air Force Cambridge
Research Laboratories, Air Force Systems Command, United . . . , 1972.

A. H. Klopf. A comparison of natural and arti�cial intelligence. ACM SIGART Bulletin,
pages 11–13, 1975.

99

Bibliography

J. Kober and J. Peters. Policy search for motor primitives in robotics. In Learning Motor
Skills, pages 83–117. Springer, 2014.

J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

S. Kullback and R. A. Leibler. On information and su�ciency. The annals of mathematical
statistics, 22(1):79–86, 1951.

S. Kumar, A. Kumar, S. Levine, and C. Finn. One solution is not all you need: Few-shot
extrapolation via structured maxent rl. arXiv preprint arXiv:2010.14484, 2020.

A. Kupcsik, M. Deisenroth, J. Peters, and G. Neumann. Data-e�cient generalization of
robot skills with contextual policy search. In Proceedings of the AAAI conference on
arti�cial intelligence, volume 27, 2013.

S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pages 45–73. Springer, 2012.

M. Laskin, D. Yarats, H. Liu, K. Lee, A. Zhan, K. Lu, C. Cang, L. Pinto, and P. Abbeel.
Urlb: Unsupervised reinforcement learning benchmark. In J. Vanschoren and S. Yeung,
editors, Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks, volume 1. Curran, 2021.

A. T. Le, K. Hansel, J. Peters, and G. Chalvatzaki. Hierarchical policy blending as optimal
transport. In Learning for Dynamics and Control Conference, pages 797–812. PMLR, 2023.

L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov. E�cient
exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and
review. arXiv preprint arXiv:1805.00909, 2018.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor
policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

S. Levine, A. Kumar, G. Tucker, and J. Fu. O�ine reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

G. Li, Z. Jin, M. Volpp, F. Otto, R. Lioutikov, and G. Neumann. Prodmp: A uni�ed perspective
on dynamic and probabilistic movement primitives. IEEE Robotics and Automation Letters,
8(4):2325–2332, 2023.

G. Li, H. Zhou, D. Roth, S. Thilges, F. Otto, R. Lioutikov, and G. Neumann. Open the
black box: Step-based policy updates for temporally-correlated episodic reinforcement
learning. In The Twelfth International Conference on Learning Representations, 2024a.

G. Li, D. Tian, H. Zhou, X. Jiang, R. Lioutikov, and G. Neumann. TOP-ERL: Transformer-
based o�-policy episodic reinforcement learning. In The Thirteenth International Con-
ference on Learning Representations, 2025. URL https://openreview.net/forum?id=

N4NhVN30ph.

100

https://openreview.net/forum?id=N4NhVN30ph
https://openreview.net/forum?id=N4NhVN30ph

Bibliography

Z. Li, R. Krohn, T. Chen, A. Ajay, P. Agrawal, and G. Chalvatzaki. Learning multimodal
behaviors from scratch with di�usion policy gradient. arXiv preprint arXiv:2406.00681,
2024b.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In Proceedings of the 4th Interna-
tional Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico, May
2–4, 2016, 2016.

H. Liu and P. Abbeel. Aps: Active pretraining with successor features. In M. Meila and
T. Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 6736–6747. PMLR, 18–24
Jul 2021.

W. Lotter, G. Sorensen, and D. Cox. A multi-scale cnn and curriculum learning strategy
for mammogram classi�cation. In International Workshop on Deep Learning in Medical
Image Analysis, pages 169–177. Springer, 2017.

C. Lu, H. Chen, J. Chen, H. Su, C. Li, and J. Zhu. Contrastive energy prediction for exact
energy-guided di�usion sampling in o�ine reinforcement learning. In International
Conference on Machine Learning, pages 22825–22855. PMLR, 2023.

L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep generative
models. In International conference on machine learning, pages 1445–1453. PMLR, 2016.

S. Mannor, R. Y. Rubinstein, and Y. Gat. The cross entropy method for fast policy search.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
512–519, 2003.

L. Mao, H. Xu, X. Zhan, W. Zhang, and A. Zhang. Di�usion-dice: In-sample di�usion
guidance for o�ine reinforcement learning. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

S. Messaoud, B. Mokeddem, Z. Xue, L. Pang, B. An, H. Chen, and S. Chawla. S 2 ac: Energy-
based reinforcement learning with stein soft actor critic. In The Twelfth International
Conference on Learning Representations, 2024.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. nature, 518(7540):529–533, 2015.

P. Morerio, J. Cavazza, R. Volpi, R. Vidal, and V. Murino. Curriculum dropout. In Proceedings
of the IEEE international conference on computer vision, pages 3544–3552, 2017.

K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

M. Nauman and M. Cygan. On the theory of risk-aware agents: Bridging actor-critic and
economics. In ICML 2024 Workshop: Aligning Reinforcement Learning Experimentalists
and Theorists, 2023.

101

Bibliography

M. Nauman, M. Ostaszewski, K. Jankowski, P. Miłoś, and M. Cygan. Bigger, regularized,
optimistic: scaling for compute and sample e�cient continuous control. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024.

E. Nelson. Dynamical theories of Brownian motion, volume 101. Princeton university press,
2020.

G. Neu, A. Jonsson, and V. Gómez. A uni�ed view of entropy-regularized markov decision
processes. arXiv preprint arXiv:1705.07798, 2017.

G. Neumann et al. Variational inference for policy search in changing situations. In
Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pages
817–824, 2011.

E. Nikishin, M. Schwarzer, P. D’Oro, P.-L. Bacon, and A. Courville. The primacy bias in
deep reinforcement learning. In International conference on machine learning, pages
16828–16847. PMLR, 2022.

O. Nilsson and A. Cully. Policy gradient assisted map-elites. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 866–875, 2021.

M. Noble, L. Grenioux, M. Gabrié, and A. O. Durmus. Learned reference-based di�usion
sampling for multi-modal distributions. arXiv preprint arXiv:2410.19449, 2024.

N. Nusken, F. Vargas, S. Padhy, and D. Blessing. Transport meets variational inference:
Controlled monte carlo di�usions. In The Twelfth International Conference on Learning
Representations: ICLR 2024, 2024.

T. Osa, V. Tangkaratt, and M. Sugiyama. Discovering diverse solutions in deep reinforce-
ment learning. arXiv preprint arXiv:2103.07084, 2021.

F. Otto, P. Becker, N. A. Vien, H. C. Ziesche, and G. Neumann. Di�erentiable trust region
layers for deep reinforcement learning. arXiv preprint arXiv:2101.09207, 2021.

F. Otto, O. Celik, H. Zhou, H. Ziesche, V. A. Ngo, and G. Neumann. Deep black-box
reinforcement learning with movement primitives. In Conference on Robot Learning,
pages 1244–1265. PMLR, 2023.

G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan.
Normalizing �ows for probabilistic modeling and inference. The Journal of Machine
Learning Research, 22(1):2617–2680, 2021.

A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann. Probabilistic movement primitives.
Advances in neural information processing systems, 26:2616–2624, 2013.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21:682–697, 2008.

J. Peters, K. Mulling, and Y. Altun. Relative entropy policy search. In Proceedings of the
AAAI Conference on Arti�cial Intelligence, volume 24, 2010.

102

Bibliography

M. Psenka, A. Escontrela, P. Abbeel, and Y. Ma. Learning a di�usion model policy from
rewards via q-score matching. In Forty-�rst International Conference onMachine Learning,
2024.

S. Racaniere, A. Lampinen, A. Santoro, D. Reichert, V. Firoiu, and T. Lillicrap. Automated
curriculum generation through setter-solver interactions. In International Conference on
Learning Representations, 2020.

A. Ra�n, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable baselines3.
https://github.com/DLR-RM/stable-baselines3, 2019.

A. Ra�n, J. Kober, and F. Stulp. Smooth exploration for robotic reinforcement learning. In
Conference on robot learning, pages 1634–1644. PMLR, 2022.

R. Ranganath, D. Tran, and D. Blei. Hierarchical variational models. In International
Conference on Machine Learning, pages 324–333. PMLR, 2016.

K. Rawlik, M. Toussaint, and S. Vijayakumar. On stochastic optimal control and reinforce-
ment learning by approximate inference. Proceedings of Robotics: Science and Systems
VIII, 2012.

J. Ren, Y. Li, Z. Ding, W. Pan, and H. Dong. Probabilistic mixture-of-experts for e�cient
deep reinforcement learning. arXiv preprint arXiv:2104.09122, 2021.

M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal conditioned imitation learning using
score-based di�usion policies. In Robotics: Science and Systems, 2023.

L. Richter and J. Berner. Improved sampling via learned di�usions. In The Twelfth
International Conference on Learning Representations, 2024.

L. Richter, A. Boustati, N. Nüsken, F. Ruiz, and O. D. Akyildiz. Vargrad: a low-variance
gradient estimator for variational inference. Advances in Neural Information Processing
Systems, 33:13481–13492, 2020.

M. Riemer, M. Liu, and G. Tesauro. Learning abstract options. arXiv preprint
arXiv:1810.11583, 2018.

G. A. Rummery and M. Niranjan. On-line q-learning using connectionist systems. Techni-
cal Report CUED/F-INFENG/TR 166, Cambridge University Engineering Department,
Cambridge, UK, 1994. Introduces the algorithm later known as SARSA.

T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

N. Sara�anos, T. Giannakopoulos, C. Nikou, and I. A. Kakadiaris. Curriculum learning
for multi-task classi�cation of visual attributes. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages 2608–2615, 2017.

S. Särkkä and A. Solin. Applied stochastic di�erential equations, volume 10. Cambridge
University Press, 2019.

103

https://github.com/DLR-RM/stable-baselines3

Bibliography

S. Schaal. Dynamic movement primitives-a framework for motor control in humans
and humanoid robotics. In Adaptive motion of animals and machines, pages 261–280.
Springer, 2006.

S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement primitives. In Robotics
research. the eleventh international symposium, pages 561–572. Springer, 2005.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International conference on machine learning, pages 1889–1897. PMLR, 2015.

J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. In Proceedings of the 4th International
Conference on Learning Representations (ICLR), 2016.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimiza-
tion algorithms, 2017.

F. Sehnke, C. Osendorfer, T. Rückstiess, A. Graves, J. Peters, and J. Schmidhuber. Parameter-
exploring policy gradients. Neural Networks, 21(4):551–559, May 2010. doi: 10.1016/j.
neunet.2009.12.004.

N. M. Sha�ullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning
: modes with one stone. Advances in neural information processing systems, 35:22955–
22968, 2022.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. In International conference on machine learning, pages 387–395.
Pmlr, 2014.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with
deep neural networks and tree search. nature, 529(7587):484–489, 2016.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

S. Sinha, A. Garg, and H. Larochelle. Curriculum by smoothing. Advances in Neural
Information Processing Systems, 33:21653–21664, 2020.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based gen-
erative modeling through stochastic di�erential equations. In International Conference
on Learning Representations, 2021.

S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus. Intrinsic motivation
and automatic curricula via asymmetric self-play. In International Conference on Learning
Representations, 2018.

104

Bibliography

R. S. Sutton. Learning to predict by the methods of temporal di�erences. Machine learning,
3:9–44, 1988.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. Advances in neural information processing
systems, 12, 1999a.

R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Arti�cial intelligence, 112(1-2):181–211,
1999b.

