
Concepts for Designing Modern
C++ Interfaces for MPI

C. Nicole Avans1 , Alfredo A. Correa2 , Sayan Ghosh3 , Matthias Schimek4 ,
Joseph Schuchart5 , Anthony Skjellum1 , Evan D. Suggs1 , and

Tim Niklas Uhl4(�)

1 Tennessee Technological University, Cookeville, Tennessee, USA
{cnavans42,askjellum,esuggs}@tntech.edu

2 Lawrence Livermore National Laboratory, Livermore, California, USA
correaa@llnl.gov

3 Pacific Northwest National Laboratory, Richland, Washington, USA
sg0@pnnl.gov

4 Karlsruhe Institute of Technology, Karlsruhe, Germany
{schimek,uhl}@kit.edu

5 Stony Brook University, Stony Brook, New York, USA
joseph.schuchart@stonybrook.edu

Abstract. Since the C++ bindings were deleted in 2008, the Message
Passing Interface (MPI) community has recently revived efforts in build-
ing high-level modern C++ interfaces. Such interfaces are either built
to serve specific scientific application needs (with limited coverage to
the underlying MPI functionality), or as an exercise in general-purpose
programming model building, with the hope that bespoke interfaces can
be broadly adopted to construct a variety of distributed-memory scientific
applications. However, with the advent of modern C++-based hetero-
geneous programming models, GPUs and widespread Machine Learning
(ML) usage in contemporary scientific computing, the role of prospective
community-standardized high-level C++ interfaces to MPI is evolving.
The success of such an interface clearly will depend on providing robust
abstractions and features adhering to the generic programming principles
that underpin the C++ programming language, without compromising on
either performance or portability, the core principles upon which MPI was
founded. However, there is a tension between idiomatic C++ handling
of types and lifetimes and MPI’s loose interpretation of object lifetimes/
ownership and insistence on maintaining global states.
Instead of proposing “yet another” high-level C++ interface to MPI,
overlooking or providing partial solutions to work around the key issues
concerning the dissonance between MPI semantics and idiomatic C++,
this paper focuses on the three fundamental aspects of a high-level inter-
face: type system, object lifetimes, and communication buffers, while also
identifying inconsistencies in the MPI specification. Presumptive solutions
can be unrefined, and we hope the broader MPI and C++ communities
will engage with us in productive exchange of ideas and concerns.

Keywords: Message Passing Interface · C++ · Concept-based Inter-
face.

© The Author(s) 2025
This version of the contribution has been accepted for publication after peer review, but
is not the Version of Record and does not reflect post-acceptance improvements, or any
corrections. The Version of Record is available online at:
https://dx.doi.org/10.1007/978-3-032-07194-1_10

https://orcid.org/0009-0005-0768-4243
https://orcid.org/0000-0002-9718-7099
https://orcid.org/0000-0001-8758-7657
https://orcid.org/0009-0002-6402-9016
https://orcid.org/0000-0003-2041-7877
https://orcid.org/0000-0001-5252-6600
https://orcid.org/0000-0002-8210-8992
mailto:uhl@kit.edu
https://orcid.org/0000-0001-9295-1388
https://dx.doi.org/10.1007/978-3-032-07194-1_10

2 C. N. Avans et al.

1 Introduction

Many modern C++ projects rely on MPI extensively, but MPI cannot natively
handle most C++ data structures or constructs [19]. We plan to derive a basic
C++ interface that takes into account new features and capabilities of C++
without compromising either performance or portability. This paper seeks to
derive key concepts and design considerations to promote the creation of a full
modern MPI C++ interface, while highlighting issues complicating this endeavor.

C++ bindings were included in the MPI standard, but were deprecated by
MPI 2.2 [17]. These bindings have been entirely removed in version 3.0 (2012),
since they only added minimal functionality over the C bindings while adding
significant maintenance complexity to the MPI specification [16]. C++ has changed
significantly since the deprecation of C++ bindings in 2009, requiring a new look
at its capabilities and the feasibility of a MPI C++ interface.

There are no guidelines now for developing efficient modern C++ interfaces
over MPI (it is impossible to successfully enforce recipes such as C++ Core
Guidelines [26] without standardizing the behavior of underlying MPI objects,
which is usually left up to concrete implementations). Here, we expand on some
general considerations for designing C++ interfaces over MPI in good faith,
without imposing ad hoc rules that might limit productivity, performance, and/or
portability.
Build on existing ideas. We consider, re-evaluate, formalize and extend upon
ideas presented in existing language bindings (Section 2).
Derive a C++ representation of MPI’s object model. We discuss how to
bridge the gap between MPI objects and C++, particularly how to handle their
life cycle and formalize mutability in terms of constness (Section 3.1).
Enabling type safety in MPI. The MPI C API currently does not utilize type
information provided by the language. In Section 3.2, we categorize C++ types
and how these different classes can support type safe compatibility with MPI.
Contiguous ranges as first class communication buffers. Section 3.3 de-
scribes rules defined through C++-20 concepts, which specify which kind of C++
containers are directly supported by MPI for communication operations. This
enables direct support for many STL containers and provides a powerful interface
to derive more complex abstractions. We also describe how to handle data owner-
ship, which is necessary to conform to the best practices of resource management
in modern C++ (namely, RAII) in Section 3.4.
Idiomatic error handling. We describe how C++ can enhance MPI error
handling via compile-time checking and exceptions in Section 3.5.

These are the major aspects and principles to which a future C++ MPI
interface should adhere. Rather than proposing a complete standardized interface,
which risks repeating the shortcomings of the removed bindings, our primary
goal is to define semantic guidelines and core conceptual interfaces that align
idiomatic C++ with MPI. These concepts could serve as the foundation for
a MPI standard side document. Standardizing concepts rather than concrete
APIs offers the advantage of long-term maintainability and adaptability as both
MPI and the C++ language evolve. A C++ interface could introduce additional

Concepts for Designing Modern C++ Interfaces for MPI 3

quality-of-life features to enhance productivity and provide safer abstraction, but
these often introduce overheads that conflict with MPI’s performance-portability
while increasing the complexity of a specification. Still, we outline major ideas and
provide suggestions on how they could be aligned to our previously introduced
design considerations. Particularly, we focus on serialization of more complex
data types (Section 4.1), first steps towards automatic life cycle handling of more
complex MPI data types with direct mappings to C++ (Section 4.2) and how to
increase MPI programmer’s productivity by a sane set of defaults (Section 4.3).

In Section 5, we conclude our discussion with suggestions on how the MPI
standard could support language interface designers (not limited to C++) by
carefully extending the MPI specification.

