
Coverability in VASS Revisited: Improving Rackoff’s Bounds
to Obtain Conditional Optimality

MARVIN KÜNNEMANN, Karlsruhe Institute of Technology, Karlsruhe, Germany
FILIP MAZOWIECKI, University of Warsaw, Warszawa, Poland
LIA SCHÜTZE,Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
HENRY SINCLAIR-BANKS∗, Department of Computer Science, University ofWarwick, Coventry, United
Kingdom of Great Britain and Northern Ireland and Mathematics, Informatics and Mechanics, University of
Warsaw, Warszawa, Poland
KAROL WȨGRZYCKI,Max Planck Institute for Informatics, Saarbrücken, Germany

Seminal results establish that the coverability problem for Vector Addition Systems with States (VASS) is in
EXPSPACE (Rackoff, ’78) and is EXPSPACE-hard already under unary encodings (Lipton, ’76). More precisely,
Rosier and Yen later utilise Rackoff’s bounding technique to show that if coverability holds then there is a run
of length at most 𝑛2𝒪(𝑑 log(𝑑))

, where 𝑑 is the dimension and 𝑛 is the size of the given unary VASS. Earlier, Lipton
showed that there exist instances of coverability in 𝑑-dimensional unary VASS that are only witnessed by
runs of length at least 𝑛2Ω(𝑑) . Our first result closes this gap. We improve the upper bound by removing the
twice-exponentiated log(𝑑) factor, thus matching Lipton’s lower bound. This closes the corresponding gap
for the exact space required to decide coverability. This also yields a deterministic 𝑛2𝒪(𝑑)

-time algorithm for
coverability. Our second result is a matching lower bound, that there does not exist a deterministic 𝑛2𝑜(𝑑)-time
algorithm, conditioned upon the exponential time hypothesis.

∗http://henry.sinclair-banks.com

Research of Marvin Künnemann is partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) grant number 462679611.
Filip Mazowiecki is supported by Polish National Science Centre SONATA BIS-12 grant number 2022/46/E/ST6/00230.
Lia Schütze is supported by the European Union (ERC, FINABIS, 101077902). Views and opinions expressed
are, however, those of the authors only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European Union nor the granting authority can
be held responsible for them.
Henry Sinclair-Banks was supported by EPSRC Standard Research Studentship (DTP), grant number EP/T5179X/1 and is
supported by the ERC grant INFSYS, agreement no. 950398.
Research of Karol Wȩgrzycki is partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) grant number 559177164.
Authors’ Contact Information: Marvin Künnemann, Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg,
Germany; e-mail: marvin.kuennemann@kit.edu; Filip Mazowiecki, University of Warsaw, Warszawa, Poland; e-mail:
f.mazowiecki@uw.edu.pl; Lia Schütze, Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Rheinland-
Pfalz, Germany; e-mail: lschuetze@mpi-sws.org; Henry Sinclair-Banks, Department of Computer Science, University of
Warwick, Coventry, United Kingdom of Great Britain and Northern Ireland and Mathematics, Informatics and Mechanics,
University ofWarsaw,Warszawa, Poland; e-mail: hsb@mimuw.edu.pl; Karol Wȩgrzycki, Max Planck Institute for Informatics,
Saarbrücken, Saarland, Germany; e-mail: kwegrzyc@mpi-inf.mpg.de.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).
ACM 0004-5411/2025/10-ART33
https://doi.org/10.1145/3762178

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

https://orcid.org/0000-0003-4813-4852
https://orcid.org/0000-0002-4535-6508
https://orcid.org/0000-0003-4002-5491
https://orcid.org/0000-0003-1653-4069
https://orcid.org/0000-0001-9746-5733
http://henry.sinclair-banks.com
https://doi.org/10.3030/101077902
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3762178
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3762178&domain=pdf&date_stamp=2025-10-09

33:2 M. Künnemann et al.

When analysing coverability, a standard proof technique is to consider VASS with bounded counters.
Bounded VASS make for an interesting and popular model due to strong connections with timed automata.
Withal, we study a natural setting where the counter bound is linear in the size of the VASS. Here the trivial
exhaustive search algorithm runs in 𝒪(𝑛𝑑+1) time. We give evidence to this being near-optimal. We prove that
in dimension one this trivial algorithm is conditionally optimal, by showing that 𝑛2−𝑜(1) time is required under
the 𝑘-cycle hypothesis. In general, for any fixed dimension 𝑑 ≥ 4, we show that 𝑛𝑑−2−𝑜(1) time is required under
the 3-uniform hyperclique hypothesis.

CCS Concepts: • Theory of computation→Models of computation;

Additional Key Words and Phrases: Vector Addition System, Coverability, Reachability, Fine-Grained Com-
plexity, Exponential Time Hypothesis, 𝑘-Cycle Hypothesis, Hyperclique Hypothesis

ACM Reference Format:
Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and Karol Wȩgrzycki. 2025. Cov-
erability in VASS Revisited: Improving Rackoff’s Bounds to Obtain Conditional Optimality. J. ACM 72, 5,
Article 33 (October 2025), 27 pages. https://doi.org/10.1145/3762178

1 Introduction
Vector Addition Systems with States (VASS) are a popular model of concurrency with a number
of applications in database theory [10], business processes [59], and more (see the survey [55]).
A 𝑑-dimensional VASS (𝑑-VASS) consists of a finite automaton equipped with 𝑑 non-negative
integer counters that can be updated by transitions. A configuration in a 𝑑-VASS consists of a
state and a 𝑑-dimensional vector over the naturals. One of the central decision problems for VASS
is the coverability problem, that asks whether there is a run from a given initial configuration to
some configuration with at least the counter values of a given target configuration. Coverability
finds applications in the verification of safety conditions, which often equate to whether or not a
particular state can be reached without any precise counter values [17, 30]. Roughly speaking, one
can use VASS as a modest model for concurrent systems where the dimension corresponds with
the number of locations a process can be in and each counter value corresponds with the number
of processes in a particular location [27, 31].

In 1978, Rackoff [53] showed that coverability is in EXPSPACE, by proving that if coverability
holds then there exists a run of double-exponential length. Following, Rosier and Yen [54] analysed
and discussed Rackoff’s ideas in more detail and argued that if coverability holds then it is witnessed
by a run of length at most 𝑛2

𝒪(𝑑 log(𝑑))
, where 𝑛 is the size of the given unary encoded 𝑑-VASS.

Furthermore, this yields a 2𝒪(𝑑 log(𝑑)) ⋅ log(𝑛)-space algorithm for coverability. Prior to this in 1976,
Lipton [44] proved that coverability is EXPSPACE-hard even when VASS is encoded in unary, by
constructing an instance of coverability witnessed only by a run of double-exponential length
𝑛2

Ω(𝑑)
. Rosier and Yen [54] also presented a proof that generalised Lipton’s construction to show

that 2Ω(𝑑) ⋅ log(𝑛) space is required for coverability. Although this problem is EXPSPACE-complete
in terms of classical complexity, a gap was left open for the exact space needed for coverability [54,
Section 1]. By using an approach akin to Rackoff’s argument, we close this fourty-year-old gap by
improving the upper bound to match Lipton’s lower bound.
Result 1: If coverability holds then there exists a run witnessing coverability of length at most

𝑛𝒪(𝑑⋅2𝑑) (Theorem 3.3). Accordingly, we obtain an optimal non-deterministic 2𝒪(𝑑) ⋅log(𝑛)-
space algorithm that decides coverability (Corollary 3.4).

Apart from closing the gap for the exact space needed to decide coverability, we would like
to highlight the further relevance of this result. The upper bound of Result 1 relies on careful

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

https://doi.org/10.1145/3762178

Coverability in VASS Revisited 33:3

analysis of the minimal length of runs. In doing so, we introduce the notion of thin configurations
(Definition 3.6). This enriches the ever-growing collection of notions and techniques used when
tackling problems about infinite-state systems. We note that thin configurations have already been
used in a recent paper [56] to improve the running time of other algorithms for coverability [39]
and to improve the upper bound (and close the complexity gap) for coverability in invertible affine
VASS [6]. We state this, in part, to emphasise that our main contribution is the conceptual notion
of thin configurations, a notion we only discovered by considering the intersection of fine-grained
complexity with traditional problems from formal methods. We believe that further investigation
into this infrequently studied intersection will be fruitful for finding new concepts, techniques, and
points-of-view.

Our bound also implies the existence of a deterministic 𝑛2
𝒪(𝑑)

-time algorithm for coverability.
We complement this with a matching lower bound on the deterministic running time, that is,
conditioned upon the Exponential Time Hypothesis (ETH).

Result 2: Under ETH, there is no deterministic 𝑛2
𝑜(𝑑)

-time algorithm deciding coverability in unary
𝑑-VASS (Theorem 4.2).

One can see that the algorithm, that is, obtained from the upper bound (Result 1) is just a simple
exhaustive search in a directed graph with a doubly exponential number of nodes. The lower bound
(Result 2) shows that, under ETH, this simple algorithm is essentially optimal.

While our results establish a fast-increasing, conditionally optimal exponent of 2Θ(𝑑) in the
time complexity of the coverability problem, they rely on careful constructions that enforce the
observation of large counter values. In certain settings, however, it is natural to instead consider a
restricted version of coverability, where all counter values remain bounded. This yields one of the
simplest models, fixed dimension bounded unary VASS, for which we obtain even tighter results.
Decision problems for 𝐵-bounded VASS, where 𝐵 forms part of the input, have been studied due
to their strong connections to timed automata [28, 33, 49]. We consider linearly-bounded unary
VASS, that is, when the maximum counter value is bounded above by a constant multiple of the
size of the VASS. Interestingly, coverability and reachability are equivalent in linearly-bounded
unary VASS. The trivial algorithm that employs depth-first search on the space of configurations
runs in 𝒪(𝑛𝑑+1) time for both coverability and reachability. We provide evidence that the trivial
algorithm is optimal. In the following two results, the 𝑜(1) terms are sub-constants that may only
depend on the size of the VASS 𝑛 (and not the dimension 𝑑, which is fixed).

Result 3: Reachability in linearly-bounded unary 1-VASS requires 𝑛2−𝑜(1) time, subject to the
𝑘-cycle hypothesis (Theorem 5.4).

This effectively demonstrates that the trivial algorithm is optimal in the one-dimensional case.
For the case of large dimensions, we show that the trivial algorithm only differs from an optimal
deterministic-time algorithm by at most an 𝑛3+𝑜(1) factor.

Result 4: Reachability in linearly-bounded unary 𝑑-VASS requires 𝑛𝑑−2−𝑜(1) time, subject to the
3-uniform 𝑘-hyperclique hypothesis (Theorem 5.8).

Broadly speaking, these results add a time complexity perspective to the already known result
about the space complexity of coverability: for any fixed dimension 𝑑 ≥ 0, coverability in unary
𝑑-VASS is NL-complete [53].

Organisation and Overview
Section 3 contains our first main result, the improved upper bound on the space required for
coverability. Most notably, in Theorem 3.3, we show that if coverability holds then there exists

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

33:4 M. Künnemann et al.

a run of length at most 𝑛𝒪(𝑑⋅2𝑑). Then, in Corollary 3.4 we are able to obtain a non-deterministic
𝒪(𝑑2 ⋅ 2𝑑 ⋅ log(𝑛))-space algorithm and a deterministic 𝑛𝒪(𝑑2⋅2𝑑)-time algorithm for coverability.
In much of the same way as Rackoff, we proceed by induction on the dimension. The difference
is in the inductive step; Rackoff’s inductive hypothesis dealt with a case where all counters are
bounded by the same well-chosen value. Intuitively speaking, the configurations are bounded
within a 𝑑-hypercube. This turns out to be suboptimal. This is due to the fact that the volume of
a 𝑑-hypercube with sides of length ℓ is ℓ𝑑; unrolling the induction steps gives a bound of roughly
𝑛𝑑⋅(𝑑−1)⋅…⋅1 = 𝑛𝑑! = 𝑛2

𝒪(𝑑 log(𝑑))
, hence the twice-exponentiated log(𝑑) factor. The key ingredient in

our proof is to replace the 𝑑-hypercubes with a collection of hyperrectangles with greatly reduced
volume, thus reducing the number of configurations in a run witnessing coverability.

Section 4 contains our second main result, the matching lower bound on the time required for
coverability, that is, conditioned upon ETH. In Lemma 4.3, we first reduce from finding a 𝑘-clique in
a graph to an instance of coverability in bounded unary 2-VASS with zero tests. Then, via Lemma 4.4,
we implement the aforementioned technique of Rosier and Yen to, when there is a counter bound,
remove the zero tests at the cost of increasing to a 𝑑-dimensional unary VASS. Then, in Theorem 4.2,
by carefully selecting a value of 𝑘 = 2Θ(𝑑), we are able to conclude that if ETH holds, then there
does not exist a deterministic 𝑛2

𝑜(𝑑)
-time algorithm for coverability in unary 𝑑-VASS. This is because

ETH implies that there is no 𝑓 (𝑘) ⋅ 𝑟𝑜(𝑘)-time algorithm for finding a 𝑘-clique in a graph with 𝑟
vertices (Theorem 4.1).

Section 5 contains our other results where we study bounded fixed dimension unary VASS.
Firstly, Theorem 5.4 states that under the 𝑘-cycle hypothesis (Hypothesis 5.2), there does not exist
a deterministic 𝑛2−𝑜(1)-time algorithm deciding reachability in linearly-bounded unary 1-VASS.
Further, we conclude in Corollary 5.5, if the 𝑘-cycle hypothesis is assumed then there does not exist
a deterministic 𝑛2−𝑜(1)-time algorithm for coverability in (not bounded) unary 2-VASS. Following,
we prove Theorem 5.8, that shows there does not exist a deterministic 𝑛𝑑−𝑜(1)-time algorithm for
reachability in linearly-bounded unary (𝑑 + 2)-VASS under the 3-uniform 𝑘-hyperclique hypothesis
(Hypothesis 5.7). We achieve this with two components. First, in Lemma 5.9, we reduce from finding
a 4𝑑-hyperclique to an instance of reachability in a bounded unary (𝑑 +1)-VASS with a fixed number
of zero tests. Second, via Lemma 5.10, we use the recently developed “controlling counter tech-
nique” [21] to remove the fixed number of zero tests at the cost of increasing the dimension by one.

Related Work
Despite being studied since the seventies, structural properties of the coverability problem for
VASS still receive active attention. The set of configurations from which the target can be covered
is upwards-closed, meaning that coverability still holds if the initial counter values are increased.
An alternative approach, the backwards algorithm for coverability, relies on this phenomenon.
Starting from the target configuration, one computes the set of configurations from which it can
be covered [1]. Thanks to the upwards-closed property, it suffices to maintain the collection of
minimal configurations. The backwards algorithm terminates due to Dickson’s lemma, however,
using Rackoff’s bound one can show it runs in double-exponential time [11]. This technique has
been analysed both for coverability in VASS and some extensions [29, 39]. Subsequently to our
work, it was shown that thinness arises inherently in the configurations explored by the backwards
coverability algorithm. Accordingly, an 𝑛2

𝒪(𝑑)
upper bound on the running time is attained [56].

Despite the high worst-case complexity, there are many implementations of coverability algorithms
relying on the backwards algorithm that work well in practice. Intuitively, the idea is to prune the
set of configurations, using relaxations that can be efficiently implemented in SMT solvers [8, 27].

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

Coverability in VASS Revisited 33:5

A recently tested family of algorithms that explore the configuration graph (akin to the simple
algorithm arising from Result 1) rely on heuristics such as A∗ and greedy best-first search [9].