J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke.
Sim-to-real: Learning agile locomotion for quadruped robots. In Proceedings of Robotics:
Science and Systems (RSS), 2018.

V. Tangkaratt, H. van Hoof, S. Parisi, G. Neumann, J. Peters, and M. Sugiyama. Policy
search with high-dimensional context variables. In Proceedings of the AAAI Conference
on Arti�cial Intelligence, volume 31, 2017.

S. Tao, A. Shukla, T.-k. Chan, and H. Su. Reverse forward curriculum learning for extreme
sample and demonstration e�ciency in rl. 2024.

E. Todorov. General duality between optimal control and estimation. In 2008 47th IEEE
conference on decision and control, pages 4286–4292. IEEE, 2008.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

S. Tosatto, G. Chalvatzaki, and J. Peters. Contextual latent-movements o�-policy optimiza-
tion for robotic manipulation skills. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 10815–10821. IEEE, 2021.

M. Toussaint. Robot trajectory optimization using approximate inference. In Proceedings
of the 26th annual international conference on machine learning, pages 1049–1056, 2009.

D. Tran, R. Ranganath, and D. M. Blei. The variational gaussian process. arXiv preprint
arXiv:1511.06499, 2015.

S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,
N. Heess, and Y. Tassa. dm_control: Software and tasks for continuous control. Software
Impacts, 6:100022, 2020. ISSN 2665-9638.

B. Tzen and M. Raginsky. Theoretical guarantees for sampling and inference in generative
models with latent di�usions. In Conference on Learning Theory, pages 3084–3114. PMLR,
2019.

H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on arti�cial intelligence, volume 30, 2016.

105

Bibliography

F. Vargas, A. Ovsianas, D. Fernandes, M. Girolami, N. D. Lawrence, and N. Nüsken. Bayesian
learning via neural schrödinger–föllmer �ows. Statistics and Computing, 33(1):3, 2023.

F. Vargas, W. S. Grathwohl, and A. Doucet. Denoising di�usion samplers. In The Eleventh
International Conference on Learning Representations, 2024.

P. Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

D. Wang and Q. Liu. Learning to draw samples: With application to amortized mle for
generative adversarial learning. arXiv preprint arXiv:1611.01722, 2016.

Y. Wang, L. Wang, Y. Jiang, W. Zou, T. Liu, X. Song, W. Wang, L. Xiao, J. WU, J. Duan,
and S. E. Li. Di�usion actor-critic with entropy regulator. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.

net/forum?id=l0c1j4QvTq.

Z. Wang, J. J. Hunt, and M. Zhou. Di�usion policies as an expressive policy class for o�ine
reinforcement learning. International Conference on Learning Representations, 2023.

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8:279–292, 1992.

C. J. C. H. Watkins. Learning from delayed rewards. 1989.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688. Citeseer, 2011.

D. Whitley, S. Dominic, R. Das, and C. W. Anderson. Genetic reinforcement learning for
neurocontrol problems. Machine Learning, 13:259–284, 1993.

D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. Natural
evolution strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3–4):229–256, 1992. doi: 10.1007/BF00992696.

J. Wöhlke, F. Schmitt, and H. van Hoof. A performance-based start state curriculum
framework for reinforcement learning. In Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems, pages 1503–1511, 2020.

L. Yang, Z. Huang, F. h. Lei, Y. Zhong, Y. Yang, C. Fang, S. Wen, B. Zhou, and Z. Lin. Policy
representation via di�usion probability model for reinforcement learning. arXiv preprint
arXiv:2305.13122, 2023.

Y. Yang, T. Zhou, Q. He, L. Han, M. Pechenizkiy, and M. Fang. Task adaptation from skills:
Information geometry, disentanglement, and new objectives for unsupervised reinforce-
ment learning. In The Twelfth International Conference on Learning Representations,
2024.

106

https://openreview.net/forum?id=l0c1j4QvTq
https://openreview.net/forum?id=l0c1j4QvTq

Bibliography

D. Zhang, R. T. Chen, C.-H. Liu, A. Courville, and Y. Bengio. Di�usion generative �ow
samplers: Improving learning signals through partial trajectory optimization. arXiv
preprint arXiv:2310.02679, 2023.

Q. Zhang and Y. Chen. Path integral sampler: a stochastic control approach for sampling.
arXiv preprint arXiv:2111.15141, 2021.

Y. Zhang, P. Abbeel, and L. Pinto. Automatic curriculum learning through value disagree-
ment. Advances in Neural Information Processing Systems, 33:7648–7659, 2020.

H. Zhou, D. Blessing, G. Li, O. Celik, X. Jia, G. Neumann, and R. Lioutikov. Variational
distillation of di�usion policies into mixture of experts. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.

net/forum?id=iiYadgKHwo.

B. D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

107

https://openreview.net/forum?id=iiYadgKHwo
https://openreview.net/forum?id=iiYadgKHwo

A. Appendix for Chapter 3

A.1. Derivations

In the following we derive our objectives from Section 3.3.

A.1.1. Maximum Entropy Skill Learning with Curriculum

We start our derivation from the KL-regularized maximum entropy objective

max
c (c,))

Ec (c)
[
Ec () |c) [R(c,))] + UH [c () |c)]

]
− VKL (c (c) ‖ ? (c)) . (A.1)

We use following identities

c () |c) =
∑
>

c (c|>)c (>)
c (c) c () |c, >),

logc () |c) = log c () |c, >)c (> |c)
c (> |c,)) ,

c (c) =
∑
>

c (c|>)c (>),

logc (c) = log c (c|>)c (>)
c (> |c)

and insert them into our objective in Eq. A.1, which leads to

! =
∑
>

c (>)Ec (c|>)
[
Ec () |c,>) [R(c,)) − U logc () |c, >) − U logc (> |c) + U logc (> |c,))]

]
+

∑
>

c (>)Ec (c|>) [−V logc (c|>) + V logc (> |c) − V logc (>)] . (A.2)

Note that we have dropped the log? (c) term since we assume ? (c) to be uniformly
distributed in a given interval.
By further rearranging the terms we can reformulate this objective as

! =
∑
>

c (>)Ec (c|>)
[
Ec () |c,>) [R(c,)) − U logc () |c, >) + U logc (> |c,))]

]
(A.3)

+
∑
>

c (>)Ec (c|>) [−V logc (c|>) + (V − U) logc (> |c) − V logc (>)] .

109

A. Appendix for Chapter 3

As stated in the paper, we can not optimize this objective. Therefore we introduce the
auxiliary distributions c̃ (> |c,)) and c̃ (> |c) as

! =
∑
>

c (>)Ec (c|>)
[
Ec () |c,>) [R(c,)) − U logc () |c, >) + U logc (> |c,)) + U log c̃ (> |c,))

−U log c̃ (> |c,))]] +
∑
>

c (>)Ec (c|>) [−V logc (c|>) − V logc (>) + (V − U) logc (> |c)

+(V − U) log c̃ (> |c) − (V − U)c̃ (> |c)] .

We can rearrange the terms further to

! =
∑
>

c (>)Ec (c|>)
[
Ec () |c,>) [R(c,)) + U log c̃ (> |c,))] + (V − U) log c̃ (> |c)

]
+ UEc (>),c () |c,>) [H (c () |c, >))] + VEc (>) [H (c (c|>))] + VH (c (>))
+ UEc (c),c () |c) [KL (c (> |c,)) | |c̃ (> |c,)))] + (V − U)Ec (c) [KL (c (> |c) | |c̃ (> |c))] . (A.4)

A.1.2. Lower-Bound Decomposition for Expert Distributions

By observing that not all terms depend on c () |c, >), we extract only the important ones
from the objective in Eq. A.4 as

!̃2 =
∑
>

c (>)Ec (c|>)
[
Ec () |c,>) [R(c,)) + U log c̃ (> |c,))]

]
+ UEc (>),c () |c,>) [H (c () |c, >))]

+ UEc (c),c () |c) [KL (c (> |c,)) | |c̃ (> |c,)))] .

Since the KL is always positive, we can write the lower bound to this objective as

!2 =
∑
>

c (>)Ec (c|>)
[
Ec () |c,>) [R(c,)) + U log c̃ (> |c,))]

]
+ UEc (>),c () |c,>) [H (c () |c, >))] ,

such that !̃2 ≥ !2 always holds. After maximizing !2 w.r.t. c () |c, >) we tighten the lower
bound by updating the responsibilities as described in the paper.

A.1.3. Lower Bound Decomposition for Per-Expert Context Distributions

By neglecting all terms which do not depend on c (c|>) in objective (A.4), we can write
the objective for optimizing w.r.t. c (c|>) as

!̃: =
∑
>

c (>)Ec (c|>) [!2 (>, c) + (V − U) log c̃ (> |c)] + VEc (>) [H (c (c|>))]

+ (V − U)Ec (c) [KL (c (> |c) | |c̃ (> |c))] ,

where

!2 (>, c) =Ec () |c,>) [R(c,)) + U log c̃ (> |c,))] + UH(c () |c, >)) .

110

A.1. Derivations

Again we can observe that the KL term is always positive and we can write the lower
bound to !̃: as

!2,: =
∑
>

c (>)Ec (c|>) [!2 (>, s) + (V − U) log c̃ (> |c)] + VEc (>) [H (c (c|>))] ,

such that !̃: ≥ !2,: holds. By setting the auxillary distributions to the responsibilities of
the updated model, we tighten the bound.

A.1.4. Lower Bound Decomposition for Prior Weights

Finally we can write down the objective for updating the prior weights c (>) as

!? =
∑
>

!2,: (>) + VH (c (>)) , (A.5)

where

!2,: (>) =c (>)Ec (c|>) [!2 (>, s) + (V − U) log c̃ (> |c)] + VH (c (c|>)) .

Some context regions naturally lead to low reward due to for example high action regular-
izations. Still, these context regions should be discovered, even if the auxiliary rewards
c̃ (> |c) are not su�cient. For this purpose, we calculate a value function, which reveals
the mean reward in a context. If solely one expert covers this context region, it will get a
high value for updating its weight c (>), although the task reward might be bad compared
to other experts in other regions. We use importance sampling, to calculate the Value
function

+ (c) =
∑
>

c (> |c)
ĉ (> |c)

∫
)
c () |c, >)R(c,))3) , (A.6)

where ĉ (> |c) are the gating probabilities before starting to update the weights c (>) at the
end of our algorithm (see Algorithm 1). We completely resample the small replay bu�er
for all experts before starting to update c (>). We use the Nadaraya Watson predictor to
get + (c). Thus, the update rule for c (>) is given by

!? =
∑
>

!2,: (>) −+ (c) + VH (c (>)) . (A.7)

111

A. Appendix for Chapter 3

A.2. Algorithmic Details

We describe algorithmic details in the algorithm box 1. We start with one expert, which is
randomly added and incrementally add experts after training the lastly added expert for
iterations. We update the expert and context distributions individually. Note that there is
no strict order on updating the experts or context distributions �rst.

Every� iterations we �ne-tune all experts, if more than one expert is available. This allows
the already trained experts to adjust for the newly added one. After �nishing training the
lastly added expert : , we check if it converged to a local optimum. There are di�erent
ways on checking that. For example by comparing the entropy, or achieved task reward to
already trained experts. This step is not absolutely necessary since for the upcoming �ne
tune steps, the expert might improve. For the Beer Pong and Table Tennis task, we have
disabled the deletion step in line 13.

