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Abstract

Risk mitigation for landslide-triggered tsunamis (LTT) is impeded by high uncertainty
regarding the location of triggering landslides and the expected wave heights. Hence, this
review aims to comprehensively analyze the spatial distribution, landslide characteristics,
generated wave heights, and impact on humans of 317 LTT published as a catalog in a
data repository (Dohmen et al. 2025). A classification system for LTT is established based
on the preparatory and triggering factors of the landslides: (1) earthquakes, (2) volcanic
activity, (3) paraglacial conditions, (4) precipitation, (5) anthropogenic activities, and (6)
unknown causes. LTT triggered by earthquakes and volcanic activity are the most frequent
classes and account for the highest fatalities and greatest economic damage. The highest
waves are generated in enclosed marine environments and inland waters, often caused
by anthropogenic activities such as reservoir operations. To mitigate risks from LTT, it
is essential to know the exact location of the triggering landslide before failure, which is
not the case for most events. As data availability is limited for landslide characteristics—
especially in submarine environments—there is a need for high-resolution bathymetric
data to map and investigate tsunamigenic submarine landslides and link them to expected
tsunami heights and potential impacts on coastal populations. Offshore landslide suscepti-
bility mapping is therefore recommended as a promising approach for identifying potential
LTT failure locations.
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1 Introduction

Besides earthquakes, landslides are the second most frequent source of tsunamis. Approxi-
mately 10% of all tsunamis observed globally have been triggered by landslides or by a
combination of landslides, earthquakes, and volcanic activity (National Geophysical Data
Center 2024). The term landslide-triggered tsunamis (LTT) refers to waves generated by
all types of landslides and in various water bodies. It encompasses the designation impulse
wave, which is often used in other studies to describe waves generated by subaerial land-
slides into inland waters (e.g., Fritz et al. 2004; Crosta et al. 2016; Chen et al. 2024). Land-
slides that have triggered tsunamis in the past—or have the potential to do so—are referred
to as tsunamigenic landslides (Huene et al. 1989).

While LTT can generate waves higher than those produced by seismic tsunamis, their
far-field propagation is usually limited (Okal and Synolakis 2003). Ferrer and Gonzalez-
de-Vallejo (2024) investigated so-called megatsunamis—waves of exceptional height—and
concluded that landslides are the only trigger capable of producing tsunamis higher than
32 m. In 1958, a coseismic landslide into Lituya Bay, Alaska, triggered waves up to 524 m
that ran up the opposite slope—the highest ever recorded (Fig. 1, no. 2; Fig. 2a). At the
entrance to the bay, approximately 12 km from the landslide, the wave had already attenu-
ated to a height of only 9 m (Miller 1960). LTT events have caused fatalities in various
parts of the world, including both ocean coasts and inland waters, across all continents and
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Fig.1 Global spatial distribution of LTT. Symbol colors indicate the landslide cause, while symbol shapes
represent the type of water body where the tsunami occurred. LTT events referenced in the text are la-
beled. Events numbered 1 to 17 are further described in Table 2
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Fig. 2 Examples of historical LTT that are comprehensively documented in the literature: a) Trim lines
in Lituya Bay, Alaska, following the 1958 event (courtesy of the U.S. Geological Survey; photo by Don
J. Miller; see Fig. 1, no. 2). b) Bathymetric map showing the Grand Banks submarine landslide offshore
Newfoundland, Canada, and the associated submarine cable breaks. The red star marks the location of
the triggering earthquake (Schulten et al. 2019; Fig. 1, no. 1). ¢) Drone image of Anak Krakatau after the
2018 flank collapse (source: GFZ German Research Centre for Geosciences 2019). The black dashed line
indicates the former extent of the volcanic edifice, which was reduced in height from 320 mto 120 m a.s.l.
(Walter et al. 2019; Fig. 1, no. 5)

under diverse geological and climatic conditions. For example, in April 1934, 1.5% 10° m?
of rock fell into Tafjord, Norway, generating 62 m high waves that killed 42 people (Harbitz
et al. 1993; Waltham 2002; Hermanns et al. 2006; Panthi and Nilsen 2006; Fig. 1, no. 18).
Another example is the Dayantang landslide in China: water level variations within the
Shuibuya Reservoir triggered a 3 x 10° m? landslide that induced 50 m high waves, drown-
ing 8 people in 2007 (Yang et al. 2014; Wang et al. 2021c; Fig. 1, no. 19).

Developing early warning systems or implementing mitigation measures for LTT is
challenging for two main reasons. First, most tsunamigenic landslides occur directly at the
coastline or very close to it (Du et al. 2025). As a result, the time between landslide initia-
tion and wave arrival at the nearest coastal community—where wave heights and associ-
ated impacts are greatest—is typically too short for effective warning and evacuation. For
example, the waves triggered by coseismic landslides during the 2018 Sulawesi earthquake
in Indonesia reached the shores of Palu Bay approximately 100 s after the earthquake (Car-
vajal et al. 2019; Fig. 1, no. 20). The second challenge lies in the high uncertainty sur-
rounding tsunami characteristics (Levholt et al. 2020). A variety of parameters influence the
properties of the generated tsunami waves (Leovholt et al. 2015), making them difficult to
compare. Meanwhile, submarine landslides are rarely studied in detail due to their limited
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accessibility (Roger et al. 2024). Consequently, the timing, location, and characteristics of
the triggering landslides often remain unknown.

Research interest in LTT has steadily increased since 1998, when a submarine landslide
generated a tsunami that killed 2,100 people in Papua New Guinea (Synolakis et al. 2002;
Fig. 1, no. 21). A further rise in scientific attention occurred after two LTT events in Indone-
sia caused numerous casualties in 2018. On September 28 of this year, during the Sulawesi
earthquake (see above), coseismic landslides triggered tsunami waves up to 10 m high,
resulting in nearly 2,000 fatalities (e.g., Muhari et al. 2018). On December 22, 437 people
were killed when the flank of Anak Krakatau volcano collapsed into the ocean between
Java and Sumatra (Grilli et al. 2019; Fig. 1, no. 5; Fig. 2c¢). More recently, glacial retreat
accelerated by climate change has drawn increased attention to LTT along fjord coastlines;
for example, in Greenland and Alaska, where glacial debuttressing alters stress fields and
promotes landslides into fjords (Walden et al. 2025). One remarkable case occurred on Sep-
tember 16, 2023, when a rockslide into Dickson Fjord, Greenland, generated a 200 m high
wave. The resulting seismic signal was detectable globally for over a week, likely due to a
standing wave sloshing back and forth within the fjord (Carrillo-Ponce et al. 2024; Svenn-
evig et al. 2024; Fig. 1, no. 29).

