
 

 

 

 

 

Deep Learning-Driven Image Analysis for Studying Biomolecular 

Interactions 

 
 

 

Zur Erlangung des akademischen Grades einer 

DOKTORIN DER INGENIEURWISSENSCHAFTEN (DR.-ING.) 

 

 von der KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik des 

Karlsruher Instituts für Technologie (KIT) 

genehmigte 

 

 

 

 

DISSERTATION 

 

 

von 

M. Sc. Safoura Vaez 

aus Esfahan, Iran 

 

 

 

 

Tag der mündlichen Prüfung: 04.08.2025 

Erstgutachter: Prof. Dr.-Ing Matthias Franzreb 

Zweitgutachter: Prof. Dr. Jörg Lahann 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

i 

 

 

Dedication  

 

This dissertation is dedicated to my mum, dad, husband, and sister. Words cannot fully express 

my gratitude for your unwavering support and belief in me. I am deeply indebted to you all for 

standing by me and supporting me through every step of this journey. 

This work is for those who strive for knowledge and innovation, hoping it contributes, 

even in a small way, to the progress of science and understanding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ii 

 

Acknowledgements 

 

I am deeply grateful to the many individuals whose support, guidance, and encouragement have 

been invaluable in bringing this PhD dissertation to completion. 

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Dr. Jörg 

Lahann, for granting me the invaluable opportunity to join his lab and become part of his 

academic community. I am immensely thankful for the chance to work under his guidance, as 

he continually pushed me beyond my limits, inspiring me to exceed my own expectations. His 

encouragement to think creatively and approach projects with innovative perspectives has 

greatly shaped my growth as a scientist. His humble demeanor, sharp intellect, and vast 

scientific expertise have profoundly influenced my development. 

I have been fortunate to have two exceptional advisors during my Ph.D. studies. I would 

also like to extend my sincere thanks to Prof. Dr. Matthias Franzreb for welcoming me into his 

academic group and providing unwavering support throughout my journey. His humility and 

accessibility made him an invaluable mentor, especially during the final stages of my Ph.D. I 

will always cherish the memories of the Palmspring seminars, which were filled not only with 

insightful scientific discussions but also with enjoyable moments. 

A special thanks to my former supervisors, Dr. Azam Jiehanipour and Dr. Keikhosro 

Karimi, for shaping my scientific journey. Their guidance taught me to think critically, plan 

experiments, tackle challenges, and seek solutions with perseverance, lessons that have 

profoundly influenced my growth as a researcher. 

I am truly grateful to my family, my parents and my husband, for their unconditional 

love and support, which have been my greatest source of strength. Your belief in me has carried 

me through every challenge. To my siblings, your encouragement during difficult times has 

meant the world to me, and I feel so lucky to have you in my life. 



 

 

iii 

 

I would also like to express my sincere appreciation to my friends and colleagues, 

Bahar, Tahereh, Gözde, Martina, Meike and Haseeb, for making this journey unforgettable 

with their valuable feedback, insightful discussions, and unwavering support. 

I am grateful to Bianca Posselt, Dr. Erik Strandberg, Dr. Stefan Heißler, and Dr. 

Alexander Welle for their invaluable training and assistance in using the CD spectroscopy, 

IRRAS, and TOF SIMS instruments. My thanks extend to my colleagues and lab members, 

both from Germany and the US, for making this journey unforgettable, and for their invaluable 

feedback and thoughtful discussions. 

Lastly, I want to express my special thanks to Dr. Angela Weiss, Astrid Biedermann, 

and Stefanie Sellheim-Ret for their support with all administrative matters at the Institute of 

Functional Interfaces (IFG). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iv 

 

Abstract 

 

In recent years, machine learning approaches have garnered significant interest across a wide 

range of scientific disciplines. By utilizing large datasets, machine learning (ML) algorithms 

are capable of identifying intricate patterns and correlations that conventional methods may 

overlook or take significantly longer to analyze. This integration of machine learning not only 

accelerates data processing but also enhances predictive accuracy and provides more refined 

control over experimental measurements and analysis. While experimental approaches remain 

essential for generating the data required to train machine learning models, ML offers a 

complementary tool that can accelerate analysis and guide future experiments. Once adequately 

trained, these models can provide rapid, scalable, and cost-effective insights, enhancing 

research efficiency in fields such as molecular biology, chemistry, and materials science. 

This dissertation is motivated by the potential of ML techniques to increase our 

understanding of i) protein-DNA binding affinities and ii) surface chemistry using deep 

learning approaches, with fast and scalable methods that can uncover complex patterns and 

provide insights beyond traditional analytical techniques. 