2 Existing C++ Interfaces over MPI

Since the removal of the “official” C++ MPI interface, a large number of third-
party library interfaces have emerged, joined by efforts to bridge the gap between
MPI implementations, C++, and high-level performance portability frameworks
(e.g., Kokkos). We will briefly outline notable works and their distinctive features
in the following, as they serve as inspirations and proofs of concept for the technical
discussion in the rest of this paper.

The mpl library [3] is a C++-17 based, header-only library meant to provide an
easy to use MPI interface for C++ developers after the deprecation and removal
of the C++ API in MPI 3.0. Recent work [10] have extracted communication-
specific interfaces from the main mpl codebase (reducing about 4K LoC in main
mpl), and consider it as a prototypical modern C++ interface for studying MPI-
specific language bindings. To support bulk communication, mpl uses built-in
mpl::layout class to manage derived data types.

Boost.MPI [13] offers a near one-to-one mapping of MPI-1 via free functions
using communicators. Dynamic types are handled as skeletons containing address
info, which must be updated if data is relocated (e.g., invalidated iterators).

B-MPI3 [7] wraps MPI-3 with a C++ interface based on communicators and
member functions, emphasizing const-correctness and iterator-based ranges. It
uses compile-time strategies to select communication methods: contiguous ranges
use direct C-MPI calls; non-contiguous ones are copied; unsupported types are
serialized via Boost.Serialization.

RWTH-MPI [9] is a C++ interface for MPI that supports contiguous STL
containers as send/receive buffers and offers overloaded MPI procedures with
automatic parameter inference. For custom types, it can auto-generate MPI data
types using the PFR library [20]. Dynamic-size types are unsupported. While it
covers MPI 4.0, its bindings largely mirror the C interface with limited added
abstraction or safety.

KaMPIng [27] uses modern C++ features like move semantics to enhance
safety, enabling return-by-value and memory-safe non-blocking communication. It
constructs MPI data types automatically for STL and custom types when possible
and supports compile-time C++ to MPI type mapping. Its named parameter

4 C. N. Avans et al.

interface with compile-time defaults facilitates both high-level prototyping and
low-level control, keeping the full MPI interface accessible.

The Enhanced Message Passing Interface (EMPI) [4] is based on modern
C++, which is built on top of a customized version of Open MPI, eliding runtime
checking overheads to directly map EMPI objects to low-level MPI objects within
the Open MPI implementation. To enable RAII, EMPI proposes a program context
that wraps the MPI environment, and specializes MPI group from the context for
abstracting communication and synchronization.

Kokkos Comm [2] utilizes modern C++ language features to provide more
intuitive support of inter-node communication of Kokkos Views. Templates provide
the needed flexibility to adapt to diverse data layouts and memory spaces.

MPI Advance [5] provides lightweight libraries that complement available
system MPI installations to leverage tuned performance while also implementing
support for the newest features from the MPI standard (e.g., partitioned commu-
nication) and additional capabilities and optimizations beyond the current scope
of the standard.

3 High-Level Design Considerations

Existing work on designing C++ interfaces to MPI has brought up a huge amount
of interesting design concepts and ideas, but most of the time they are hidden
behind the details of the actual implementation. In this section, we will take a
step back and clearly define the underlying semantic concepts of modern and
idiomatic C++ MPI interface and how MPI’s design can be made “compatible”
with the C++ language. These concepts can then be used by implementers to
design a concrete interface.

We start by defining how MPI objects map to C++ (Section 3.1). Then we
focus on how to model the actual data involved in communication, in terms of
types (Section 3.2) and the actual memory involved (Section 3.3). We then discuss
how combining C++’s ownership model and MPI to obtain additional memory
safety (Section 3.4) and how to handle errors in an idiomatic way (Section 3.5).

3.1 Mapping the MPI Object Model to C++

MPI introduces a range of MPI objects, such as communicators, data types, and
requests, which are represented in the C API using opaque handles. While this is
the only viable approach in C, it hides key semantic properties of these objects,
including ownership, lifetime, and identity. In contrast, C++ offers native language
features that allow these properties to be expressed explicitly and safely.

For more than a decade, C++ MPI library designers have advocated for
representing MPI objects as first-class C++ objects that act as proxies for the
implementation-defined objects behind the handles [23].

It is worth noting that most MPI procedures operating on these objects can
be expressed either as member functions or as free functions. Both choices are
equally valid, and this decision is largely independent of the conceptual model

Concepts for Designing Modern C++ Interfaces for MPI 5

discussed here. In this work, we present communication operations as member
functions, without advocating for one approach over the other.

Modern C++ idioms—particularly RAII (Resource Acquisition Is Initializa-
tion) [25, 16.5][26, E.6] and move semantics—naturally support resource manage-
ment: MPI objects can be constructed via MPI_*_create in class constructors
and released via MPI_*_free in destructors, with ownership safely transferable
through move operations. However, the original MPI design deviates from this
model because of its reliance on global state and implicitly managed global
objects—an approach discouraged by the C++ Core Guidelines [26, I.3,I.22].
For example, global communicators such as MPI_COMM_WORLD are automatically
initialized via MPI_Init and cannot be explicitly created or freed. Further, MPI
prohibits reinitialization after MPI_Finalize, limiting modular or library-based
usage patterns.

Sessions, Groups, and Communicators MPI 4.0 addressed some of these
limitations by introducing the Session Model, an alternative to the traditional
World Model for process management. Although originally designed to support
better isolation in multi-threaded and multi-component environments, the session
model aligns well with modern C++ object-oriented design. In this model, no
global communicators are predefined; instead, communicators must be explicitly
created from process sets via user code. This makes ownership explicit and fully
under user control, enabling clean integration with RAII-based designs as shown
in Fig. 1. For example, communicators and groups are constructed and destroyed
as part of their enclosing scope.

mpi :: session session {};
mpi :: group group = session . group_from_pset ("mpi :// WORLD ");
mpi :: communicator comm{ group }; // create communicator from group
comm. send (...);

Fig. 1. Example of the proposed object model using the MPI Session Model

const-Correctness of MPI Objects The concept of constness is important for
both the compiler and, more crucially, libraries, as it indicates variable mutability
and restricts modifications in certain contexts. This applies straightforwardly
to the data being communicated: For instance, a receiving buffer cannot be
const, which already enhances the program’s safety, which we discuss in detail in
Section 3.3. In a less obvious way, constness can also be applied to library objects
of a MPI C++ interface, such as communicators, data types, and requests and
procedure calls on them, making it even more important to discuss here.

When creating a C++ wrapper for MPI or any C interface that does not
account for constness, adding the keyword const requires a good grasp of the inter-
face semantics and precise knowledge of the implementation (internal mutation).

6 C. N. Avans et al.

Without explicit guarantees from the MPI standard specification, it is difficult to
gather sufficient information to determine whether a particular operation can be
marked as const.