Another central decision problem for VASS is the reachability problem, asking whether a run from
a given initial configuration to a given target configuration exists. Reachability is a provably harder
problem. In essence, reachability differs from coverability by allowing one zero test to each counter.
Counter machines, well-known to be equivalent to Turing machines [51], can be seen as VASS with
the ability to arbitrarily zero-test counters; coverability and reachability are equivalent here and
are undecidable. In 1981, Mayr proved that reachability in VASS is decidable [47], making VASS
one of the richest decidable variants of counter machines. Only recently, after decades of work, has
the complexity of reachability in VASS been determined to be Ackermann-complete [20, 21, 41, 42].
A widespread technique for obtaining lower bounds for coverability and reachability problems in
VASS is to simulate counter machines with some restrictions. Our overall approach to obtaining
lower bounds follows suit; we first reduce finding cliques in graphs, finding cycles in graphs, and
finding hypercliques in hypergraphs to various intermediate instances of coverability in VASS with
additional restrictions or capabilities, such as bounded counters or a fixed number of zero tests.
These VASS, which in some sense are restricted counter machines, are then simulated by standard
higher-dimensional VASS. Such simulations are brought about by the two previously developed
techniques. Rosier and Yen leverage Lipton’s construction to obtain VASS that can simulate counter
machines with bounded counters [54]. Czerwiński and Orlikowski have shown that the presence of
an additional counter in a VASS, with carefully chosen transition effects and reachability condition,
can be used to implicitly perform a limited number of zero tests [21].

Another studied variant, bidirected VASS, has the property that for every transition (𝑝, x, 𝑞)
the reverse transition (𝑞, −x, 𝑝) is also present. The reachability problem in bidirected VASS is
equivalent to the uniform word problem in commutative semigroups, both of which are EXPSPACE-
complete [48]; not to be confused with the reversible (or mutual) reachability problem in general
VASS which is also EXPSPACE-complete [40]. In 1982, Meyer and Mayr listed an open problem
that stated, in terms of commutative semigroups, the best-known upper bound for coverability
in general VASS [53], the best-known lower bound for coverability in bidirected VASS [44], and
asked for improvements to these bounds [48, Section 8, Problem 3]. Subsequently, Rosier and Yen
refined the upper bound for coverability in general VASS to 2𝒪(𝑑 log(𝑑)) ⋅ log(𝑛) space [54]. Finally,
Koppenhagen and Mayr showed that the coverability problem in bidirected VASS can be decided in
2𝒪(𝑛) space [37], matching the lower bound.

Recently, some work has been dedicated to the coverability problem for low-dimensional VASS [3,
50]. Furthermore, reachability in low-dimensional VASS has been given plenty of attention, in
particular for 1-VASS [32, 58] and for 2-VASS [7, 35]. In the restricted class of flat VASS, other fixed
dimensions have also been studied [16, 19, 22].

The Dyck reachability problem has been studied from the fine-grained complexity perspective [12,
13, 38, 46]). Coverability in unary 1-VASS is a special case of Dyck-1 reachability; in fact reachability
in unary 1-VASS is equivalent to Dyck-1 reachability. Our lower bounds (in Section 5) for reachability
in linearly-bounded unary 1-VASS also applies to the Dyck-1 reachability problem. The complexity
of coverability in 1-VASS is also closely related to a recently studied problem about reachability for
electric cars [25].

2 Preliminaries
We use ℤ to denote the set of integers, ℕ to denote the set of non-negative integers, and ℝ+ to
denote the set of positive real numbers. Throughout, we assume that log has base 2. We say that
function 𝑓 (𝑥) = 𝒪(𝑔(𝑥)) for some functions 𝑓 , 𝑔 ∶ ℝ+ → ℝ+ if there exist constants 𝑐 and 𝑁 such
that 𝑓 (𝑥) ≤ 𝑐 ⋅ 𝑔(𝑥) for all 𝑥 > 𝑁. Similarly, 𝑓 (𝑥) = 𝑜(𝑔(𝑥)) if for every 𝑐 > 0 there exists an 𝑁

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

33:6 M. Künnemann et al.

such that, for all 𝑥 > 𝑁, 𝑓 (𝑥) < 𝑐 ⋅ 𝑔(𝑥) [57]. We use poly(𝑛) to denote 𝑛𝒪(1). We use bold font for
vectors. We index the 𝑖th component of a vector v by writing v[𝑖]. Given two vectors u, v ∈ ℤ𝑑 we
write u ≤ v if u[𝑖] ≤ v[𝑖] for each 1 ≤ 𝑖 ≤ 𝑑. For every 1 ≤ 𝑖 ≤ 𝑑, we write e𝑖 ∈ ℤ𝑑 to represent
the 𝑖th standard basis vector that has e𝑖[𝑖] = 1 and e𝑖[𝑗] = 0 for all 𝑗 ≠ 𝑖. Given a vector v ∈ ℤ𝑑

we define ‖v‖ = max{1, |v[1]|, … , |v[𝑑′]|}. For convenience, given two vectors u ∈ ℤ𝑑 and v ∈ ℤ𝑑′ ,
we use (u, v) to denote the (𝑑 + 𝑑′)-dimensional vector (𝑢[1], … , 𝑢[𝑑], 𝑣[1], … , 𝑣[𝑑′]). Through
this article, we analyse the running time of algorithms in the standard “word RAM model” with
𝒪(log(𝑛))-bit words, where 𝑛 is the size of the input (see [34] for a survey).

A 𝑑-dimensional Vector Addition System with States (𝑑-VASS) 𝒱 = (𝑄, 𝑇) consists of a non-empty
finite set of states 𝑄 and a non-empty set of transitions 𝑇 ⊆ 𝑄 ×ℤ𝑑 × 𝑄. A configuration of a 𝑑-VASS
is a pair (𝑞, v) ∈ 𝑄 ×ℕ𝑑 consisting of the current state 𝑞 and current counter values v, denoted 𝑞(v).
Given two configurations 𝑝(u), 𝑞(v), we write 𝑝(u) −→ 𝑞(v) if there exists 𝑡 = (𝑝, x, 𝑞) ∈ 𝑇 where
u + x = v. We may refer to x as the effect or update of a transition and may also write 𝑝(u)

𝑡
−→ 𝑞(v)

to emphasise the transition 𝑡 taken.
A path in a VASS is a (possibly empty) sequence of transitions ((𝑝1, x1, 𝑞1), … , (𝑝ℓ, xℓ, 𝑞ℓ)), where

(𝑝𝑖, x𝑖, 𝑞𝑖) ∈ 𝑇 for all 1 ≤ 𝑖 ≤ ℓ and such that the start and end states of consecutive transitions
match 𝑞𝑖 = 𝑝𝑖+1 for all 1 ≤ 𝑖 ≤ ℓ − 1. The effect of a path is the sum of the effects of the transitions
in the path. A run 𝜋 in a VASS is a sequence of configurations 𝜋 = (𝑞0(v0), … , 𝑞ℓ(vℓ)) such that
𝑞𝑖(v𝑖) −→ 𝑞𝑖+1(v𝑖+1) for all 1 ≤ 𝑖 ≤ ℓ−1. We denote the length of the run by len(𝜋) ≔ ℓ+1; we denote
the effect of the run by eff(𝜋) ≔ vℓ − v0. If there is such a run 𝜋, we can write 𝑞0(v0)

𝜋
−→ 𝑞ℓ(vℓ).

We may also write 𝑝(s)
∗
−→ 𝑞(t) if there exists a run from 𝑝(s) to 𝑞(t). The underlying path of a run

𝜋 = (𝑞0(v0), … , 𝑞ℓ(vℓ)) is the sequence of transitions (𝑡1, … , 𝑡ℓ) such that, for every 0 ≤ 𝑖 ≤ ℓ − 1,
𝑞𝑖(v𝑖)

𝑡𝑖−→ 𝑞𝑖+1(v𝑖+1).
We do allow for zero-dimensional VASS, that is, VASS with no counters, which can be seen as

just directed graphs. A hypergraph is a generalisation of the graph. Formally, a hypergraph is a
tuple 𝐻 = (𝑉 , 𝐸) where 𝑉 is a set of vertices and 𝐸 is a collection of non-empty subsets of 𝑉 called
hyperedges. For an integer 𝜇, a hypergraph is 𝜇-uniform if each hyperedge has cardinality 𝜇. Note
that a 2-uniform hypergraph is a standard graph.

We study the complexity of the coverability problem. An instance (𝒱, 𝑝(s), 𝑞(t)) of coverability
asks whether there is a run in the given VASS 𝒱 from the given initial configuration 𝑝(s) to a
configuration 𝑞(t′) with counter values t′ ≥ t. At times, we also consider the reachability problem
that additionally requires t′ = t so that the target configuration is reached exactly.

To measure the complexity of these problems we need to discuss the encoding used. In unary
encoding, a 𝑑-VASS 𝒱 = (𝑄, 𝑇) has size ‖𝒱‖ = |𝑄| + ∑(𝑝,x,𝑞)∈𝑇‖x‖. An instance of coverability in a
unary-encoded 𝑑-VASS (𝒱, 𝑝(s), 𝑞(t)) has size ‖𝒱‖+‖s‖+‖t‖. We define a unary 𝑑-VASS 𝒰 = (𝑄′, 𝑇 ′)
to have restricted transitions 𝑇 ′ ⊆ 𝑄′ × {−1, 0, 1}𝑑 × 𝑄′, the size is therefore ‖𝒰‖ = |𝑄′| + |𝑇 ′|. For
any unary encoded 𝑑-VASS 𝒱 there exists an equivalent unary 𝑑-VASS 𝒰 such that ‖𝒰‖ = ‖𝒱‖.

It is well known that coverability in 𝑑-VASS can be reduced, in logarithmic space, to the reacha-
bility problem. Indeed, for an instance (𝒱, 𝑝(s), 𝑞(t)) of coverability, define 𝒱′ = (𝑄, 𝑇 ′) that has
additional decrementing transitions at the target state 𝑞, precisely 𝑇 ′ = 𝑇 ∪ {(𝑞, −e𝑖, 𝑞) ∶ 1 ≤ 𝑖 ≤ 𝑑}.
It is clear that 𝑝(s)

∗
−→ 𝑞(t′), for some t′ ≥ t, in 𝒱 if and only if 𝑝(s)

∗
−→ 𝑞(t) in 𝒱′.

A 𝐵-bounded 𝑑-VASS, in short (𝐵, 𝑑)-VASS, is given as an integer upper bound on the counter
values 𝐵 ∈ ℕ and 𝑑-VASS 𝒱. A configuration in a (𝐵, 𝑑)-VASS is a pair 𝑞(v) ∈ 𝑄 × {0, … , 𝐵}𝑑. The
notions of paths and runs in bounded VASS remain the same as for VASS, but are accordingly
adapted for the appropriate bounded configurations. We note that one should think that 𝐵 forms

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

Coverability in VASS Revisited 33:7

part of the problem statement, not the input, as it will be given implicitly by a function depending on
the size of the VASS. For example, we later consider linearly-bounded 𝑑-VASS, in which 𝐵 = 𝒪(‖𝒱‖).

A 𝑑-dimensional Vector Addition System (𝑑-VAS) 𝒰 is a system without states, consisting only of a
non-empty collection of transitions 𝒰 ⊆ ℤ𝑑. All definitions, notations, and problems carry over for
VAS except that, for simplicity, we drop the states across the board. For example, a configuration in
a VAS is just a vector v ∈ ℕ𝑑. A well-known result from the seventies by Hopcroft and Pansiot is
that one can simulate the states of a VASS at the cost of three extra dimensions in a VAS [35].

Lemma 2.1 (See [35, Lemma 2.1]). Let 𝒱 = (𝑄, 𝑇) be a 𝑑-VASS. There exists a (𝑑 + 3)-VAS 𝒰 that
simulates 𝒱 and such that ‖𝒰‖ = poly(‖𝒱‖). Precisely, there exist an injective function 𝑓 ∶ 𝑄 → ℕ3

such that there is a run 𝑝(s)
𝜋
−→ 𝑞(t) in 𝒱 if and only if there is a run (𝑓 (𝑝), s)

𝜌
−→ (𝑓 (𝑞), t) in 𝒰.

Moreover, 𝑓 can be computed in poly(‖𝒱‖) time and len(𝜌) = 3 ⋅ len(𝜋).

Roughly speaking, the VAS obtained has an equivalent reachability relation between configura-
tions; a configuration 𝑞(x) in the original VASS corresponds with a configuration ((𝑎, 𝑏, 𝑐), x) in
the VAS, where 𝑎, 𝑏, 𝑐 ≤ 2|𝑄|2 are carefully chosen values that together represent the state 𝑞. Each
transition of the 𝑑-VASS 𝒱 is split into a triplet of vectors that get added to the (𝑑 + 3)-VAS 𝒰 where
the combined effect of such a triplet is indeed the same as the effect of the original transition in 𝒱.
Importantly, during a run in 𝒰, each triplet of vectors must be taken in sequence so a run of length
ℓ in 𝒱 corresponds to a run of length 3ℓ in 𝒰 and vice versa.

3 Improved Bounds on the Maximum Counter Value
This section is devoted to our improvement of the seminal result of Rackoff. Throughout, we fix our
attention to the arbitrary instance (𝒱, 𝑝(s), 𝑞(t)) of the coverability problem in a 𝑑-VASS 𝒱 = (𝑄, 𝑇)
from the initial configuration 𝑝(s) to a configuration 𝑞(t′) with at least the counter values of the
target configuration 𝑞(t). We denote 𝑛 = ‖𝒱‖ + ‖s‖ + ‖t‖. The following two theorems follow from
Rackoff’s technique and subsequent work by Rosier and Yen, in particular see [53, Lemma 3.4 and
Theorem 3.5] and [54, Theorem 2.1 and Lemma 2.2].

Theorem 3.1 (Corollary of [53, Lemma 3.4] and [54, Theorem 2.1]). Suppose 𝑝(s)
∗
−→ 𝑞(t′) for

some t′ ≥ t. Then there exists a run 𝜋 such that 𝑝(s)
𝜋
−→ 𝑞(t″) for some t″ ≥ t and len(𝜋) ≤ 𝑛2

𝒪(𝑑 log(𝑑))
.

Theorem 3.2 (cf. [53, Theorem 3.5]). For a given 𝑑-VASS 𝒱, integer ℓ, and two configurations
𝑝(s) and 𝑞(t), there is an algorithm that determines the existence of a run 𝜋 of length len(𝜋) ≤ ℓ that
witnesses coverability, so 𝑝(s)

𝜋
−→ 𝑞(t′) for some t′ ≥ t. The algorithm can be implemented to run in

non-deterministic 𝒪(𝑑 log(𝑛 ⋅ ℓ)) space or deterministic 2𝒪(𝑑 log(𝑛⋅ℓ)) time.

Proof. In runs whose length is bounded by ℓ, the observed counter values are trivially bounded
by 𝑛 ⋅ ℓ. Notice that every configuration can be written in 𝒪(𝑑 log(𝑛 ⋅ ℓ)) space. A non-deterministic
algorithm can therefore decide coverability by guessing a run on-the-fly by maintaining the current
configuration and the length of the run (using a step counter). The algorithm accepts if and only if
t is covered by the final configuration.

The second part follows from the standard construction that if a problem can be solved in
𝑆(𝑛) non-deterministic space then it can be solved in 2𝒪(𝑆(𝑛)) deterministic time. Indeed, one
can construct the graph of all configurations and check whether there is a path from the initial
configuration to the final configuration. Since there are at most 2𝒪(𝑑 log(𝑛⋅ℓ)) many configurations,
this can be completed in 2𝒪(𝑑 log(𝑛⋅ℓ)) time. �

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

33:8 M. Künnemann et al.

Note that Theorem 3.1 combined with Theorem 3.2 yield non-deterministic 2𝒪(𝑑 log(𝑑)) ⋅ log(𝑛)-
space and deterministic 𝑛2

𝒪(𝑑 log(𝑑))
-time algorithms for coverability. Our result improves this by an

𝒪(log(𝑑)) factor in the second exponent.

Theorem 3.3. Suppose 𝑝(s)
∗
−→ 𝑞(t′) for some t′ ≥ t. Then there exists a run 𝜋 such that 𝑝(s)

𝜋
−→

𝑞(t″) for some t″ ≥ t and len(𝜋) ≤ 𝑛𝒪(𝑑⋅2𝑑).

Combining Theorem 3.2 with Theorem 3.3 yields the following corollary.