Developing simple, fast, scalable and precise predictive analytical techniques for the 

stratification of protein-DNA interaction is essential for enhancing the fundamental 

understanding of biological processes, disease mechanisms, and for the development of 

innovative biotechnological and medical applications. However, this remains an unresolved 

challenge to date. We discovered that valuable information about protein-DNA interactions 

can be derived from the stains left behind by drying droplets of mixtures of these biological 

macromolecules. To decipher the intricate stain patterns, a deep-learning neural network 

(InceptionV3) was applied to polarized light microscopy images obtained from drying droplet 

deposits of different histone-DNA mixtures. These stain patterns not only demonstrated 

reproducibility but also enable a comprehensive categorization of various DNA (dependent on 
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both DNA type and size) and their binding affinity with histone. Eukaryotic DNA binds with 

a higher affinity to histone than prokaryotic DNA, a trend that resulted in higher prediction 

accuracy. This is further corroborated by the fact that the average prediction accuracy is higher 

for longer DNA strands compared to shorter DNA strands. These findings suggest that a simple 

method like drying a droplet of a protein-DNA mixture solution onto a solid surface could 

serve as a reliable indicator for predicting protein-DNA bindings affinities. Moreover, 

following the neural network training on polarized light images of various DNA and their 

mixtures with histone, the pre-trained model accurately predicted both unknown DNA samples 

and the binding affinities of unknown histone-DNA samples which had not been included in 

the training image set. The convolutional neural network (CNN) successfully categorizes 

unknown histone-DNA samples into strong and medium binders, achieving prediction 

accuracy rates of 84.4% and 96.25%, respectively. This scalable approach offers the potential 

for rapid screening of new protein candidates capable of interacting with DNA, facilitating 

predictions regarding their binding affinity. By employing this advanced methodology, 

researchers can efficiently identify proteins that demonstrate desirable interactions with DNA, 

thus accelerating the discovery process in molecular biology and related fields. 

Similar to the classification of histone-DNA interactions, the same approach was 

applied to characterizing material surfaces by classifying surface chemistry using deep learning 

algorithms. Categorizing surface chemistry through a simple, fast, precise, and low-tech 

method presents a significant challenge, yet holds considerable importance across various 

scientific disciplines, including medical implants, biosensors, and regenerative medicine. This 

study demonstrated that it is possible to differentiate surface chemistry by analyzing the stain 

patterns generated when protein solutions are deposited onto substrates with varying structural 

polymer coatings. These coatings share the same polymer backbone but have different 

functional groups, highlighting the effectiveness of this approach in discerning subtle 
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differences in surface chemistry. A deep learning neural network (InceptionV3) was employed 

to classify polarized light microscopy images of dried droplet deposits on different surfaces. 

These stain patterns exhibited high reproducibility across different surface chemistries, 

facilitating comprehensive surface classification with 96% accuracy. To demonstrate the 

generalizability of our approach, a pre-trained CNN was tested on images from copolymerized 

polymer surfaces not included in the training set, achieving a classification accuracy of 96%. 

These findings are significant because they demonstrate that suitably pre-trained CNNs can 

predict polymer surface chemistry beyond their original training set. This scalable approach 

can be used for rapid screening of new or unknown polymer surface chemistries. 
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Kurzzusammenfassung 

 

In den letzten Jahren haben Ansätze des maschinellen Lernens in einer Vielzahl 

wissenschaftlicher Disziplinen großes Interesse geweckt. Durch die Nutzung großer 

Datensätze sind Algorithmen des maschinellen Lernens in der Lage, komplizierte Muster und 

Korrelationen zu erkennen, die bei herkömmlichen Methoden übersehen werden oder deren 

Analyse erheblich länger dauert. Diese Integration des maschinellen Lernens beschleunigt 

nicht nur die Datenverarbeitung, sondern verbessert auch die Vorhersagegenauigkeit und 

ermöglicht eine verfeinerte Kontrolle über experimentelle Messungen und Analysen. Obwohl 

experimentelle Ansätze nach wie vor unerlässlich sind, um die Daten für das Training von 

Machine-Learning-Modellen zu generieren, stellt maschinelles Lernen ein ergänzendes 

Werkzeug dar, das Analysen beschleunigen und zukünftige Experimente gezielt unterstützen 

kann. Nach ausreichendem Training können diese Modelle schnelle, skalierbare und 

kosteneffiziente Erkenntnisse liefern und so die Forschungseffizienz in Bereichen wie 

Molekularbiologie, Chemie und Materialwissenschaften steigern.  