As last step we update the prior weights c (>) and delete all experts, which are below a
threshold value (e.g. 10−5) for c (>).

Note that in some experiments, it might happen that highly versatile skills result in
worse rewards, e.g. through action regularization, although the task is solved successfully.
In order to avoid deleting these diverse skills from the skill library at the end of the
optimization, a higher V value, VF for the entropy of c (>) in Eq. A.7 can be used. This
higher VF value will encourage to put weights on skills which are not achieving highest
reward. Although those skills still will have lower weight compared to other experts,
they are kept in the skill set and might be useful. For example when the model should be
adapted to an environmental change. We made use of a di�erent VF value only once in
the Beer Pong task (see Experimental Details A.3).

Note that we have used a variant of MORE (Abdolmaleki et al., 2015) for optimizing Obj.
3.6, as described in (Arenz et al., 2020) and a variant of Contextual MORE Tangkaratt et al.
(2017) for optimizing Obj. 3.5 as described in (Becker et al., 2020).

Also note, that for updating each expert we use a small replay bu�er. The newly taken
samples replace the oldest samples in the bu�er. For the updates we simply use all samples
in the bu�er for each expert.

A.3. Experimental Details

We describe the di�erent hyper parameters and environment speci�cations used in the
experiments part here. Please note: We included a context punishment in all reward
functions for all experiments for contexts which were sampled out of the context range
de�ned by the environment. This encourages the context distributions c (c|>) to stay in
the valid context region as de�ned from the environment. We report the reward functions
and the environment speci�cations in the sub section for each experiment.

112

A.3. Experimental Details

Algorithm 1 Versatile Skill Learning
Input: U, V, VF , N, K, H
Output: c () |c)

1: for : = 1 to N do
2: c () |c, >), c (c|>) ← randomly_add_expert()
3: c (>) = 1/:, ∀>
4: for 8 = 1 to do
5: if i% H is 0 then
6: update_all_experts(U) to obj. (3.5) each
7: update_all_context_distributions(U, V) to obj. (3.6) each
8: else
9: c () |c, >) ← update_expert_k(U) to obj. (3.5)

10: c (c|>) ← update_context_distribution_k(U, V) to obj (3.6)
11: end if
12: end for
13: if expert_k in local optimum then
14: delete_expert_k()
15: end if
16: end for
17: c (>) ← update_prior_weights(VF) to obj. (A.7)
18: delete_redundant_experts()

As for the hyper parameters for all experiments for our Algorithm, we provide a summary
in Table A.1. Following the notation from Algorithm 1, VF is the entropy coe�cient for
c (>) in Objective A.7, # is the number of incrementally added experts, is the number
of iterations one expert is trained and � describes the number that every �. iteration all
experts are updated.

For the hyper parameters for all experiments for HiREPS and LaDiPS, we provide a
summary in Table A.2 and A.3 respectively.

Hyper Parameter (Ours) U V VF N K H
Planar Reacher (Ablation) varies (see section 3.4.1) 1.0 1.0 60 350 50

Beer Pong Task 0.001 0.5 2.5 70 750 50
Table Tennis Task 0.00001 0.2 0.2 50 800 50

Table A.1.:Hyperparameters of our algorithm for all environments.

Hyper Parameter (HiREPS) n ^ N
Planar Reacher (Ablation) 0.5 0.99 60

Beer Pong Task 0.3 0.9 70
Table Tennis Task 0.3 0.9 50

Table A.2.:Hyperparameters of HiREPS for all environments.

113

A. Appendix for Chapter 3

Hyper Parameter (LaDiPS) n n60C8=6 U N
Beer Pong Task 0.1 0.05 log 30 70

Table Tennis Task 0.01 0.02 log 30 50

Table A.3.:Hyperparameters of LaDiPS.

A.3.1. Ablation Studies

For the Planar Reaching task we consider a two dimensional context space. Note that we
have not used any Movement Primitive representation for the policy. Instead, the sampled
\ from our search distributions directly represent the angles of each joint of the reacher
task.

We consider a two dimensional context space G,~, where G<8= = 4.5, G<0G = 7 and
~<8= = −6, ~<0G = 6.

The reward function is given by:

'() , c) = −||) | |22 − 2 · | |f ()) − c| |22 − ;2 (c) − ;> ()),

where

;2 (c) =
{

10, 2 ∉ �

0, 4;B4
, ;> (c) =

{
3, 11:10 ∈ $
0, 4;B4

,

where ;2 are the costs if a context c is not within the valid context range � and ;> are
the costs, if one of the ten links 18 has a collision with the obstacles of the environment.
f ()) are the forward kinematics of the planar reacher. Note that the angles) are always
normalized into a range [−c, c].

A.3.2. Beer Pong

For the Beer Pong task we consider a two dimensional context space G,~ positions of
the cup on the table, where G<8= = −0.32, G<0G = 0.32 and ~<8= = −2.2, ~<0G = −1.2.
We use ProMPs as policy parameterizations. We also learn the length of the trajectory,
which might lead to invalid, i. e. negative trajectory length. We use a punishment term,
if the trajectories are out of a reasonable range and do not execute this sample on the
environment. We do the same for the context samples. Furthermore, we do not execute
trajectories, which violate the joint constraints of the robot. Since these samples are not
executed on the environment, they are not counted as "taken samples". For the case that
those restrictions are not violated, the reward function is given as

'() , c) =

−4 −<8=(| |?2,C>? − ?1,1:) | |22) − 0.5| |?2,1>CC>< − ?1,) | |22 − 10−4g, if cond. 1
−2 −<8=(| |?2,C>? − ?1,1:) | |22) − 0.5| |?2,1>CC>< − ?1,) | |22 − 10−4g, if cond. 2
| |?2,1>CC>< − ?1,) | |22 + 1.5 · 10−4g, if cond. 3

,

114

A.3. Experimental Details

where ?2,C>? is the position of the top edge of the cup, ?2,1>CC>< is the ground position of
the cup, ?1,C is the position of the ball at time point C and g is the squared mean torque
over all joints during one rollout. The di�erent conditions are:

• cond. 1: The ball is not in the cup and had no table contact

• cond. 2: The ball is not in the cup and had table contact

• cond. 3: The ball is in the cup.

For the case that context samples were sampled out of the range we provide a high negative
reward

'2 () , c) = −30 − 32
2 ,

where 32
2 is the distance of the current context c to the valid context region.

For the case that the duration of the trajectory was sampled out of the range we provide a
negative reward as

'\ (c,)) =
{
−30 − 10 · (; − 0.1)2, if ; < 0.1
−30 − 10 · (; − 1.3)2, if ; > 1.3 ,

where ; is the duration of the Trajectory in seconds. If the joint constraint limits are
violated by the ProMP’s trajectory, we give a punishment of -30.

A.3.2.1. On Versatility of our Solutions on the Beer Pong Task

In this section we want to compare the learned solutions of LaDiPS (End et al., 2017) and
our method. As LaDiPS uses experience-sharing between experts, it outperforms our
method in terms of sample e�ciency, but does not �nd as qualitative solutions as our
method, which is re�ected in the end-rewards (see Fig. 3.2a), where we can clearly achieve
a higher value. In addition to the more qualitative solutions, we are able to learn a mixture
model with higher expected entropy, which can be seen in Fig. A.1. Our method is able
to achieve more qualitative skills with a much higher entropy compared to LaDiPS and
HiREPS, indicating that the proposed solutions by our method are more versatile than
the others. Please note that we have de�ned a �ne grid of contexts and sampled for each
context c 1000 parameter vectors) from the mixture models to calculate the expected
entropy. We have repeated this procedure for all 20 di�erent trials/seeds and report the
mean expected entropy together with two times the standard error. In addition to the
expected mixture entropy we have conducted a qualitative comparison, where we have
picked the �rst model for both, our method and LaDiPS and have let it run for twelve
di�erent contexts. For each context we have sampled 100 times from the mixture model
and executed the mean of the sampled experts on the environment. Note that we only have
taken those ball trajectories into account that lead to a successful solution. For LaDiPS
all observed solutions for all contexts showed only one mode, in which the ball bounced
once on the table and then landed in the cup. For our method the same solution could be

115

A. Appendix for Chapter 3

0 0.5 1 1.5 2 2.5 3 3.5

·106

−40

−20

0

20

Number Episodic Samples

E
?
(c
)
[H
[c
()
|c)
]]

Ours (SVSL)
HiREPS
LaDiPS

Figure A.1.: Expected Mixture Entropies.

seen for six contexts. For three contexts, our method threw the ball directly into the cup,
whereas for another three contexts three di�erent ball trajectories could be observed: i)
direct throw, ii) bouncing ones on the table ii) bouncing once on the table and once on the
wall.

A.3.3. Table Tennis

For the Table Tennis task we consider a four dimensional context space [bdes, binc] ∈ R4.
We have the desired landing position of outgoing ball bdes = [G34B, ~34B] ∈ R2 and the initial
positions of the incoming ball binc = [G8=2, ~8=2] ∈ R2 where G34B ∈ [−1.2, −0.2], ~34B ∈
[−0.6, 0.6], G8=2 ∈ [−1.2, −0.2], ~8=2 ∈ [−0.65, 0.65] . We �x the initial ball velocity and
I8=2 position so we can transform the initial ball position to the incoming ball landing
position on the table. We use ProMPs as policy parameterizations and learn the length
of the trajectory, which might lead to invalid, i. e. negative trajectory length. We use
a punishment term, if the length of trajectories are out of a reasonable range and do
not execute this sample on the environment. We do the same for the context samples.
Furthermore, we do not execute trajectories, which violate the joint constraints of the robot
and return a punishment. Since these samples are not executed on the environment, they
are not counted as "taken samples". For the case that those restrictions are not violated,
the reward function is given as

'() , c) =



0.2 · (1 − C0=ℎ(min
C
(| |bt − rt | |22)), if cond. 1

2 · (1 − C0=ℎ(min
C
(| |bt − rt | |22))

+ (1 − C0=ℎ(min
C
(| |bdes − bt,xy | |22)), if cond. 2

2 · (1 − C0=ℎ(min
C
(| |bt − rt | |22))

+ 4 · (1 − C0=ℎ((| |bdes − bland | |22)) + 1{1;0=3G <0}, if cond. 3

,

116

A.3. Experimental Details

where bt ∈ R3 is the position of the ball at time point C , bt,xy ∈ R2 is the G,~ position of
the ball at time point C , rt ∈ R3 is the position of the racket at time point C , bland ∈ R2 is
the real G,~ landing position point. The di�erent conditions are:

• cond. 1: The ball had no racket contact.

• cond. 2: The ball had racket contact but then no table contact.

• cond. 3: The ball had racket contact and then table contact.

For the case that context samples were sampled out of the range we provide a high negative
reward

'2 () , c) = −20 · 32
2 ,

where 32
2 is the distance of the current context c to the valid context region.

For the case that the duration of the trajectory was sampled out of the range we provide a
negative reward as

'\ (c,)) =
{
−3| |; − 0.1| |, if ; < 0.1
−3| |; − 5| |, if ; > 5 ,

where ; is the duration of the Trajectory in seconds.

