KIT | KIT-Bibliothek | Impressum | Datenschutz

Improving Label Error Detection and Elimination with Uncertainty Quantification

Jakubik, Johannes ORCID iD icon 1,2; Vössing, Michael ORCID iD icon 1,2; Maskey, Manil; Wölfle, Christopher 3; Satzger, Gerhard ORCID iD icon 1,2
1 Karlsruhe Service Research Institute (KSRI), Karlsruher Institut für Technologie (KIT)
2 Institut für Wirtschaftsinformatik (WIN), Karlsruher Institut für Technologie (KIT)
3 Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Identifying and handling label errors can significantly enhance the accuracy of supervised machine learning models. Recent approaches for identifying label errors demonstrate that a low self-confidence of models with respect to a certain label represents a good indicator of an erroneous label. However, latest work has built on softmax probabilities to measure selfconfidence. In this paper, we argue that—as softmax probabilities do not reflect a model’s predictive uncertainty accurately— label error detection requires more sophisticated measures of model uncertainty. Therefore, we develop a range of novel, model-agnostic algorithms for Uncertainty Quantification-Based Label Error Detection (UQ-LED), which combine the techniques of confident learning (CL), Monte Carlo Dropout (MCD), model uncertainty measures (e.g., entropy), and ensemble learning to enhance label error detection. We comprehensively evaluate our algorithms on four image classification benchmark datasets in two stages. In the first stage, we demonstrate that our UQ-LED algorithms outperform state-of-the-art confident learning in identifying label errors. In the second stage, we show that removing all identified errors from the training data based on our approach results in higher accuracies than training on all available labeled data. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186963
Veröffentlicht am 14.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik (WIN)
Karlsruhe Service Research Institute (KSRI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1076-9757
KITopen-ID: 1000186963
Erschienen in Journal of Artificial Intelligence Research
Verlag AI Access Foundation
Band 84
Seiten Article no: 19
Vorab online veröffentlicht am 09.11.2025
Schlagwörter label error detection, uncertainty, supervised deep learning
Nachgewiesen in OpenAlex
Dimensions
Scopus
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page