Diese Dissertation ist motiviert durch das Potenzial von ML-Techniken, unser 

Verständnis von i) Protein-DNA-Bindungsaffinitäten und ii) Oberflächenchemie mithilfe von 

Deep-Learning-Ansätzen zu erweitern, mit schnellen und skalierbaren Methoden, die 

komplexe Muster aufdecken und Einblicke über traditionelle analytische Techniken hinaus 

bieten können. 

Die Entwicklung einfacher, schneller, skalierbarer, und präziser prädiktiver 

Analyseverfahren für die Stratifizierung von Protein-DNA-Interaktionen ist für die 

Verbesserung unseres grundlegenden Verständnisses biologischer Prozesse und 

Krankheitsmechanismen sowie für die Entwicklung innovativer biotechnologischer und 

medizinischer Anwendungen unerlässlich. Dies ist jedoch bis heute eine ungelöste 

Herausforderung. Wir haben entdeckt, dass wertvolle Informationen über Protein-DNA-
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Wechselwirkungen aus den Flecken abgeleitet werden können, die beim Trocknen von 

Tröpfchenmischungen dieser biologischen Makromoleküle zurückbleiben. Um die 

komplizierten Fleckenmuster zu entschlüsseln, wurde ein neuronales Netzwerk mit tiefem 

Lernen auf polarisierte Lichtmikroskopie-Bilder angewandt, die beim Trocknen von 

Tropfenablagerungen verschiedener Histon-DNA-Mischungen entstanden. Diese 

Trocknungsmuster zeigten nicht nur Reproduzierbarkeit, sondern ermöglichen auch eine 

umfassende Kategorisierung verschiedener DNA (abhängig von DNA-Typ und -Größe) und 

ihrer Bindungsaffinität mit Histon. Eukaryotische DNA bindet mit einer höheren Affinität an 

Histon als prokaryotische DNA, ein Trend, der zu einer höheren Vorhersagegenauigkeit führte. 

Dies wird auch durch die Tatsache bestätigt, dass die durchschnittliche Vorhersagegenauigkeit 

für längere DNA-Stränge höher ist als für kürzere DNA-Stränge. Diese Ergebnisse deuten 

darauf hin, dass eine einfache Methode wie das Trocknen eines Tropfens einer Protein-DNA-

Mischungslösung auf einer festen Oberfläche als zuverlässiger Indikator für die Vorhersage 

von Protein-DNA-Bindungsaffinitäten dienen könnte. Nach dem Training des neuronalen 

Netzes auf polarisierten Lichtbildern verschiedener DNA und deren Mischungen mit Histon 

konnte das vortrainierte Modell sowohl DNA-Proben als auch die Bindungsaffinitäten von 

Histon-DNA-Proben, die nicht im Trainingsbildsatz enthalten waren, genau vorhersagen. Das 

neuronale Faltungsnetzwerk (CNN) kategorisiert unbekannte Histon-DNA-Proben erfolgreich 

in starke und mittlere Bindungen und erreicht dabei Genauigkeitsraten von 84.4 % bzw. 96.25 

%. Dieser skalierbare Ansatz bietet das Potenzial für ein schnelles Screening neuer 

Proteinkandidaten, die in der Lage sind, mit der DNA zu interagieren, und erleichtert 

Vorhersagen über ihre Bindungsaffinität. Durch den Einsatz dieser fortschrittlichen Methodik 

können Forscher effizient Proteine identifizieren, die wünschenswerte Wechselwirkungen mit 

der DNA aufweisen, und so den Entdeckungsprozess in der Molekularbiologie und verwandten 

Bereichen beschleunigen. 



 

 

ix 

 

 Ähnlich wie bei der Klassifikation von Histon-DNA-Interaktionen wurde derselbe 

Ansatz auf die Charakterisierung von Materialoberflächen angewendet, indem die 

Oberflächenchemie mit Deep-Learning-Algorithmen klassifiziert wurde. Die Klassifikation 

von Oberflächenchemie durch eine einfache, schnelle, präzise und kostengünstige Methode 

stellt eine erhebliche Herausforderung dar, hat jedoch eine große Bedeutung in verschiedenen 

wissenschaftlichen Disziplinen, einschließlich medizinischer Implantate, Biosensoren und 

regenerativer Medizin. In dieser Studie wurde gezeigt, dass es möglich ist, die 

Oberflächenchemie zu differenzieren, indem die Fleckenmuster analysiert werden, die 

entstehen, wenn Proteinlösungen auf Substrate mit unterschiedlichen strukturellen 