Corollary 3.4. Coverability in 𝑑-VASS can be decided by both a non-deterministic 𝒪(𝑑2 ⋅2𝑑 ⋅log(𝑛))-
space algorithm and a deterministic 𝑛𝒪(𝑑2⋅2𝑑)-time algorithm.

Proof. Let ℓ = 𝑛𝑐⋅𝑑⋅2
𝑑
for some constant 𝑐 such that Theorem 3.3 tells us that if 𝑝(s)

∗
−→ 𝑞(t′) for

some t′ ≥ t, then there exists a run 𝜋 such that 𝑝(s)
𝜋
−→ 𝑞(t″) for some t″ ≥ t and len(𝜋) ≤ ℓ. By

Theorem 3.2, we know that there exists a non-deterministic algorithm that decides coverability
between 𝑝(s) and 𝑞(t) in the following space.

𝒪(𝑑 log(𝑛 ⋅ ℓ)) = 𝒪(𝑑 log(𝑛) + 𝑑 log(ℓ)) = 𝒪 (𝑑 log(𝑛) + 𝑑 log (𝑛𝑐⋅𝑑⋅2
𝑑
))

= 𝒪 (𝑑 log(𝑛) + 𝑑 log(𝑛) ⋅ 𝑐 ⋅ 𝑑 ⋅ 2𝑑)

= 𝒪 (𝑑2 ⋅ 2𝑑 ⋅ log(𝑛)) .

Also byTheorem 3.2, we know that there exists a deterministic algorithm that decides coverability
between 𝑝(s) and 𝑞(t) in 2𝒪(𝑑 log(𝑛⋅ℓ)) = 2𝒪(𝑑2⋅2𝑑⋅log(𝑛)) = 𝑛𝒪(𝑑2⋅2𝑑) time. �

The rest of this section is dedicated to the proof of Theorem 3.3. Theorem 3.3 is a corollary of
Lemma 2.1 and the following lemma (Lemma 3.5); a formal proof can be found at the end of this
section. By Lemma 2.1, instead of handling a given VASS, we may instead handle an equivalent VAS
with three additional counters whose size is polynomial in 𝑛. Recall that, as there are no states, a
𝑑-VAS consists only of a set of vectors in ℤ𝑑 which we still refer to as transitions. A configuration is
just a vector inℕ𝑑. Accordingly, we may fix our attention on the instance (𝒱, s, t) of the coverability
problem in a 𝑑-VAS 𝒱 = {v1, … , v𝑚} from the initial configuration s to a configuration t′, that
is, at least as great as the target configuration t. Although Theorem 3.3 is a stronger statement
than Theorem 3.1, we imitate the structure of Rackoff’s proof; we proceed by induction on the
dimension 𝑑.

Lemma 3.5. Define 𝐿𝑖 ≔ 𝑛𝑖⋅2
𝑖
, and let t ∈ ℕ𝑑 such that ‖t‖ ≤ 𝑛. For any s ∈ ℕ𝑑, if s

∗
−→ t′ for some

t′ ≥ t then there exists a run 𝜋 such that s
𝜋
−→ t″ for some t″ ≥ t and len(𝜋) ≤ 𝐿𝑑.

The base case is 𝑑 = 0. In a 0-dimensional VAS, the only possible configuration is the empty
vector 𝜺 and therefore there is only the trivial run 𝜺

∗
−→ 𝜺. This trivially satisfies the lemma.

For the inductive step, when 𝑑 ≥ 1, we assume that Lemma 3.5 holds for all lower dimensions
0, … , 𝑑 − 1. Let 𝜋 = (c0, c1, … , cℓ) be a run with minimal length such that s

𝜋
−→ t′ for some t′ ≥ t,

so in particular, c0 = s and cℓ = t′. Our objective is to prove that len(𝜋) = ℓ + 1 ≤ 𝐿𝑑. Observe that
configurations c𝑖 need to be distinct, else 𝜋 could be shortened trivially. We introduce the notion of
a thin configuration.

Definition 3.6 (Thin Configuration). In a 𝑑-VAS, we say that a configuration c ∈ ℕ𝑑 is thin if there
exists a permutation 𝜎 of {1, … , 𝑑} such that c[𝜎(𝑖)] < 𝑀𝑖 for every 𝑖 ∈ {1, … , 𝑑}, where 𝑀0 ≔ 𝑛
and for 𝑖 ≥ 1, 𝑀𝑖 ≔ 𝐿𝑖−1 ⋅ 𝑛.

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

Coverability in VASS Revisited 33:9

𝑀1

𝑀1

𝑀2

𝑀2

t′

s

t

m

𝜋thin

𝜋tail

Henry Sinclair-Banks

Fig. 1. The schematic view of Claims 3.7 and 3.8, restricted to the two-dimensional case. Here, s is the initial
configuration and t is the target configuration. The shortest run witnessing coverability (to t′ ≥ t) is drawn.
Every configuration inside the green shaded polygon is thin, where each rectangular component of the green
shaded polygon corresponds to a permutation of the indices. Observe that m is the first configuration, just
outside the green shaded polygon, that is, not thin. The prefix of the run from s to m is 𝜋thin (drawn in blue);
Claim 3.7 bounds the maximum possible length of 𝜋thin by the volume of the green polygon. The suffix of the
run from m to t′ is 𝜋tail (drawn in red); Claim 3.8 bounds the maximum possible length of 𝜋tail by 𝐿𝑑−1.

Recall, from above, the run 𝜋 = (c0, c1, … , cℓ). Let 𝑡 ∈ {0, … , ℓ} be the first index where c𝑡 is not
thin, otherwise let 𝑡 = ℓ + 1 if every configuration in 𝜋 is thin. We decompose the run about the 𝑡th
configuration 𝜋 = 𝜋thin ⋅ 𝜋tail, where 𝜋thin ≔ (c0, … , c𝑡−1) and 𝜋tail ≔ (c𝑡, … , cℓ). Note that 𝜋thin or
𝜋tail can be empty. Subsequently, we individually analyse the lengths of 𝜋thin and 𝜋tail (see Figure 1).
We also denote m = c𝑡 to be the first configuration, that is, not thin.

Claim 3.7. len(𝜋thin) ≤ 𝑑! ⋅ 𝑛𝑑 ⋅ 𝐿𝑑−1 ⋅ … ⋅ 𝐿0.

Proof. By definition, every configuration in 𝜋thin is thin. Moreover, since 𝜋 has a minimal
length, no configurations in 𝜋 repeat; the same is therefore true for the prefix 𝜋thin. We now
count the number of possible thin configurations. There are 𝑑! many permutations of {1, … , 𝑑}.
For a given permutation 𝜎 and an index 𝑖 ∈ {1, … , 𝑑}, we know that for a thin configuration c,
0 ≤ c[𝜎(𝑖)] < 𝑀𝑖, so there are at most 𝑀𝑖 = 𝐿𝑖−1 ⋅ 𝑛 many possible values on the 𝜎(𝑖)th counter.
Hence the total number of thin configurations is at most 𝑑! ⋅∏𝑑

𝑖=1(𝐿𝑖−1 ⋅ 𝑛) = 𝑑! ⋅𝑛𝑑 ⋅𝐿𝑑−1 ⋅…⋅𝐿0. �

Claim 3.8. len(𝜋tail) ≤ 𝐿𝑑−1.

Proof. Consider m ∈ ℕ𝑑, the first configuration of 𝜋tail. Let 𝜎 be a permutation such that
m[𝜎(1)] ≤ m[𝜎(2)] ≤ … ≤ m[𝜎(𝑑)]. Given that m is not thin, for every permutation 𝜎 ′ there
exists an 𝑖 ∈ {1, … , 𝑑} such that m[𝜎 ′(𝑖)] ≥ 𝑀𝑖; in particular, this holds for 𝜎. Note that this also
implies 𝑀𝑖 ≤ m[𝜎(𝑖 + 1)] ≤ … ≤ m[𝜎(𝑑)].

We construct an (𝑖 − 1)-VAS 𝒰 from 𝒱 by ignoring the counters 𝜎(𝑖), … , 𝜎(𝑑). Formally, u ∈ 𝒰
if there is v ∈ 𝒱 such that u[𝑗] = v[𝜎(𝑗)] for each 1 ≤ 𝑗 ≤ 𝑖 − 1. In such a case we say u is the
projection of v via 𝜎. We will use the inductive hypothesis to show that there is a short path 𝜌′ in 𝒰
from (the projection of) m covering (the projection of) t. We will then show that the remaining
components of m are large enough that the embedding of 𝜌′ into 𝒱 maintains its covering status.

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

33:10 M. Künnemann et al.

Recall that t′ is the final configuration of the run 𝜋. Note that the run 𝜋tail induces a run 𝜋 ′tail
in 𝒰 by permuting and projecting every configuration. More precisely, (m[𝜎(1)], … ,m[𝜎(𝑖 −

1)])
𝜋 ′tail−−−→ (t′[𝜎(1)], … , t′[𝜎(𝑖−1)]). By the inductive hypothesis there exists a run 𝜌′ in 𝒰 such that

(m[𝜎(1)], … ,m[𝜎(𝑖 − 1)])
𝜌′
−−→ (t″[𝜎(1)], … , t″[𝜎(𝑖 − 1)]), such that (t″[𝜎(1)], … , t″[𝜎(𝑖 − 1)]) ≥

(t[𝜎(1)], … , t[𝜎(𝑖 − 1)]) and len(𝜌′) ≤ 𝐿𝑖−1.
Let (u1, … , ulen(𝜌′)) be the underlying path of the run 𝜌′, that is, the sequence of transitions in

𝒰 that are sequentially added to form the run 𝜌′. By construction, each transition vector u𝑖 ∈ 𝒰
has a corresponding transition vector v𝑖 ∈ 𝒱 where u𝑖 is the projection of v𝑖 via 𝜎. We will now
show that the following run witnesses coverability of t.

𝜌 = (m, m + v1, m + v1 + v2, … , m +
len(𝜌′)
∑
𝑗=1

v𝑗) .

To this end, we verify that (i) 𝜌 is a run, that is, all configurations lie in ℕ𝑑, and (ii) the final
configuration indeed covers t. For components 𝜎(1), …, 𝜎(𝑖 − 1), this follows directly from the
inductive hypothesis. For all other components we will show that all configurations of 𝜌 are
covering t in these components. This satisfies both (i) and (ii).

Let 𝑗 be any of the remaining components. Recall that by the choice of m, m[𝑗] ≥ 𝑀𝑖 = 𝑛 ⋅ 𝐿𝑖−1.
Since 𝑛 > ‖𝒱‖ ≥ ‖v𝑗‖ for every 1 ≤ 𝑗 ≤ len(𝜌′), this means that in a single step, the value of a
counter can change by at most (𝑛 − 1). Given that len(𝜌) = len(𝜌′) ≤ 𝐿𝑖−1, the value on each of
the remaining components must be at least 𝑛 for every configuration in 𝜌. In particular, observing
that ‖t‖ ≤ 𝑛, the final configuration of 𝜌 satisfies

m +
len(𝜌′)
∑
𝑗=1

v𝑗 ≥ t.

Finally, observe that len(𝜌) = len(𝜌′) ≤ 𝐿𝑖−1 ≤ 𝐿𝑑−1. �

Now, we can prove that Lemma 3.5 follows from Claims 3.7 and 3.8.

Proof of Lemma 3.5. From Claims 3.7 and 3.8,

len(𝜋) ≤ len(𝜋thin) + len(𝜋tail) ≤ 𝑑! ⋅ 𝑛𝑑 ⋅ 𝐿𝑑−1 ⋅ … ⋅ 𝐿0 + 𝐿𝑑−1
≤ 2 ⋅ 𝑑! ⋅ 𝑛𝑑 ⋅ 𝐿𝑑−1 ⋅ … ⋅ 𝐿0.

Recall that 𝑛 ≥ 2 and 𝑑! ≤ 𝑛𝑑; observe that 2 ⋅ 𝑑! ⋅ 𝑛𝑑 ≤ 𝑛𝑑
2+1. Hence,

len(𝜋) ≤ 𝑛𝑑
2+1 ⋅ 𝐿𝑑−1 ⋅ … ⋅ 𝐿0.

Next, we use the definition of 𝐿𝑖 ≔ 𝑛𝑖⋅2
𝑖
to show

len(𝜋) ≤ 𝑛𝑑
2+1 ⋅

𝑑−1
∏
𝑖=0

𝑛𝑖⋅2
𝑖
≤ 𝑛(𝑑

2+1+∑𝑑−1
𝑖=0 𝑖⋅2𝑖).

Next, we use the fact that∑𝑑−1
𝑖=0 𝑖 ⋅ 2𝑖 = 𝑑 ⋅ 2𝑑−2𝑑+1+2, so when 𝑑 ≥ 1, 𝑑2+1+∑𝑑−1

𝑖=0 𝑖 ⋅ 2𝑖 ≤ 𝑑 ⋅ 2𝑑.
Therefore,

len(𝜋) ≤ 𝑛𝑑⋅2
𝑑
= 𝐿𝑑. �

To conclude this section, we now transfer the upper bound to VASS to prove Theorem 3.3.

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

Coverability in VASS Revisited 33:11

Proof of Theorem 3.3. Let (𝒱, 𝑝(s), 𝑞(t)) be an instance of 𝑑-VASS coverability of size 𝑛. By
Lemma 2.1, we can construct a (𝑑 + 3)-dimensional VAS 𝒰 of size poly(‖𝒱‖) and vectors p, q ∈ ℕ3

such that ‖p‖, ‖q‖ ≤ poly(‖𝒱‖) and, for some t′ ≥ t, there is a run from 𝑝(s) to 𝑞(t′) in 𝒱 if and only
if there is a run from (p, s) to (q, t′) in 𝒰.

Suppose (p, s)
𝜌
−→ (q, t′) is the minimal length run in 𝒰 such that t′ ≥ t. By Lemma 3.5, we know

that len(𝜌) ≤ poly(𝑛)(𝑑+3)⋅2
𝑑+3

= 𝑛𝒪(1)⋅(𝑑+3)⋅8⋅2𝑑 = 𝑛𝒪(𝑑⋅2𝑑). As stated at the end of Lemma 2.1, there
exists a corresponding run 𝑝(s)

𝜋
−→ 𝑞(t′) in 𝒱 where t′ ≥ t and len(𝜋) = len(𝜌)

3 . We therefore obtain

a run from 𝑝(s) that covers 𝑞(t) in 𝒱 of length ℓ = len(𝜌)
3 ≤ 𝑛𝒪(𝑑⋅2𝑑). �

4 Conditional Time Lower Bound for Coverability
In this section, we present a conditional lower bound based on the ETH [36]. Roughly speaking, ETH
is a conjecture that a 𝜆-variable instance of 3-SAT cannot be solved by a deterministic 2𝑜(𝜆)-time
algorithm (for a modern survey, see [45]). In our reductions, it will be convenient for us to reduce
via the 𝑘-clique problem instead of reducing directly from 3-SAT. In the 𝑘-clique problem, the input
is a graph 𝐺 = (𝑉 , 𝐸), 𝑘 is a parameter, and the task is to decide whether there is a set of 𝑘 pairwise
adjacent vertices in 𝑉. For a graph with 𝑟 nodes, the naive algorithm for 𝑘-clique runs in 𝒪(𝑟𝑘) time.
Even though the exact constant in the dependence on 𝑘 can be improved [52], ETH implies that the
exponent must have a linear dependence on 𝑘.

Theorem 4.1 ([14, Theorem 4.2], [15, Theorem 4.5], and [18, Theorem 14.21]). Assuming the
ETH, there is no algorithm running in 𝑓 (𝑘) ⋅ 𝑟𝑜(𝑘) time for the 𝑘-clique problem for any computable
function 𝑓. Moreover, one can assume that 𝐺 is 𝑘-partite, i.e. 𝐺 = (𝑉1 ∪ … ∪ 𝑉𝑘, 𝐸) and 𝐸 ⊆ {{𝑢, 𝑣} ∶
𝑢 ∈ 𝑉𝑖, 𝑣 ∈ 𝑉𝑗, 𝑖 ≠ 𝑗}.