We want to illustrate this for MPI communicators. Most procedure calls leave
a communicator in the same state as before, which would naively allow them to
be specified as const. Conversely, one could argue that posting a message is not
the same as not having posted it; in the former case, the message can be received
on the other side, while in the latter, a receive operation may hang. We think
this is a strong argument to mark communication calls as non-const. But this can
still be challenged for procedures that send and receive in a single call (such as
send_recv or collectives). 1

To resolve these cases, we invoke a modern interpretation (post C++11): Since
the communicator is likely undergoing internal mutation during any non-trivial
operation, it is reasonable to conclude that most communication procedures should
be marked as non-const at the communicator level.

class mpi :: communicator {
communicator (communicator const & other) = delete ; // no copy - constructor
...
auto duplicate () /*non - const */ -> communicator ;
...
auto send(/* const data */ ...) /*non - const */;
auto receive (/* mutable data */ ...) /*non - const */;
auto broadcast (/* mutable data */ ...) /*non - const */;
...
auto size () const ; // most likely can be marked const

// in a reasonable implementation
};

Fig. 2. Interpretation of const-ness in a MPI C++ interface

If we adhere to the conclusion that communication procedures should not be
marked const, an important and somewhat unexpected result follows: a commu-
nicator class should not have a duplicate mechanism that is const on the original
communicator. Incidentally, there will be no canonical copy constructor (taking
original communicator as a constant reference). This is consistent, since even
communicators duplicated from each other cannot receive or complete operations
initiated in another communicator. Thus, two communicators are never copies of
each other; they are at most alternative virtual fabrics for subsequent communi-
cation. Fig. 2 summarizes our discussions about the communicator class which
also align with the interpretation of the B.MPI3 [7] interface.

For other parts of the library, the situation might be simpler. For example,
most datatype manipulation is likely to take advantage of const, since datatype
manipulation usually generates new types instances from other types instances.
1 Note that this is a fundamental problem, not exclusive to const-qualified member

functions; if the procedures are free functions the questions will still stand regarding
the constness of the communicator argument parameter.

Concepts for Designing Modern C++ Interfaces for MPI 7

In summary, a key problem is that the MPI standard says little about the
mutation of MPI “objects” (communicator, data types or request objects), which
is further complicated by the existence of a global mutable state at the level of
the environment. In most cases, the internal mutation seems only to be implied by
common knowledge, which makes the decision on the correct usage of const-ness
in a C++ interface difficult.

Design and conventions on this issue, have important ripple effect in the design
of C++ MPI programs, specifically C++ classes that contain communicators
and other MPI objects, which is common in programs written at a high level
of abstraction [1,11]. Classes that use their own internal communicator even for
non-mutating operations would require mutation of the communicator, internally
at least (i.e., mutable attribute, and possibly synchronization).

3.2 Modeling and Mapping Types

Applications using MPI use a variety of data types that need to be communicated.
The MPI standard distinguishes between basic datatypes and arbitrarily complex
derived datatypes, which can be recursively constructed from other data types
using type constructors (MPI_Type_create_*). C’s lack of type introspection
features forces users to always pass the type explicitly to a communication call,
which is both tedious and error-prone, since type definitions need to be kept in
sync with the actual data layout. Fortunately, for many C++ types, there is a
one-to-one mapping to MPI data types. C++ defines a set of fundamental types:
void, std::nullptr_t, integral types (including integers, character types and
bool) and floating-point types. For integral and floating-point types, there exist
matching predefined basic data types in MPI.

Using template-metaprogramming, a C++ MPI interface can therefore deduce
an MPI type directly from a data buffer (as defined in Section 3.3), in case its
underlying value_type is fundamental. This approach is implemented by all major
MPI C++ bindings [3,7,13,27]. More complex types require explicit creation and
a subsequent commit step, and have to be freed before MPI is finalized. To enable
proper cleanup we again use RAII and represent data types as mpi::datatype
objects, which support move construction and assignment and free the data type
when the destructor is called.

To prevent users from using uncommitted data types in communication, we pro-
pose to encode the commit information as part of the type, similar to the approach
of rsmpi [24]. The function mpi::commit takes an rvalue mpi::datatype object,
and converts it to a mpi::committed_datatype as shown in Fig. 3. Accordingly,
communication calls only accept data type objects of this type.

In addition to fundamental C++ types with direct mappings to predefined
MPI basic types, there exists a broader class of C++ types that can still be safely
mapped to MPI data types. These are precisely the types classified trivially copy-
able by the C++ standard. A type is trivially copyable if its binary representation
can be safely copied byte-by-byte (e.g., via memcpy), without violating language
rules and invoking undefined behavior. More concretely, an object of such type can
be copied to an array of char, unsigned char, or std::byte, and then back into

8 C. N. Avans et al.

struct MyType {
int a;
std :: array <int , 3> b;
double c;
char d;

};
mpi :: datatype type = mpi :: datatype ::for <MyType >();
mpi :: committed_datatype struct_type = mpi :: commit (std :: move(type));

Fig. 3. Example for constructing a type for a C++ type and committing it

another object of the same type, which will hold the same value as the original.
This property is essential for MPI communication: when transmitting data across
processes, the memory content of a variable must be sent as a sequence of raw
bytes over the network and reconstructed correctly on the receiving end. If the
type is not trivially copyable, this round-trip may not preserve the original value
or may result in undefined behavior. Thus, restricting to trivially copyable types
ensures that the MPI type correctly matches the actual in-memory layout and
semantics of the transmitted data.

These types can be safely supported by automatically constructing the cor-
responding MPI datatype using a compile-time reflection mechanism to call the
correct MPI type constructors. This ensures that the C++ type is compatible
with MPI’s type system and enables safe type handling, even on heterogeneous
systems. Although C++ currently lacks native language support for such reflec-
tion, concrete proposals are in place to introduce compile-time type reflection
in C++26 [22]. In the meantime, third-party libraries such as Boost.PFR [20]
can be used to implement this feature, although they have some limitations, for
example for types using inheritance or private members.

Beyond fundamental and trivially copyable types, there remains a broad
class of other (potentially user-defined) C++ types that do not have a direct
or automatically derivable mapping to an MPI data type. For these types, the
correspondence between memory layout and type semantics cannot be safely
inferred by the prospective C++ MPI interface. Consequently, it becomes the
user’s responsibility to explicitly define how the type is laid out in memory and how
that layout corresponds to an appropriate MPI datatype. While the handling of
fundamental and trivially copyable types can be automated to reduce programming
errors and ease MPI development, a prerequisite for such automation is a clear
conceptual model of the data involved in communication. The core abstraction in
this model is the data buffer, which we introduce in the following Section 3.3.