Polymerbeschichtungen aufgebracht werden. Diese Beschichtungen haben dasselbe 

Polymergerüst, weisen aber unterschiedliche funktionelle Gruppen auf, was die Wirksamkeit 

dieses Ansatzes bei der Unterscheidung feiner Unterschiede in der Oberflächenchemie 

unterstreicht. Ein neuronales Deep-Learning-Netzwerk (InceptionV3) wurde eingesetzt, um 

polarisierte Lichtmikroskopie-Bilder von getrockneten Tröpfchenablagerungen auf 

verschiedenen Oberflächen zu klassifizieren. Diese Trocknungsmuster zeigten eine hohe 

Reproduzierbarkeit über verschiedene Oberflächenchemien hinweg und ermöglichten eine 

umfassende Oberflächenklassifizierung mit 96 % Genauigkeit. Um die Verallgemeinerbarkeit 

unseres Ansatzes zu demonstrieren, wurde ein vortrainiertes CNN an Bildern von 

copolymerisierten Polymeroberflächen getestet, die nicht in der Trainingsgruppe enthalten 

waren, und erreichte eine Klassifizierungsgenauigkeit von 96 %. Diese Ergebnisse sind von 

großer Bedeutung, da sie zeigen, dass entsprechend vortrainierte CNNs die Chemie von 

Polymeroberflächen über ihren ursprünglichen Trainingssatz hinaus vorhersagen können. 

Dieser skalierbare Ansatz kann für ein schnelles Screening neuer oder unbekannter chemischer 

Eigenschaften von Polymeroberflächen verwendet werden. 
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1. Introduction 

 

Over the last few decades, there has been significant attention directed toward studying the 

dried patterns of biologically relevant sessile droplets. [1] Experimentally, the drying process of 

particle droplets (e.g., DNA, protein, blood, etc.) adheres to a simple and fast procedure. In this 

process, particles are dispersed in a solvent, such as water or buffer, and a defined volume of 

the solution is deposited onto a substrate as a droplet. During the drying process, the solvent 

gradually evaporates, leading to an increase in the local concentration of particles, and results 

in the development of unique, characteristic, and reproducible patterns. [1, 2] These 

characteristic patterns arise due to the interplay of heat transfer, mass transport, and fluid 

dynamics within the liquid, with key factors such as contact-line dynamics, surface 

hydrophobicity, surface-tension-driven forces, Marangoni flow, and thermal instabilities 

contributing to the phenomenon, often resulting in the well-known coffee-ring effect. [3-6] 

Previous studies have demonstrated that these unique patterns serve as "fingerprints" for 

biomolecular screening and classification. [2, 7]  

The interaction between protein and DNA plays a critical role in almost all of the 

biological processes, including mechanisms associated with health and disease. [8, 9] In recent 

years, numerous experiments have been conducted to investigate protein-DNA interactions, 

employing a wide range of techniques, both in vivo and in vitro, such as conventional 

chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA), 

Systematic Evolution of Ligands by Exponential Enrichment (SELEX)-based methods, nuclear 

magnetic resonance (NMR), X-ray crystallography, fluorescence-based techniques, circular 

dichroism (CD) spectroscopy, atomic force microscopy (AFM), and surface plasmon 

resonance (SPR) spectroscopy. [10-13] These methods have provided insights into the nature of 

protein-DNA interactions, yet each comes with its own set of limitations and challenges that 
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must be carefully considered when choosing the most appropriate technique for a given study. 

ChIP requires specific-grade antibodies, which may not always be available or of sufficient 

quality. EMSA faces challenges due to the rapid dissociation of protein-DNA complexes 

during electrophoresis, which hinders detection, while slow dissociation may lead to 

underestimation of binding density. SELEX-based methods are labour-intensive and time-

consuming, often requiring weeks or months to complete. NMR necessitates multimodal 

analytics, making it complex, resource-intensive, and technically demanding. X-ray 

crystallography requires specialized equipment and facilities, limiting accessibility. 