We will use Theorem 4.1 to show the following conditional lower bound for coverability in unary
𝑑-VASS, which is proved at the end of this section.

Theorem 4.2. Assuming the ETH, there does not exist an 𝑛2
𝑜(𝑑)

-time algorithm deciding coverability
in a 𝑑-VASS of size 𝑛.

We remark, as corollary of Theorem 4.2, that there does not exist an 𝑛2
𝑜(𝑑)

-time algorithm for
coverability in 𝑑-VAS under ETH. 1 Here, to be precise, 𝑛 = ∑x∈𝒱‖x‖ refers to the size of a 𝑑-VAS 𝒱
encoded in unary. This follows from the fact that VAS can simulate VASS [35, Lemma 2.1]; see the
text surrounding Lemma 2.1 for a brief discussion about this simulation.

To prove Theorem 4.2, we first reduce the 𝑘-clique problem to coverability in bounded 2-VASS
with the ability to perform a fixed number of zero tests. We will then leverage a result by Rosier and
Yen to construct an equivalent, with respect to coverability, (𝒪(log(𝑘)))-VASS without zero tests.

Lemma 4.3. Given a 𝑘-partite graph 𝐺 = (𝑉1 ∪ ⋯ ∪ 𝑉𝑘, 𝐸) with 𝑟 vertices, there exists a unary
(𝒪(𝑟2𝑘), 2)-VASS 𝒯 with 𝒪(𝑘2) zero tests and two designated states 𝑞𝐼, 𝑞𝐹 such that there is a 𝑘-clique in
𝐺 if and only if there exists a run from 𝑞𝐼(0) to 𝑞𝐹(t) in 𝒯, for some t ≥ 0. Moreover, ‖𝒯‖ ≤ poly(𝑟 + 𝑘)
and 𝒯 can be constructed in poly(𝑟 + 𝑘) time.

Proof. Without loss of generality, we may assume that each of the 𝑘 vertex subsets in the
graph has the same size |𝑉1| = … = |𝑉𝑘| = ℓ. Thus 𝑟 = 𝑘 ⋅ ℓ. For convenience, we denote
𝑉 = {𝑣𝑖,𝑗 ∶ 𝑖 ∈ {1, … , 𝑘}, 𝑗 ∈ {1, … , ℓ}}.

1Recall, from Section 2, that a 𝑑-VAS is a 𝑑-dimensional vector addition system (without states).

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

33:12 M. Künnemann et al.

ALGORITHM 1: A counter program for a VASS with zero tests with two counters x and y.
input :x = 0, y = 0
x+= 1
for 𝑖 ← 1 to 𝑘 do

guess 𝑗 ∈ {1, … , ℓ}
Multiply[x, 𝑝𝑖,𝑗]

end
for (𝑖, 𝑗) ∈ {1, … , 𝑘}2, 𝑖 < 𝑗 do

guess 𝑒 ∈ {{𝑢, 𝑣} ∈ 𝐸 ∶ 𝑢 ∈ 𝑉𝑖, 𝑣 ∈ 𝑉𝑗}
Edge[𝑒]

end

We begin by sketching the main ideas behind the reduction before they are implemented. We
start by finding the first 𝑟 = 𝑘 ⋅ ℓ primes and associating a distinct prime 𝑝𝑖,𝑗 to each vertex 𝑣𝑖,𝑗 ∈ 𝑉.
Note that a product of 𝑘 different primes uniquely corresponds to a selection of 𝑘 vertices. Thus the
idea is to guess such a product and then test whether the corresponding vertices form a 𝑘-clique.

We present an overview of our construction in Algorithm 1. To simplify the presentation, we
present VASS also as counter programs, inspired by Esparza’s presentation of Lipton’s lower
bound [26, Section 7]. The program is non-deterministic and contains zero tests. The zero tests are
not immediately obvious in Algorithm 1 because they are used in the subprocedures (including
Multiply). Note that counter y is used only by subprocedures. Also note that the variable 𝑖 in the
first loop and variables 𝑖 and 𝑗 in the second loop are just syntactic sugar for copying similar code
multiple times. The variable 𝑗 in the first loop and the variable 𝑒 in the second loop allow us to
neatly represent non-determinism in the VASS corresponding to the program.

At the start of the program presented in Algorithm 1, both counters x and y are initialised to 0
(as specified in the statement of this lemma) and we are interested in the existence of a coverability
run that simply reaches the final control state (with any counter values). One should think that
coverability holds if and only if there is a run through the program that does not execute an
instruction that would take a counter below zero (colloquially, without “getting stuck”). It turns
out that a run could only get stuck in the Edge[𝑒] subprocedure, which will be explained later.

Algorithm 1 uses the Multiply[x, 𝑝] and Edge[𝑒] subprocedures. These two subprocedures will
be implemented later. The subprocedure Multiply[x, 𝑝] takes a counter x as input as we later reuse
this subprocedure when there is more than one counter subject to multiplication. The intended
behaviour of Multiply[x, 𝑝] is that it can be performed if and only if as a result we get x = 𝑥 ⋅ 𝑝
from an initial value of x = 𝑥 (despite the fact that VASS can only additively increase and decrease
counters). The subprocedure Edge[𝑒] can be performed if and only if both vertices of the edge 𝑒
are encoded in the value of counter x. Overall, Algorithm 1 is designed so that in the first part x
is multiplied by 𝑝𝑖,𝑗, where for every 𝑖, one 𝑗 is guessed. This equates to selecting one vertex from
each 𝑉𝑖. Then the second part the algorithm checks whether between every pair of selected vertices
from 𝑉𝑖 and 𝑉𝑗 there is an edge. Clearly, there is a run through the program that does not get stuck
if and only if there is 𝑘-clique in 𝐺.

In Figure 2 we present a VASS with zero tests implementing Algorithm 1. The construction will
guarantee that 𝑞𝐹(0) can be covered from 𝑞𝐼(0) if and only if there is a 𝑘-clique in 𝐺.

It remains to define the subprocedures. One should think that every call of a subprocedure
corresponds to a unique part of the VASS, like a gadget of sorts. To enter and leave the subprocedure
one needs to add trivial transitions that do not change the counter values. All subprocedures rely
on the invariant y = 0 at the beginning and admit the invariant at the end.

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

Coverability in VASS Revisited 33:13

𝑞𝐼𝑞𝐼
𝑞𝐹

Multiply[x, 𝑝1,1]

Multiply[x, 𝑝1,2]

⋯
Multiply[x, 𝑝1,ℓ]

⋯

⋯

⋯

Multiply[x, 𝑝𝑘,1]

Multiply[x, 𝑝𝑘,2]

⋯

Multiply[x, 𝑝𝑘,ℓ]

x+= 1

𝑞𝐹
𝑞𝐼

Edge[{𝑣1,1, 𝑣2,1}]

⋯

Edge[{𝑣1,𝑖′ , 𝑣2,𝑗′}]

⋯

Edge[{𝑣1,ℓ, 𝑣2,ℓ}]

For all {𝑣1,𝑖′ , 𝑣2,𝑗′} ∈ 𝐸 such that
𝑣1,𝑖′ ∈ 𝑉1 and 𝑣2,𝑗′ ∈ 𝑉2.

⋯

⋯

⋯

For all 𝑖 < 𝑗 and for all {𝑣𝑖,𝑖′ , 𝑣𝑗,𝑗′} ∈ 𝐸
such that 𝑣𝑖,𝑖′ ∈ 𝑉𝑖 and 𝑣𝑗,𝑗′ ∈ 𝑉𝑗.

Edge[{𝑣𝑘−1,1, 𝑣𝑘,1}]

⋯

Edge[{𝑣𝑘−1,𝑖′ , 𝑣𝑘,𝑗′}]

⋯

Edge[{𝑣𝑘−1,ℓ, 𝑣𝑘,ℓ}]

For all {𝑣𝑘−1,𝑖′ , 𝑣𝑘,𝑗′} ∈ 𝐸 such that
𝑣𝑘−1,𝑖′ ∈ 𝑉𝑘−1 and 𝑣𝑘,𝑗′ ∈ 𝑉𝑘.

Fig. 2. The top part of the VASS implements the first line and the first loop in Algorithm 1; counter x is
multiplied by 𝑘 non-deterministically chosen primes 𝑝𝑖,𝑗, each corresponding to a vertex in 𝑉𝑖. The bottom part
of the VASS implements the second loop in Algorithm 1; for every pair 𝑖 ≠ 𝑗 the VASS non-deterministically
chooses {𝑣𝑖,𝑖′ , 𝑣𝑗,𝑗′} ∈ 𝐸 such that 𝑣𝑖,𝑖′ ∈ 𝑉𝑖 and 𝑣𝑗,𝑗′ ∈ 𝑉𝑗 and invokes the subprocedure Edge[𝑒].

We start with Multiply[x, 𝑝] and Divide[x, 𝑝], which indeed multiply and divide x by 𝑝, re-
spectively. See Algorithm 2 for the counter program and VASS implementations. Note that loop
statements correspond to self-loop transitions in VASS. These loops can be taken any non-negative
number of times so long as the counters remain non-negative; however, the subsequent zero tests
implicity enforce these loops to be iterated exhaustively. In the Multiply[x, 𝑝] gadget, it is easy
to see that a run passes through the procedure if and only if x is multiplied by 𝑝. Similarly, in the
Divide[x, 𝑝] gadget, it is easy to see that a run passes through the procedure if and only if x is
divided by 𝑝 wholly. Indeed, the division procedure would get stuck if 𝑝 ∤ x because it will be
impossible to exit the first loop.

The procedure Edge[{𝑣𝑖,𝑖′ , 𝑣𝑗,𝑗′}] is simply a sequence of four subprocedures, as shown in Algo-
rithm 3. Indeed, to check if the vertices 𝑣𝑖,𝑖′ and 𝑣𝑗,𝑗′ are encoded in x we simply check whether x is
divisible by the corresponding primes 𝑝𝑖,𝑖′ and 𝑝𝑗,𝑗′ .

Afterwards we multiply x with the same primes so that the value does not change and it is ready
for future edge checks.

It remains to analyse the size of the VASS and its construction time in this reduction. In every
run from 𝑞𝐼(0) to 𝑞𝐹(t), for some t ≥ 0, the greatest counter value observable can be bounded above
by 𝑝𝑘 where 𝑝 is the 𝑟th prime. By the Prime Number Theorem (for example, see [61]), we know
that 𝑝𝑘 = 𝒪((𝑟 log(𝑟))𝑘) = 𝒪(𝑟2𝑘) is an upper bound on the counter values observed. Hence 𝒯 is
an 𝒪(𝑟2𝑘)-bounded unary 2-VASS.

Now, we count the number of zero tests performed in each run from 𝑞𝐼(0) to 𝑞𝐹(t), for some
t ≥ 0. The only zero tests occur in the instances of the Multiply and Divide subprocedures,
each performing two zero tests. In the first part of 𝒯, a run will encounter 𝑘 many Multiply

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

33:14 M. Künnemann et al.

ALGORITHM 2: The counter program of Multiply[x, 𝑝] above its VASS implementation (left) and
the counter program of Divide[x, 𝑝] above its VASS implementation (right).

input :x = 𝑥, y = 0
output :x = 𝑥 ⋅ 𝑝, y = 0
loop x−= 1, y+= 1
zero-test[x]
loop x+= 𝑝, y−= 1
zero-test[y]

x = 0 y = 0

x−= 1
y+= 1

x+= 𝑝
y−= 1

input :x = 𝑥 ⋅ 𝑝, y = 0
output :x = 𝑥, y = 0
loop x−= 𝑝, y+= 1
zero-test[x]
loop x+= 1, y−= 1
zero-test[y]

x = 0 y = 0

x−= 𝑝
y+= 1

x+= 1
y−= 1

ALGORITHM 3: The counter program for Edge[{𝑣𝑖,𝑖′𝑣𝑗,𝑗′}] and its VASS implementation.

input :x = 𝑥, y = 0
output :x = 𝑥, y = 0
Divide[x, 𝑝𝑖,𝑖′]

Multiply[x, 𝑝𝑖,𝑖′]

Divide[x, 𝑝𝑗,𝑗′]

Multiply[x, 𝑝𝑗,𝑗′]

Divide[x, 𝑝𝑖,𝑖′]

Multiply[x, 𝑝𝑖,𝑖′]

Divide[x, 𝑝𝑗,𝑗′]

Multiply[x, 𝑝𝑗,𝑗′]

subprocedures, contributing 2𝑘 many zero tests. In the second part of 𝒯, a run will encounter
(𝑘2) many Edge subprocedures, each containing two Multiply subprocedures and two Divide

subprocedures, in total contributing 8(𝑘2) many zero tests. Together, every run encounters exactly
2𝑘+8(𝑘2) = 2𝑘(2𝑘−1)many zero tests. Hence 𝒯 is an 𝒪(𝑟2𝑘)-bounded unary 2-VASS with 2𝑘(2𝑘−1)
zero tests.

Finally, the Multiply and Divide subprocedures contain three states and five transitions. Since
the 𝑟th prime is bounded above by 𝒪(𝑟 log(𝑟)), we can unfold the updates in these procedures into
an 𝒪(𝑟 log(𝑟))-length sequence of unary (−1, 0, or +1) updates. Analysing Algorithm 1, it is easy
to see that overall the number of states is polynomial in 𝑟. Finally, the first 𝑟 primes can be found
in 𝑟1+𝑜(1) time [2]. Therefore, in total 𝒯 has size ‖𝒯‖ = poly(𝑟 + 𝑘) and can be constructed in
poly(𝑟 + 𝑘) time. �

To attain conditional lower bounds for coverability we must replace the zero tests. We make use
of a technique of Rosier and Yen [54] that relies on the construction of Lipton [44]. They show that
a 22

𝑑
-bounded counter machine with finite state control can be simulated by a unary 𝒪(𝑑)-VASS.

As Rosier and Yen detail after their proof, it is possible to apply this technique to multiple counters
with zero tests at once [54, Page 127]. This accordingly results in the number of VASS counters
increasing, but we instantiate this with just two counters. We remark that the VASS constructed in

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

Coverability in VASS Revisited 33:15

Lemma 4.3 is structurally bounded, so for any initial configuration there is a limit on the largest
observable counter value, as is the case in the VASS that Lipton constructed [44].

Lemma 4.4 (Corollary of [54, Lemma 4.3]). For parameters 𝑎 and 𝑑, let 𝒯 be an 𝑚-state unary
(𝑎2

𝑑
, 2)-VASS with zero tests and two designated states 𝑞𝐼, 𝑞𝐹. Then there exists a poly(𝑎 ⋅ 𝑚)-state

(4𝑑)-VASS 𝒱 with two designated states 𝑞′𝐼 , 𝑞
′
𝐹 such that there is a run from 𝑞𝐼(0) to 𝑞𝐹(v), for some

v ≥ 0, in 𝒯 if and only if there is a run from 𝑞′𝐼 (0) to 𝑞
′
𝐹(w), for some w ≥ 0, in 𝒱. Moreover, 𝒱 has

size poly(𝑎 ⋅ ‖𝒯‖) and can be constructed in the same time.

Proof. This essentially follows from Rosier and Yen’s original construction [54], hence we briefly
describe how to ensure that the dimension of the resulting VASS is not too large. Here, we will
follow Esparza’s detailed analysis [26]. In particular on [26, Page 411], all counters are listed with
their properties (this also implies the dimension of the output VASS). Altogether, their construction
consists of the following counters with the following properties:

— x, y, s and x, y, s; after initialisation, the invariants x + x = 22
𝑑
, y + y = 22

𝑑
, and s + s = 22

𝑑

are satisfied and the values of x, y, s are bounded by 22
𝑑
, and

— y𝑖, z𝑖 and y𝑖, z𝑖 for each 0 ≤ 𝑖 ≤ 𝑑 − 1; after initialisation, for all 0 ≤ 𝑖 ≤ 𝑑 − 1, the invariants
y𝑖 + y𝑖 = 22

𝑖
and z + z𝑖 = 22

𝑖
are satisfied and the values of y𝑖, z𝑖 are bounded by 22

𝑖
.