For the case that the trajectory was sampled out of the joint constraints we provide a
negative reward as

'2 () , c) = −1 · 1
)

)∑
8

3@?>B,C ,

where 3@?>B,C is the distance of the planned joint positions to the valid joint position
region.

A.3.3.1. On Versatility of our Solutions on the Table Tennis Task

We compare the versatility of learned solutions of LaDiPS (End et al., 2017), HiREPS (Daniel
et al., 2012) and ours. We plot the expected mixture entropies of each algorithm in Fig.
A.2a. For each of the 1600 uniformly context samples we have sampled 1000 parameter
vectors \ from the mixture model to calculate the mixture entropy. We repeat this for all
models resulting from 20 seeds/trials and plot the average of the entropies in Fig. A.2a.
Please note that the �uctuations of the entropy curve in Fig. A.2a of our algorithm are due
to adding experts during training.

We are able to achieve the highest entropy while clearly outperforming both methods in
terms of the achieved task reward (see Fig. A.2b), which indicates that we are able to learn
more qualitative skills.

117

A. Appendix for Chapter 3

0 2 4 6 8

·106
−100

−50

0

Number Episodic Samples

E
?
(c
)
[H
[c
()
|c)
]]

Ours (SVSL)
HiREPS
LaDiPS

(a)

0 2 4 6 8
·1060

2

4

6

Number Episodic Samples

M
ea

n
Re

w
ar

ds

Ours (SVSL)
HiREPS
LaDiPS

(b)

Figure A.2.:Expected Mixture Entropies (left) and performance on the table tennis task (right). Note
that the performance graph is the same as in Fig. 3.2b, but with the full graph of our method to train 70
experts. The graph in Fig. 3.2b was clipped in the x-axis to maintain overview.

A.3.3.2. Hyperparameters

The hyperparameters for our algorithm are given in the following Table. Please note that
we used punishments,

Hyper Parameter (Ours) U V VF N K H
Reacher Reward (3.8) 14−6 15 15 40 250 50
Reacher Reward (3.9) 0.01 1 2.5 40 250 50
Reacher Reward (3.10) 1 25 25 40 800 50

Table A.4.:Hyperparameters of our algorithm for the reacher environment.

if contexts were sampled out of the context range (which is the right half circle around the
base with radius 0.5), we provided a quadratic punishment to the distance of the sample
to the valid context bound. We multiplied this distance with a factor of 1000 for the case
of reward function (3.8, 3.9) and with a factor of 50000 for the case of reward function
(3.10).

We normalized the observations and rewards for PPO and used the same hyperparameters
for all three experiments, which we summarized in the following table

118

A.3. Experimental Details

Hyp. Params (PPO) U N GAE _ W K n network structure
Reacher Reward (3.8) 14−4 16384 0.95 0.99 64 0.2 [64, 64]
Reacher Reward (3.9) 14−4 16384 0.95 0.99 64 0.2 [64, 64]
Reacher Reward (3.10) 14−4 16384 0.95 0.99 64 0.2 [64, 64]

Table A.5.:Hyperparameters of PPO for the reacher environment. Note that U is the learning rate, N is the
number of rollouts, W is the discount factor, K is the batch size, n is the clip value for the importance ratio.
The layer structure is for both: the policy network as well as the value function network.

119

)

>
c

(a)

)

c
>

(b)
0.000

0.018

0.036

0.054

0.072

0.090

0.108

0.126

0.144

0.162

(c)
0.0000

0.0225

0.0450

0.0675

0.0900

0.1125

0.1350

0.1575

0.1800

0.2025

(d)

Figure B.1.: Probabilistic Graphical Models (PGMs) during inference a) and training b). During a)) the
model observes the contexts c from the environment. An expert > is sampled from c (> |c), which leads to
an adjustment of the motion primitive parameters) by c () |c, >). We iterate over each expert during (b),
sample the contexts c and) from the per-expert distribution c (c|>) and c () |c, >) respectively. Sampling
from c (c|>) allows shaping the expert’s curriculum. c) illustrates the environment’s context distribution
? (c) and a possibly optimal c (c|>) (d)) in two-dim. space. Yellow areas indicate high and purple zero
probability. The illustrations show that optimizing c (c|>) requires dealing with i) step-like non-linearities,
ii) multi-modality, iii) bounded within the red rectangle support of ? (c), complicating exploration.

B. Appendix for Chapter 4

B.1. Additional Information to Self-Paced Diverse Skill
Learning with MoE

The general self-paced diverse skill learning objective

max
c () |c),c (c)

Ec (c)
[
Ec () |c) [R(c,))] + UH [c () |c)]

]
− VKL (c (c) ‖ ? (c))

can be reformulated to

max
c (c,))
Ec (>),c (c|>)

[
Ec () |c,>) [R(c,)) + U logc (> |c,))] + V log? (c) + (V − U) logc (> |c)

]
+ UEc (>),c (c|>) [H [c () |c, >)]] + VEc (>) [H [c (c|>)]] + VH [c (>)] , (B.1)

by inserting c () |c), c (c) from Eq. 4.2 into Eq. B.1 and applying Bayes theorem. This
objective is not straightforward to optimize for Mixture of Experts MoE models and
requires further steps to introduce a lower bound (see Section 4.2) that can be e�ciently

121

B. Appendix for Chapter 4

optimized. Please note that the variational distributions in Eq. 4.4 and Eq. 4.5 can be
calculated in closed form by the identities

c̃ (> |c,)) = c>;3 (> |c,)) =
c>;3 () |c, >)c>;3 (> |c)

c>;3 () |c)
,

c̃ (> |c) = c>;3 (> |c) =
c>;3 (c|>)c (>)

c>;3 (c)
.

We refer the interested reader to Celik et al. (2021) for a detailed derivation.

B.2. Additional RelatedWork

Unsupervised Reinforcement Learning. Another �eld of research that considers learn-
ing diverse policies is unsupervised reinforcement learning (URL). In URL the agent is �rst
trained solely with an intrinsic reward to acquire a diverse set of skills from which the most
appropriate is picked to solve a downstream task. More related to our work is a group of
algorithms that obtain their intrinsic reward based on information-theoretic formulations
(Laskin et al., 2021; Eysenbach et al., 2019; Campos et al., 2020; Lee et al., 2019; Liu and
Abbeel, 2021). However, their resulting objective is based on the mutual-information and
di�ers from the objective we maximize. The learned skills in the pre-training aim to cover
distinct parts of the state-space during pre-training in the absence of an extrinsic task
reward which implies that skills are not explicitly trained to solve the same task in di�erent
ways. Those methods operate within the step-based RL setting which di�ers from CEPS.

B.3. Additional Information to Diverse Skill Learning

B.3.1. The Parameterization of the Mixture of Experts (MoE) Model

In the following, we provide details on the parameterization of the MoE model.

Parametrization of the expert c () |c, >). We parameterize each expert c () |c, >) as a
Gaussian policy N(-$ (c),Σ$ (c), where the mean -$ (c) and the covariance Σ$ (c) are
functions of the context c and parameterized by a neural network with parameters $.
Although the covariance Σ$ (c) is formalized as a function of the context c, we have not
observed any advantages in doing so. In our experiments, we therefore parameterize the
covariance as a lower-triangular matrix L and form the covariance matrix Σ = LL) .

Parameterization of the per-expert context distribution c (c|>). The reader is re-
ferred to Section 4.4 for details on the parameterization of c (c|>)

Parameterization of the prior c (>). We �x the prior c (>) to a uniform distribution
over the number K of available experts and do not further optimize this distribution. This
is a useful de�nition to increase the entropy of the mixture model.

122

B.3. Additional Information to Diverse Skill Learning

Parameterization of the context distribution c (c). Due to the relation c (c) =∑
> c (c|>)c (>), c (c) is de�ned by c (c|>) and does not need explicit modelling.

Parameterization of the gating distribution c (> |c). Due to the relation c (> |c) =
c (c|>)c (>)

c (c) we do not need an explicit parameterization of c (> |c) and can easily calculate
the probabilities for choosing the expert > given a context c.

B.3.2. Using Motion Primitives in the Context of Reinforcement Learning

Motion Primitives (MPs) are a low-dimensional representation of a trajectory. For instance,
instead of parameterizing a desired joint-level trajectory as the single state in each time
step, MPs introduce a low-dimensional parameter vector) which concisely de�nes the
trajectory to follow. The generation of the trajectory depends on the method that is used.
Probabilistic Movement Primitives (ProMPs) (Paraschos et al., 2013) for example de�ne the
desired trajectory as a simple linear function 3 = Φ)) , where Φ are time-dependent basis
functions (e.g. normalized radial basis functions). Dynamic Movement Primitives (DMPs)
(Schaal, 2006) rely on a second-order dynamic system that provides smooth trajectories
in the position and velocity space. Recently Probabilistic Dynamic Movement Primitives
(ProDMPs) were introduced by Li et al. (2023) and combines the advantages of both
methods, that is the easy generation of trajectories and smooth trajectories. We therefore
rely on ProDMPs throughout this work.

In the context of reinforcement learning, the policy c () |c), or in our case an expert
c () |c, >) de�nes a distribution over the parameters) of the MP depending on the observed
context c. This allows the policy to quickly adapt to new tasks de�ned by c.

B.3.3. Algorithm Details

Detailed descriptions of the algorithm during training and during inference are provided
in the algorithm boxes Alg. 2 and Alg. 2, respectively. In each iteration during training,
we sample a batch of contexts c from the environment by resetting it. We then iterate
over each expert and evaluate the probabilities of these contexts c on each per-expert
context distribution c (c|>) and sample then training contexts c) from them. From the
corresponding expert c () |c, >) we sample motion primitive parameters) and evaluate the
samples (c) ,)) on the environment and observe a return R(c,)) which we use to update the
experts c () |c, >) and the per-expert context distributions c (c|>) by maximizing Obj. 4.7
and Obj. 4.8 respectively. During inference, we observe contexts c from the environment,
calculate the gating distributions c (> |c) = c (c|>)c (>)

c (c) from which we sample the expert
> . We then either take the mean or sample an) from this expert and execute it on the
environment.

123

B. Appendix for Chapter 4

Algorithm 2 Di-SkilL Training
Input: U, V , N(max. iterations), K(num. experts),T(num. samples per expert)
Output: c () |c)

1: for : = 1 to N do
2: c ∼ ? (c) (context batch by environment resetting)
3: for > = 1 to do
4: c) ∼ c (c|>) (context batch from EBM)
5:) ∼ c () |c) , >)
6: R(c,)) ← eval() , c))
7: c () |c, >) ← Obj. 4.7
8: c (c|>) ← Obj. 4.8
9: end for

10: end for

Algorithm 3 Di-SkilL Inference
Input: c () |c)

1: c ∼ ? (c) (observe contexts from environment)
2: > ∼ c (> |c), where c (> |c) = c (c|>)c (>)

c (c)
3:) ∼ c () |c, >)
4: R(c,)) ← eval() , c)

B.4. Experimental Details

B.4.1. Environment Details

B.4.1.1. Table Tennis Easy

Environment. We use the same table tennis environment as presented in Otto et al.
(2023), in which a 7 Degree of Freedom (DoF) robot has to return a ball to a desired ball
landing position. The context is the four-dimensional space of the ball’s initial landing
position (G ∈ [−1,−0.2], ~ ∈ [−0.65, 0.65]) on the robot’s table side and the desired ball
landing position (G ∈ [−1.0,−0.2], ~ ∈ [−0.6, 0.6]) on the opponent’s table side. The robot
is controlled with torques on the joint level in each time step. The torques are generated by
the tracking controller (PD-controller) that tracks the desired trajectory generated by the
motion primitive. We consider three basis functions per joint resulting in a 21-dimensional
parameter ()) space. We additionally allow the agent to learn the trajectory length and the
starting time step of the trajectory. Note that the starting point allows the agent to de�ne
when after the episode’s start the generated desired trajectory should be tracked. Induced
by the varying contexts, this is helpful to react to the varying time the served ball needs to
reach a positional space that is convenient to hit the ball with the robot’s racket. Overall

124

B.4. Experimental Details

the parameter space is 23 dimensional. The task is considered successful if the returned
ball lands on the opponent’s side of the table and within ≤ 0.2m to the goal location.