Fluorescence-based assays, such as those using ethidium bromide, pose safety risks due to 

mutagenic properties, while fluorescence dye displacement assays can suffer from low 

sensitivity. CD spectroscopy has limited sensitivity to small conformational changes and can 

experience signal overlap in large protein-DNA complexes. AFM and SPR depend on the 

proper immobilization of biomolecules; incorrect orientation affects accuracy, and SPR also 

faces mass-transfer limitations that distort binding kinetics. [10, 14-18] Given these challenges, 

there is a growing need for alternative approaches that are accurate, straightforward, rapid, 

cost-effective, and non-toxic. Recent advances in computational modelling, including 

molecular dynamics (MD) simulations, have been explored for predicting protein-DNA 

binding affinities. However, MD simulations are often constrained by high computational costs 

and limited applicability to large biomolecular complexes. Consequently, in this dissertation, 

machine learning techniques, with a particular emphasis on deep learning, are proposed as 

powerful tools for analyzing protein-DNA complex data and providing efficient alternatives to 

traditional experimental approaches. [19-24] 

In addition to protein-DNA interactions, the interfacial characteristics of biomaterials 

play a crucial role in determining key performance attributes, including cell adhesion, [25, 26] 

biocompatibility, [27] and wettability. [28] These surface properties influence biomedical 
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applications, including tissue engineering, [29, 30] medical implants, [31] and drug delivery 

systems. [32] Accurate surface analysis is essential for selecting the appropriate polymer coating 

for specific biomedical applications, ensuring optimal coating performance. Surface 

characterization techniques are commonly used to identify potential surface contaminants or 

variations in surface chemistry that could impact key properties such as adhesion, [33] 

wettability, [34] biological integration, surface fouling, [35] or optical performance. [36, 37] The 

most commonly used techniques [38] for surface composition characterization are IR 

spectroscopy, [39] XPS, [40, 41] SIMS, [38, 42, 43] ellipsometry, [44] atomic force microscopy (AFM), 

[45] and contact angle measurement. [46] However, each of these methods has certain inherent 

limitations. For instance, IR spectroscopy may demonstrate limited sensitivity in analyzing 

samples with low thickness or weak absorption bands, and overlapping absorption bands 

further complicate accurate interpretation. [47, 48] XPS requires ultra-high vacuum conditions 

and involves complex data interpretation, limiting accessibility. TOF-SIMS is expensive, 

requires an ultra-high vacuum, and demands sophisticated data processing algorithms 

alongside expertise in surface chemistry and mass spectrometry. [36] Ellipsometry suffers from 

low optical contrast in transparent, low-polarizability films, particularly at solid/liquid 

interfaces, making it difficult to accurately characterize film properties. [49] Additionally, 

contact angle measurement is limited by time-dependent variations caused by evaporation or 

contamination, which hinder the achievement of stable and reproducible results. To address 

these challenges, an efficient and reproducible method is needed for analyzing surface 

properties in a straightforward and scalable manner. Similar to protein-DNA interaction study, 

surface characterization and recognition can also benefit from deep learning-based image 

analysis techniques, providing a novel approach for identifying surface patterns and correlating 

them with functional properties. 
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Deep learning, a subset of machine learning, has revolutionized data-driven analysis by 

automatically identifying complex patterns from large datasets without requiring manual 

feature extraction. [50-56] By leveraging deep learning algorithms, researchers can efficiently 

process vast amounts of image data, uncover intricate correlations, and enhance predictive 

accuracy. Additionally, deep learning enables more refined control over measurements and 

analyses, making it a promising tool for both biomolecular interaction studies and surface 

characterization. [57, 58] In a previous study conducted in Professor Lahann's lab, a deep 

learning-based method was developed to predict single amino acid mismatches in peptides by 

analyzing stain patterns left by drying droplets. Using polarized light microscopy images of 

dried amyloid-beta peptide deposits, deep learning models successfully identified structural 

variations with high accuracy. [2] Inspired by this approach, the application of deep learning 

has been extended to two major research areas: (i) studying protein-DNA interactions and (ii) 

investigating surface chemistries. 

In this study, a conventional image-based neural network was employed to analyze 

extensive datasets generated from protein solutions prepared with varying salt conditions. A 

systematic workflow was established, in which precise amounts of human serum albumin 

(HSA) and immunoglobulin G (IgG) were dispensed, with controlled variations in salt types 

and concentrations. The resulting stain patterns were captured using an automated polarized 

light microscope (PLM). This approach enabled the efficient creation of a large dataset 

capturing subtle variations in solution composition. This simple, fast, and scalable method 

provides a powerful tool for studying protein behavior across diverse chemical environments. 

Moreover, a pre-trained neural network was employed for image analysis to examine 

extensive sets of images derived from dried protein-DNA solution samples. An automated 

process was developed to efficiently deposit precise amounts of protein-DNA complexes and 

capture images of the resulting stain patterns using an automated polarized light microscope 
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(PLM). This streamlined approach generated thousands of images in just a few hours. This 

method, which is simple, rapid, and cost-efficient, has been applied successfully in studying 

protein-DNA interactions across both eukaryotic and prokaryotic DNA specimens. This 

innovative technique offers a powerful tool for researchers to explore different levels of 

protein-DNA interactions on a large scale, potentially accelerating discoveries in the field of 

molecular biology. 