Most scientific studies on LT T focus on individual case studies from a phenomenological
perspective (e.g., Rabinovich et al. 1999; Ioualalen et al. 2010; Corsa et al. 2022; Pedrosa-
Gonzélez et al. 2022; Chen et al. 2023). However, several reviews have been published
in recent years. Couston et al. (2015) and Kremer et al. (2021) reviewed LTT in lakes and
inland waters; Roberts et al. (2014) compiled a preliminary catalog of LTT from subaerial
landslide sources; Roger et al. (2024) and Du et al. (2025) recently focused on submarine
landslide-induced LTT; lastly, volcanic tsunamis have been reviewed by Paris et al. (2014)
and Schindelé et al. (2024). While these reviews address specific types of LTT, coastal com-
munities can be exposed to multiple types of tsunamigenic landslides. For example, LTT
along the Indonesian coast can be triggered by both earthquakes and volcanic activity. To
develop effective mitigation strategies, a comprehensive understanding of LTT hazards is
needed, particularly concerning expected magnitudes, probabilities, and origins of events
that may affect a given community (Alberico et al. 2018; Spahn and Lauterjung 2023).
Therefore, it is essential to investigate all types of LTT, regardless of the triggering mecha-
nism, water body, submarine or subaerial origin, or wave height.

To address the current knowledge gaps, we developed a global database of LTT (Dohmen
et al. 2025). A total of 317 cases were reviewed concerning landslide properties and causes,
generated wave heights, and the resulting economic damage and fatalities in affected coastal
communities. In this study, we present a statistical analysis of this comprehensive database,
linking landslide parameters with water body types and tsunami wave heights on a global
scale. We identify the most frequent LTT triggers, the locations where the highest waves are
generated, and the regions experiencing the most severe consequences in terms of fatali-
ties and economic losses. These insights help evaluate mitigation options tailored to differ-
ent LTT types. The database represents a significant step toward understanding the threats
posed by LTT to coastal populations. Knowledge of past LTT events in a given region offers
valuable insights into the likelihood and potential impact of future occurrences, supporting
preparedness and mitigation planning in vulnerable coastal areas.
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2 Types of LTT
2.1 LTT database compilation
2.1.1 Data sources

Historical LTT data were compiled from a wide range of sources, as summarized in Table 1.
All documented LTT cases available up to October 30, 2024, were considered. The initial
compilation resulted in 355 entries. Of these, 38 cases were excluded from the statistical
analysis and classified as not suitable. These exclusions were due to incorrect entries in the
original sources, a lack of supporting evidence for a landslide origin in the literature, or more
recent studies disproving a landslide-triggered mechanism. An additional 20 entries refer to
tsunamis generated by multiple landslides, such as the 2007 event in Aysen Fjord, Chile,
which was triggered by several coseismic slope failures (Naranjo et al. 2009; Septlveda and
Serey 2009; Sepulveda et al. 2010; Lastras et al. 2013; van Daele et al. 2013; Fig. 1, no. 22).
Each of these entries includes landslide-specific data; however, since tsunami wave heights,
fatality counts, and economic losses cannot be attributed to individual landslides, identical
tsunami impact data are assigned to all related entries. Consequently, the final database
comprises 317 distinct landslides responsible for triggering 297 tsunami events.
Landslides that trigger tsunamis are classified according to their primary cause (Fig. 3):
(a) earthquakes, (b) volcanic activity, (c) paraglacial conditions, (d) precipitation, ()
anthropogenic activity, and (f) unknown. Identifying the exact trigger can be difficult; even
with intensive field investigations, it is often not possible to determine a definitive cause.
When LTT events occur during or immediately following earthquakes, volcanic eruptions,
or intense precipitation, the landslides are assigned to the corresponding category. If none of

Table 1 Sources used for compil-
ing the LTT database. The refer-
ences listed are representative
examples; the complete list is
provided in Dohmen et al. (2025)

Type of source Examples and references

Tsunami
databases

Global Historical Tsunami Database (National
Oceanic and Atmospheric Administration, USA,
National Geophysical Data Center 2024).
Global Historical Tsunami Database (Tsunami
Laboratory, Novosibirsk, Russia, TL/ICMMG
2024).

New Zealand Tsunami Database (Downes et al.
2017).

Iida et al. 1967; Soloviev and Go 1974, 1975;
Papadopoulos and Chalkis 1984; Lander et al.
1993; Lander 1997; Soloviev et al. 2000; Lander
et al. 2002, 2003; Papadopoulos et al. 2007; Her-
manns et al. 2014; Maramai et al. 2014; Roberts
et al. 2014; Harris and Major 2017; Direccion
General del Instituto Geografico Nacional 2023.

Tsunami catalogs

Peer-reviewed
articles on single
case studies

Book chapters

Technical reports

News articles
Blog posts

Mitchell 1954; Tinti et al. 2005; Zhou et al.
2016; Gauthier et al. 2018; Liu et al. 2020;
Aranguiz et al. 2023.

Plafker and Eyzaguirre 1979; L’Heureux et al.
2014.

Coulter and Migliaccio 1966; Seed et al. 1988;
Gardner et al. 2001.

Rudolphi 2023; Neumann 2023.
Petley 2009, 2020, 2022.
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Fig. 3 Classification of causes of LTT: (a) earthquakes, (b) volcanic activity, (¢) paraglacial conditions,
(d) precipitation, (e) anthropogenic activity, and (f) unknown

these three triggers are evident, classification is based on preparatory factors that contribute
to slope instability. Observations indicate that a significant number of tsunamigenic land-
slides are associated with anthropogenic activity or paraglacial conditions—that means the
transitional processes following glacial retreat. Events that cannot be clearly attributed to
any of the above causes are categorized as unknown. In addition to the causing mechanism,
LTT events are also categorized by the type of water body in which they occur: (1) open
marine environments, (2) enclosed marine environments, and (3) inland waters.

The literature on each documented case study was reviewed to compile information on
landslide properties, generated tsunami heights, and tsunami consequences. Table 2 presents
one exemplary case from each combination of landslide causes and water bodies. Landslide
locations are classified as (1) subaerial, (2) submarine, and (3) partially submerged, for
landslides whose origin is partly above and partly below the water surface. Following the
classification system proposed by Hungr et al. (2014), landslide types were categorized as
(1) fall, (2) topple, (3) slide, (4) spread, (5) flow, or (6) slope deformation. Two additional
classes were added due to their relative frequency in LTT-related literature: (7) volcano
flank collapse and (8) coastal subsidence. Volcano flank collapses are difficult to classify
because they can involve complex processes with multiple sliding mechanisms (Paris et
al. 2014). The term coastal subsidence is typically used in LTT literature related to seismic
activity, where parts of the coastline slide into the water; however, the landslide motion is
often not investigated in detail (e.g., Papadopoulos et al. 2007; Arikawa et al. 2018; Liu
et al. 2020). Lithological information is generally poorly documented for most landslides.
Therefore, landslide material is broadly classified as (1) soft rock, (2) hard rock, or (3) ice.
The landslide volume is classified according to the scheme by McColl and Cook (2024): (1)
very small (<1 m?), (2) small (1-10° m?), (3) medium (103>-10° m?), (4) large (10°-10° m?),
(5) giant (10°-10'? m?), and (6) monster (>10'> m?).

Tsunami height is typically described using two different parameters. The maximum tsu-
nami height refers to the highest local watermark relative to the undisturbed water level at
the time of the tsunami. The maximum run-up height is the vertical difference between the
undisturbed water level at the time of the tsunami and the highest point of inland tsunami
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propagation (Intergovernmental Oceanographic Commission 2019). In addition, the data-
base includes a parameter called maximum water height, which represents the greater of the
two: the maximum tsunami height and the maximum run-up height.