There are two nuances with the construction. First, the counters x, y are bounded by 22
𝑑
and the

counters y𝑖, z𝑖 are bounded by 22
𝑖
; we require the bound 𝑎2

𝑑
. This is straightforward to fix. Initially,

y0 and z0 are set to 0 and 𝑦0, 𝑧0 are set to 2. Hence in our construction, it suffices to change the
aforementioned 2 to 𝑎, which using unary updates requires 𝑎 additional states and transitions.
The sequence of initialisations guarantees that y𝑖 + y𝑖 and z𝑖 + z𝑖 are bounded by (y𝑖−1 + y𝑖−1)

2 =
(z𝑖−1 + z𝑖−1)2 = (𝑎2

𝑖−1
)2 = 𝑎2

𝑖
. Then, by construction, we will also get x + x = y + y = s + s = 𝑎2

𝑑
,

this also provides an 𝑎2
𝑑
bound on x and y.

The second issue, is that the number of counters is 4𝑑+6; we require 4𝑑. However, by construction
the counters y𝑖, z𝑖 and y𝑖, z𝑖 are always bounded by 𝑎2

𝑖
. Thus, we can do away with the six counters

y0, z0, y0, z0, y1, and z1 by encoding their value in the states. This only multiplies the number of
states, and therefore the size of the VASS, by a polynomial in 𝑎. �

With this, we can conclude this section with the proof of its main theorem.

Proof of Theorem 4.2. Let 𝑘 = 1
2 ⋅2

𝑑/4 and let 𝐺 be an arbitrary 𝑘-partite graph with 𝑟 nodes. By
Lemma 4.3, there exists a unary (𝒪(𝑟2𝑘, 2))-VASS with zero tests 𝒯 such that 𝐺 contains a 𝑘-clique
if and only if there is a run from 𝑞𝐼(0) to 𝑞𝐹(t), for some t ≥ 0, in 𝒯.

Given the bound on the counters in 𝒯 is 𝒪(𝑟2𝑘) = 𝒪(𝑟2
𝑑/4
) = (𝒪(𝑟))2

𝑑/4
, and the size of 𝒯 is

‖𝒯‖ = poly(𝑟 + 𝑘), we can apply Lemma 4.4 to 𝒯. There exists a unary 𝑑-VASS 𝒱 such that 𝐺
contains a 𝑘-clique if and only if there is a run from 𝑞′𝐼 (0) to 𝑞

′
𝐹(w), for some w ≥ 0, in 𝒱. The size

of 𝒱 is ‖𝒱‖ = poly(𝑟 + 𝑘), and since 𝑘 ≤ 𝑟, we have ‖𝒱‖ = 𝑛 ≤ 𝑟 𝑐 for some constant 𝑐.
Assume, for the sake of contradiction, that an 𝑛2

𝑜(𝑑)
-time algorithm for coverability in unary

𝑑-VASS exists. By the above reduction, it would decide any given 𝑘-clique instance in time 𝑛2
𝑜(𝑑)

=
𝑛𝑜(2

𝑑/4) = 𝑛𝑜(𝑘) = 𝑟𝑜(𝑘), where we used 𝑘 = 𝑂(2𝑑/4) in the second equation and 𝑛 = poly(𝑟) in the
last equation. By Theorem 4.1, such an 𝑟𝑜(𝑘)-time algorithm for 𝑘-clique would refute ETH. �

Remark 4.5. The reduction used to prove Theorem 4.2 actually excludes 𝑓 (𝑑) ⋅ 𝑛𝑜(2
𝑑/4)-time

algorithms for coverability for any computable function 𝑓, assuming ETH. Recall, from Corollary 3.4,

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

33:16 M. Künnemann et al.

Table 1. Conditional Lower Bounds and Upper Bounds of the Time Complexity
of Coverability and Reachability in Unary (𝒪(𝑛), 𝑑)-VASS

𝑑 Lower Bound Upper Bound
0 Ω(𝑛) (trivial) 𝒪(𝑛)
1 𝑛2−𝑜(1) (Theorem 5.4) 𝒪(𝑛2)
2 𝑛2−𝑜(1) (from above) 𝒪(𝑛3)
3 𝑛2−𝑜(1) (from above) 𝒪(𝑛4)

𝑑 ≥ 4 𝑛𝑑−2−𝑜(1) (Theorem 5.8) 𝒪(𝑛𝑑+1)
For clarity, we remark that Theorem 5.4 is subject to Hypothesis 5.2 and that Theorem 5.8 is
subject to Hypothesis 5.7. The 𝑜(1) terms in the exponents of the lower bounds are
sub-constant terms that may only depend on 𝑛; the lower bounds are more precisely
formulated in Theorem 5.4 and Theorem 5.8. Note that the lower bounds for dimensions
𝑑 = 2 and 𝑑 = 3 follow from Theorem 5.4 by just adding components consisting of only
zeros. All upper bounds follow from Observation 5.1.

that coverability can be decided in 𝑛𝒪(𝑑2⋅2𝑑) time. Note that our conditional lower bound only differs
from the (unconditional) upper bound by a constant multiplicative factor of 4 in the second exponent;
indeed, 𝒪(𝑑2 ⋅ 2𝑑) = 𝒪(2(1+𝜀)⋅𝑑) for any positive constant 𝜀 > 0.

5 Coverability and Reachability in Bounded Unary VASS
In this section, we give even tighter bounds for coverability in bounded fixed dimension unary VASS.
Specifically, for a non-decreasing function 𝐵 ∶ ℕ → ℕ, the coverability problem in (𝐵(𝑛), 𝑑)-VASS
asks, for a given (𝐵(𝑛), 𝑑)-VASS 𝒱 = (𝑄, 𝑇) of size 𝑛 as well as configurations 𝑝(s), 𝑞(t), whether
there is a run in 𝒱 from 𝑝(s) to 𝑞(t′) for some t′ ≥ t such that each counter value remains in
{0, … , 𝐵(𝑛)} throughout. We would like to clarify the fact that the bound is not part of the input to
the problem. We focus on the natural setting of linearly-bounded fixed dimension VASS, that is,
(𝒪(𝑛), 𝑑)-VASS. There is a simple algorithm, presented in the proof of Observation 5.1, that yields
an immediate 𝒪(𝑛𝑑+1) upper bound for the time needed to decide the coverability problem. We
accompany this observation with closely matching lower bounds, see Table 1 for an overview.

Observation 5.1. Coverability in a unary (𝐵(𝑛), 𝑑)-VASS of size 𝑛 can be decided in𝒪(𝑛(𝐵(𝑛)+1)𝑑)
time.

Proof. Since all configurations in a (𝐵(𝑛), 𝑑)-VASS belong to the finite set 𝑄 × {0, … , 𝐵(𝑛)}𝑑, we
can exhaustively explore all configurations reachable from 𝑝(s) using a straightforward depth-first
search. Each state 𝑞 ∈ 𝑄 and each transition 𝑡 ∈ 𝑇 will be considered at most once for each
admissible vector in {0, … , 𝐵(𝑛)}𝑑. In total, the algorithm takes at most 𝒪(𝑛(𝐵(𝑛) + 1)𝑑) time since
|𝑄|, |𝑇 | ≤ 𝑛. We accept the instance if and only if we have ever witnessed a configuration 𝑞(t′) for
some t′ ≥ t. �

Lower Bounds for Coverability in Linearly-Bounded VASS
Now, we consider lower bounds for the coverability problem in linearly-bounded fixed dimension
unary VASS. Firstly, in dimension one, we show that quadratic running time is conditionally
optimal under the 𝑘-cycle hypothesis. Secondly, in any fixed dimension 𝑑 ≥ 4, under the 3-uniform
hyperclique hypothesis, we show that a running time of Ω(𝑛𝑑−2−𝜀) is required for every 𝜀 > 0.
Together, this provides evidence that the simple 𝒪(𝑛𝑑+1)-time algorithm for coverability in (𝒪(𝑛), 𝑑)-
VASS is close to optimal, as summarised in Table 1.

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

Coverability in VASS Revisited 33:17

𝑃0

𝑝𝑣1

𝑝𝑣2

⋯

𝑝𝑣ℓ

+1

+1

+1

𝑄0

𝑞𝑣ℓ

⋯

𝑞𝑣2

𝑞𝑣1

−1

−1

−1

𝑆1 𝑆2

⋯

𝑆𝑘−1

Fig. 3. The (𝒪(𝑛), 1)-VASS 𝒱 of size 𝑛 = 𝒪(𝑚) for detecting a 𝑘-cycle in a 𝑘-circle-layered graph with 𝑚 edges.
The transitions that are unlabelled have zero effect. Observe that the structure of the graph is mostly copied
into the states and transitions of the linearly-bounded 1-VASS. Importantly, two copies of 𝑉0 are created (𝑃0
and 𝑄0). Consider a run with initial configuration 𝑝𝑣1(0). First, in 𝑃0, a vertex from 𝑉0 belonging to a 𝑘-cycle
can be selected by adding a value corresponding to that vertex to the counter. Then the configuration 𝑞𝑣1(0)
can be reached if the state first observed in 𝑄0 corresponds to the vertex originally selected in 𝑃0. Accordingly,
there is a run from 𝑝𝑣1(0) to 𝑞𝑣1(0) if and only if there exists a 𝑘-cycle, since the states visited in the underlying
path of the run correspond to the vertices of the 𝑘-cycle.

Hypothesis 5.2 (𝑘-Cycle Hypothesis). For every 𝜀 > 0 and 𝑚 ∈ ℕ, there exists an integer 𝑘
such that there does not exist an 𝒪(𝑚2−𝜀)-time algorithm for detecting whether there is a 𝑘-cycle in a
directed graph with 𝑚 edges.

The 𝑘-cycle hypothesis arises from the challenge of improving upon the state-of-the-art 𝒪(𝑚2− 𝑐
𝑘)-

time algorithms for the 𝑘-cycle problem [4, 24, 60]; here 𝑐 is some constant. It has been previously
used as an assumption for hardness results, for example, see [5, 23, 43]. A standard observation,
due to colour-coding arguments, is that we may without loss of generality assume that the given
directed graph is 𝑘-circle-layered [43, Lemma 2.2]. Specifically, we can assume that the input graph
𝐺 = (𝑉 , 𝐸) has vertex partition 𝑉 = 𝑉0∪⋯∪𝑉𝑘−1 such that each edge (𝑢, 𝑣) ∈ 𝐸 is in 𝑉𝑖×𝑉𝑖+1 (mod 𝑘)
for some 0 ≤ 𝑖 < 𝑘. We may also assume that |𝑉 | ≤ |𝐸|.

Lemma 5.3. Given a 𝑘-circle-layered graph 𝐺 = (𝑉0 ∪ ⋯ ∪ 𝑉𝑘−1, 𝐸) with 𝑚 edges, there exists a
unary (𝒪(𝑛), 1)-VASS 𝒱 such that there is a 𝑘-cycle in 𝐺 if and only if there exists a run from 𝑝(0) to
𝑞(0) in 𝒱. Moreover, 𝒱 has size 𝑛 = 𝒪(𝑚) and can be constructed in 𝒪(𝑚) time.

Proof. Consider the unary (𝒪(𝑚), 1)-VASS 𝒱 = (𝑄, 𝑇), that is, defined as follows (see also
Figure 3). For ease of construction let us number the vertices in 𝑉0, so suppose that 𝑉0 = {𝑣1, … , 𝑣ℓ}.
Let us first define the set of states 𝑄. There are two copies of the vertex subset 𝑉0, namely 𝑃0 =
{𝑝𝑣1 , … , 𝑝𝑣ℓ} and 𝑄0 = {𝑞𝑣1 , … , 𝑞𝑣ℓ}. There are also copies of each of the vertex subsets 𝑉1, 𝑉2, … , 𝑉𝑘−1,
namely 𝑆𝑖 = {𝑠𝑣 ∶ 𝑣 ∈ 𝑉𝑖} for each 1 ≤ 𝑖 ≤ 𝑘 − 1.

𝑄 = 𝑃0 ∪ 𝑆1 ∪ 𝑆2 ∪ ⋯ ∪ 𝑆𝑘−1 ∪ 𝑄0.

Now, we define the set of transitions 𝑇. There are three kinds of transitions, the initial vertex
selection transitions 𝑇𝐼, the intermediate transitions 𝑇𝐸, and the final vertex checking transitions 𝑇𝐹.

𝑇 = 𝑇𝐼 ∪ 𝑇𝐸 ∪ 𝑇𝐹.

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

33:18 M. Künnemann et al.

The initial transitions connect states in 𝑃0 sequentially. Each transition increments the counter.
Intuitively speaking, the counter takes a value corresponding to the vertex in 𝑉0 that will belong to
the 𝑘-cycle in 𝐺.

𝑇𝐼 = {(𝑝𝑣𝑖 , 1, 𝑝𝑣𝑖+1) ∶ 1 ≤ 𝑖 < ℓ}.

The intermediate transitions are directed copies of the edges in the original graph. The only
difference is that edges between 𝑉0 and 𝑉1 are now transitions from 𝑃0 to 𝑆1 and edges between
𝑉𝑘−1 and 𝑉0 become transitions from 𝑆𝑘−1 to 𝑄0.

𝑇𝐸 = {(𝑝𝑢, 0, 𝑠𝑣) ∶ (𝑢, 𝑣) ∈ (𝑉0 × 𝑉1) ∩ 𝐸} ∪ {(𝑠𝑢, 0, 𝑞𝑣) ∶ (𝑢, 𝑣) ∈ (𝑉𝑘−1 × 𝑉0) ∩ 𝐸} ∪
{(𝑠𝑢, 0, 𝑠𝑣) ∶ (𝑢, 𝑣) ∈ (𝑉𝑖 × 𝑉𝑖+1) ∩ 𝐸 for some 1 ≤ 𝑖 < 𝑘 − 1}.

The final transitions connect the states in 𝑄0 sequentially. Each such transition decrements
the counter. Intuitively speaking, if the state reached in 𝑄0 matches the counter that has a value
corresponding to the vertex in 𝑉0 then the final state 𝑞𝑣1 can be reached with counter value zero.

𝑇𝐹 = {(𝑞𝑣𝑖+1 , −1, 𝑞𝑣𝑖) ∶ 1 ≤ 𝑖 < ℓ}.

Importantly, there is a run from the initial configuration 𝑝𝑣1(0) to the target configuration 𝑞𝑣1(0)
in 𝒱 if and only if there is a 𝑘-cycle in the 𝑘-circle-layered graph 𝐺. In closing, observe that |𝑄| ≤ 2|𝑉 |
and |𝑇 | ≤ 2|𝑉 | + |𝐸|. Therefore, 𝒱 has size 𝒪(𝑚). We remark that the greatest possible counter
value is trivially bounded above by |𝑄|, hence 𝒱 is a unary (𝒪(𝑚), 1)-VASS of size 𝒪(𝑚) that can be
constructed in 𝒪(𝑚) time. �

Theorem 5.4. Assuming the 𝑘-cycle hypothesis, there does not exist an 𝜀 > 0 and an 𝒪(𝑛2−𝜀)-time
algorithm that decides reachability (or coverability) in unary (𝒪(𝑛), 1)-VASS of size 𝑛.

Proof. Assume, for the sake of contradiction, that reachability in a unary (𝒪(𝑛), 1)-VASS of
size 𝑛 can be solved in 𝒪(𝑛2−𝜀) time for some 𝜀 > 0. By the 𝑘-cycle hypothesis (Hypothesis 5.2),
there exists a 𝑘 such that the problem of detecting a 𝑘-cycle in a 𝑘-circle layered graph with 𝑚
vertices cannot be solved in 𝒪(𝑚2−𝜀) time. Via the reduction presented above in Lemma 5.3, we
create a (𝒪(𝑛), 1)-VASS 𝒱 of size 𝑛 = 𝒪(𝑚) together with an initial configuration 𝑝(0) and a target
configuration 𝑞(0), such that deciding reachability from 𝑝(0) to 𝑞(0) in 𝒱 determines the existence
of a 𝑘-cycle in 𝐺. Thus the 𝒪(𝑛2−𝜀)-time algorithm for reachability would yield an 𝒪(𝑚2−𝜀)-time
algorithm for detecting 𝑘-cycles, contradicting the 𝑘-cycle hypothesis.