Similarly, a conventional image-based neural network was utilized to analyze large sets 

of images obtained from drying Bovine Serum Albumin (BSA) solutions on various 

functionalized surfaces. The developed automated workflow, which includes the deposition of 

defined volumes of BSA solution in a massively parallel manner, was applied, followed by the 

capture of images of the resulting stain patterns using an automated polarized light microscope. 

This method has been successfully applied to a wide range of polymer surfaces with different 

functional groups and properties, enabling the study of surface classification and recognition 

based on BSA-stained patterns. This method not only saves time and reduces cost but also 

ensures the continuous reproducibility of surface properties critical for the functionality of 

polymeric materials in various application. 
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2. Background 

 

 

 

Deposits formed by the evaporation of droplets containing non-volatile substances is a well-

known natural phenomenon, attracting significant attention due to its fundamental aspects and 

practical applications. [59-62] This phenomenon has implications in various fields involving 

evaporation on the surface such as inject printing, [63] nanomaterials assembly, [64] fabrication 

process, [65] and colloidal crystals. [66] It also affects the performance of applications including, 

electronic devices, [67] matrix-assisted laser desorption ionization (MALDI) spectrometry, [68] 

surface-enhanced Raman spectroscopy, [69] fluorescence microarrays, DNA or RNA 

microarray, [70] and disease diagnosis. [71-73] One specific occurrence during this process which 

is called the “coffee ring effect”, is contact line pinning and forming the ring-like residues at 

the droplet's edges. [4, 60, 74, 75] The particles within the initial droplet are spread out, defining an 

initial equilibrium state. It was demonstrated that the evaporation rate is most pronounced near 

the periphery, primarily due to the curvature of the droplet. As the droplet dries, the system 

undergoes a phase transition away from its initial equilibrium state. This process leads to the 

development of concentration gradients, triggering the development of various flows within 

the droplet. [76] The flow caused by evaporation pulls particles or solute toward the contact line, 

to compensate the excessive loss of mass. [59] As the solvent evaporates and the droplet fractures 

to relieve stress, a macroscopic fingerprint pattern begins to emerge. Different stain patterns 

form when water droplets containing biomolecules like proteins and DNA evaporate. [1] The 

final dried pattern is influenced by several factors, including substrate properties, nature of 

solute components (size, chemical composition, and concentration), as well as environmental 

factors such as temperature and relative humidity. [1, 77, 78] 

2.1. Pattern Formation on Solid State Substrates 
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Lee et al. studied the effect of substrate wettability on the formation of ring-shaped 

patterns by nanofluids. They found that substrates with lower contact angles resulted in wider 

ring widths, as the smaller contact angle increased the droplet's surface area, leading to faster 

evaporation and higher flow velocity. [79] Their study showed that lower contact angle promotes 

the formation of more ring-shaped patterns, while higher contact angle substrates, such as 

stainless steel, exhibit fewer ring-shaped patterns than glass. Specifically, a larger contact angle 

results in greater height and smaller contact diameter for a fixed droplet volume. Consequently, 

as the height at the center is maximized during evaporation, more particles will likely remain 

at the center. [79] Similarly, Uno et al. examined the formation of patterns during the evaporation 

of polymer solutions on surfaces with varying hydrophobicity. Their research revealed that on 

hydrophilic surfaces, droplets maintained their initial contact area while their volume gradually 

decreased, eventually forming circular residue patterns. Microscopic analysis indicated that 

many particles accumulated at the contact boundary due to the presence of a thin water layer, 

which resulted from the surface’s hydrophilic nature. In contrast, on hydrophobic surfaces, the 

contact area decreased as evaporation progressed, with no significant particle adsorption 

occurring in the early stages. Instead, particle aggregation took place once their concentration 

exceeded a critical threshold, leading to the formation of small deposits after complete 

evaporation. [80] 

As mentioned, the second parameter that affects the final dried pattern is the nature of 

the solute components. The movement of particles within a droplet can be influenced by their 

size. Smaller particles typically migrate towards the three-phase contact line of the droplet, 

forming ring-shaped patterns, while larger particles tend to gather nearer the center in the 

residue. Therefore, particle size variation leads to distinct residue patterns.  