3.3 Modeling Memory Involved in MPI Communication

We now explore how a C++ MPI interface can offer idiomatic abstractions for
the data sent or received in MPI communication operations. In MPI, this data is
described in terms of a pointer to a memory region, an (MPI) datatype, the number
of elements to be sent, and (for some collective operations) their displacements.
While this number of parameters makes MPI flexible, it also leads to verbose

Concepts for Designing Modern C++ Interfaces for MPI 9

function calls. Further, the flexibility of MPI is only required in a few use cases
and results in unnecessarily complicated code in other cases [27].

Particularly when using standard library containers such as std::vector<T>
with the MPI C API, users have to access underlying raw pointers and sizes
of the containers and pass them to MPI individually, while the actual vector
object already comprises the whole send data context. This is both non-ergonomic
to use and conflicts with the C++ Core Guidelines [26, I.13]. Most existing
MPI C++ libraries therefore introduce support for a subset of standard library
containers [3,7,9,13,27] as their core abstraction feature. However, this has certain
shortcomings. First, this is often defined ad-hoc only including a fixed set of
containers [9,13]. Second, design decisions within the approaches of supporting
(standard library) containers introduce hidden, additional overheads through
memory allocations or additional MPI calls [3,13,27]. For example, in an MPI_Recv
call, Boost.MPI resizes the container into which it receives the data to match the
size of the incoming message. If the user does not want this, they must instead
pass raw pointers again. The KaMPIng library internally invokes MPI_Probe when
the user issues a receive operation without a count argument. Such unexpected
overheads are not desired from the perspective of a standardized C++ interface.

Therefore, in the following, instead of reiterating the specific approaches of
existing MPI wrappers and defining how a particular container is “fitted” to
support MPI, we will define a small set of underlying rules and categories for
memory involved in communication in terms of C++ concepts. Concepts are a
(modern) C++ language feature for specifying constraints on (custom) types.
C++ provides easy-to-use mechanisms to check that types satisfy a given concept
at compile time. This gives us well-defined semantics on which kind of containers
can be used directly with MPI, deducing size and type information safely from
C++, without imposing any additional overhead. Additionally, C++ objects
not satisfying required concepts result in easy-to-understand error messages, as
opposed to previous often very verbose and complicated error messages caused by
template metaprogramming errors [8].

For each send or receive buffer involved in a communication call, MPI’s C API
expects a pointer to a contiguous memory location, a count argument and an MPI
data type. C++ already provides type information, and automatically matching
types is crucial for type safety. A high-level standardizable C++ interface, can use
type introspection to provide such type safety, which we detail in Section 3.2. For
now, let us assume that we can always deduce an MPI data type from a provided
container. We call this basic building block of MPI communication (memory
location, count and type) a data buffer. In the following, we describe a minimal
interface of data buffer objects in terms of C++ concepts.

A data buffer object has to satisfy the concept std::range; that is, it must
expose an iterator to the beginning (and to the end) of its underlying storage.
Additionally, data buffers must satisfy the following (built-in) concepts:

10 C. N. Avans et al.

namespace mpi {
// Concept ensuring that t exposes MPI data type information
template <typename T>
concept Typed = requires (T t) {

{ mpi :: datatype (t) } -> std :: same_as < committed_datatype const &>;
};

template <typename T>
concept DataBuffer =

std :: ranges :: contiguous_range <T> &&
std :: ranges :: sized_range <T> &&
(std :: is_fundamental_v < typename T:: value_type > || Typed <T >);

// Concept for data buffers storing send data
template <typename T>
concept SendDataBuffer =

DataBuffer <T> &&
std :: ranges :: input_range <T >;

// Concept for data buffers encapsulating data to be received
template <typename T>
concept RecvDataBuffer =

DataBuffer <T> &&
std :: ranges :: output_range <T, typename T:: value_type >;

}

Fig. 4. Concept definition for a data buffer

– std::ranges::contiguous_range, that is, its underlying memory has to be
contiguous in memory. This captures MPI’s requirement that data which is
communicated must reside in sequential storage 2.

– std::ranges::sized_range, that is, a data buffer exposes a size() function
returning the number of its elements.

– Typed, that is, either the data buffer exposes a constant reference to a com-
mitted MPI data type or the data buffer’s value_type is a fundamental type
(for which a direct mapping to predefined MPI data types exists and can
directly be used if not overwritten by the user).

An example of how these constraints can be expressed in plain C++ is given
in Fig. 4, which defines the concept mpi::DataBuffer in terms of the three
concepts described above. A convenient property of this data buffer definition
is that many C++ standard library containers like std::vector or std::array
storing fundamental C++ types such as char, int, double, ... already satisfy
the mpi::DataBuffer concept. This also holds for lightweight, non-owning views
such as std::span. Hence, they can be directly used in an MPI C++ interface
adhering to these principles.

For more complex cases, for example, to communicate a container of a custom
C++ datatype which is trivially_copyable, we first have to construct and
commit such a datatype (see Section 3.2) and then pass it to the data buffer.
For communicating data using complex derived datatypes without a one-to-one
2 An exception to this requirement is the usage of MPI_BOTTOM which relies on absolute

memory addresses to describe data and should be treated separately.

Concepts for Designing Modern C++ Interfaces for MPI 11

mapping to the underlying C++ type, we not only have to construct and commit
an MPI datatype but also pass the number of corresponding elements to the data
buffer. For these more complex cases, there is no direct C++ standard library
support but an MPI C++ interface could easily provide a lightweight adapter
with multiple constructors not only accepting a contiguous std::range, but also
a count and a mpi::committed_datatype parameter.

This also makes this interface extensible to support more complex containers
from third-party libraries like Kokkos::View or thrust::device_vector, backed
by memory located on accelerators such as GPUs. Therefore the data buffer concept
naturally extends to the notion of memory allocation kinds [18], providing direct
support for accelerator-aware MPI on C++ containers backed memory located on
GPUs or other accelerators.

Figure 5 illustrates exemplary communication calls showcasing the different
cases discussed above. Note that we do not suggest a concrete API or function
signatures but rather want to show the underlying concept of using data buffers
as an abstract description for communication data.

Orthogonal to the mpi::DataBuffer concept presented so far, we additionally
have to model that data buffers describing send data have to be readable and
data buffers for receive data have to be writable. This can be expressed using the
(built-in) concepts, std::ranges::in/output_range (see Fig. 4).