By the equivalence of coverability and reachability in unary (𝒪(𝑛), 1)-VASS in Lemma 5.6, the
same lower bound holds for coverability. �

We can now use Theorem 5.4 to obtain a conditional lower bound on the time required to decide
coverability in unary 2-VASS.

Corollary 5.5. Assuming the 𝑘-cycle hypothesis, there does not exist an 𝜀 > 0 and an 𝒪(𝑛2−𝜀)-time
algorithm that decides coverability in unary 2-VASS of size 𝑛.

Proof. Consider a standard modification of the reduction presented for Lemma 5.3, that is, to
increase the dimension of 𝒱 = (𝑄, 𝑇) by one by adding an opposite counter of sorts, yielding
a 2-VASS 𝒲 = (𝑄, 𝑇 ′). For every transition (𝑝, 𝑥, 𝑞) ∈ 𝑇, create a transition also modifying the
opposite counter, (𝑝, (𝑥, −𝑥), 𝑞) ∈ 𝑇 ′. Now, the instance (𝒲, 𝑝(0, 𝑛), 𝑞(0, 𝑛)) of coverability holds
if and only if the instance (𝒱, 𝑝(0), 𝑞(0)) of reachability holds. The rest follows by Theorem 5.4. �

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

Coverability in VASS Revisited 33:19

Equivalence of Coverability and Reachability in Linearly-Bounded VASS
Reachability in (𝒪(𝑛), 𝑑)-VASS can be decided in 𝒪(𝑛(𝐵(𝑛) + 1)𝑑) time using the simple algorithm
for Observation 5.1 with a trivially modified acceptance condition. It turns out that coverability
and reachability are equivalent in unary (𝒪(𝑛), 𝑑)-VASS. This is true in the sense that it may hold
that, for example, coverability in a (100𝑛, 𝑑)-VASS may be reduced in linear time to reachability in
a (3𝑛, 𝑑)-VASS. Conversely, reachability in some linearly-bounded 𝑑-VASS can be reduced in linear
time to a corresponding instance of coverability in a linearly-bounded 𝑑-VASS. Note that perversely,
it appears plausible that instances of coverability in a (100𝑛, 𝑑)-VASS could in fact be simpler to
solve than in a (3𝑛, 𝑑)-VASS.

Lemma 5.6. For a (𝐵(𝑛), 𝑑)-VASS, let 𝐶𝐵(𝑛)(𝑛) and 𝑅𝐵(𝑛)(𝑛) denote the optimal running times for
coverability and reachability, respectively. For any 𝛾 > 0, there exists some 𝛿 > 0 such that 𝐶𝛾 ⋅𝑛(𝑛) ≤
𝒪(𝑅𝛿⋅𝑛(𝑛)). Conversely, for any 𝛾 > 0, there exists some 𝛿 > 0 such that 𝑅𝛾 ⋅𝑛(𝑛) ≤ 𝒪(𝐶𝛿⋅𝑛(𝑛)).

Proof. Given an instance (𝒱, 𝑝(s), 𝑞(t)), of size 𝑛, of coverability in (𝐵(𝑛), 𝑑)-VASS 𝒱. We con-
struct a (𝐵(𝑛), 𝑑)-VASS 𝒱′ from 𝒱 by adding transitions (𝑞, −e𝑖, 𝑞) for every 1 ≤ 𝑖 ≤ 𝑑. It is easy
to see that there exists a run from 𝑝(s) to 𝑞(t) in 𝒱′ if and only if there exists and a run from
𝑝(s) to 𝑞(t′) in 𝒱 for some t′ ≥ t. Since ‖𝒱′‖ = 𝒪(𝑛), for 𝐵(𝑛) = 𝛾 ⋅ 𝑛 we can ensure (by possibly
adding any number of unreachable states) that 𝐵(𝑛) = 𝛿 ⋅ ‖𝒱′‖ for an appropriately selected 𝛿. Thus,
𝐶𝛾𝑛(𝑛) = 𝒪(𝑅𝛿𝑛(𝒪(𝑛))) = 𝒪(𝑅𝛿𝑛(𝑛)).

Conversely, consider an instance (𝒱, 𝑝(s), 𝑞(t)), of size 𝑛, of reachability in a (𝐵(𝑛), 𝑑)-VASS 𝒱,
again denote 𝑛 = ‖𝒱‖. We construct the (𝐵(𝑛), 𝑑)-VASS 𝒱′ from 𝒱 by adding a path from 𝑞 to a
new state 𝑟 whose transitions update the counters by −t. This is easily implementable by a path of
length at most 𝐵(𝑛), for if ‖t‖ > 𝐵(𝑛) this instance is trivially false. We then append a path from
𝑟 to a new state 𝑟 ′ whose transitions add 𝐵(𝑛) to every counter. It is easy to see that there is a
run from 𝑝(s) to 𝑟 ′((𝐵(𝑛), … , 𝐵(𝑛))) in 𝒱′ if and only if there exists a run from 𝑝(s) to 𝑞(t) in 𝒱.
Since ‖𝒱′‖ = 𝒪(𝑛 + 𝐵(𝑛)), for 𝐵(𝑛) = 𝛾 ⋅ 𝑛 we can ensure that 𝐵(‖𝒱′‖) = 𝛿 ⋅ ‖𝒱′‖ for some 𝛿. Thus,
𝑅𝛾𝑛(𝑛) = 𝒪(𝐶𝛿𝑛(𝒪(𝑛))) = 𝒪(𝐶𝛿𝑛(𝑛)). �

Lower Bounds for Reachability in Linearly-Bounded VASS
To obtain further lower bounds for the coverability problem in (𝒪(𝑛), 𝑑)-VASS, by Lemma 5.6, we
can, equivalently, find lower bounds for the reachability problem in (𝒪(𝑛), 𝑑)-VASS. In Theorem 5.8,
we will assume a well-established hypothesis concerning the time required to detect a hyperclique
in a 3-uniform hypergraph. In fact, Lincoln, Vassilevska Williams, and Williams state and justify
an even stronger hypothesis about 𝜇-uniform hypergraphs for every 𝜇 ≥ 3 [43, Hypothesis 1.4].
We will use this computational complexity hypothesis to expose precise lower bounds on the time
complexity of reachability in linearly-bounded fixed dimension unary VASS.

Hypothesis 5.7 (𝑘-Hypercliqe Hypothesis [43, Hypothesis 1.4]). Let 𝑘 ≥ 3 be a fixed integer.
There does not exist an 𝜀 > 0 and an 𝒪(𝑟𝑘−𝜀)-time algorithm for detecting whether there is a 𝑘-
hyperclique in a 3-uniform hypergraph with 𝑟 vertices.

For the remainder of this section, we focus on the proof of the following theorem.

Theorem 5.8. Let 𝑑 ≥ 1 be a fixed integer. Assuming Hypothesis 5.7, there does not exist an 𝜀 > 0
and an 𝒪(𝑛𝑑−𝜀)-time algorithm that decides reachability in a unary (𝒪(𝑛), 𝑑 + 2)-VASS of size 𝑛.

The lower bound is obtained via reduction from detecting hyperclique in 3-uniform hypergraphs,
hence it is subject to the 𝑘-hyperclique hypothesis. We present our reduction in two steps. The first
step is an intermediate step, in Lemma 5.9 we offer a reduction to an instance of reachability in

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

33:20 M. Künnemann et al.

unary VASS with a limited number of zero tests. The second step extends the first, in Lemma 5.10 we
modify the reduction by adding a counter so zero tests are absented. This extension leverages the
recently developed controlling counter technique of Czerwiński and Orlikowski [21]. This technique
allows for implicit zero tests to be performed in the presence of a dedicated counter whose transition
effects and reachability condition ensure the implicit zero tests were indeed performed correctly.

It has been shown that we may assume that the hypergraph is 𝑘-partite for 𝑘-hyperclique
Hypothesis 5.7 [43, Theorem 3.1]. Thus, we may assume that the vertices can be partitioned into 𝑘
disjoint subsets 𝑉 = 𝑉1 ∪ ⋯ ∪ 𝑉𝑘 and every hyperedge {𝑢, 𝑣 , 𝑤} comprises of three vertices from
distinct subsets 𝑢 ∈ 𝑉𝑖1 , 𝑣 ∈ 𝑉𝑖2 , and 𝑤 ∈ 𝑉𝑖3 for some 1 ≤ 𝑖1 < 𝑖2 < 𝑖3 ≤ 𝑘.

Lemma 5.9. Let 𝑑 ≥ 1 be a fixed integer. Given a 4𝑑-partite 3-uniform hypergraph 𝐻 = (𝑉1 ∪ … ∪
𝑉4𝑑, 𝐸) with 𝑟 vertices, there exists a unary (𝒪((𝑟 log(𝑟))4), 𝑑 + 1)-VASS with 𝒪(𝑑3) zero tests 𝒯 such
that there is a 4𝑑-hyperclique in 𝐻 if and only if there is a run from 𝑞𝐼(0) to 𝑞𝐹(0) in 𝒯. Moreover, 𝒯
can be constructed in poly(𝑑) ⋅ (𝑟 log(𝑟))4 time.

Proof. We will re-employ some of the ideas already used in the constructions of the proof of
Lemma 4.3. In particular, we will use Multiply and Divide subprocedures, see Algorithm 2. Let us
denote the 𝑑 + 1 counters x1, … , x𝑑, y. The collective role of x1, … , x𝑑 is to maintain a representation
of the 4𝑑 vertices forming the 4𝑑-hyperclique. The role of y is to ensure multiplications and divisions
are completed correctly. Just as previously seen, before the execution of Multiply or Divide, we
require y = 0. We will combine these subprocedures to construct new subprocedures for unary
(𝑑 + 1)-VASS with zero tests to verify properties related to 3-uniform hypergraphs.

We start by finding the first 𝑟 primes. We associate a distinct prime 𝑝𝑣 to each vertex 𝑣 ∈ 𝑉.
Now we encode the chosen 4𝑑 vertices that will form the 4𝑑-clique by storing, on 𝑑 many counters,
products of four primes corresponding to four of the selected vertices. Therefore, after the initial
guessing part, the value of counter x𝑖 will be 𝑝𝑡 ⋅ 𝑝𝑢 ⋅ 𝑝𝑣 ⋅ 𝑝𝑤 for some vertices 𝑡 , 𝑢, 𝑣 , 𝑤 ∈ 𝑉. Roughly
speaking, we store the product of four primes on one counter so that the maximum observable
counter value matches the size of the resulting VASS with zero tests.

Guessing part. The VASS presented in Algorithm 4 implements the following algorithm: Guess
4𝑑 vertices, not necessarily distinct, and check whether they form a 4𝑑-hyperclique. Note that this
algorithm is correct because it does not help us to repeatedly guess the same vertex or repeatedly
guess vertices that belong to the same vertex subset. In contrast to Algorithm 1, the main difference
is that the guessed vertices are encoded as quadruple products of primes across counters x1, …, x𝑑.
We do not store the entire product of 4𝑑 primes explicitly, only the values of each counter.

Checking part. In the second part, we verify that we have selected a 4𝑑-hyperclique by testing
for each of the (4𝑑3) hyperedges. This is achieved in essentially the same way as Edge[𝑒] was
implemented in Algorithm 3. We check that between every triplet of vertex subsets there is a
hyperedge that has all of the vertices selected in the first part. At the end of the checking part,
there are 𝑑 + 1 self-loops that each decrement one of the 𝑑 + 1 counters. These loops can be used to
reach the target configuration 𝑞𝐹(0) once all hyperedge checks have been succeeded.

For ease of presentation and as previously mentioned, we introduce the VertexSelected sub-
procedure that checks whether a given vertex has been selected; see Figure 4.

We also implement the HyperEdge subprocedure for checking whether the vertices, in a given
hyperedge, have been selected; see Figure 5. This subprocedure checks that the three primes
corresponding to the three vertices in the hyperedge can divide one of the values stored in x1, … , x𝑑.

Now, we use the HyperEdge subprocedure to construct the checking part of 𝒯. This part consists
of a sequence of (4𝑑3) non-deterministic branching sections, one for each triplet of vertex subsets
𝑉𝑖1 , 𝑉𝑖2 , and 𝑉𝑖3 where 1 ≤ 𝑖1 < 𝑖2 < 𝑖3 ≤ 4𝑑. In each branching section, there is an instance of the

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

Coverability in VASS Revisited 33:21

VertexSelected[𝑣]

Divide[x1, 𝑝𝑣] Multiply[x1, 𝑝𝑣]

Divide[x2, 𝑝𝑣] Multiply[x2, 𝑝𝑣]

⋯ ⋯

Divide[x𝑑, 𝑝𝑣] Multiply[x𝑑, 𝑝𝑣]

Fig. 4. The VertexSelected subprocedure implemented in a unary (𝑑 +1)-VASS with zero tests. To instantiate
this subprocedure, a vertex 𝑣 is specified so that the 𝑑 counters can be checked for divisibility by the prime 𝑝𝑣,
with the effect of checking whether the vertex 𝑣 has been selected. The counter y is used by the Divide and
Multiply subprocedures to ensure the division and multiplications are completed correctly.

HyperEdge[{𝑢, 𝑣 , 𝑤}]

VertexSelected[𝑢] VertexSelected[𝑣] VertexSelected[𝑤]

Fig. 5. The HyperEdge subprocedure implemented in a unary (𝑑 + 1)-VASS with zero tests. Note that the
three vertices of the given hyperedge may be stored across any of the 𝑑 counters x1, … , x𝑑. Therefore, we
make use of the VertexSelected subprocedure three times to check if indeed 𝑢, 𝑣, and 𝑤 have been selected.

ALGORITHM 4: A counter program representing the VASS with zero tests. As seen earlier, the
variables in for loops are just syntactic sugar for repeating similar lines of code which correspond to
states in the VASS. Similarly, the variables in guess statements represent non-deterministic branching
transitions in a VASS.

input :x1, … , x𝑑, y = 0
for 𝑖 ← 1 to 𝑑 do

x𝑖 += 1
for 𝑔 ← 1 to 4 do

guess 𝑗 ∈ {1, … , 𝑟}
Multiply[x𝑖, 𝑝𝑗]

end
end
for (𝑖1, 𝑖2, 𝑖3) ∈ {1, … , 4𝑑}3, 𝑖1 < 𝑖2 < 𝑖3 do

guess 𝑒 ∈ 𝐸 ∩ {{𝑢, 𝑣 , 𝑤} ∶ 𝑢 ∈ 𝑉𝑖1 , 𝑣 ∈ 𝑉𝑖2 , 𝑤 ∈ 𝑉𝑖3}
HyperEdge[𝑒]

end
for 𝑖 ← 1 to 𝑑 do

loop x𝑖 −= 1
end
loop y−= 1

HyperEdge subprocedure for each of the hyperedges {𝑢, 𝑣 , 𝑤} ∈ 𝐸 such that 𝑢 ∈ 𝑉𝑖1 , 𝑣 ∈ 𝑉𝑖2 , and
𝑤 ∈ 𝑉𝑖3 .

Figure 6 implements the check that the selected vertices indeed form a hyperclique: In order to
reach the final state 𝑞𝐹, there must be a hyperedge between each of the 4𝑑 vertices selected in the

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

33:22 M. Künnemann et al.