Previous study showed that at low concentrations and small particle sizes (below 2% 

by vol and smaller than 13 nm), a ring-shaped pattern emerged. Conversely, at high 
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concentrations and larger particle sizes (above 3% by vol and larger than 20 nm), a uniform 

pattern was observed. [79] Consequently, various residue patterns depending on particle size, 

impact the functionality of multiple applications. [81, 82] Chen et al. investigated the impact of 

salt ions on protein pattern formation and observed that salt plays a crucial role in influencing 

protein aggregation. In the absence of salt, no protein patterns were observed. However, with 

the addition of salt, protein molecules undergo aggregation and self-assembly. At low salt 

concentrations (e.g., 0.1 × PBS buffer), dendritic-shaped aggregates and some scalloped 

microstructures form. As the salt concentration increases, rosette-shaped patterns emerge due 

to salt crystals promoting nucleation events. [83]  

Finally, the third parameter influencing the final dried pattern is the set of 

environmental factors. Li et al. observed that during slow drying process (T = 25 ℃), the 

majority of particles accumulate at the droplet periphery, creating a ring-like structure. 

Conversely, rapid drying at high temperatures (T = 75 ℃) leads to uniform particle deposition 

across the droplet surface, with minimal accumulation at the periphery. They suggest that 

uniform deposition can be achieved through straightforward control of evaporation kinetics, 

without the need to alter the droplet composition or modify particles. [84, 85] Moreover, a 

previous study showed that relative humidity (RH) significantly influences the evaporation 

dynamics and pattern formation of drying droplets, including blood droplets. RH affects the 

contact angle of the droplet, thereby impacting the initial evaporation rate. Higher RH levels 

reduce the evaporation rate, allowing more time for internal fluid movement and particle 

redistribution. As a result, the width of mobile plaques in the corona and the fine peripheral 

region increases with increasing RH (Figure 2.1). These findings highlight the crucial role of 

environmental conditions in shaping the final deposition patterns of dried droplets. [86] 
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Figure 2.1. Effect of relative humidity on the residue left after the evaporation of a sessile blood 

drop. All experiments were conducted using the same droplet volume (V = 14.2 μl) across a range of 

relative humidity (RH) levels, with the droplets placed on a microscope-grade ultraclean glass substrate 

at room temperature (23.8 °C) and atmospheric pressure. Adapted from [86] 

 

2.1.1. General Physics of Drying Droplets 

 

As illustrated in Figure 2.2, two modes of profile evolution occur during the evaporation of a 

droplet: the constant contact radius (CCR) and the constant contact angle (CCA). In the CCR 

mode, the diameter of the droplet (or the contact radius) stays constant while the height of the 

droplet decreases during evaporation. In the CCA mode, the contact radius of the droplet 

gradually decreases over time, but the contact angle remains constant. The combination of both 

the contact angle and contact radius modes during the drying process is referred to as the mixed 

mode (MM). [71] As mentioned above, the evaporation mode relies on the solid substrate where 

the droplet is located. CCR is typical on hydrophilic substrates, while CCA is prevalent on 

hydrophobic surfaces. [87] 

 

 
 

Figure 2.2. Schematic representation of two modes of drying process of droplets. (a) constant 

contact radius (CCR) and (b) constant contact angle (CCA). Adapted from [71] 
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The two primary flows within an evaporating droplet are Marangoni flow and capillary 

flow (Figure 2.3). [88] In capillary flow, the drying occurs in the CCR mode, where the droplet 

remains pinned to the substrate surface. Droplets with a contact angle below 90° exhibit the 

highest evaporative flux at the outer edge, known as the Triple Phase Contact Line (TPCL). [71] 

As a result, fluid is needed to replace the evaporated liquid at the TPCL. This causes fluid to 

flow radially outward from the center to the edge. [71]  

Marangoni flow is induced by a gradient in surface tension at the droplet's external 

interface. [89] This tension gradient can originate from two factors. Firstly, a temperature 

gradient across the droplet surface (thermal Marangoni effect) is induced by variations in the 

evaporative flux across the droplet surface. Since evaporation is an endothermic process, the 

bulk liquid maintains a higher temperature compared to the liquid at the droplet's surface. [61] 

The second factor is a shift in local composition (solute Marangoni effect), where the 

concentration of dissolved solute varies across the droplet. Different solutes can have diverse 

impacts on surface tension. [90] At room temperature, capillary flow often dominates drying 

within a droplet, while Marangoni flow driven by temperature becomes more prominent on 

heated surfaces. [1] 

 

 
 

Figure 2.3. The flow patterns inside an evaporating droplet, illustrating both Capillary and 

Marangoni flows. The lines indicate the direction of the flow. Adapted from [91] 
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2.1.2. Biomolecules Within Drying Droplets 

 

Biological fluids, or biofluids, are a type of complex fluid that typically contain salts. [92, 93] 