To evaluate tsunami consequences, the database includes two parameters. The number
of fatalities was extracted from the literature and refers to the individuals confirmed to have
been killed by the tsunami, as well as those reported missing and presumed to have been
swept away. The tsunami damage value was adopted from the Global Historical Tsunami
Database (National Geophysical Data Center 2024), which provides an estimated monetary
value (in US dollars) for the damage caused by each tsunami. This value is categorized
into 5 classes: (1) none (0 US$), (2) limited (<1 x 10® US$), (3) moderate (1-5 x 10° US$),
(4) severe (5-25x10° US$), and (5) extreme (>25 x 10° US$). These classes are intended
to reflect approximately current dollar values (National Geophysical Data Center 2024).
Wherever possible, the database distinguishes fatalities and damage caused solely by the
tsunami, excluding those attributable to the triggering event or the landslide itself.

2.1.2 Data availability

Figure 4 presents the data availability for the parameters compiled in the LTT database. The
graphs display the data grouped by the causes of LTT, as described in detail in Sect. 2.3.
Landslide parameters—including volume, material, type, and location—were recorded for
317 landslides (Fig. 4a), while tsunami parameters—damage, fatalities, and maximum water
height—were recorded for 297 tsunamis (Fig. 4b). The availability of individual parameters
within the database varies considerably.

Data availability is high for easily accessible parameters such as landslide location (89%),
maximum water height (84%), and the number of fatalities caused by the tsunami (71%).
For parameters requiring more detailed investigation, data availability is lower. Landslide
type is available for 57% of cases, landslide material for 41%, and landslide volume for
35%. Determining the type or material of a landslide typically requires field investigations
(e.g., Gusiakov and Makhinov 2021) and high-resolution digital elevation models (e.g.,
Gauthier et al. 2018). Landslide volume estimations rely on various methods, including field
investigations (e.g., Zhang et al. 2019), aerial photo interpretation (e.g., Brideau et al. 2012),
laser scans (e.g., Zhou et al. 2016), bathymetric surveys (e.g., loki et al. 2019), and tsunami
back-propagation modeling (e.g., Heinrich et al. 2001). These methods are time-consuming,
costly, and are often not applied, particularly in submarine environments or in cases where
the tsunami caused no fatalities or damage, such as the 0.5 m high LTT that occurred in
Seram, Indonesia, in 2021 (Fahmi et al. 2022; Heidarzadeh et al. 2022; Fig. 1, no. 43).

From Fig. 4, it is evident that information on landslide type, material, and volume is
particularly lacking for earthquake-triggered LTT. Although this category accounts for 150
cases—the most frequent—data on landslide material, type, and volume are available for
only 40, 59, and 32 events, respectively, resulting in an overall data availability of just 53%
for earthquake-triggered LTT (Dohmen et al. 2025). For tsunamis caused by submarine
landslides following earthquakes, data availability is even lower, with material, type, and
volume known for only 6, 13, and 8 cases, respectively (Dohmen et al. 2025). In some
earthquake-triggered LTT cases, there is no direct evidence of a landslide. Instead, the pres-
ence of a landslide is inferred from tsunami wave characteristics and the absence of other
potential sources, without further investigation of the landslide itself. Similarly, data avail-
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Fig. 4 Data availability of the parameters considered, categorized by the cause of LTT: a) landslide-
related parameters, and b) tsunami-related parameters

ability for LTT with unknown causes is low, at just 45% (Dohmen et al. 2025). In most of
these cases, the triggering landslide has not been investigated, while both its properties
and origin remain unknown. In contrast, data availability is significantly higher for LTT
triggered by paraglacial conditions (82%), precipitation (76%), volcanic activity (75%),
and anthropogenic activity (79%) (Dohmen et al. 2025). Many anthropogenic LTT events
are well studied due to their occurrence in densely populated areas or because they caused
substantial damage or fatalities, thereby attracting public and scientific interest. Examples
include the 1985 Xintan landslide, which entered the Yangtze River in China, resulting in
10 deaths and disrupting shipping traffic for 12 days (Huang et al. 2017; Fig. 1, no. 33), and
the 1971 Chungar landslide and tsunami in Peru, which destroyed a mining camp with 600
workers and nearly all surface facilities (Plafker and Eyzaguirre 1979; Fig. 1, no. 34).

2.2 Spatial distribution of LTT

Figure 1 shows the global spatial distribution of LTT. LTT density is high along active tec-
tonic margins, such as the Pacific Ocean and the Mediterranean Sea coasts, but relatively
low along passive margins, including the coasts of Africa, Australia, and the western coasts
of North and South America. High LTT density is also observed at high latitudes, such as in
Norway, Canada, and New Zealand. LTT in inland waters occur primarily in reservoir lakes,
particularly in China and the U.S. (Jones et al. 1961; Yang et al. 2017; Tang et al. 2019).
Despite relatively high landslide densities in mountainous regions, only a few LTT were
observed in such environments. Several LTT have been documented in lakes of the Euro-
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pean Alps; for example, Vajont (Barla and Paronuzzi 2013; Fig. 1, no. 14), Lake Sils (Nigg
et al. 2021; Fig. 1, no. 23), and Lake Geneva (Kremer et al. 2012; Fig. 1, no. 24). However,
very few LTT are recorded in other major mountain belts, such as the Himalayas or the
Andes. This discrepancy may be partly due to the low population density in these regions,
resulting in fewer reported LTT events. Another possible explanation involves terminol-
ogy: many glacial lake outburst floods (GLOFs), often triggered by mass movements, are
reported in these regions (Shrestha et al. 2023), but only a small number of these events
appear in the literature as LTT.

Although the coast is characterized by elevated seismic activity from the active conti-
nental margin and high latitudes, which would suggest a raised LTT density, only very few
LTT are documented on the west coast of South America (e.g., Aysen Fjord, Chile,2007,
Sepulveda et al. 2010). Violker et al. (2011) examined the bathymetry off Central Chile con-
cerning seismicity and submarine landslide occurrence, concluding that regular earthquakes
promote the formation of many small landslides. Due to their reduced size, these regular
landslide processes do not pose a significant tsunami hazard. Furthermore, models on global
sediment thickness show relatively low sediment accumulations for large parts of the South
American Pacific coast (Straume et al. 2019), which could presumably result in a lower
submarine landslide density. A very low LTT density is also observed in Africa, and not a
single LTT has been reported in Australia, possibly due to a combination of relatively stable
geologic conditions, low population density, and a lack of scientific interest.