𝑞𝐹

HyperEdge[{𝑢1, 𝑢2, 𝑢3}]

HyperEdge[{𝑣1, 𝑣2, 𝑣3}]

⋯
HyperEdge[{𝑤1, 𝑤2, 𝑤3}]

For every hyperedge 𝑒 ∈ 𝐸1,2,3

⋯

⋯

⋯

For every 1 ≤ 𝑖1 < 𝑖2 < 𝑖3 ≤ 4𝑑 and for every hyperedge 𝑒 ∈ 𝐸𝑖1,𝑖2,𝑖3

HyperEdge[{𝑢4𝑑−2, 𝑢4𝑑−1, 𝑢4𝑑}]

HyperEdge[{𝑣4𝑑−2, 𝑣4𝑑−1, 𝑣4𝑑}]

⋯

HyperEdge[{𝑤4𝑑−2, 𝑤4𝑑−1, 𝑤4𝑑}]

For every hyperedge 𝑒 ∈ 𝐸4𝑑−2,4𝑑−1,4𝑑

x1 −= 1

⋯

x𝑑 −= 1
y−= 1

Fig. 6. The check part of the unary (𝑑 + 1)-VASS with zero tests 𝒯 for detecting a 4𝑑-hyperclique in 4𝑑-partite
hypergraph. The set 𝐸𝑖1,𝑖2,𝑖3 is shorthand for the subset of hyperedges containing vertices belonging to 𝑉𝑖1 , 𝑉𝑖2 ,
and 𝑉𝑖3 ; precisely 𝐸𝑖1,𝑖2,𝑖3 = {{𝑢, 𝑣 , 𝑤} ∈ 𝐸 ∶ 𝑢 ∈ 𝑉𝑖1 , 𝑣 ∈ 𝑉𝑖2 , 𝑤 ∈ 𝑉𝑖3}.

first part of 𝒯. Thus, there is a 4𝑑-hyperclique in 𝐻 if and only if there is a run from 𝑞𝐼(0) to 𝑞𝐹(t),
for some t ≥ 0 in 𝒯. Given that there are self-loops decrementing each of the counters, there is
always a run from 𝑞𝐹(t) to 𝑞𝐹(0). Therefore, 𝐻 contains a 4𝑑-hyperclique if and only if there is a
run from 𝑞𝐼(0) to 𝑞𝐹(0) in 𝒯.

We are now able to finalize the proof. We will carefully analyse the maximum counter value
observed on any run, count the number of zero tests performed on any run, and lastly evaluate the
size of 𝒯.

The highest counter value observed by each counter x1, … , x𝑑 is the product of four primes. The
highest counter value observed by y is equal to the highest counter value observed by any of the other
counters x1, … , x𝑑. Therefore the bound on the highest value observed, altogether can be bounded
about by 𝑝4 where 𝑝 is the 𝑟th prime. By the Prime Number Theorem (for example, see [61]) we
know that 𝑝 ∈ 𝒪(𝑟 log(𝑟)). Therefore, every run from 𝑞𝐼(0) to 𝑞𝐹(0) in 𝒯 is 𝒪((𝑟 log(𝑟))4)-bounded.

Zero tests are only performed by the Multiply and Divide subprocedures, each instance of
these subprocedures containing two zero tests. We therefore count the number of calls to these
subprocedures on any given run. In the guessing part, there is one call to Multiply for each of the
4𝑑 vertices selected to form a 4𝑑-hyperclique. In the checking part, there is a sequence of (4𝑑3) many
calls to HyperEdge. Each HyperEdge call contains three invocations of VertexSelected, which, in
turn, executes Divide and Multiply once each. In total, there are 2(4𝑑 + 6(4𝑑3)) ∈ 𝒪(𝑑3) many
zero tests are performed in any run from 𝑞𝐼(0) to 𝑞𝐹(0) in 𝒯.

Finally, each instance of the Multiply and Divide subprocedures has size 𝒪(𝑟 log(𝑟)). Note
that the first 𝑟 primes can be found in 𝑟1+𝑜(1) time [2]. In the guessing part, there are 4𝑑 ⋅ 𝑟
instances of the Multiply subprocedure. In the checking part, there is an instance of the HyperEdge
subprocedure for each edge in the hypergraph. The HyperEdge subprocedures themselves appear in
(4𝑑3)many collections, one for each triplet of vertex subsets. Each HyperEdge subprocedure contains
three instances of the VertexSelected subprocedure, which contains 𝑑 instances of the Multiply
subprocedure and 𝑑 instances of the Divide subprocedure. Therefore, in total 𝒯 has polynomial
size and can be constructed in 𝒪(𝑑 ⋅ 𝑟2 log(𝑟) + 𝑚 ⋅ (4𝑑3) ⋅ 𝑑 ⋅ 𝑟 log(𝑟)) time, where 𝑚 ∈ 𝒪(𝑟3) is the
total number of hyperedges. �

Consider our earlier described two-step approach towards proving Theorem 5.8 by first obtaining
a unary (𝑑 + 1)-VASS 𝒯 with zero tests and then obtaining a unary (𝑑 + 2)-VASS 𝒱 by increasing
the dimension by one and removing the zero tests. In actuality, both steps occur together to prove
Theorem 5.8. Ultimately, the 𝑑 +2 counters of 𝒱 have the following roles. The counters x1, … , x𝑑 are
used to store the products of primes corresponding to vertices of hyperclique. The counter y is used

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

Coverability in VASS Revisited 33:23

to complete multiplications and divisions. In the remainder of this section, we add the (𝑑 + 2)-nd
counter, that is, used to ensure the (implicit) zero tests are performed faithfully. We achieve this by
leveraging the controlling counter technique that was developed by Czerwiński and Orlikowski and
first formalised in [21]. The following is the restatement of their technique, their lemma has been
restricted to our scenario and rewritten using the notation of this article.

Lemma 5.10 ([21, Lemma 10]). Let 𝜌 be a run in a (𝑑 + 2)-VASS such that 𝑞𝐼(0)
𝜌
−→ 𝑞𝐹(0). Further,

let 𝑞0(v0), 𝑞1(v1), … , 𝑞𝑟(v𝑟) be some distinguished configurations observed along the run 𝜌 with
𝑞0(v0) = 𝑞𝐼(0) and 𝑞𝑟(v𝑟) = 𝑞𝐹(0) and let 𝜌𝑗 be the segment of 𝜌, that is, between 𝑞𝑗−1(v𝑗−1) and
𝑞𝑗(v𝑗), so 𝜌 can be described as:

𝑞𝐼(0) = 𝑞0(v0)
𝜌1−−→ 𝑞1(v1) → ⋯ → 𝑞𝑟−1(v𝑟−1)

𝜌𝑟−−→ 𝑞𝑟(v𝑟) = 𝑞𝐹(0).
Let 𝑆1, … , 𝑆𝑑, 𝑆𝑑+1 ⊆ {0, 1, … , 𝑟} be the sets of indices of the distinguished configurations where zero

tests could be performed on counters x1, … , x𝑑, x𝑑+1, respectively. Let 𝑡𝑗,𝑖 = |{𝑠 ≥ 𝑗 ∶ 𝑠 ∈ 𝑆𝑖}| be the
number of zero test for the counter x𝑖 in the remainder of the run 𝜌𝑗+1⋯𝜌𝑟. Given that v0 = 0 and
v𝑟 = 0, if

eff(𝜌𝑗)[𝑑 + 2] =
𝑑+1
∑
𝑖=1

𝑡𝑗,𝑖 ⋅ eff(𝜌𝑗)[𝑖], (1)

then for every 𝑖 ∈ {1, … , 𝑑, 𝑑 + 1} and 𝑗 ∈ 𝑆𝑖, we know that v𝑗[𝑖] = 0.

With Lemma 5.10 in hand, we can ensure that the𝒪(𝑑3) zero tests performed by𝒯 from Lemma 5.9
are executed correctly. We conclude this section with a proof of Theorem 5.8.

Proof of Theorem 5.8. Consider the reduction, presented in Lemma 5.9, from detecting a 4𝑑-
hyperclique in a 4𝑑-partite 3-uniform hypergraph 𝐻 to reachability in unary (𝒪((𝑟 log(𝑟))4), 𝑑 + 1)-
VASS with 𝒪(𝑑3) zero tests. Now, given Lemma 5.10, we will add a controlling counter to 𝒯 so
that the zero tests on the 𝑑 + 1 counters x1, … , x𝑑, y are instead performed implicitly. To this end,
we introduce another counter z that receives updates on transitions, consistent with Equation (1),
whenever any of the other counters are updated. Note that counters y and z, for the sake of
a succinct and consistent description, are, respectively, referred to as counters x𝑑+1 and x𝑑+2
in the statement of Lemma 5.10. Moreover, notice that the maximum value of z is bounded by
poly(𝑑) ⋅ (∑𝑑+1

𝑖=1 x𝑖) ∈ poly(𝑑) ⋅ (𝑟 log(𝑟))4.
Therefore, we have constructed a unary (poly(𝑑) ⋅ (𝑟 log(𝑟))4, 𝑑 + 2)-VASS 𝒱 with the property

that there 𝐻 contains a 4𝑑-hyperclique if and only if there is a run from 𝑞𝐼(0) to 𝑞𝐹(0) in 𝒱. Such a
(poly(𝑑) ⋅ (𝑟 log(𝑟))4, 𝑑 + 2)-VASS 𝒱 has size 𝒪(𝑡 ⋅ |𝒯|) where 𝑡 ∈ poly(𝑑) is the number of zero tests
performed on the run from 𝑞𝐼(0) to 𝑞𝐹(0) in 𝒯. Moreover, 𝒱 can be constructed in poly(𝑑)⋅(𝑟 log(𝑟))4

time. Hence, if reachability in unary (𝒪(𝑛), 𝑑 + 2)-VASS of size 𝑛 can be solved in 𝑛𝑑−𝜀 time for
some 𝜀 > 0, then one can decide whether there is a 4𝑑-hyperclique in a 3-uniform hypergraph with
𝑟 vertices in 𝑟4𝑑−𝜀

′
time for some 𝜀′ > 0, contradicting Hypothesis 5.7. �

6 Conclusion
Summary
In this article, we have revisited a classical problem of coverability in 𝑑-VASS. We have closed
the gap left by Rosier and Yen [54] on the length of runs witnessing instances of coverability in
𝑑-VASS. We have lowered the upper bound of 𝑛2

𝒪(𝑑 log(𝑑))
, from Rackoff’s technique [53], to 𝑛𝒪(𝑑⋅2𝑑)

(Theorem 3.3), matching the 𝑛2
Ω(𝑑)

lower bound from Lipton’s construction [44]. This accordingly
closes the gap on the exact space required for the coverability problem and yields a deterministic

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

33:24 M. Künnemann et al.

𝑛𝒪(𝑑2⋅2𝑑)-time algorithm for coverability in 𝑑-VASS (Corollary 3.4). We complement this with a
matching lower bound conditional on ETH; there does not exist a deterministic 𝑛2

𝑜(𝑑)
-time algorithm

for coverability (Theorem 4.2). As mentioned in Remark 4.5, the difference between the constant
multiplicative factors in the second exponent between our upper bound and our conditional lower
bound only differ by a factor 4. By and large, this settles the exact space and time complexity of
coverability in VASS.

In addition, we study linearly-bounded unary 𝑑-VASS. Here, coverability and reachability are
equivalent and the trivial exhaustive search 𝒪(𝑛𝑑+1) algorithm is near-optimal. We prove that
reachability in linearly-bounded 1-VASS requires 𝑛2−𝑜(1) time under the 𝑘-cycle hypothesis (Theo-
rem 5.4), matching the trivial upper bound. We further prove that reachability in linearly-bounded
(𝑑 + 2)-VASS requires 𝑛𝑑−𝑜(1) time under the 3-uniform hyperclique hypothesis (Theorem 5.8).

Open Problems
The boundedness problem, a problem closely related to coverability, asks whether, from a given
initial configuration, the set of all reachable configurations is finite. This problem was also studied
by Lipton and Rackoff and is EXPSPACE-complete [44, 53]. Boundedness was further analysed by
Rosier and Yen [54, Theorem 2.1] and the same gap also exists for the exact space required. We leave
the same improvement, to eliminate the same twice-exponentiated log(𝑑) factor, as an open problem.

Our lower bounds for the time complexity of coverability and reachability in linearly-bounded
unary 𝑑-VASS, for 𝑑 ≥ 2, leave a gap of up to 𝑛3+𝑜(1), see Table 1. We leave it as an open problem
to either improve upon the upper bound 𝒪(𝑛𝑑+1) given by the trivial algorithm, or to raise our
conditional lower bounds.

Acknowledgments
We thank Łukasz Orlikowski for the time he spent checking and discussing a final draft of this
article. We would also like to the thank the reviewers for their comments and for their time.

References
[1] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. 2000. Algorithmic analysis of programs with

well quasi-ordered domains. Inf. Comput. 160, 1-2 (2000), 109–127. DOI:https://doi.org/10.1006/inco.1999.2843
[2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. 2004. PRIMES is in P. Ann. Math. 160, 2 (2004), 781–793. DOI:https:

//doi.org/10.4007/annals.2004.160.781
[3] Shaull Almagor, Nathann Cohen, Guillermo A. Pérez, Mahsa Shirmohammadi, and James Worrell. 2020. Coverability

in 1-VASS with disequality tests. In Proceedings of the 31st International Conference on Concurrency Theory, CONCUR
2020, September 1-4, 2020, Vienna, Austria (Virtual Conference) (LIPIcs), Igor Konnov and Laura Kovács (Eds.), Vol. 171.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 38:1–38:20. DOI:https://doi.org/10.4230/LIPIcs.CONCUR.2020.38

[4] Noga Alon, Raphael Yuster, and Uri Zwick. 1997. Finding and counting given length cycles. Algorithmica 17, 3 (1997),
209–223. DOI:https://doi.org/10.1007/BF02523189

[5] Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and Nicole Wein. 2019. Algorithms and
hardness for diameter in dynamic graphs. In Proceedings of the 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece (LIPIcs), Christel Baier, Ioannis Chatzigiannakis, Paola
Flocchini, and Stefano Leonardi (Eds.), Vol. 132. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 13:1–13:14.
DOI:https://doi.org/10.4230/LIPIcs.ICALP.2019.13

[6] Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. 2017. Polynomial automata: Zeroness and
applications. In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017. IEEE Computer Society, 1–12. DOI:https://doi.org/10.1109/LICS.2017.8005101

[7] Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase, Ranko Lazić, Pierre McKenzie, and
Patrick Totzke. 2021. The reachability problem for two-dimensional vector addition systems with states. J. ACM 68, 5
(2021), 34:1–34:43. DOI:https://doi.org/10.1145/3464794

[8] Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. 2016. Approaching the coverability problem
continuously. In Proceedings of the Tools and Algorithms for the Construction and Analysis of Systems - 22nd International

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.4230/LIPIcs.CONCUR.2020.38
https://doi.org/10.1007/BF02523189
https://doi.org/10.4230/LIPIcs.ICALP.2019.13
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1145/3464794

Coverability in VASS Revisited 33:25

Conference, TACAS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes in Computer Science), Marsha Chechik and
Jean-François Raskin (Eds.), Vol. 9636. Springer, 480–496. DOI:https://doi.org/10.1007/978-3-662-49674-9_28

[9] Michael Blondin, Christoph Haase, and Philip Offtermatt. 2021. Directed reachability for infinite-state systems. In
Proceedings of the Tools and Algorithms for the Construction and Analysis of Systems - 27th International Conference,
TACAS 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg
City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part II (Lecture Notes in Computer Science), Jan Friso Groote and
Kim Guldstrand Larsen (Eds.), Vol. 12652. Springer, 3–23. DOI:https://doi.org/10.1007/978-3-030-72013-1_1

[10] Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. 2011. Two-variable logic on
data words. ACM Trans. Comput. Log. 12, 4 (2011), 27:1–27:26. DOI:https://doi.org/10.1145/1970398.1970403

[11] Laura Bozzelli and Pierre Ganty. 2011. Complexity analysis of the backward coverability algorithm for VASS. In
Proceedings of the Reachability Problems - 5th International Workshop, RP 2011, Genoa, Italy, September 28-30, 2011.
Proceedings (Lecture Notes in Computer Science), Giorgio Delzanno and Igor Potapov (Eds.), Vol. 6945. Springer, 96–109.
DOI:https://doi.org/10.1007/978-3-642-24288-5_10

[12] Karl Bringmann, Allan Grønlund, Marvin Künnemann, and Kasper Green Larsen. 2024. The NFA acceptance hypothesis:
Non-combinatorial and dynamic lower bounds. In Proceedings of the 15th Innovations in Theoretical Computer Science
Conference, ITCS 2024, January 30 to February 2, 2024, Berkeley, CA, USA (LIPIcs), Venkatesan Guruswami (Ed.), Vol. 287.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:25. DOI:https://doi.org/10.4230/LIPICS.ITCS.2024.22

[13] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2017. Optimal dyck reachability for data-
dependence and alias analysis. Proc. ACM Program. Lang. 2, POPL (2017), 1–30.