To conclude, in many (simple) cases, this approach leads to clean and less
convoluted code with direct C++ standard library integration. For more complex
cases, we end up with the same number of parameters as in the C API, as we need
to leverage its full flexibility. However, in all scenarios, we gain clear semantics
directly documented in source code by using C++ concepts.

std :: vector <int > v = ...
comm. send (v, /* additional parameters */);

std :: vector <MyType > v = ... // static custom type defined in Fig. 3
mpi :: datatype type = mpi :: datatype ::for <MyType >();
mpi :: committed_datatype type_c = mpi :: commit (std :: move(type));
comm. send (mpi :: buffer_adapter (v, type_c), /* additional parameters */);

std :: vector <char > v = ...
int count = ...
mpi :: datatype complex_type = ... // complex derived type manually defined by user
mpi :: committed_datatype complex_type_c = mpi :: commit (std :: move(complex_type));
comm. send (mpi :: buffer_adapter (v, complex_type_c , count), /* additional parameters */);

int local_count = ...;
comm. reduce (mpi :: single_adapter (local_count), ...); // support for non - range single arguments

Fig. 5. Exemplary communication calls using the data buffer concept when MPI proce-
dures are implemented as member functions.

Extending the Data Buffer Concept. In collective communication calls with varying
counts (such as MPI_Alltoallv), MPI requires not just a single count parameter

12 C. N. Avans et al.

but a separate count for each MPI process (aka rank). Additionally, displace-
ments can be specified for each rank. To reflect these semantic changes, we have
to extend the mpi::DataBuffer concept as previously defined (Fig. 4) and de-
fine irregular mpi::DataBuffers. These buffers are still based on the concept
std::ranges::contiguous and have to expose MPI datatype information. Ad-
ditionally, they also have to expose size_v() and displacements() functions,
which return the respective counts and displacement data. For brevity, we refrain
from providing an example definition of this additional concept. Again, simple
lightweight adapters can be provided for standard library and similar custom
containers. Similarly, scalar arguments (such as a single int or bool in a reduction)
can be easily supported via lightweight adapters, which implicitly return size 1
and implement the data buffer concept (Fig. 5).

3.4 Ownership and Non-Blocking Communication

Using the data buffer concept instead of raw pointers already offers benefits
such as an ergonomic interaction with standard library containers, improved type
safety and the potential to prevent out-of-bounds accesses. Another important
advantage of this object-oriented data handling is that it allows us to model a
proper concept of ownership. In C++, if an object owns a resource—such as
heap-allocated memory—the object is responsible for releasing this resource when
it goes out of scope. This is usually achieved by placing the clean-up code in the
object’s destructor and the key idea behind the RAII idiom. A data buffer owning
its underlying memory is therefore responsible for freeing this memory once it
goes out of scope, thus preventing memory leaks. This plays well with C++’s
move semantics. During move-construction or move-assignment, ownership of the
underlying resource is transferred from the source to the destination object. Using
this mechanism it is for example possible to move a (receive) data buffer to an
MPI call as shown in Fig. 6. Then the MPI call receives data into the provided
buffer, which it now owns. Once the communication is completed, it returns the
updated receive buffer by value resulting in a clean and idiomatic pass through of
the underlying memory resource. This data flow allows us to avoid the use of out
parameters that are discouraged in C++ [26, F.20].

In terms of library interface design, this “pass through” of data can be achieved
by considering the value category of data buffers passed to communication calls.
We propose that a C++ interface should explicitly distinguish between arguments
passed as r- or l-values: If a data buffer is an r-value, the data buffer is moved to
the MPI operation, and returned to the caller as a return value of the function call.
If a data buffer is an l-value, it is passed by reference to the operation, ownership
is not transferred, and it is not returned. For an example see Fig. 6.

Further, (moving) ownership is particularly useful for enhancing the safety of
non-blocking communication. In MPI, a call to a non-blocking communication
operation initiates the operation but does not complete it. Instead, it returns
a request handle, which the user can test for completion via MPI_Test or wait
(blocking) on via MPI_Wait. This return of control between initiation and comple-
tion of the underlying call introduces a potential source of programming errors

Concepts for Designing Modern C++ Interfaces for MPI 13

since MPI semantics require that any buffer involved in a non-blocking operation
remain unmodified by the user until the operation has completed.

A robust solution to this problem is to transfer ownership of data buffers
involved in non-blocking communication calls to the C++ interface, which forward
it to request object as show in Fig. 6. The request object is conceptually similar
to std::future 3: Users can only access the data upon completing the request
via wait or test, which move the data back to the caller, either directly by value
in the former case, or encapsulated in std::optional in the latter. This way,
invalid accesses to data involved in non-blocking communication can be prevented
entirely through library semantics. This idea was first introduced and implemented
in the MPI wrapper KaMPIng [27].

std :: vector <int > recv_buf = {...};
recv_buf = comm.recv(std :: move(recv_buf), ...); // ownership transferred to call

// and back to caller
comm.recv(recv_buf , ...); // buffer only captured by reference , and nothing returned

// Non - blocking communication with ownership transfer
mpi :: request <std :: vector <int >> req = comm. irecv (std :: move(recv_buf), ...);
recv_buf = req. wait (...);
std :: optional <std :: vector <int >> result = req. test (...);

Fig. 6. Transferring ownership through C++’s move semantics

3.5 Error Handling

MPI notifies users of errors by returning error codes from almost every function
defined by the MPI standard. Although this is the most common way to handle
errors in C, this does not fit well with modern C++. Most current MPI C++
interfaces either ignore errors completely or encapsulate the returned error code
in an exception and throw it. This has a shortcoming: MPI makes no distinction
between failures, which may be recoverable, such as insufficient buffer space
or node failures (when using a ULFM-enabled MPI implementation [6]) and
usage errors, such as providing invalid parameters, which cannot be resolved. The
strategy of converting all returned errors to exceptions is opposed to the C++
Core Guidelines [26] which give the following suggestions on error handling: (E.2)
“Throw an exception to signal that a function can’t perform its assigned task,”
and (P.5) “Prefer compile-time checking to run-time checking.” Guided by this, we
propose the following strategy (implemented by KaMPIng [27] and B.MPI3 [7]):

First, usage errors, such as invalid parameter combinations or invalid types,
are handled at compile time via static_assert. Since C++ template meta-
programming is notorious for complex, hard-to-read compiler errors, we try to
3 Using std::future to provide a safe interface for non-blocking communicating is not

possible, as they are tied to asynchronous progress happening in the background,
which the MPI standard does not guarantee.

14 C. N. Avans et al.

ensure that compile-time assertions fail early and provide helpful human-readable
error messages. Looking ahead, C++-26’s enhancements to static_assert will
enable us to supply constant-expression diagnostic messages, potentially leveraging
std::format, so that compile-time checks can convey rich contextual information.