2.3 LTT classification
2.3.1 Causes for landslide-triggered tsunamis

Most LTT are induced by earthquakes (Fig. 3a), with 44% (130 of 297) of all studied cases
attributed to this category (Fig. 5). Seismic activity is generally a major trigger and pre-
paratory factor for landslides (Keefer 1984, 2002; Fan et al. 2019), and thus also for LTT.
Slopes are destabilized by ground shaking, increasing pore water pressure, and rock mass
fracturing (Hack et al. 2007). Figure 2a shows an aerial image of Lituya Bay, Alaska, where
earthquake-triggered LTT were documented in 1853, 1874, 1900, 1936, and 1958. The trim
lines from the 1958 LTT, which generated 524 m high waves, are visible in the photograph
(Miller 1960). Another example of an earthquake-caused LTT occurred offshore Newfound-
land, Canada, in 1929. The bathymetric model in Fig. 2b shows the outline of the Grand
Banks submarine landslide, triggered after an My, 7.2 earthquake. The slide generated a
tsunami with a water height of 13 m and killed 28 people (Fine et al. 2005; Fig. 1, no. 1).
About 8% (24 of 297) of the tsunamis in the database were induced by volcanic land-
slides Figs. 3b and 5). Volcanoes can trigger tsunami waves by several mechanisms; for
example, earthquakes accompanying eruptions, pyroclastic flows, submarine explosions, or
caldera collapses (e.g., Latter 1981; Paris et al. 2014; Di Traglia et al. 2022; Di Traglia et al.
2024). Volcanic tsunamis are often triggered by several mechanisms simultaneously, with it
not always obvious which one has the strongest influence on wave generation (Paris et al.
2014). Only tsunami waves induced by volcanic landslides were considered in this study.
There are many causes for landslide occurrences at volcanoes, both related and unrelated
to volcanic activity. They include over-steeped, not buttressed flanks, buried faults, thermal
alteration, pore pressure in the volcanic edifice, and the collapse of subaerial and submarine
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deposits (Keating and McGuire 2000). Volcano flank collapses can trigger extremely high
waves, as was the case at Mt. Mayuyama volcano in Japan (Fig. 1, no. 25). In 1792, the
volcano flank collapsed during a period of volcanic activity and slid into Ariake Bay in the
western part of Kyushu. The generated waves reached a maximum run-up height of 20 m
and killed about 10,000 people (Miyamoto 2010).

The causes of 11% (34 of 297) of all LTT in the database are attributed to paraglacial
conditions (Fig. 5), which describe the transition from glacial to non-glacial environments
(Fig. 3c). In general, these are not direct triggering factors, but rather a set of processes
associated with glacial cycles, glaciation, and deglaciation that increase slope instability in
both subaerial and submarine settings (McColl 2012). Particularly in the context of climate
change, the expansion of paraglacial conditions due to glacier retreat may lead to increased
slope destabilization in the future (Kim et al. 2022; Walden et al. 2025).

Subaerial slope stability can be reduced by several factors, including permafrost deg-
radation (Davies et al. 2001; Matsuoka and Murton 2008), glacial thinning and retreat
(Ballantyne 2002; Walden et al. 2025), very steep slopes resulting from glacial erosion
(Caine 1982), exfoliation (Brunner and Scheidegger 1973), and seismicity caused by iso-
static uplift (Fjeldskaar et al. 2000). Landslides occurring in quick clay are also commonly
associated with paraglacial conditions, where isostatic uplift raises marine clays above sea
level and the replacement of salt water with fresh water reduces shear strength through
cation exchange (Rosenqvist 1953; L’Heureux et al. 2012; Hermanns et al. 2014; Liu et al.
2021). Typically, not just one but several of these processes act together to influence slope
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stability and increase the prevalence of LTT under paraglacial conditions (McColl 2012).
Another process that can trigger displacement waves in paraglacial conditions is glacier
calving. Kostrzewa et al. (2024) show that this process occurs regularly and significantly
shapes Arctic geomorphology. Although technically not a landslide process, glacier calving
is included here because the National Geophysical Data Center (2024) database documents
several tsunamis caused by the movement of ice masses. An example of an LTT induced
by paraglacial conditions is the tsunami in Karrat Fjord, Greenland, in June 2017. Approxi-
mately 45 x 10° m?® of rock detached from an elevation of up to 1,200 m and entered the fjord
at a very high velocity (Schiermeier 2017; Gauthier et al. 2018; Fig. 1, no. 26). The resulting
waves reached several villages up to 160 km from the landslide. Some houses were washed
away, while 4 people remain missing in Nuugaatsiaq, a village located about 32 km from
the rockslide. The maximum wave run-up height at that distance is estimated to have been
around 10 m (Paris et al. 2019).

In submarine environments under paraglacial conditions, glacial delta collapses are
known triggers of tsunami waves (Prior et al. 1982; Harbitz et al. 2014). High sedimentation
rates, particularly during glacier retreat, can produce thick layers of unconsolidated sedi-
ments prone to sliding and liquefaction (Coulter and Migliaccio 1966; Aarseth et al. 1989).
Sedore et al. (2024) studied the controlling factors of submarine landslides in Nunavut,
Canada, identifying additional causes in paraglacial settings, including seafloor over-steep-
ening due to rapid sedimentation; subaerial debris flows or rockslides entering the water
and destabilizing the seafloor; river flooding; and tidal loading. Furthermore, Normandeau
etal. (2021) demonstrated that grounding icebergs can also trigger submarine landslides. An
example of a glacial delta collapse occurred in 1975 in Kitimat Arm, British Columbia (no.
16 in Fig. 1; Table 2). The landslide, with an estimated volume of 2.3 x 10° m?, generated
waves up to 8.2 m in height and caused severe damage along the local coastline. Several
other landslides had been reported in Kitimat Arm before this event, between 1952 and 1975
(e.g., Prior et al. 1982; Kirby et al. 2016).

About 7% (21 of 297) of the documented LTT were caused by precipitation (Figs. 3d and
5), which is one of the main triggers of landslide events worldwide (Benz and Blum 2019).
In subaerial environments, precipitation reduces slope stability by increasing soil saturation
and pore water pressure (Wieczorek 1996). An example of a precipitation-triggered LTT
occurred on the Truong River, Vietnam, in 2017. A slide with a volume of approximately
30,000 m?® generated a wave with a maximum run-up of 8.5 m, destroying six houses and
killing one person (Duc et al. 2020; no. 11 in Fig. 1; Table 2).

Moreover, high precipitation rates can also trigger instabilities in submarine environ-
ments, where elevated river discharge resulting from heavy rainfall can both trigger and
precondition submarine delta collapses (Clare et al. 2016; Sedore et al. 2024). According
to Blais-Stevens et al. (2006), rapid sedimentation caused by intense precipitation likely
triggered the 1998 Troitsa Lake tsunami in British Columbia, Canada (no. 27 in Fig. 1). In
recent years, an increase in landslide activity has been observed in correlation with the rise
in extreme rainfall events attributed to climate change (Kirschbaum et al. 2012; Gariano
and Guzzetti 2016). Consequently, a future increase in precipitation-triggered LTT driven
by climate change can reasonably be expected.