[14] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj, and Ge Xia. 2005. Tight lower
bounds for certain parameterized NP-hard problems. Inf. Comput. 201, 2 (2005), 216–231. DOI:https://doi.org/10.1016/j.
ic.2005.05.001

[15] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. 2006. Strong computational lower bounds via parameterized
complexity. J. Comput. Syst. Sci. 72, 8 (2006), 1346–1367. DOI:https://doi.org/10.1016/j.jcss.2006.04.007

[16] Dmitry Chistikov, Wojciech Czerwinski, Filip Mazowiecki, Lukasz Orlikowski, Henry Sinclair-Banks, and Karol
Wegrzycki. 2024. The tractability border of reachability in simple vector addition systems with states. In Proceedings of
the 65th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024.
IEEE, 1332–1354. DOI:https://doi.org/10.1109/FOCS61266.2024.00086

[17] Hubert Comon and Yan Jurski. 1998. Multiple counters automata, safety analysis and presburger arithmetic. In
Proceedings of the Computer Aided Verification, 10th International Conference, CAV ’98, Vancouver, BC, Canada, June 28 -
July 2, 1998, Proceedings (Lecture Notes in Computer Science), Alan J. Hu and Moshe Y. Vardi (Eds.), Vol. 1427. Springer,
268–279. DOI:https://doi.org/10.1007/BFb0028751

[18] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk,
and Saket Saurabh. 2015. Parameterized Algorithms. Springer. DOI:https://doi.org/10.1007/978-3-319-21275-3

[19] Wojciech Czerwiński, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki. 2020. Reachability in
fixed dimension vector addition systems with states. In Proceedings of the 31st International Conference on Concurrency
Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference) (LIPIcs), Igor Konnov and Laura Kovács
(Eds.), Vol. 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 48:1–48:21. DOI:https://doi.org/10.4230/LIPIcs.
CONCUR.2020.48

[20] Wojciech Czerwiński, Sławomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki. 2021. The reachability
problem for petri nets is not elementary. J. ACM 68, 1 (2021), 7:1–7:28. DOI:https://doi.org/10.1145/3422822

[21] Wojciech Czerwiński and Łukasz Orlikowski. 2021. Reachability in vector addition systems is ackermann-complete.
In Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022. IEEE, 1229–1240. DOI:https://doi.org/10.1109/FOCS52979.2021.00120

[22] Wojciech Czerwiński and Łukasz Orlikowski. 2022. Lower bounds for the reachability problem in fixed dimensional
VASSes. In Proceedings of the LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel,
August 2 - 5, 2022, Christel Baier and Dana Fisman (Eds.). ACM, 40:1–40:12. DOI:https://doi.org/10.1145/3531130.3533357

[23] Mina Dalirrooyfard, Ce Jin, Virginia Vassilevska Williams, and Nicole Wein. 2022. Approximation algorithms and
hardness for n-pairs shortest paths and all-nodes shortest cycles. In Proceedings of the 63rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022. IEEE, 290–300.
DOI:https://doi.org/10.1109/FOCS54457.2022.00034

[24] Mina Dalirrooyfard, Thuy Duong Vuong, and Virginia Vassilevska Williams. 2021. Graph pattern detection: Hardness
for all induced patterns and faster noninduced cycles. SIAM J. Comput. 50, 5 (2021), 1627–1662. DOI:https://doi.org/10.
1137/20M1335054

[25] Dani Dorfman, Haim Kaplan, Robert E. Tarjan, and Uri Zwick. 2023. Optimal energetic paths for electric cars. In
Proceedings of the 31st Annual European Symposium on Algorithms, ESA 2023 (LIPIcs), Vol. 274. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 42:1–42:17. DOI:https://doi.org/10.4230/LIPICS.ESA.2023.42

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1007/978-3-642-24288-5_10
https://doi.org/10.4230/LIPICS.ITCS.2024.22
https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1109/FOCS61266.2024.00086
https://doi.org/10.1007/BFb0028751
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPIcs.CONCUR.2020.48
https://doi.org/10.4230/LIPIcs.CONCUR.2020.48
https://doi.org/10.1145/3422822
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1145/3531130.3533357
https://doi.org/10.1109/FOCS54457.2022.00034
https://doi.org/10.1137/20M1335054
https://doi.org/10.1137/20M1335054
https://doi.org/10.4230/LIPICS.ESA.2023.42

33:26 M. Künnemann et al.

[26] Javier Esparza. 1996. Decidability and complexity of petri net problems - an introduction. In Proceedings of the Lectures
on Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets, held
in Dagstuhl, September 1996 (Lecture Notes in Computer Science), Wolfgang Reisig and Grzegorz Rozenberg (Eds.),
Vol. 1491. Springer, 374–428. DOI:https://doi.org/10.1007/3-540-65306-6_20

[27] Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip Niksic. 2014. An SMT-based
approach to coverability analysis. In Proceedings of the Computer Aided Verification - 26th International Conference, CAV
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in
Computer Science), Armin Biere and Roderick Bloem (Eds.), Vol. 8559. Springer, 603–619. DOI:https://doi.org/10.1007/978-
3-319-08867-9_40

[28] John Fearnley and Marcin Jurdziński. 2013. Reachability in two-clock timed automata is PSPACE-complete. In Proceed-
ings of the Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12,
2013, Proceedings, Part II (Lecture Notes in Computer Science), Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska,
and David Peleg (Eds.), Vol. 7966. Springer, 212–223. DOI:https://doi.org/10.1007/978-3-642-39212-2_21

[29] Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. 2011. Ackermannian and primitive-
recursive bounds with dickson’s lemma. In Proceedings of the 26th Annual IEEE Symposium on Logic in Computer
Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada. IEEE Computer Society, 269–278. DOI:https://doi.org/10.
1109/LICS.2011.39

[30] Pierre Ganty and Rupak Majumdar. 2012. Algorithmic verification of asynchronous programs. ACM Trans. Program.
Lang. Syst. 34, 1 (2012), 6:1–6:48. DOI:https://doi.org/10.1145/2160910.2160915

[31] Steven M. German and A. Prasad Sistla. 1992. Reasoning about systems with many processes. J. ACM 39, 3 (1992),
675–735. DOI:https://doi.org/10.1145/146637.146681

[32] Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. 2009. Reachability in succinct and parametric
one-counter automata. In Proceedings of the CONCUR 2009 - ConcurrencyTheory, 20th International Conference, CONCUR
2009, Bologna, Italy, September 1-4, 2009. Proceedings (Lecture Notes in Computer Science), Mario Bravetti and Gianluigi
Zavattaro (Eds.), Vol. 5710. Springer, 369–383. DOI:https://doi.org/10.1007/978-3-642-04081-8_25

[33] Christoph Haase, Joël Ouaknine, and James Worrell. 2012. On the relationship between reachability problems in timed
and counter automata. In Proceedings of the Reachability Problems - 6th International Workshop, RP 2012, Bordeaux,
France, September 17-19, 2012. Proceedings (Lecture Notes in Computer Science), Alain Finkel, Jérôme Leroux, and Igor
Potapov (Eds.), Vol. 7550. Springer, 54–65. DOI:https://doi.org/10.1007/978-3-642-33512-9_6

[34] Torben Hagerup. 1998. Sorting and searching on the word RAM. In Proceedings of the STACS 98: 15th Annual Symposium
on Theoretical Aspects of Computer Science Paris. Springer, 366–398.

[35] John E. Hopcroft and Jean-Jacques Pansiot. 1979. On the Reachability Problem for 5-Dimensional Vector Addition
Systems. Theor. Comput. Sci. 8, 2 (1979), 135–159. DOI:https://doi.org/10.1016/0304-3975(79)90041-0

[36] Russell Impagliazzo and Ramamohan Paturi. 2001. On the Complexity of k-SAT. J. Comput. Syst. Sci. 62, 2 (2001),
367–375. DOI:https://doi.org/10.1006/jcss.2000.1727

[37] Ulla Koppenhagen and Ernst W. Mayr. 2000. Optimal algorithms for the coverability, the subword, the containment,
and the equivalence problems for commutative semigroups. Inf. Comput. 158, 2 (2000), 98–124. DOI:https://doi.org/10.
1006/inco.1999.2812

[38] Paraschos Koutris and Shaleen Deep. 2023. The fine-grained complexity of CFL reachability. Proc. ACM Program. Lang.
7, POPL, Article 59 (jan 2023), 27 pages. DOI:https://doi.org/10.1145/3571252

[39] Ranko Lazic and Sylvain Schmitz. 2021. The ideal view on Rackoff’s coverability technique. Inf. Comput. 277 (2021),
104582. DOI:https://doi.org/10.1016/j.ic.2020.104582

[40] Jérôme Leroux. 2013. Vector addition system reversible reachability problem. Log. Methods Comput. Sci. 9, 1 (2013).
DOI:https://doi.org/10.2168/LMCS-9(1:5)2013

[41] Jérôme Leroux. 2021. The reachability problem for petri nets is not primitive recursive. In Proceedings of the 62nd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE,
1241–1252. DOI:https://doi.org/10.1109/FOCS52979.2021.00121

[42] Jérôme Leroux and Sylvain Schmitz. 2019. Reachability in vector addition systems is primitive-recursive in fixed
dimension. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver,
BC, Canada, June 24-27, 2019. IEEE, 1–13. DOI:https://doi.org/10.1109/LICS.2019.8785796

[43] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. 2018. Tight hardness for shortest cycles and
paths in sparse graphs. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018, Artur Czumaj (Ed.). SIAM, 1236–1252. DOI:https://doi.org/10.1137/1.
9781611975031.80

[44] Richard Lipton. 1976. The reachability problem requires exponential space. Dep. Comput. Sci., Yale Univ. 62 (1976), 1–16.
[45] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. 2013. Lower bounds based on the exponential time hypothesis.

Bulletin of EATCS 3, 105 (2013), 47–72.

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-642-39212-2_21
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/146637.146681
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1007/978-3-642-33512-9_6
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/inco.1999.2812
https://doi.org/10.1006/inco.1999.2812
https://doi.org/10.1145/3571252
https://doi.org/10.1016/j.ic.2020.104582
https://doi.org/10.2168/LMCS-9(1:5)2013
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1137/1.9781611975031.80

Coverability in VASS Revisited 33:27

[46] Anders Alnor Mathiasen and Andreas Pavlogiannis. 2021. The fine-grained and parallel complexity of andersen’s
pointer analysis. Proc. ACM Program. Lang. 5, POPL (2021), 1–29. DOI:https://doi.org/10.1145/3434315

[47] Ernst W. Mayr. 1984. An algorithm for the general petri net reachability problem. SIAM J. Comput. 13, 3 (1984), 441–460.
DOI:https://doi.org/10.1137/0213029

[48] Ernst W. Mayr and Albert R. Meyer. 1982. The complexity of the word problems for commutative semigroups and
polynomial ideals. Adv. Math. 46, 3 (1982), 305–329. DOI:https://doi.org/10.1016/0001-8708(82)90048-2

[49] Filip Mazowiecki and Michał Pilipczuk. 2019. Reachability for bounded branching VASS. In Proceedings of the 30th
International Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands (LIPIcs),
Wan J. Fokkink and Rob van Glabbeek (Eds.), Vol. 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 28:1–28:13.
DOI:https://doi.org/10.4230/LIPIcs.CONCUR.2019.28

[50] Filip Mazowiecki, Henry Sinclair-Banks, and Karol Węgrzycki. 2023. Coverability in 2-VASS with one unary counter is
in NP. In Proceedings of the Foundations of Software Science and Computation Structures, Orna Kupferman and Paweł
Sobociński (Eds.). Springer Nature Switzerland, 196–217. DOI:https://doi.org/10.1007/978-3-031-30829-1_10

[51] Marvin L. Minsky. 1967. Computation: Finite and Infinite Machines. Prentice-Hall, Inc.
[52] Jaroslav Nešetřil and Svatopluk Poljak. 1985. On the complexity of the subgraph problem. Comment. Math. Univ. Carol.

26, 2 (1985), 415–419.
[53] Charles Rackoff. 1978. The covering and boundedness problems for vector addition systems. Theor. Comput. Sci. 6, 2

(1978), 223–231. DOI:https://doi.org/10.1016/0304-3975(78)90036-1
[54] Louis E. Rosier and Hsu-Chun Yen. 1986. A multiparameter analysis of the boundedness problem for vector addition

systems. J. Comput. Syst. Sci. 32, 1 (1986), 105–135. DOI:https://doi.org/10.1016/0022-0000(86)90006-1
[55] Sylvain Schmitz. 2016. The complexity of reachability in vector addition systems. ACM SIGLOG News 3, 1 (2016), 4–21.

Retrieved from https://dl.acm.org/citation.cfm?id=2893585
[56] Sylvain Schmitz and Lia Schütze. 2024. On the length of strongly monotone descending chains overℕ^d. In Proceedings

of the 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn,
Estonia (LIPIcs), Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson (Eds.), Vol. 297. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 153:1–153:19. DOI:https://doi.org/10.4230/LIPICS.ICALP.2024.153

[57] Michael Sipser. 1996. Introduction to the theory of computation. ACM Sigact News 27, 1 (1996), 27–29.
[58] Leslie G. Valiant and Mike Paterson. 1975. Deterministic one-counter automata. J. Comput. Syst. Sci. 10, 3 (1975),

340–350. DOI:https://doi.org/10.1016/S0022-0000(75)80005-5
[59] Wil M. P. van der Aalst. 1997. Verification of workflow nets. In Proceedings of the Application and Theory of Petri Nets

1997, 18th International Conference, ICATPN ’97, Toulouse, France, June 23-27, 1997, Proceedings (Lecture Notes in Computer
Science), Pierre Azéma and Gianfranco Balbo (Eds.), Vol. 1248. Springer, 407–426. DOI:https://doi.org/10.1007/3-540-
63139-9_48

[60] Raphael Yuster and Uri Zwick. 2004. Detecting short directed cycles using rectangular matrix multiplication and
dynamic programming. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2004, New Orleans, Louisiana, USA, January 11-14, 2004, J. Ian Munro (Ed.). SIAM, 254–260. Retrieved from http:
//dl.acm.org/citation.cfm?id=982792.982828

[61] Don Zagier. 1997. Newman’s short proof of the prime number theorem. Am. Math. Mon. 104, 8 (1997), 705–708.

Received 19 March 2024; revised 8 April 2025; accepted 29 June 2025

J. ACM, Vol. 72, No. 5, Article 33. Publication date: October 2025.

https://doi.org/10.1145/3434315
https://doi.org/10.1137/0213029
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.4230/LIPIcs.CONCUR.2019.28
https://doi.org/10.1007/978-3-031-30829-1_10
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0022-0000(86)90006-1
https://dl.acm.org/citation.cfm?id=2893585
https://doi.org/10.4230/LIPICS.ICALP.2024.153
https://doi.org/10.1016/S0022-0000(75)80005-5
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/3-540-63139-9_48
http://dl.acm.org/citation.cfm?id=982792.982828
http://dl.acm.org/citation.cfm?id=982792.982828

	1 Introduction
	2 Preliminaries
	3 Improved Bounds on the Maximum Counter Value
	4 Conditional Time Lower Bound for Coverability
	5 Coverability and Reachability in Bounded Unary VASS
	6 Conclusion
	References