The reward function is unchanged from Otto et al. (2023) and is de�ned as

'C0B: =



0, if cond. 1,
52(pA , p1) if cond. 2,
53(pA , p1, p; , p6>0;) if cond. 3,
54(pA , p1, p; , p6>0;) if cond. 4,
55(pA , p1, p; , p6>0;) if cond. 5,

where pA is the executed trajectory position of the racket center, p1 is the executed position
trajectory of the ball, p; is the ball landing position, p6>0; is the target position. The
individual functions are de�ned as

52(pA , p1) = 0.2 − 0.26(pA , p1)
53(pA , p1, p; , p6>0;) = 3 − 26(pA , p1) − ℎ(p; , p6>0;)
54(pA , p1, p; , p6>0;) = 6 − 26(pA , p1) − 4ℎ(p; , p6>0;)
55(pA , p1, p; , p6>0;) = 7 − 26(pA , p1) − 4ℎ(p; , p6>0;),

where 6(x, y) = tanh (min | |x − y| |2) and ℎ(x, y) = tanh (| |x − y| |2). The di�erent condi-
tions are

• cond. 1: the end of the episode is not reached,

• cond. 2: the end of the episode is reached,

• cond. 3: cond.2 is satis�ed and the robot did hit the ball,

• cond. 4: cond.3 is satis�ed and the returned ball lands on the table,

• cond. 5: cond.4 is satis�ed and the landing position is at the opponent’s side.

The episode ends when any of the following conditions are met

• the maximum horizon length is reached

• ball did land on the �oor without hitting

• ball did land on the �oor or table after hitting

The whole desired trajectory is obtained ahead of environment interaction, making use
of this property we can collect some samples without physical simulation. The reward
function based on this desired trajectory is de�ned as

ACA0 9 = −
∑
(8, 9)
|g38 9 | − |@19 |, (8, 9) ∈ {(8, 9) | |g38 9 | > |@19 |},

125

B. Appendix for Chapter 4

where g3 is the desired trajectory, 8 is the time index, 9 is the joint index, @1 is the joint
position upper bound. The desired trajectory is considered as invalid if ACA0 9 < 0, an invalid
trajectory will not be executed on the robot. The overall reward is de�ned as:

A =

{
ACA0 9 , ACA0 9 < 0
AC0B: , otherwise.

SVSL. SVSL requires designing a guiding punishment term for context samples that are
not in a valid region. For the four-dimensional context space in table tennis, this can be
done using quadratic functions (as proposed in the original work Celik et al. (2021)):

'2 (c) = −20 · 32
2 ,

where 32
2 is the distance of the current context c to the valid context region.

SVSL Hyperparameters All hyperparameters are summarized in the Table B.1.

Hyperparameters are listed in the Table B.2.

B.4.1.2. Table Tennis Task Hard

Environment. We extend the table tennis environment described in Appendix B.4.1.1
by additionally including the ball’s initial velocity in the context space making the task
harder as the agent has to react to ranging velocities now. We de�ne the initial velocity
EG ∈ [1.5<B , 4

<
B
]. Note that every single constellation within the resulting context space is

a valid context. However, there exist ball landing positions that can not be set along with
a subset of the initial velocity range. This makes designing a guiding punishment term
for SVSL especially di�cult. We adopt the parameter space and the reward function
as de�ned in the standard table tennis environment as described in Appendix B.4.1.1.

Hyperparameters are listed in the Table B.4.

B.4.2. Hopper Jump

Environment. We use the same hopper jump environment as presented in (Otto et al.,
2023), in which the hopper Brockman et al. (2016) has to jump as high as possible and
land at a speci�ed position. The context is the four-dimensional space of the last three
joints of the hopper and the goal landing position [93, 94, 95, 6], where the ranges are
from [−0.5,−0.2, 0, 0.3] to [0.0, 0.0, 0.785, 1.35]. The hopper is controlled the same as in
(Brockman et al., 2016). Here, we consider three basis functions per joint and a goal basis
resulting in a parameter space ()) of 12 dimensions. The reward is non-markovian and
is unchanged from (Otto et al., 2023).

126

B.4. Experimental Details

In each time-step C the action cost

gC = 10−3
 ∑
8

(08C)2,

is provided. The variable = 3 corresponds to the number of degrees of freedom. At the
end of the episode, a reward containing retrospective information about the maximum
height in the z-direction of the center of mass achieved ℎmax, the goal landing position
of the heel ?goal, the foot’s heel position when having contact with the ground after
jumping the �rst time ?foot, contact is given. Additionally, per-time information such as
?foot, t describing the position of the foot’s heel in world-coordinates is given. The resulting
reward function is

'C>C = −
)∑
C=0

gC + 'ℎ486ℎC + '638BC + '238BC + 'ℎ40;Cℎ~,

where

'ℎ486ℎC = 10ℎ<0G ,
'638BC = | |? 5 >>C,) − ?6>0; | |2,
'238BC = | |? 5 >>C,2>=C02C − ?6>0; | |2,

'ℎ40;Cℎ~ =

{
2 if I) ∈ [0.5,∞]and \,W, q ∈ [−∞,∞]
0 else.

The healthy reward is the same as provided by (Brockman et al., 2016).

Hyperparameters are listed in the Table B.5.

B.4.2.1. Box Pushing with Obstacle Task

Environment. We increase the di�culty of the box pushing environment as presented
in (Otto et al., 2023), by changing major parts of the context space. The goal of the box
pushing task is to move a box to a speci�ed goal location and orientation using the seven
DoF Franka Emika Panda. The newly context space (compared to the original version in
(Otto et al., 2023)) are described in the following. We increase the box’ goal position range
to G6 ∈ [0.3, 0.6], ~6 ∈ [−0.7, 0.45], and keep the goal orientation angle q ∈ [0A03, 2cA03].
Additionally, we include an obstacle between the initial box and the box’s goal. The range
of the obstacle position is G> ∈ [0.3, 0.6], ~> ∈ [−0.3, 0.15]. Note that we guarantee a
distance of at least 0.15m between the obstacle’s position and the initial position as well as
at least 0.15m between the obstacle’s position and the box’s goal position.

The robot is controlled via torques on the joint level. We use four basis functions per DoF,
resulting in a parameter space of 28 dimensions. We consider an episode successful if
the box’s orientation around the z-axis error is smaller than 0.5 rad and the position error
is smaller than 0.05m.

127

B. Appendix for Chapter 4

The sparse-in-time reward function is up to a scaling parameter the same as presented
in (Otto et al., 2023). We describe the whole reward function in the following.

The box’s distance to the goal position is

'goal = ‖p − p6>0; ‖,

where p is the box position and p6>0; is the goal position. The rotation distance is de�ned
as

'rotation =
1
c

arccos |r · r6>0; |,

where r and r6>0; are the box orientation and goal orientation quaternion respectively. The
incentive to keep the rod within the box is de�ned as

'rod = clip(| |p − h?>B | |, 0.05, 10),

where h?>B is the position of the rod tip. Similarly, to incentivize to maintain the rod in a
desired rotation, the reward

'rod_rotation = clip(2
c

arccos |hA>C · h0 |, 0.25, 2)

is de�ned, where hA>C and h0 = (0, 1, 0, 0) are the current and desired rod orientation in
quaternion respectively. To incentivize the robot to stay within the joint and velocity
bounds, the error

err(q, q) =
∑

8∈{8 | |@8 |> |@18 |}

(|@8 | − |@18 |) +
∑

9∈{ 9 | | ¤@ 9 |> | ¤@19 |}

(| ¤@ 9 | − | ¤@19 |)

is used, where q, q, q1 , and q1 are the robot’s joint positions and velocities as well as their
respective bounds. To learn low-energy motions, the per-time action (torque) cost

gC =

 ∑
8

(08C)2,

is used. The resulting temporal sparse reward is given as

'tot =


−'rod − 'rod_rotation − 0.02gC − err(q, q) C <),

−'rod − 'rod_rotation − 0.02gC − err(q, q)
−350'goal − 200'rotation C =),

where) = 100 is the horizon of the episode. The reward gives relevant information to
solve the ask only in the last time step of the episode, which makes exploration hard.

Further Visualizations of learned skills. We show additional plots of the box’s trajectories
in the box pushing task in Fig. B.2.

Hyperparameters are listed in the Table B.6.

128

B.4. Experimental Details

B.4.3. Extended 5-Link Reacher Task

Environment. In the 5-Link Reacher task, a 5-link planar robot has to reach a goal position
with its tip. The reacher’s initial position is straight to the right. This task is di�cult to
solve, as it introduces multi-modality in the behavior space. (Otto et al., 2023) avoided
this multi-modality by constraining the y coordinate of the goal position to ~ ≥ 0, i.e. the
�rst two quadrants. We adopt the 5Link-Reacher task by increasing the context space to
the full space, i.e. all four quadrants. We consider 5 basis functions per joint leading to a
25-dimensional parameter space. We consider the sparse reward function presented
in (Otto et al., 2023) as

'tot =

{
−gC C <),

−gC − 200'goal − 10'vel C =),

where
'goal = ‖p − p6>0; ‖2

and

gC =

 ∑
8

(08C)2.

The sparse reward only returns the task reward in the last time step T and additionally
adds a velocity penalty 'vel =

∑
8 (¤@8))

2. The joint velocities are denoted asq. This velocity
penalty avoids overshooting in the last time step.

Hyperparameters are listed in the Table B.3.