Approximately 11% (33 of 297) of all documented LTT were triggered by anthropo-
genic activity (Figs. 3e and 5). This category includes landslides affecting natural slopes
due to human interventions—such as reservoir impoundment—as well as landslides occur-
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ring at artificial embankments. The causes of embankment failures are diverse; they are
often related to construction design but can also be triggered by natural processes such
as heavy precipitation (Keqiang et al. 2008) or seismic activity (Heidarzadeh et al. 2023).
Anthropogenic-triggered LTT have occurred on quarry slopes (Platker and Eyzaguirre
1979; Xing et al. 2016), in open-pit mining lakes (Clostermann 2013; Katzenbach et al.
2013; Gotz and Siebert 2020), and land reclamation sites (Assier-Rzadkieaicz et al. 2000;
Zaniboni et al. 2014). LTT are regularly triggered at reservoir lakes worldwide, particularly
along the shores of Franklin D. Roosevelt Lake in the United States (Jones et al. 1961)
and the Three Gorges Reservoir in China (e.g., Tang et al. 2015). Since the impoundment
of the Three Gorges Reservoir in 2003, several thousand landslides have been recorded
in the surrounding area, with many triggered by high precipitation and fluctuating water
levels. However, only a small fraction of these events have entered the reservoir and gener-
ated waves (Keqiang et al. 2010; Tang et al. 2019). Several slopes around the reservoir are
currently being monitored due to ongoing movement, with their failure potentially having
catastrophic consequences for the densely populated surrounding areas (Tang et al. 2015;
Yang et al. 2017; Wang et al. 2021b). Reservoir water levels influence groundwater levels in
adjacent slopes. Seasonal changes, as well as water level adjustments for economic or flood
control purposes, can alter pore water pressure, thereby increasing the probability of slope
destabilization (Tang et al. 2019).

Landslides occurring in reservoirs can not only generate tsunami waves that threaten
nearby populations and infrastructure (Wang et al. 2021b), but the accumulation of landslide
material within the reservoir can also significantly reduce its storage capacity. This reduc-
tion may compromise operational safety and result in substantial economic losses (Huang
et al. 2019). The most well-known example of a reservoir-LTT is the 1963 Vajont landslide
in northern Italy. Triggered by fluctuations in water level and intense rainfall, the landslide
generated a wave with an estimated run-up height of approximately 260 m, resulting in
2,043 fatalities (Barla and Paronuzzi 2013; Fig. 1, no. 14).

For a significant proportion of documented LTT (19%, 55 of 297), the landslide cause
is unknown (Figs. 3f and 5). Many of these events are relatively old, while either the land-
slide origin was never investigated in detail or the triggering mechanism can no longer be
reliably identified. Cases in which the landslide origin was determined solely by excluding
other potential causes were also classified as unknown. Most of these events occurred in
submarine environments, where even the precise landslide location is uncertain and can
only be approximated using bathymetric data and tsunami back-propagation modeling. One
such example is the tsunami that occurred in Santa Marta, Colombia, in 2017 (National
Geophysical Data Center 2024; Fig. 1, no. 44).

Tsunamis for which a landslide origin is considered a realistic scenario are also included,
even if the triggering mechanism remains controversial. For instance, a sea disturbance was
observed at multiple locations along the Bulgarian Black Sea coast in May 2007 (Fig. 1, no.
40). A seismic origin has been ruled out. According to Ranguelov et al. (2008), a submarine
landslide may have caused the waves; however, Vilibic¢ et al. (2010) argue that atmospheric
conditions are the more likely trigger. In several cases, such as the 2012 tsunami in the
Xianxi River, long-term physical weathering is believed to have led to the landslide, but
no specific triggering event could be identified (National Geophysical Data Center 2024;
Fig. 1, no. 28). These cases were also classified as unknown.
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2.3.2 Waterbodies where LTT occurred

Of the 297 documented LTT, 34% (102 cases) occurred in open marine environments
(Fig. 5), which are defined as coastal or marine areas with limited potential for wave reflec-
tion. In such settings, tsunami energy tends to dissipate rapidly due to the absence of major
reflecting geometries. Open marine environments include, for example, landslides originat-
ing from straight shorelines, submarine landslides occurring on the continental slope far
from the coastline, and events near isolated islands such as insular volcanoes. The docu-
mented causes of landslides in these settings are primarily earthquakes and volcanic activity;
however, in some cases, the trigger remains unknown. Landslides caused by precipitation
or anthropogenic activity are rare in open marine environments, and no LTT triggered by
paraglacial conditions are observed in these areas.

Most cases of documented LTT (121 of 297, 41%) occurred in enclosed marine environ-
ments, which include narrow bays, fjords, or straits (Fig. 5). Their complex coastal geom-
etry allows for increased refraction and reflection of tsunami waves. Tsunami energy in
enclosed marine environments dissipates slowly because it is trapped within the water body
(Couston et al. 2015). This was demonstrated impressively by the LTT in Dickson Fjord,
Greenland, in September 2023, which generated a 7 m high seiche lasting 9 days within the
enclosed fjord waters (Carrillo-Ponce et al. 2024; Svennevig et al. 2024; Fig. 1, no. 29).
Earthquakes, paraglacial conditions, and unknown factors primarily caused LTT in enclosed
marine environments. Landslides caused by volcanic activity, precipitation, and anthropo-
genic activity are uncommon.

25% (74 of 297) of all LTT occurred in inland waters such as lakes, rivers, and reservoirs
(Fig. 5). Similar to enclosed marine environments, the potential for wave reflection and
energy trapping is increased in inland waters. Furthermore, the short propagation distance
within inland waters results in limited wave dissipation (Fuchs and Hager 2015). In con-
trast to marine environments, anthropogenic activity is the most significant cause of LTT in
inland waters. Earthquakes, paraglacial conditions, precipitation, and unknown causes have
also been identified as LTT causes. With only 3 reported cases, LTT triggered by volcanic
activity are relatively uncommon in inland waters (Fig. 5). One example is the debris ava-
lanche during the 1980 eruption of Mt. St. Helens into Spirit Lake, Washington State, which
caused a wave with a run-up height of 260 m (Sosio et al. 2012; no. 6 in Fig. 1; Table 2).

2.4 LTT characteristics
2.4.1 Landslide statistics

Figure 6 shows the location, material, type, and volume of landslides that have triggered
tsunamis in the past. Most documented LTT result from subaerial landslides (47%), fol-
lowed by submarine (37%) and partially submerged (16%) landslides (Fig. 6a). Given the
vast number of documented submarine landslides worldwide (e.g., Casalbore et al. 2011;
Urgeles and Camerlenghi 2013; Brink and Geist 2021; Gamboa et al. 2021) and the fact
that each landslide generates waves, it is reasonable to assume that many submarine LTT
remain unrecognized. This could be due to landslides occurring far from the coast or the
generated waves being too small to be noticed by coastal populations. Hence, a reporting
bias in landslide location distribution is highly likely. The causes of subaerial landslides are
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distributed evenly across the six classes, while submarine and partially submerged land-
slides were predominantly triggered by earthquakes. One reason for the high proportion
of submarine earthquake-triggered LTT is the large number of case studies documenting
unexpectedly high waves following earthquakes. Coseismic landslides are the assumed or
proven triggers for these high waves. For example, during the 2006 South Java tsunami,
run-up heights of 5-7 m were measured along the coasts, but extreme run-up heights locally
exceeding 20 m were attributed to coseismic landslides (Fritz et al. 2007; Fig. 1, no. 30).
Partially submerged landslides are mostly coastal subsidence events caused by earthquakes.