For invariants that can only be verified during execution, we use a layered
assertion system: We verify invariants ranging from lightweight checks to asser-
tions involving additional communication. These can be disabled level-by-level
at compile-time, encouraging developers to use exhaustive checking while writ-
ing and testing code, yet permitting a lean, high-performance configuration for
production builds. By integrating error-handling controls directly into the C++
interface—rather than relying on rebuilding the MPI library itself in a “debug”
mode—we provide an ergonomic, flexible framework. If an assertion is enabled
and fails, we call MPI_Abort because execution can not safely continue.

Errors that may be recoverable are signaled to the user. This can either by done
by throwing an exception, or by returning std::expected from MPI procedures.
C++-23’s std::expected<T, E> offers a lightweight, value-based alternative to
exceptions, by encapsulating either a valid T or an error E in one object. Using
std::expected makes error handling explicit, avoids hidden blocking operations
inside distant catch handlers, and allows for easy error chaining and propagation.
Together with the return-by-value-based design proposed in Section 3.4, this
extends the concept of error codes in MPI’s C interface, by only providing access
to the return value of a procedure in case of success.

4 Considerations Beyond a Preliminary C++ Interface

In the following, we discuss additional features which improve the usability of
preliminary C++ MPI language bindings. These features are perhaps beyond the
scope of initial standardization, since they introduce additional overhead on top
of the current MPI specification, such as allocation or communication under the
hood. Nevertheless, they make working with MPI from C++ easier and often
safer. In the following, we discuss how to easily communicate data not directly
compatible with MPI (Section 4.1), how to improve the handling of type lifetimes
(Section 4.2) and to improve programmer productivity and reduce boilerplate
code by offering sane defaults to programmers (Section 4.3).

4.1 Serialization

The data buffer concept defined in Section 3.3 provides a type-safe and easy-to-
use way to use standard C++ containers and user-defined types with a regular
memory layout and a direct mapping to an MPI data type in MPI communication.
Commonly used complex C++ types, such as std::list, std::unordered_map,
or polymorphic class hierarchies, do not provide contiguous storage or a well-
defined memory representation. These are dynamic types: their size or layout may
vary at runtime, they may require logic to (re)construct from memory (on both
ends of the communication) and may involve intermediate allocations associated

Concepts for Designing Modern C++ Interfaces for MPI 15

with data copies. While such types cannot be communicated directly using the
MPI type system, a user-defined data buffer encapsulating packed data data can
be used. However, constructing this is cumbersome and error-prone.

Instead, we propose a general serialization mechanism: The solution is to
serialize complex types into a contiguous byte buffer (e.g., a std::vector<char>),
which are directly transmittable via MPI. The deserialization step on the receiving
side reconstructs the original object from this representation.

Importantly, serialization libraries such as Boost.Serialization [21] or Cereal [12]
let users define what data members of a type should be serialized; that is, what
constitutes the object’s logical state. The concrete binary layout or packing is
handled automatically by the library and is treated as an implementation detail
4. This cleanly separates the intent of serialization from its mechanics, which is
especially useful for complex types. Constructing such a serialized buffer may
itself involve MPI communication, for example to exchange message sizes ahead of
receiving the actual payload. While this is beyond the scope of the MPI standard,
it can be built naturally on top of the previously defined data buffer concept.
A user-defined type wrapping the serialization logic and exposing the required
interface (contiguous, sized, and typed buffer) integrates seamlessly with the rest
of the system.

In summary, even though dynamic types require custom logic and cannot
be described via static type traits, the buffer abstraction is general enough to
accommodate them. Serialization turns arbitrary C++ objects into something
communicable without burdening the MPI interface with additional complexity.

4.2 Safer Usage of Complex Types

The type classification and data buffer concept introduced in Sections 3.2 and 3.3
provide all necessary building blocks to work with complex types. Even if a
type is not directly supported by MPI, for the large class of trivially copyable
types, there still exists a type-safe, direct type mapping. This allows the user
to semi-automatically construct a type, and pass it alongside a container to the
communication call as a data buffer, as shown in Fig. 5.

But this has shortcomings: Committing an MPI data type is not free, since
implementations may optimize the internal representation of a type when it is
committed. So in a C++ interface, it is the user’s responsibility to commit the
type and free it when it is no longer needed (by destructing the type object using
the RAII pattern). This introduces additional problems, since now the user has
to keep the type around all the time, and the type correspondence between the
container and the data type object is lost. To improve usability here, we suggest
the idea of a type pool that allows to store committed data types and to perform
a lookup based on type information.

Users then just construct a data buffer from a container of a trivially copy-
able type and a reference to the type pool and pass it to the communication
call. The communication call can then perform a runtime lookup based on
4 Implementations may even avoid byte packing and communicate in chunks.

16 C. N. Avans et al.

std::type_info::hash_code of the containers value type to obtain the MPI
data type used in communication.

There is one caveat to this approach: The lifetime of types in MPI is currently
not clearly defined. In the session model, the lifetime of types is allowed to
span across multiple sessions which suggests that the MPI type system exists
orthogonally to MPI initialization. But it also mandates that types may only be
created once a session or the world model is initialized, yet users are encouraged
to commit types separately for each session.

This inconsistency appears to be unintentional but has not been resolved since
sessions were introduced5. Fixing this will enable language bindings to MPI, not
only limited to C++, to handle types more easily. For example, when type lifetime
is tied to sessions, a C++ implementation can associate a session-local type pool
with each session object, which can be queried for types without providing a pool
explicitly. Types can then be freed automatically when the session is finalized.

4.3 Improving MPI Productivity with Sensible Defaults

Many libraries improve usability features beyond a high-level standardized in-
terface: automatically resizing receive containers, computing missing counts or
displacements in collectives with varying counts, or even performing additional
communication to determine missing arguments. For example, Boost.MPI [13]
and RWTH-MPI [9] offer various overloads for communication calls with default
arguments, preventing users from writing a lot of boilerplate code.

KaMPIng [27] goes even further: It chooses an alternative approach inspired
by named parameters, where parameters passed to a function can be named at the
caller site and passed in arbitrary order (as seen in languages like Python).This
allows to check for the presence of each parameter and to compute default values
only if the respective parameter is omitted, without resorting to many overloads
exploring the complete combinatorial explosion of parameters. To avoid run-time
overhead, they rely on template meta-programming to only generate the code
paths required for computing missing parameters at compile time.

While this is well beyond the scope of a low-level interface due to additionally
introduced allocations or communications, concrete implementations building on
this interface could introduce such improvements to make writing MPI code easier,
less error-prone and more productive, by handling resources on behalf of the user.

5 Conclusions

Standardizing a modern C++ interface is an ambitious—and perhaps impractical—
undertaking. Instead, we advocated here for the creation of language support
guideline documents, similar in spirit to what this work aims to contribute.