B.4.4. Robot Mini Golf Task

Environment. In the robot mini golf task the agent needs to hit a ball while avoiding
the two obstacles, such that it passes the tight goal to achieve a bonus. The context
space consists of the ball’s initial x-position G10;; ∈ [0.25<, 0.6<], the XY positions of
the green obstacle G>1B ∈ [0.3, 0.6] and ~>1B ∈ [−0.5,−0.1] and the x positions of the goal
G10;; ∈ [0.25, 0.6]. The parameter space is 29 dimensional resulting from the 4 basis
functions per joint and an additional duration parameter which allows the robot to learn
the duration of the trajectory. The robot starts always at the same position. The reward
function consists of three stages:

'C0B: =



−0.0005 · gC if cond. 1,
0.2 − 0.2 tanh (min | |pA − p1 | |) if cond. 2,
2 − 2 tanh (min | |p1 − p6 | |)
− tanh (| |p1,~ − pCℎA4Bℎ,~ | |) if cond. 3,
6 if cond. 3,

where the individual conditions are

129

B. Appendix for Chapter 4

• cond. 1: the end of the episode is not reached,

• cond. 2: the end of the episode is reached and the robot did not hit the ball,

• cond. 3: the end of the episode is reached and the robot has hit the ball, but the ball
didn’t pass the goal

• cond. 4: the end of the episode is reached, robot has hit the ball and the ball has
passed the goal for at least 0.75m

The episode ends when the maximum horizon length) = 100 is achieved. We again make
use of the advantage that we obtain the whole desired trajectory ahead of the environment
interaction, such that we can collect some samples without physical simulation. The
reward function based on this desired trajectory is de�ned as

ACA0 9 =
∑
(8, 9)
|g38 9 | − |@19 |, (8, 9) ∈ {(8, 9) | |g38 9 | > |@19 |},

where g3 is the desired trajectory, 8 is the time index, 9 is the joint index, @1 is the joint
position upper bound. The desired trajectory is considered as invalid if ACA0 9 < 0, an invalid
trajectory will not be executed on the robot. Additionally, we provide a punishment, if the
agent samples invalid duration times

A3DA = −3
(
max(0, C3 − C3,<0G) +max(0, C3,<8=C − C3)

)
,

where C3,<0G = 1.7B, C3,<8= = 0.45B and C3 is the duration in seconds chosen by the agent.
The overall reward is de�ned as:

A =


ACA0 9 ,−20(ACA0 9 + A3DA) − 5 if invalid duration,

or trajectory
AC0B: , otherwise.

Hyperparameters are listed in the Table B.7.

B.5. Additional Evaluations

We provide additional diverse skills to the Box Pushing Obstacle task in Fig. B.2. In Fig.
B.4 we provide additional diverse strikes to �xed ball’s desired landing positions on the
TT-H task.

Furthermore, we analyze Di-SkilL’s performance on the hopper jump task in more detail.
In Fig. B.3a we observe that the mean return is on par with BBRL, similar to the achieved
goal distance in Fig. B.3c. However, there is a small gap in the max height, where BBRL
jumps slightly higher (see Fig. B.3b. Given that the mean return is on par, one would
expect that the maximum jump height is on par as well. However, Di-SkilL optimizes the
remaining terms in the objective of the hopper jump task such as the healthy reward (see
Appendix B.4), which explains this gap.

130

B.6. Hyperparameters

Figure B.2.:Additional Diverse Skills for the Box Push Obstacle Task learned by Di-SkilL. We �x
the contexts and sample experts which we subsequently execute. This leads to diverse behaviors in the
motion primitive parameter space) which leads to di�erent trajectories of the pushed box on the table.

0 1 2 3
·105

10

12

14

16

18

20

Number of Episodic Samples

IQ
M

M
ea

n
Re

tu
rn

Di-SkilL
BBRL
LinDi-SkilL

(a) IQM Mean Return HJ

0 1 2 3
·105

1.5

1.6

1.7

1.8

1.9

Number of Episodic Samples

IQ
M

Su
cc

es
sR

at
e

Di-SkilL
BBRL

LinDi-SkilL

(b) IQM Max. Height Jump HJ

0 1 2 3
·105

0

0.1

0.2

0.3

0.4

0.5

Number of Episodic Samples
IQ

M
Go

al
D

ist
.[

m
] Di-SkilL

BBRL
LinDi-SkilL

(c) IQM Goal Distance HJ

Figure B.3.:Additional Analysis of the Hopper Jump (HJ) task.

B.6. Hyperparameters

We list the hyperparameters for all algorithms on all environments in the following tables.

add expert every iteration 1000
�ne tune all experts every iteration 50

number expert adds 1
number initial experts 1
number total experts 20

number traj. samples per expert per iteration 200
U 0.0001
V 0.5

expert KL-bound 0.01
context KL-bound 0.01

Table B.1.:Hyperparameters for SVSL on TT

131

B. Appendix for Chapter 4

Figure B.4.:Di-SkilL’s Diverse Skills for the TT-H task. We �xed the ball’s desired landing position and
varied the serving landing position and the ball’s initial velocity. Di-SkilL can return the ball in di�erent
striking types. Note that each row represents a di�erent desired ball landing position.

132

B.6. Hyperparameters

Di-SkilL BBRL
critic activation tanh tanh

hidden sizes critic [8,8] [32, 32]
initialization orthogonal orthogonal

lr critic 0.0003 0.0003
optimizer critic adam adam

ciritc epochs 100 100
activation context distribution tanh –

epochs context distribution 100 –
hidden sizes context distr [16,16] –

initialization orthogonal –
lr context distribution 0.0001 –
optimizer context distr adam –
batch size per expert 50 209

number samples from environment distribution 5000 –
number samples per expert 50 209

normalize advantages True True
expert activateion tanh tanh

epochs 100 100
hidden sizes expert [64] [32]

lr policy 0.0003 0.0003
covariance type full full

alpha 0.001 –
beta 4 –

number experts 5 –
covariance bound 0.005 0.001

mean bound 0.05 0.05
projection type KL KL

trust region coe�cient 100 25

Table B.2.:Hyperparameters for Di-SkilL and BBRL on TT.

133

B. Appendix for Chapter 4

Di-SkilL BBRL LinDi-SkilL PPO
critic activation tanh tanh tanh tanh

hidden sizes critic [32,32] [32, 32] [32, 32] [32, 32]
initialization orthogonal orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003 0.0003
optimizer critic adam adam adam adam

ciritc epochs 100 100 100 10
activation context distr. tanh – tanh –

epochs context distr. 100 – 100 –
hidden sizes context distr. [16,16] – [16, 16] –

initialization orthogonal – orthogonal –
lr context distr. 0.0001 – 0.0001 –

optimizer context distr. adam – adam –
batch size per expert 25 240 25 512

nr. mini batches – – – 32
nr. samples from env. distr. 5000 – 5000 –
number samples per expert 25 240 25 16384

normalize advantages True True True True
expert activateion tanh tanh – tanh

epochs 100 100 100 10
hidden sizes expert [32,32] [64,64] – [32, 32]

lr policy 0.0003 0.0003 0.0003 0.0003
covariance type full full full diagonal

alpha 0.01 – 0.01 –
beta 8 – 8 –

number experts 10 – 10 –
covariance bound 0.001 0.005 0.0005 –

mean bound 0.05 0.05 0.05 –
projection type KL KL KL –

trust region coe�cient 100 25 100 –
discount factor 1 1 1 1

Table B.3.: Hyperparameters for Di-SkilL, BBRL, LinDi-SkilL, and PPO on 5LR. We used all code-level
optimization (Engstrom et al., 2020) needed for PPO. The implementation is based on the source code from
Otto et al. (2021).

134

B.6. Hyperparameters

Di-SkilL BBRL LinDi-SkilL
critic activation tanh tanh tanh

hidden sizes critic [8,8] [32, 32] [8,8]
initialization orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003
optimizer critic adam adam adam

ciritc epochs 100 100 100
activation context distr. tanh – tanh

epochs context distr. 100 – 100
hidden sizes context distr. [16,16] – [16, 16

initialization orthogonal – orthogonal
lr context distr. 0.0001 – 0.0001

optimizer context distr. adam – adam
batch size per expert 50 209 50

nr. samples from env. distr. 5000 – 5000
number samples per expert 50 209 50

normalize advantages True True True
expert activateion tanh tanh –

epochs 100 100 100
hidden sizes expert [128] [32,32] –

lr policy 0.0003 0.0003 0.0003
covariance type full full full

alpha 0.001 – 0.001
beta 0.5 – 0.5

number experts 10 – 10
covariance bound 0.005 0.0005 0.001

mean bound 0.05 0.05 0.05
projection type KL KL KL

trust region coe�cient 100 25 100

Table B.4.:Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the Hard Table Tennis Task (TT-H).

135

B. Appendix for Chapter 4

Di-SkilL BBRL LinDi-SkilL
critic activation tanh tanh tanh

hidden sizes critic [64,64] [64, 64] [64,64]
initialization orthogonal orthogonal orthogonal

lr critic 0.0001 0.0001 0.0001
optimizer critic adam adam adam

ciritc epochs 100 100 100
activation context distr. tanh – tanh

epochs context distr. 100 – 100
hidden sizes context distr. [16,16] – [16, 16]

initialization orthogonal – orthogonal
lr context distr. 0.0001 – 0.0001

optimizer context distr. adam – adam
batch size per expert 80 200 80

number samples from environment distr. 1000 – 1000
number samples per expert 80 200 80

normalize advantages True True True
expert activateion tanh tanh –

epochs 100 100 100
hidden sizes expert [32, 32] [32,32] –

lr policy 0.0003 0.0003 0.0003
covariance type full full full

alpha 0.01 – 0.01
beta 8 – 8

number experts 3 – 3
covariance bound 0.005 0.05 0.005

mean bound 0.05 0.1 0.05
projection type KL KL KL

trust region coe�cient 100 25 100

Table B.5.:Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the Hopper Jump Task (HJ).

136

B.6. Hyperparameters

Di-SkilL BBRL LinDi-SkilL PPO
critic activation tanh tanh tanh tanh

hidden sizes critic [32,32] [32, 32] [32, 32] [256, 256]
initialization orthogonal orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003 0.0001
optimizer critic adam adam adam adam

ciritc epochs 100 100 100 10
activation context distr. tanh – tanh –

epochs context distr. 100 – 100 –
hidden sizes context distr. [16,16] – [16, 16] –

initialization orthogonal – orthogonal –
lr context distr. 0.0001 – 0.0001 –

optimizer context distr. adam – adam –
batch size per expert 50 500 50 410

nr. mini batches – – – 40
nr. samples from env. distr. 5000 – 5000 –
number samples per expert 50 500 50 16384

normalize advantages True True True True
expert activateion tanh tanh – tanh

epochs 100 100 100 10
hidden sizes expert [64,64] [64,64] – [256, 256]

lr policy 0.0003 0.0003 0.0003 0.0001
covariance type full full full diagonal

alpha 0.01 – 0.0001 –
beta 64 – 64 –

number experts 10 – 10 –
covariance bound 0.005 0.0005 0.001 –

mean bound 0.05 0.05 0.05 –
projection type KL KL KL –

trust region coe�cient 100 25 100 –
discount factor 1 1 1 1

Table B.6.:Hyperparameters for Di-SkilL, BBRL, LinDi-SkilL, and PPO for Box Pushing Obstacle task (BPO).
We used all code-level optimization (Engstrom et al., 2020) needed for PPO. The implementation is based on
the source code from Otto et al. (2021).

137

B. Appendix for Chapter 4

Di-SkilL BBRL LinDi-SkilL
critic activation tanh tanh tanh

hidden sizes critic [32,32] [32, 32] [32, 32]
initialization orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003
optimizer critic adam adam adam

ciritc epochs 100 100 100
activation context distr. tanh – tanh

epochs context distr. 100 – 100
hidden sizes context distr. [16,16] – [16, 16]

initialization orthogonal – orthogonal
lr context distr. 0.0001 – 0.0001

optimizer context distr adam – adam
batch size per expert 50 500 50

nr. samples from env. distr. 5000 – 5000
number samples per expert 50 500 50

normalize advantages True True True
expert activateion tanh tanh –

epochs 100 100 100
hidden sizes expert [64,64] [128,128] –

lr policy 0.0003 0.0003 0.0003
covariance type full full full

alpha 0.0001 – 0.0001
beta 1 – 1

number experts 10 – 10
covariance bound 0.005 0.001 0.001

mean bound 0.05 0.05 0.01
projection type KL KL KL

trust region coe�cient 100 25 100

Table B.7.:Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the mini golf task.