Most documented landslides consist of hard rock (53%), with a relatively large number
of these triggered by paraglacial conditions (Fig. 6b). This can be explained by the high
number of documented rockfall events at fjord coasts, which are one of the dominant coast
types in paraglacially characterized regions (Forbes and Syvitski 2010). Soft rock land-
slides triggered 40% of the LTT in the database. Since all documented embankment failures
occurred in soft rock, a large proportion of these soft rock landslides are caused by anthro-
pogenic activity. Only a small proportion of tsunamis in the database are triggered by ice
(7%); their only triggers are paraglacial conditions, earthquakes, and precipitation. Calving
processes have been included in tsunami databases only in the last few years, resulting in a
small number of landslides consisting of ice; for example, events in western Greenland in
2014 or in Svalbard in 2011 (Marchenko et al. 2012; Liithi and Vieli 2016; Fig. 1, no. 45
and 46).
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The most frequently documented landslide type is slide, accounting for 39%, followed
by fall (27%), flow (18%), and coastal subsidence (12%) (Fig. 6¢). The database contains
few LTT associated with flank collapses (4%) or topples (1%). Slide-type landslides are
frequently triggered by anthropogenic activities. Embankment failures are one type, where
embankments—typically made of homogeneous, unlayered material—are prone to fail
through a rotational sliding process (Hungr et al. 2014). Another type is reservoir land-
slides, which—caused by unbalanced groundwater levels due to lake water dynamics—tend
to fail along a failure surface in a translational mode. Li et al. (2019) and Tang et al. (2019)
extensively studied LTT in the Three Gorges Reservoir and concluded that most slopes fail
because of sliding processes along bedding planes due to water level variations or rainfall.
Paraglacial conditions caused many fall-type landslides, including rock falls in fjord envi-
ronments and glacier calving events. The only toppling event in the database was caused by
precipitation (Furnas Lake, Brazil, in 2022, Maciel et al. 2023; Fig. 1, no. 31). Since flank
collapses are exclusively related to volcanic landslides, their only cause is volcanic activ-
ity. The same applies equivalently to coastal subsidence, a landslide type only reported in
association with earthquakes.

The vast majority of mass movements have a large (63%) or medium (29%) volume
and were caused in about equal proportions by the six different cause classes (Fig. 6d). The
database contains only one case study (<1%) of an LTT triggered by a landslide with a
small volume of less than 1,000 m*. Only a few tsunamis were triggered by giant (6%) and
monster (<1%) landslides. Those landslides with a volume exceeding 1 km? are caused by
geologic processes such as earthquakes and volcanic activity. The only LTT triggered by
a monster landslide is the well-known Storegga landslide and tsunami located offshore of
Norway (Fig. 1). The landslide with a volume of about 3,200 km?® caused tsunami waves,
whose deposits are still visible at the coast of the entire North Sea and Northern Atlantic
Ocean (Bondevik et al. 1997; Haflidason et al. 2004).

2.4.2 Generated water heights

Figure 7 shows the correlation between the landslide characteristics described above and
the maximum water heights. The values range from very small, barely measurable waves
0f 0.06 m (Resurrection Bay, Alaska, 2022, National Geophysical Data Center 2024; Fig. 1,
no. 41), and up to extremely high run-ups of 524 m in Lituya Bay, Alaska, in 1958 (Miller
1960). For each landslide characteristic, the maximum water height values exhibit consid-
erable spread across parameter values, with a direct correlation between any single land-
slide characteristic and the maximum water height not obvious. As tsunami wave height
is controlled by multiple variables—including landslide characteristics, water depth, and
water body and coastal geometry (Pelinovsky and Mazova 1992; Fritz et al. 2004; Lovholt
et al. 2015)—a direct correlation to only one of the influencing parameters is impossible.
Furthermore, the maximum water height corresponds either to the maximum run-up height
or the maximum wave height, depending on the data availability, with a considerable dif-
ference existing between these two values. Nevertheless, some correlations can be observed
in Fig. 7.

Most extremely high waves larger than 100 m were triggered by subaerial landslides
consisting of hard rock and occurred in inland waters or enclosed marine environments
(Fig. 7a and b). As described in Sect. 2.3, tsunami energy and wave height dissipate slowly
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in inland waters and enclosed marine environments, allowing the formation of high waves
(Couston et al. 2015; Fuchs and Hager 2015). In open marine environments, tsunamis with
wave heights greater than 10 m were documented almost exclusively due to mass move-
ments with giant or monster volumes (Fig. 7d). These giant and monster volumes provide
large amounts of kinetic energy, which is required to generate high waves in open marine
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environments, where coastlines or other morphological structures that could cause wave
reflections are absent, and tsunami energy quickly attenuates before the waves reach the
nearest shoreline. The highest wave in an open marine environment was recorded in 1946
during the Aleutian tsunami (Lander et al. 1993; Fig. 1, no. 32). With a height of 42 m,
it is far smaller than the highest wave measured in inland waters, 260 m in Vajont, Italy
(Barla and Paronuzzi 2013), or enclosed marine environments, 524 m in Lituya Bay, Alaska
(Miller 1960).

Coseismic landslides triggered numerous small tsunamis with water heights below 1 m.
Urgeles and Camerlenghi (2013) compiled data on submarine landslides in the Mediterra-
nean Sea and found that landslides in active tectonic environments tend to occur more fre-
quently than in passive tectonic settings, but are smaller and trigger smaller waves. Similar
conclusions were drawn by Brink and Geist (2021) for landslides off the U.S. coasts and by
Volker et al. (2011) off central Chile. Furthermore, coastal communities in active tectonic
environments are often well-prepared for tsunamis and equipped with tide gauges. Thus,
even tsunamis with small amplitudes can be detected and documented, whereas they might
otherwise remain unnoticed.

Regarding landslide type, tsunamis triggered by coastal subsidence tend to generate
smaller wave heights (<10 m), while landslides associated with volcano flank collapses
tend to produce larger waves (> 10 m, Fig. 7c). However, observations for both classes are
very limited, so no reliable conclusions can be drawn.

Several studies, including Murty (2003) and Hughes et al. (2024), have investigated
the correlation between landslide volume and tsunami wave height, observing a positive
connection. However, the database shows that landslides with the highest volumes do not
necessarily trigger the highest waves. Landslides with giant or monster volumes generated
tsunamis with maximum water heights on the order of tens of meters, while the highest
waves were triggered by large landslides (Fig. 7d). Notably, none of these giant or monster
landslides occurred in inland waters—only in marine environments, where tsunami energy
dissipates more rapidly. Such extremely large landslides were caused by two scenarios in
the past: either failure of the sediments on the continental slope, typically far from the near-
est shoreline, resulting in wave attenuation before reaching the coast (e.g., Storegga, 8200
BP, 3200 km?, Haflidason et al. 2004; Fig. 1), or collapse of a volcanic flank, documented
only in open and enclosed marine environments (e.g., Krakatau, 1883, 12 km?, Nomanbhoy
and Satake 1995).