While many desire a truly modern C++ interface for MPI, this paper has laid
out the conceptual and technical challenges that need to be addressed before such an
5 https://github.com/mpi-forum/mpi-issues/issues/733

https://github.com/mpi-forum/mpi-issues/issues/733

Concepts for Designing Modern C++ Interfaces for MPI 17

interface can be standardized. Our goal was to clarify these challenges and provide a
foundation of design principles that could guide future development and community
discussion. To this end, we covered high-level considerations: a C++representation
of the MPI object model (Section 3.1), data representation (Section 3.3) and
ownership (Section 3.4), modeling and mapping types (Section 3.2), and idiomatic
error handling (Section 3.5). We also discussed ideas beyond these core concepts,
including serialization (Section 4.1) and usability improvements (Sections 4.2
and 4.3).

Based on these considerations, we identified specific aspects where the MPI
standard requires clarification—most notably the lifecycle of user-defined data
types, which remains under-specified in the context of sessions and makes au-
tomated resource management more difficult. We also support ongoing efforts
to improve attribute support across the standard, particularly for sessions and
requests, as this is essential for associating higher-level interface constructs with
the lifetime of MPI objects (see Issue #664). Finally, while callback support al-
ready exists in the standard, not all callbacks currently support user-defined state.
Enabling this consistently would improve the design and usability of language
bindings (see Issue #839).

We hope that our discussion can serve as a blueprint for other MPI language
communities. A prime example for language support is Vapaa [14], a standalone
implementation of MPI’s Fortran interface built on the C API, which strongly
influenced the addition of an MPI Application Binary Interface in the MPI 5.0
standard [15]. Also, many of the mentioned concepts can be applied to or were
inspired from the Rust MPI bindings rsmpi [24], since modern C++ and Rust
share many conceptual similarities. For other languages, it might be helpful to
derive their own, independent set of guidelines. This will enable MPI continue to
evolve together with popular languages that define the future of high-performance
computing.

Acknowledgments. PSAAP Funding in part is acknowledged from these NSF Grants
OAC-2514054, CNS-2450093, CCF-2405142, and CCF-2412182 and the U.S. Department
of Energy’s National Nuclear Security Administration (NNSA) under the Predictive
Science Academic Alliance Program (PSAAP-III), Award DE-NA0003966. AAC work
performed under the auspices of the US Department of Energy by Lawrence Liver-
more National Laboratory under contract DE-AC52-07NA27344, and supported by the
Center for Non-Perturbative Studies of Functional Materials Under Non-Equilibrium
Conditions (NPNEQ) funded by the Computational Materials Sciences Program of the
US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences
and Engineering Division. This work was also performed under the auspices of the US
Department of Energy’s Pacific Northwest National Laboratory, operated by Battelle
Memorial Institute under contract DE-AC05-76RL01830. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation, or the U.S.
Department of Energy’s National Nuclear Security Administration.
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No. 882500).

https://github.com/mpi-forum/mpi-issues/issues/664
https://github.com/mpi-forum/mpi-issues/issues/839

18 C. N. Avans et al.

References

1. Andrade, X., Pemmaraju, C.D., Kartsev, A., Xiao, J., Lindenberg, A., Rajpurohit,
S., Tan, L.Z., Ogitsu, T., Correa, A.A.: Inq, a modern gpu-accelerated computational
framework for (time-dependent) density functional theory. Journal of Chemical
Theory and Computation 17(12), 7447–7467 (Nov 2021). https://doi.org/10.1021/
acs.jctc.1c00562, http://dx.doi.org/10.1021/acs.jctc.1c00562

2. Avans, C.N., Ciesko, J., Pearson, C., Suggs, E.D., Olivier, S.L., Skjellum, A.: Per-
formance Insights into Supporting Kokkos Views in the Kokkos Comm MPI
Library. In: 2024 IEEE International Conference on Cluster Computing Work-
shops (CLUSTER Workshops). pp. 186–187 (2024). https://doi.org/10.1109/
CLUSTERWorkshops61563.2024.00051, https://github.com/kokkos/kokkos-comm

3. Bauke, H.: MPL - a message passing library (2015), https://github.com/rabauke/mpl
4. Beni, M.S., Crisci, L., Cosenza, B.: EMPI: Enhanced Message Passing Interface

in Modern C++. In: 2023 IEEE/ACM 23rd International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). pp. 141–153 (2023). https://doi.org/10.
1109/CCGrid57682.2023.00023

5. Bienz, A., Schafer, D., Skjellum, A.: MPI Advance : Open-Source Message Passing
Optimizations (2023), https://arxiv.org/abs/2309.07337

6. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: Post-failure recovery
of mpi communication capability: Design and rationale. The International Journal
of High Performance Computing Applications 27(3), 244–254 (2013). https://doi.
org/10.1177/1094342013488238, https://doi.org/10.1177/1094342013488238

7. Correa, A.A.: B-MPI3 (2018), https://github.com/LLNL/b-mpi3
8. cppreference.com: Constraints - cppreference.com (2025), https://en.cppreference.

com/w/cpp/language/constraints.html, accessed: 2025-06-03
9. Demiralp, A.C., Martin, P., Sakic, N., Krüger, M., Gerrits, T.: A C++20 interface

for MPI 4.0. CoRR abs/2306.11840 (2023)
10. Ghosh, S., Alsobrooks, C., Rüfenacht, M., Skjellum, A., Bangalore, P.V., Lumsdaine,

A.: Towards modern C++ language support for MPI. In: 2021 Workshop on Exascale
MPI (ExaMPI). pp. 27–35. IEEE (2021)

11. Godoy, W.F., Hahn, S.E., Walsh, M.M., Fackler, P.W., Krogel, J.T., Doak, P.W., Kent,
P.R., Correa, A.A., Luo, Y., Dewing, M.: Software stewardship and advancement of
a high-performance computing scientific application: Qmcpack. Future Generation
Computer Systems 163, 107502 (Feb 2025). https://doi.org/10.1016/j.future.2024.
107502, http://dx.doi.org/10.1016/j.future.2024.107502

12. Grant, W.S., Voorhies, R.: cereal – a C++11 library for serialization (2017), http:
//uscilab.github.io/cereal/

13. Gregor, D., Troyer, M.: Boost.MPI (2005–2007), https://www.boost.org/doc/libs/
1_84_0/doc/html/mpi.html, version 1.84