138

C. Appendix for Chapter 5

C.1. Derivations

Lower-Bound Derivation. H(c0(a0 |s)) ≥ ℓ ®c (a0, s)

H (c0(a0 |s)) = −E ®c0:#

[
log ®c0:# (a0:# |s)

®c1:# |0(a1:# |s, a0)

]
(C.1)

= −E ®c0:#

[
log

®c0:# (a0:# |s) ®c1:# |0(a1:# |s, a0)
®c1:# |0(a1:# |s, a0) ®c1:# |0(a1:# |s, a0)

]
= E ®c0:#

[
log
®c1:# |0(a1:# |s, a0)
®c0:# (a0:# |s)

]
+ E ®c0:#

[
log

®c1:# |0(a1:# |s, a0)
®c1:# |0(a1:# |s, a0)

]
= E ®c0:#

[
log
®c1:# |0(a1:# |s, a0)
®c0:# (a0:# |s)

]
...

... + Ec0

[
�KL

(
®c1:# |0(a1:# |s, a0)‖ ®c1:# |0(a1:# |s, a0)

)]
≥ E ®c0:#

[
log
®c1:# |0(a1:# |s, a0)
®c0:# (a0:# |s)

]
, (C.2)

where we have used the relation

c0(a0 |s) =
®c0:# (a0:# |s)
®c1:# |0(a1:# |s, a0)

(C.3)

and the fact that the KL divergence is always non-negative

Approximate Inference Formulation. Recall the de�nition of the Q-function

& ®c (sC , a0
C) = AC +

∑
;=1

W ;Edc
[
AC+; + ℓ ®c (a0

C+; , sC+;)
]

(C.4)

and

ℓ ®c (a0, s) = E ®c0:#

[
log
®c1:# |0(a1:# |a0, s)
®c0:# (a0:# |s)

]
. (C.5)

139

C. Appendix for Chapter 5

We start reformulating the objective

� (®c) ≥ �̄ (®c) =
∞∑
C=;

W C−;Edc
[
AC + ℓ ®c (a0

C , sC)
]

(C.6)

=

∞∑
C=;+1

W C−;Edc
[
AC + ℓ ®c (a0

C , sC)
]
+ Edc

[
A; + ℓ ®c (a0

;
, s;)

]
(C.7)

= Edc
[
& ®c (sC , a0

C)
]
+ Edc

[
ℓ ®c (a0

;
, s;)

]
(C.8)

= Edc
[
& ®c (sC , a0

C) + ℓ ®c (a0
;
, s;)

]
(C.9)

= Edc , ®c0:#

[
& ®c (sC , a0

C) + log
®c1:# |0(a1:# |a0, s)
®c0:# (a0:# |s)

]
(C.10)

= −Edc
[
�KL

(
®c (a0:# |s)‖ ®c (a0:# |s)

)
− logZ ®c (s)

]
, (C.11)

where we used
®c0(a0 |s) = exp& ®c (s, a0)

Z ®c (s)
(C.12)

in the last step. When minimizing, the negative sign in front of the KL vanishes. Please
note that the expectation over the marginal state distribution was ommited in the main
text to avoid cluttered notation.

C.2. Proofs

Proof of Proposition 5.4.1 (Policy Evaluation). Let’s de�ne the entropy-augmented
reward of a di�usion policy as

A ®c (sC , a0
C) , AC (sC , a0

C) + E ®c0:#

[
log
®c1:# |0(a1:# |a0, s)
®c0:# (a0:# |s)

]
(C.13)

and the update rule for the Q-function as

& (sC , a0
C) ← A ®c (sC , a0

C) + WEsC+1∼?,a0
C+1∼ ®c

[
& (sC+1, a0

C+1)
]
. (C.14)

This formulation allows us to apply the standard convergence results for policy evaluation
as stated in Sutton and Barto (2018).

Proof of Proposition 5.4.2 (Policy Improvement). It holds that

®c (8+1) (a0:# |B) = exp&c (8) (s, a#)
/c

(8) (B)
®c (8) (a0:#−1 |a# , s). (C.15)

Moreover, using the fact that the KL divergence is always non-negative, we obtain

0 = �KL
(
®c (8+1) (a0:# |B)‖ ®c (8+1) (a0:# |B)

)
≤ �KL

(
®c (8) (a0:# |B)‖ ®c (8+1) (a0:# |B)

)
. (C.16)

140

C.2. Proofs

Rewriting the KL divergences yields

E ®c (8+1)

[
log ®c (8+1) (a0:# |B)

®c (8+1) (a0:# |B)

]
≤ E ®c (8)

[
log ®c (8) (a0:# |B)

®c (8+1) (a0:# |B)

]
(C.17)

⇐⇒ E ®c (8+1)
[
log ®c (8+1) (a0:# |B)

]
− E ®c (8+1)

[
log ®c (8+1) (a0:# |B)

]
(C.18)

≤ E ®c (8)
[
log ®c (8) (a0:# |B)

]
− E ®c (8)

[
log ®c (8+1) (a0:# |B)

]
⇐⇒ E ®c (8+1)

[
log ®c (8+1) (a0:# |B)

]
− E ®c (8+1)

[
log exp&c (8) (s, a#)

/c
(8) (s)

®c (8) (a0:#−1 |a# , s)
]

(C.19)

≤ E ®c (8)
[
log ®c (8) (a0:# |B)

]
− E ®c (8)

[
log exp&c (8) (s, a#)

/c
(8) (s)

®c (8) (a0:#−1 |a# , s)
]

⇐⇒ E ®c (8+1)
[
&c

(8) (s, a#)
]
+ E ®c (8+1)

[
log ®c

(8) (a0:#−1 |a# , s)
®c (8+1) (a0:# |B)

]
(C.20)

≥ E ®c (8)
[
&c

(8) (s, a#)
]
+ E ®c (8)

[
log ®c

(8) (a0:#−1 |a# , s)
®c (8) (a0:# |B)

]
.

To keep the notation uncluttered we use

3 (8+1) (s, a#) = E ®c (8+1)
[
log ®c

(8) (a0:#−1 |a# , s)
®c (8+1) (a0:# |B)

]
and (C.21)

3 (8) (s, a#) = E ®c (8)
[
log ®c

(8) (a0:#−1 |a# , s)
®c (8) (a0:# |B)

]
(C.22)

&c
(8) (s, a#) = A0 + E

[
W

(
3 (8) (s1, a#1) + E ®c (8)

[
&c

(8) (s1, a#1)
])]

(C.23)

≤ A0 + E
[
W

(
3 (8+1) (s1, a#1) + E ®c (8+1)

[
&c

(8) (s1, a#1)
])]

(C.24)

= A0 + E
[
W

(
3 (8+1) (s1, a#1) + A1

)
+ W2

(
3 (8) (s2, a#2) + E ®c (8)

[
&c

(8) (s2, a#2)
])]

(C.25)

≤ A0 + E
[
W

(
3 (8+1) (s1, a#1) + A1

)
+ W2

(
3 (8+1) (s2, a#2) + E ®c (8+1)

[
&c

(8) (s2, a#2)
])]

(C.26)
... (C.27)

≤ A0 + E
[∞∑
C=1

W C
(
3 (8+1) (sC , a#C) + AC

)]
= &c

(8+1) (s, a#) (C.28)

Since & improves monotonically, we eventually reach a �xed point & (8+1) = & (8) = &∗.

141

C. Appendix for Chapter 5

Figure C.1.: Considered environments. The Humanoid-v3 and the Ant-v3 are environments from the
mujoco gym benchmark (Brockman et al., 2016). The three environmentshumanoid-run,humanoid-walk
and humanoid-stand are from the deepmind control suite (DMC) benchmark (Tunyasuvunakool et al.,
2020). The dog environments consist of dog-run, dog-walk, dog-stand, dog-trot and are also from the DMC
sutie benchmark. Finally, the myo suite hand environments object-hold-hard,reach-hard, key-turn-hard,
pen-twirl-hard are from the myo suite (Caggiano et al., 2022).

Proof of Proposition 5.4.3 (Policy Iteration). From Proposition 5.4.2 it follows that
& ®c8+1 (s, a) ≥ & ®c8 (s, a). If for lim:→∞ ®c: = ®c∗, then it must hold that& ®c∗ (s,a) ≥ & ®c (s, a) for
all ®c ∈ ®Π which is guaranteed by Proposition 5.4.2.

C.3. Environments

All environments are visualized in Fig. C.1. We consider the Ant-v3 and the Humanoid-v3
environments from mujoco gym (Brockman et al., 2016). The humanoid-stand, humanoid-
walk , humanoid-run, dog-stand, dog-walk, dog-trot and dog-run environments from the
deepmind control suite (DMC) (Tunyasuvunakool et al., 2020). The hand environments
from myo suite are the object-hold-random,reach-random, key-turn-random and pen-twirl-
random environments (Caggiano et al., 2022). The action and observation spaces of the
respective environments are shown in Table C.1.

C.4. Implementation Details

We consider a score network with 3 layers and a 256 dimensional hidden layer with
gelu activation function. We use Fourier features to encode the timestep and scale the
embedding using a feed-forward neural network with two layers, with a hidden dimension
of 256. For the di�usion coe�cient, we use a cosine schedule and additionally optimize a
scaling parameter for the di�usion coe�cient per dimension end-to-end (i.e,. we learn the
parameter V (please see Appendix C.6).

We employ distributional Q following Bellemare et al. (2017), where the Q-model outputs
probabilities @ over 1 bins. Using the bellman backup operator for di�usion models
from Eq. 5.21 and the bin values 1 we follow Bellemare et al. (2017) and calculate the
target probabilities @C0A64C . Using the entropy-regularized cross-entropy loss L(5) =

−∑
@C0A64C log@5 − 0.005

∑
@5 log@5 we update the parameters 5 of the Q-function. Please

142

C.4. Implementation Details

Training Environment Observation Space Dim. Action Space Dim.

Ant-v3 111 8
Humanoid-v3 376 17
dog-run 223 38
dog-walk 223 38
dog-trot 223 38
dog-stand 223 38
humanoid-run 67 24
humanoid-walk 67 24
humanoid-stand 67 24
myoHandObjHoldRandom-v0 91 39
myoHandReachRandom-v0 115 39
myoHandKeyTurnRandom-v0 93 39
myoHandPenTwirlRandom-v0 83 39

Table C.1.:Observation and Action Space Dimensions for Various Training Environments.

note that the entropy regularization was not proposed in the original paper from Bellemare
et al. (2017), however, we noticed that a small regularization helps improve the performance
in the early learning stages but does not change the asymptotic performance. Additionally,
we follow Nauman et al. (2024) and use the mean of the two Q-values instead of the min
as it has usually been used in RL so far.