Additional parameters are highly relevant for the development of maximum water
height. For example, a landslide with a monster volume can slide at very low speed and thus
induce only low wave heights. In particular, the location where the landslide occurs and
the tsunami is triggered is of utmost importance for wave generation (Levholt et al. 2020).
Levholt et al. (2015) reviewed parameters influencing wave generation, concluding that the
frontal landslide area and impact velocity often characterize subaerial LTT. Submarine LTT
are more influenced by the initial landslide acceleration for long run-out landslides or, for
short run-out landslides, by the landslide Froude number Fr (defined as the ratio between
landslide velocity u, landslide thickness d, and gravitational acceleration g: Fr = u/+/gd).
However, due to data scarcity, other parameters are not covered in this database.
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3 Consequences

To investigate the consequences of LTT for coastal communities, the fatalities and economic
damage resulting from LTT, their correlation with maximum water heights, and their spatial
distribution are discussed. A genuine hazard analysis requires data reflecting the specific
threat posed by an LTT at a given location and its return period. For risk analysis, data on
the exposure of elements at risk and their vulnerability to LTT are additionally required
alongside the temporal component (Fell et al. 2005). Since the number of documented LTT
cases worldwide is limited and individual cases vary significantly—for example, in terms of
location and wave height—it is difficult to determine return periods for a specific hazard. A
full hazard or risk analysis is therefore not possible with the available data, but the param-
eters fatalities and damage allow assessment of LTT consequences without considering the
total number of exposed elements at risk or their vulnerability.

Figure 8 displays the correlation between fatalities and tsunami damage resulting from
historical LTT, allowing a detailed investigation of their causes and waterbodies. As data
availability for tsunami damage is scarce, only a limited number of 110 LTT is therefore
illustrated in Fig. 8.

Most LTT caused few fatalities (<50) and minor damage (<5 x 10® US$). They belong to
all six cause classes and occur in all water bodies. LTT that caused a large number of fatali-
ties (>100) and severe damage (>5x 10° US$) were mainly induced by earthquakes and
volcanic activity, occurring in open and enclosed marine environments (Fig. 8). Figure 9
shows that these LTT have large maximum water heights. Additionally, the database reveals
that ten of these 18 LTT occurred in Southeast Asia—eight in Indonesia and two in Papua
New Guinea (Dohmen et al. 2025). This is a region with a very high population density
along the coastline, making the population particularly exposed to tsunamis. The only two
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Fig. 8 Tsunami damage and fatalities resulting from LTT (total number=110)
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Fig.9 Number of fatalities (a) and amount of tsunami damage (b) and their correlation with the maximum
tsunami water height, defined as the larger value of the maximum run-up height and the maximum wave
height. Numbers above each box plot represent the number of observations per class

LTT not related to seismic or volcanic activity that caused more than 100 fatalities and dam-
age exceeding 5 x 10° US$ are the Vajont tsunami (Barla and Paronuzzi 2013) and another
case in Lomblen, Indonesia, in 1979 (Soloviev and Go 1974; Fig. 1, no. 35).

Figure 9 displays the correlation between maximum water height and fatalities or tsu-
nami damage. Most documented LTT did not cause any fatalities, even when generated
waves reached heights of up to 200 m (Fig. 9a). It can be observed that rather high waves
(>5 m) caused many fatalities and large amounts of damage. However, water height values
vary significantly within each fatality and damage class, indicating that high waves do not
necessarily cause many fatalities or extensive damage. One reason is that the available data
do not provide information on the exposure or vulnerability of people and infrastructure. For
example, the LTT with the highest generated waves (524 m) caused only two casualties and
0.1 x 10% US$ in damage, as it occurred in a remote area in Alaska (Miller 1960). In contrast,
small waves can have catastrophic consequences when affecting densely populated areas.
For instance, in Port Royal, Jamaica, a wave of only 1.8 m hit the coastline in 1692, caus-
ing about 2,000 fatalities and considerable damage of 5-25 x 10° US$ (Lander et al. 2002;
Fig. 1, no. 36).

Figure 10 reveals the distribution of fatalities and economic losses caused by LTT in
different parts of the world. Countries such as the U.S. (dark blue) and Norway (light blue)
are frequently affected by LTT (70 and 32 times, respectively; Fig. 10a). However, the
number of fatalities from LTT is relatively low in both countries (362 and 250, respectively;
Fig. 10b), as the waves often occur in remote areas with low population density. Neverthe-
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less, considerable economic damage—165 x 10° US$ and 32x 10® US$ in Norway—was
caused to infrastructure in these highly developed countries (Fig. 10c).

In contrast, countries such as Indonesia (dark green) and Japan (light green) have a high
death toll from LTT (Fig. 10b). The impacts in these countries are characterized by a small
number of catastrophic LTT events causing an enormous number of fatalities. As mentioned
earlier in this section, eight of the 18 deadliest and most damaging LTT occurred in Indo-
nesia, including the 1883 Krakatau LTT (34,000 fatalities, Nomanbhoy and Satake 1995),
the 1899 Seram LTT (3,864 fatalities, Rynn 2002; Fig. 1, no. 37), and the 1674 Ambon LTT
(2,300 fatalities, Pranantyo and Cummins 2020; Fig. 1, no. 38). Some of the most destruc-
tive LTT in Japan include the tsunami following the Mt. Mayuyama flank collapse in 1792
(15,000 fatalities, Miyamoto 2010; Fig. 1, no. 25) and the tsunami caused by the eruption of
the Oshima-Oshima volcano in 1741 (2,000 fatalities, loki et al. 2019; Fig. 1, no. 42). LTT
in Indonesia and Japan were triggered almost entirely by earthquakes and volcanic activity.
Both countries are located at the junction of several tectonic plates and a major subduction
zone (Hamilton 1979; Taira 2001), resulting in high seismic and volcanic activity. Addition-
ally, both countries consist of multiple islands, with large portions of their populations living
in low-lying coastal areas, making them particularly vulnerable to LTT.

4 Implications for mitigation
The distribution of historical LTT shows that a large portion of worldwide coastlines, par-

ticularly along active continental margins, are affected by these events (Fig. 1). Examination
of the LTT catalog demonstrates that they are highly complex phenomena. The maximum

@ Springer



Natural Hazards

water height is influenced by the triggering mass movement, which can vary widely in
characteristics. The volumes of documented mass movements span up to 10 orders of mag-
nitude (Fig. 6), while whether the landslide occurs subaerially or underwater is another
critical factor. Other important parameters influencing wave generation, such as the initial
speed and acceleration of landslides (Levholt et al. 2015), are not addressed in this review
due to limited data availability. Additionally, the geometry of the water body and coastline
plays a crucial role in determining wave heights at the shore. Given the complexity of LTT
and the multitude of influencing factors, predicting wave heights based on the 317 studied
cases is currently impossible. Because of the widespread probability of occurrence and the
unpredictability of wave heights, implementing structural risk reduction measures such as
tsunami protective walls or slope stabilization remains ineffective to date. However, this
study aims to reduce uncertainty surrounding LTT by narrowing down areas at increased
risk and characterizing cases that pose a high threat to communities. Analysis of the LTT
catalog reveals some correlations in the spatial distribution, size, and causes of LTT, which
could inform improved risk mitigation strategies and early warning systems.