14. Hammond, J.: Vapaa: A standalone implementation of the mpi fortran 2018 module
(2023), github.com/jeffhammond/vapaa

15. Hammond, J., Dalcin, L., Schnetter, E., PéRache, M., Besnard, J.B., Brown, J.,
Gadeschi, G.B., Byrne, S., Schuchart, J., Zhou, H.: MPI application binary interface
standardization. In: Proceedings of the 30th European MPI Users’ Group Meeting.
p. 1–12. EUROMPI ’23, ACM (Sep 2023). https://doi.org/10.1145/3615318.3615319,
http://dx.doi.org/10.1145/3615318.3615319

16. Message Passing Interface Forum: MPI: A message-passing interface standard (2009),
https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

https://doi.org/10.1021/acs.jctc.1c00562
https://doi.org/10.1021/acs.jctc.1c00562
https://doi.org/10.1021/acs.jctc.1c00562
https://doi.org/10.1021/acs.jctc.1c00562
http://dx.doi.org/10.1021/acs.jctc.1c00562
https://doi.org/10.1109/CLUSTERWorkshops61563.2024.00051
https://doi.org/10.1109/CLUSTERWorkshops61563.2024.00051
https://doi.org/10.1109/CLUSTERWorkshops61563.2024.00051
https://doi.org/10.1109/CLUSTERWorkshops61563.2024.00051
https://github.com/kokkos/kokkos-comm
https://github.com/rabauke/mpl
https://doi.org/10.1109/CCGrid57682.2023.00023
https://doi.org/10.1109/CCGrid57682.2023.00023
https://doi.org/10.1109/CCGrid57682.2023.00023
https://doi.org/10.1109/CCGrid57682.2023.00023
https://arxiv.org/abs/2309.07337
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1177/1094342013488238
https://github.com/LLNL/b-mpi3
https://en.cppreference.com/w/cpp/language/constraints.html
https://en.cppreference.com/w/cpp/language/constraints.html
https://doi.org/10.1016/j.future.2024.107502
https://doi.org/10.1016/j.future.2024.107502
https://doi.org/10.1016/j.future.2024.107502
https://doi.org/10.1016/j.future.2024.107502
http://dx.doi.org/10.1016/j.future.2024.107502
http://uscilab.github.io/cereal/
http://uscilab.github.io/cereal/
https://www.boost.org/doc/libs/1_84_0/doc/html/mpi.html
https://www.boost.org/doc/libs/1_84_0/doc/html/mpi.html
github.com/jeffhammond/vapaa
https://doi.org/10.1145/3615318.3615319
https://doi.org/10.1145/3615318.3615319
http://dx.doi.org/10.1145/3615318.3615319
https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

Concepts for Designing Modern C++ Interfaces for MPI 19

17. Message Passing Interface Forum: MPI: A message-passing interface standard,
version 2.2. Specification, MPI Forum (September 2009), http://www.mpi-forum.
org/docs/mpi-2.2/mpi22-report.pdf

18. Message Passing Interface Forum: Memory allocation kinds: A MPI side document
(2024), https://www.mpi-forum.org/docs/sidedocs/mem-alloc10.pdf

19. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
Version 5.0 (Jun 2025), https://www.mpi-forum.org/docs/mpi-5.0/mpi50-report.pdf

20. Polukhin, A.: Boost.pfr (2016), https://www.boost.org/doc/libs/1_84_0/doc/html/
boost_pfr.html

21. Ramey, R.: Boost.Serialization (2002–2009), https://www.boost.org/doc/libs/1_
86_0/libs/serialization/doc/, version 1.86

22. Revzin, B., Childers, W., Dimov, P., Sutton, A., Vali, F., Vandevoorde, D., Katz, D.:
Reflection for C++26. Proposal P2996R5 P2996R5, ISO/IEC JTC1/SC22/WG21
(2024), https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2996r5.html

23. Skjellum, A., Wooley, D.G., Lu, Z., Wolf, M., Bangalore, P.V., Lumsdaine, A., Squyres,
J.M., McCandless, B.: Object-oriented analysis and design of the message passing
interface. Concurrency and Computation: Practice and Experience 13(4), 245–292
(2001). https://doi.org/https://doi.org/10.1002/cpe.556, https://onlinelibrary.wiley.
com/doi/abs/10.1002/cpe.556

24. Steinbusch, B., Gaspar, A., Brown, J.: rsmpi - MPI bindings for rust (2015), https:
//github.com/rsmpi/rsmpi

25. Stroustrup, B.: The design and evolution of C++. Addison-Wesley (1994)
26. Stroustrup, B., Sutter, H., et al.: C++ core guidelines (2024), https://isocpp.github.

io/CppCoreGuidelines/CppCoreGuidelines.html
27. Uhl, T.N., Schimek, M., Hübner, L., Hespe, D., Kurpicz, F., Seemaier, D., Stelz, C.,

Sanders, P.: Kamping: Flexible and (near) zero-overhead C++ bindings for MPI.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC 2024, Atlanta, GA, USA, November 17-
22, 2024. p. 44. IEEE (2024). https://doi.org/10.1109/SC41406.2024.00050, https:
//dl.acm.org/doi/10.1109/SC41406.2024.00050

Open Access. This chapter is licensed under the
terms of the Creative Commons Attribution 4.0 In-
ternational License (https://creativecommons.org/
licenses/by/4.0/deed.en), which permits use, shar-
ing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide
a link to the Creative Commons license and indicate
if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright
holder.

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
https://www.mpi-forum.org/docs/sidedocs/mem-alloc10.pdf
https://www.mpi-forum.org/docs/mpi-5.0/mpi50-report.pdf
https://www.boost.org/doc/libs/1_84_0/doc/html/boost_pfr.html
https://www.boost.org/doc/libs/1_84_0/doc/html/boost_pfr.html
https://www.boost.org/doc/libs/1_86_0/libs/serialization/doc/
https://www.boost.org/doc/libs/1_86_0/libs/serialization/doc/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2996r5.html
https://doi.org/https://doi.org/10.1002/cpe.556
https://doi.org/https://doi.org/10.1002/cpe.556
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.556
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.556
https://github.com/rsmpi/rsmpi
https://github.com/rsmpi/rsmpi
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html
https://doi.org/10.1109/SC41406.2024.00050
https://doi.org/10.1109/SC41406.2024.00050
https://dl.acm.org/doi/10.1109/SC41406.2024.00050
https://dl.acm.org/doi/10.1109/SC41406.2024.00050
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

	Concepts for Designing Modern C++ Interfaces for MPI
	Introduction
	Existing C++ Interfaces over MPI
	High-Level Design Considerations
	Mapping the MPI Object Model to C++
	Modeling and Mapping Types
	Modeling Memory Involved in MPI Communication
	Ownership and Non-Blocking Communication
	Error Handling

	Considerations Beyond a Preliminary C++ Interface
	Serialization
	Safer Usage of Complex Types
	Improving MPI Productivity with Sensible Defaults

	Conclusions