The expected Q-values for updating the actor can be easily calculated using the expectation
& (s, a0

C) =
∑
8 @8 (sC , a0

C)18
Action Scaling. Practical applications have a bounded action space that can usually be
scaled to a �xed range. However, the action range of the di�usion policy ®c is unbounded.
Therefore, we follow recent works (Haarnoja et al., 2018b) and propose applying the
change of variables with a tanh squashing function at the last di�usion step = = 0. For the
backward process ®@0:# (D0:# |s) with unbounded action space D ∈ R� we can squash the
action a0 = tanhD0 such that a0 ∈ (−1, 1) and its density is given by

®c0:# (a0:# |s) = ®@0:# (D0:# |s) det

�����(da0

dD0

)�����−1

, (C.29)

with the corresponding log-likelihood

log ®c0:# (00:# |s) = log ®@# (D#) +
#∑
==1

log ®@=−1(D=−1 |D=, s) −
�∑
8=1

log
(
1 − tanh2

(
D#8

))
.

(C.30)
This means that the Gaussian kernels of the di�usion chain have the same log probabilities
except for the correction term of the last step at = = 0.

143

C. Appendix for Chapter 5

Algorithm 4 DIME: Di�usion-Based Maximum Entropy Reinforcement Learning
Input: Initialized parameters) , 5, U , learningrates _

1: for : = 1 to M do
2: if k % UTD then
3: a0:)

C ∼ c)0:# (a
0:# |sC)

4: sC+1 ∼ ? (sC+1 |a0
C , sC)

5: D ← D⋃{sC , a0
C , AC , sC+1}

6: end if
7: 5 ← 5 − _5∇5 �& (5) (Eq. 5.24)
8: if k % POLICYDELAY then
9:) ←) − _)∇)L()) (Eq. 5.25)

10: U ← U − _U � (U) (Eq. 5.28)
11: end if
12: end for

Algorithm 4 shows the learning procedure of DIME. Note that policy delay refers to the
number of delayed updates of the policy compared to the critic. UTD is the update to data
ratio.

C.5. List of Hyperparameters

Please note that we have used the o�cial code releases of the respective baseline methods
for training. For BRO and BRO Fast we used the provided learning curves

DIME. For DIME, we use distributional Q, where the maximum and minimum values
for the bins have been chosen per benchmark suite. We have used E<8= = −1600 and
E<0G = 1600 for the gym environments, E<8= = −200 and E<0G = 200 for the DMC suite and
E<8= = −3600 and E<0G = 3600 for the myo suite.

QSM. In certain environments, we observed that QSM with default hyperparameters
performed poorly, particularly in several DMC tasks and the Gym Ant-v3 tasks. To address
this, we �ne-tuned the hyperparameters for QSM in each of these underperforming
tasks. For the DMC tasks, we found that QSM often requires an U value—representing the
alignment factor between the score and the Q-function (Psenka et al., 2024)—in the range of
100-200, rather than the default value of 50 reported in QSM’s original implementation. In
the Ant-v3 task, we determined that U needs to be set to 1. In the original implementation,
the number of di�usion steps is set to be 5, however, we found using more steps, such as
10 and 15, can signi�cantly improve the performance in these under performed tasks.

CrossQ. We used the hyperparameters from the original paper (Bhatt et al., 2024) for the
gym benchmark suite. However, we used a di�erent set of hyperparameters for the DMC
and MYO suites for improved performance. More precisely, we increased the policy size to
3 layers with 256 hidden size. Additionally, we reduced the learning rate to 7e-4.

144

C.5. List of Hyperparameters

DIME QSM Di�-QL Consistency-AC DIPO DACER QVPO

Update-to-data ratio 2 1 1 1 1 1 1
Discount 0.99 0.99 0.99 0.99 0.99 0.99 0.99
batch size 256 256 256 256 256 256 256
Bu�er size 1e6 1e6 1e5 1e5 1e6 1e6 1e6
HC0A64C 4dim(A) N/A N/A N/A N/A -0.9dimA N/A
Critic hidden depth 2 2 2 3 3 3 2
Critic hidden size 2048 2048 256 256 256 256 256
Actor/Score depth 3 3 4 4 4 3 2
Actor/Score size 256 256 256 256 256 256 256
Num. Bins/Quantiles 100 N/A N/A N/A N/A 2 N/A
Temp. Learn. Rate 1e-3 N/A N/A N/A N/A 3e-2 N/A
Learn. Rate Critic 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Learn. Rate Actor/Score 3e-4 3e-4 1e-5 1e-5 3e-4 3e-4 3e-4
Optimizer Adam Adam Adam Adam Adam Adam Adam
Di�usion Steps 16 15 5 N/A 100 20 20
Prior Distr. N(0, 2.5) N (0, 1) N/A N/A N/A N(0, 1) N (0, 1)
Exploration Steps 5000 1e4 1e4 1e4 1e4 1e4 1e4
Score-Q align. factor N/A 50 N/A N/A N/A N/A N/A

Table C.2.:Hyperparameters of DIME and all di�usion-based algorithms for all benchmark suits. Varying
hyperparameters for di�erent benchmark suits are described in the text.

DIME BRO BRO Fast CrossQ

Polyak weight N/A 0.005 0.005 N/A
Update-to-data ratio 2 10 2 2
Discount 0.99 0.99 0.99 0.99
batch size 256 128 128 256
Bu�er size 1e6 1e6 1e6 1e6
HC0A64C 4dim(A) dim(A)/2 dim(A)/2 dim(A)
Critic hidden depth 2 BRONET BRONET 2
Critic hidden size 2048 512 512 2048
Actor/Score depth 3 BRONET BRONET 3
Actor/Score size 256 256 256 256
Num. Bins/Quantiles 100 100 100 N/A
Temp. Learn. Rate 1e-3 3e-4 3e-4 3e-4
Learn. Rate Critic 3e-4 3e-4 3e-4 7e-4
Learn. Rate Actor/Score 3e-4 3e-4 3e-4 7e-4
Optimizer Adam AdamW AdamW Adam
Di�usion Steps 16 N/A N/A N/A
Prior Distr. N(0, 2.5) N/A N/A N/A
Exploration Steps 5000 2500 2500 5000

Table C.3.: Hyperparameters of DIME and Gaussian-based algorithms for all benchmark suits. Varying
hyperparameters for di�erent benchmark suits are described in the text.

145

C. Appendix for Chapter 5

0 0.2 0.4 0.6 0.8 1
·106

1.2

1.4

1.6

1.8

Number Env Interactions

IQ
M
V

0

(a) V0 on the Dog Run

0 0.2 0.4 0.6 0.8 1
·106

1.2

1.4

1.6

1.8

Number Env Interactions
IQ

M
V

0

(b) V10 on the Dog Run

0 0.2 0.4 0.6 0.8 1
·106

1.2

1.4

1.6

1.8

Number Env Interactions

IQ
M
V

0

(c) V20 on the Dog Run

0 0.2 0.4 0.6 0.8 1
·106

1.2

1.4

1.6

1.8

Number Env Interactions

IQ
M
V

0

(d) V30 on the Dog Run

Figure C.2.:Learned V parameters. DIME’s policy improvement objective (Eq. 5.27) allows to train various
parameters end-to-end, such as the scaling for the di�usion coe�cient V . More concretely, we train a scaling
parameter V: per dimension : , that scales the cosine schedule. We visualize the adaptation of the parameter
for the dimension : = 0, 10, 20, 30 over the training, averaged over 10 seeds for the dog-run task. Clearly,
DIME �rst increases the parameter at the beginning of the training phase. Depending on the dimension, it
either converges to a rather high value (: = 20 and : = 30), or keeps being reduced for other dimensions
: = 0 and : = 10.

C.6. Additional Experiments

End-To-End Learning of V . We visualize the adaptation of the scaling for the di�usion
coe�cient V in Fig. C.2 during learning on DMC’s dog-run environment.

146

	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Introduction
	Thesis Contributions and Structure
	Specializing Versatile Skill Libraries using Local Mixture of Experts
	Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts
	DIME: Diffusion-Based Maximum Entropy Reinforcement Learning

	Foundations
	General Notation
	Step-Based Reinforcement Learning (SRL)
	The Markov Decision Process
	Step-Based Reinforcement Learning Objective
	Step-Based Reinforcement Learning Loop
	Step-Based Reinforcement Learning Methods

	Episode-Based Reinforcement Learning (ERL)
	Episode-Based Reinforcement Learning Objective
	Episode-Based Reinforcement Learning Methods

	Maximum Entropy Reinforcement Learning
	Step-Based Maximum Entropy Reinforcement Learning
	Episode-Based Maximum Entropy Reinforcement Learning

	Advancing Reinforcement Learning using Curriculum Learning
	Policy Representations
	Motion Primitives
	Mixture of Experts
	Diffusion Models

	Optimizing Latent Variable Models via Variational Inference
	Variational Inference for Latent Variable Models
	Variational Inference for Mixture Models
	Variational Inference for Diffusion Models
	Connection to Episode-Based Maximum Entropy RL
	Connection to Step-Based Maximum Entropy RL

	Mutual Information Based Skill Discovery

	Specializing Versatile Skill Libraries using Local Mixture of Experts
	Introduction
	Related Work
	Specializing Versatile Mixture of Expert Models
	Maximum Entropy Skill Learning with Curriculum
	Lower-Bound Decomposition for Expert Distributions
	Lower-Bound Decomposition for Context Distributions and Prior Weights

	Experiments
	Ablation Studies
	Simulated Robotic Experiments
	A Comparison Between Episode-Based and Step-Based Reinforcement Learning

	Conclusion

	Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts
	Introduction
	Preliminaries
	Related Work
	Diverse Skill Learning
	Energy-Based Model For Automatic Curriculum Learning
	Updating the Mixture of Experts Model
	How does Diversity Emerge?

	Experiments
	Environments
	ACL Benefits
	Analyzing the Performance and Diversity

	Conclusion and Future Work

	DIME: Diffusion-Based Maximum Entropy Reinforcement Learning
	Introduction
	Related Work
	Preliminaries
	Maximum Entropy Reinforcement Learning
	Denoising Diffusion Policies

	Diffusion-Based Maximum Entropy RL
	Control as Inference for Diffusion Policies
	Diffusion-based Policy Iteration
	DIME: A Practical Diffusion RL Algorithm
	Implementation Details

	Experiments
	Performance Comparisons
	Ablation Studies
	Multimodality Analysis

	Flexibility of DIME's Framework
	Conclusion and Future Work

	Conclusion
	Summary
	Discussion and Outlook

	Bibliography
	Appendix for Chapter 3
	Derivations
	Maximum Entropy Skill Learning with Curriculum
	Lower-Bound Decomposition for Expert Distributions
	Lower Bound Decomposition for Per-Expert Context Distributions
	Lower Bound Decomposition for Prior Weights

	Algorithmic Details
	Experimental Details
	Ablation Studies
	Beer Pong
	Table Tennis

	Appendix for Chapter 4
	Additional Information to Self-Paced Diverse Skill Learning with MoE
	Additional Related Work
	Additional Information to Diverse Skill Learning
	The Parameterization of the Mixture of Experts (MoE) Model
	Using Motion Primitives in the Context of Reinforcement Learning
	Algorithm Details

	Experimental Details
	Environment Details
	Hopper Jump
	Extended 5-Link Reacher Task
	Robot Mini Golf Task

	Additional Evaluations
	Hyperparameters

	Appendix for Chapter 5
	Derivations
	Proofs
	Environments
	Implementation Details
	List of Hyperparameters
	Additional Experiments