In general, the highest waves were generated in inland waters and enclosed marine envi-
ronments (Fig. 7). These local tsunamis are characterized by short propagation distances and
limited warning times. Early warning is only feasible in exceptional cases, when an unstable
slope is known and landslide monitoring is possible. In such instances, landslide monitoring
and early warning systems can provide tsunami alerts by detecting slope instability before
wave generation. An example is the LTT early warning system in Tafjord, Norway, where an
unstable slope of up to 54 x 10° m? is continuously monitored using various sensors. If slope
failure is imminent, the local population is warned via cell phone alerts, sirens, and media
channels, then evacuated before the event (Aknes / Tafjord Emergency Response Team
2025). Similarly, many reservoir landslide monitoring and early warning systems exist in
China (e.g., Wushan town, Yin et al. 2010; Longmen, Wang et al. 2024; Outang, Wang et
al. 2021a). Yin et al. (2010) report that 3,200 landslides within the Three Gorges Reservoir
area are monitored. However, these systems focus solely on landslide detection and do
not directly address the probability of displacement waves. Therefore, landslide monitoring
should be integrated with tsunami early warning systems and evacuation planning to effec-
tively protect coastal populations and ensure safe navigation. For most tsunamigenic land-
slides, however, the precise location is unknown beforehand, making proactive monitoring
impractical. In such cases, hazard and risk reduction rely primarily on public awareness and
education to encourage self-evacuation.

LTT are strongly associated with earthquakes, which are the most frequent cause of LTT
(Fig. 5), with earthquake-induced LTT causing the highest fatalities and damages histori-
cally (Figs. 8 and 9). Established seismic tsunami early warning systems, such as the Indo-
nesia Tsunami Early Warning System (InaTEWS; https://inatews.bmkg.go.id/), provide
reliable warnings to the population. InaTEWS uses a dual early warning system approach,
combining the finite element model TsunAWI and the linear long-wave model easyWave
to estimate wave height (EWH) and time of arrival (ETA) (Harig et al. 2020). However,
tsunamis generated by coseismic landslides can produce higher waves or arrive sooner at
the coastline than those triggered directly by the earthquake, as observed in Palu Bay (Car-
vajal et al. 2019; Omira et al. 2019). Therefore, in addition to standard warnings of wave
height and arrival time, existing tsunami early warning systems should also issue alerts for
exceptionally high waves caused by submarine landslides that may arrive immediately after
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the earthquake. Du et al. (2025) recently demonstrated that coseismic submarine landslides
predominantly occur during earthquakes on strike-slip faults. Consequently, this additional
warning is particularly important for regions near large active strike-slip fault zones, such as
Palu Bay in Indonesia and the Izmit Bay at the edge of the Sea of Marmara, Turkey, where
coseismic landslides during the 1999 Kocaeli earthquake triggered 3 m high waves (Altinok
et al. 2001; Fig. 1, no. 39).

Large LTT can have ocean-wide impacts, threatening coastlines hundreds or even thou-
sands of kilometers from the triggering landslide. For example, the 1929 Grand Banks tsu-
nami, triggered offshore in the Atlantic Ocean near Canada, was recorded as far away as
Portugal (Fine et al. 2005). Such tsunamis can be detected and reported by DART (Deep-
ocean Assessment and Reporting of Tsunamis) buoys, which are integral components of
modern tsunami early warning systems (Gonzalez et al. 1998).

Several approaches exist for establishing volcanic tsunami early warning systems or
integrating warnings for landslide-triggered waves into existing tsunami early warning
frameworks, for example, at Stromboli, Hawaii, Hunga Tonga, Anak Krakatau, and in the
Caribbean (Schindelé et al. 2024). Given the diverse and complex triggering mechanisms of
volcanic tsunamis, these systems primarily rely on sea level measurements near the volca-
noes and are closely linked to volcano observatories (Schindelé et al. 2024). Such systems
detect all types of volcanic tsunamis, including volcanic LTT, and are therefore generally
suitable for detecting various LTT. Some of the deadliest historical LTT—such as those at
Krakatau in 1883 and 2018, Mount Mayuyama in 1792, and Oshima-Oshima in 1741—
caused significant damage and fatalities at locations both near and far from the landslide
epicenter. Consequently, early warning systems for volcanic tsunamis can play a crucial
role in hazard management by enabling evacuation even in areas far from the source, where
longer warning times are possible.

Most landslides that trigger tsunamis have volumes smaller than one cubic kilometer
(Fig. 6) and therefore cannot be resolved by publicly available low-resolution bathymetry
datasets, such as the General Bathymetric Chart of the Oceans (GEBCO), which has a spa-
tial resolution of 15 arc-seconds (GEBCO Bathymetric Compilation Group). Consequently,
more high-resolution bathymetry data are essential to detect and study tsunamigenic subma-
rine landslides. Investigating their spatial distribution, magnitude-frequency relationships,
and failure mechanisms is critical for advancing the understanding and improving predic-
tions of future events. Data acquisition efforts could follow examples like the Italian MaGIC
(Marine Geohazards along the Italian Coasts) program, which systematically acquires high-
resolution multibeam bathymetry data covering extensive portions of the Italian coastline
(Chiocci and Ridente 2011). Additionally, detecting landslides through seismic monitoring,
as demonstrated by Lin et al. (2010) for landslides triggered by Typhoon Morakot in Tai-
wan, or by Vera et al. (2025) for the Krakatau volcano collapse in Indonesia, represents
a promising complementary approach. Integrating these seismic detections with sea level
measurements can enhance our understanding of the spatial and temporal occurrence of
landslides and the tsunamis they generate.
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5 Conclusions

Based on a catalog of 317 LTT, this review examines their spatial distribution, trigger-
ing causes, and landslide characteristics, correlating these factors with the resulting wave
heights and local impacts. The catalog identifies seismic and volcanic activity as the primary
triggers for tsunamigenic landslides that pose the greatest threat to coastal communities.
Consequently, coastlines along active tectonic margins—such as those in Indonesia, Japan,
and the U.S.—are the most affected globally by LTT. Indonesia, with nearly 50,000 fatali-
ties and $176 million in damage, is the most severely impacted country, followed by Japan
(21,000 fatalities, $86 million in damage). In contrast, countries like the U.S. and Norway
experience numerous LTT events but comparatively few fatalities and moderate economic
losses. The largest waves tend to be generated in inland waters and enclosed marine envi-
ronments, with LTT in inland waters mainly caused by anthropogenic activities, particularly
in reservoir lakes. Effective early warning systems for LTT require continuous monitoring
of landslide activity, sea levels near the landslide source, and access to high-resolution mul-
tibeam bathymetry data. However, precise knowledge of landslide locations is necessary—
something generally available only for active volcanoes and a limited number of subaerial
landslides, especially in water reservoirs.

A major challenge in the study of LTT is the limited availability of data, particularly
from submarine environments. Key parameters that influence the generation and propaga-
tion of LTT—such as landslide velocity—are not captured in this catalog. Moreover, sub-
marine LTT are likely underrepresented, as only those events that produce coastal waves
are typically documented. To reduce future risks from LTT in coastal regions, the ability to
identify and predict potential events is essential. Landslide susceptibility mapping, which is
widely used in subaerial settings (e.g., Reichenbach et al. 2018), is a promising tool for this
purpose. In addition, high-resolution bathymetry data can help detect smaller landslides—
responsible for the majority of LTT—and delineate areas with morphological features indic-
ative of failure potential. In regions where potentially tsunamigenic landslides have already
been identified, such as in many reservoir lakes, risk reduction measures should include
inundation mapping, development of evacuation plans, the implementation of early warning
systems, and public education on LT T-related hazards.
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