The drying behavior of droplets containing biologically relevant substances, such as DNA, 

proteins, plasma, blood, bacteria, and algal dispersions, has attracted considerable attention in 

recent decades. [94-97] These droplets form distinct patterns upon drying, which have promising 

applications in medical fields such as biosensors, diagnostics, drug delivery, and combating 

antimicrobial resistance. [71, 98, 99] Consequently, substantial progress has been made in 

understanding these patterns and developing advanced image-based analysis techniques for 

potential biomedical applications. [1] The drying process of drops of these fluids involves 

several physical and physiochemical steps depending on several parameters including nature 

of salute components, the substrate chemistry, and environmental conditions. [89, 100, 101] 

 

Deoxyribonucleic acid (DNA) 

 

Recent research focused on leveraging the drying droplet method to comprehend self-

assembly, microarray techniques, and the patterning of DNA in diverse microenvironments. 

[102, 103] DNA is a double helix polymer consisting of polynucleotide chains, where each 

nucleotide comprises a 2-deoxyribose sugar, a phosphate group, and a nitrogenous base. [104] 

The nitrogenous bases, as depicted in Figure 2.4, consist of purines (adenine 'A' and guanine 

'G') and pyrimidines (thymine 'T' and cytosine 'C'). [105] The deoxyribose sugar and phosphate 

group form a backbone to which the nitrogenous bases attach directly to the sugar unit. [106] 

Notably, DNA carries a negative charge, which is attributed to the phosphate groups in the 

DNA backbone, making both the phosphate backbone and overall DNA structure negatively 

charged. [107] Each nitrogenous base possesses a unique structure and can create particular 

hydrogen bonds (Figure 2.4, red boxes) because of its electron-accepting and donating 
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characteristics. Adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C), 

resulting in equal amounts of A and T, and G and C in a given sample of DNA. [108] The 

arrangement of base pairs creates major and minor grooves, offering unique chemical 

environments for interaction. [109] The major groove provides multiple interaction sites, 

resulting in strong binding to drugs or ligands compared to the minor groove. The major groove 

has a width of 11.6 Å and a depth of 8.5 Å, allowing larger molecules like proteins to easily fit 

in. In contrast, the minor groove, which is smaller and has fewer binding sites, is often 

unoccupied due to its 8.2 Å depth, making it accessible for smaller drug molecules to interact. 

Since many antibiotic and anticancer drugs consist of small molecules, the minor groove acts 

as their primary binding site. [105, 110] 

 

 
 

Figure 2.4. DNA molecule structure. (a) Double helix model showing two antiparallel strands twisted 

around each other. The strands consist of a sugar-phosphate backbone and nitrogenous base pairs: 

adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C), connected by hydrogen 

bonds. Major and minor grooves are visible along the helix. 

(b) Base pairing and strand orientation illustrating the antiparallel arrangement (5′ to 3′ and 3′ to 5′) and 

specific hydrogen bonding between complementary bases. 'A' pairs with 'T' through two hydrogen 

bonds, and 'G' pairs with 'C' through three hydrogen bonds. Adapted from [107] 
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Li et al. introduced a method for nucleic acid detection by applying the hybridization-

induced suppression of the coffee ring effect. Typically, as a droplet evaporates on a solid 

surface, suspended spherical particles migrate outward, forming a ring-shaped pattern. 

However, non-spherical particles tend to adhere to each other at the air-water interface, 

resisting this outward flow and suppressing the coffee ring effect. In this method, suspended 

microspheres were functionalized with oligonucleotide probes complementary to target DNA. 

Upon hybridization, these probes connected multiple microspheres, forming non-spherical 

particle agglomerates that resist capillary flow, resulting in more uniform particle deposition 

(Figure 2.5). They exhibited high specificity and could even detect a single nucleotide 

mismatch. Due to the simplicity of its operation and the visual readout without requiring a 

special detector, the "coffee ring" approach demonstrates the immense potential for 

inexpensive and convenient nucleic acid detection in resource-limited settings. [111] Moreover, 

another study highlights the impact of DNA strand length, varying in the number of base pairs, 

on drying dynamics, the coffee-stain effect, nanoscale structure, and aggregation. Intriguingly, 

the study suggested a connection between DNA viscosity and drying behavior. Their findings 

indicated that lower viscosity, observed in solutions with shorter DNA chains, facilitates 

mobility within the droplet, promoting continuous deposit growth during drying. The 

crystallization mechanism likely involves DNA strands serving as nucleation sites at the solid-

liquid interface, causing dendrite crystal formation through diffusion-limited growth. 

Conversely, for longer DNA chains, crystallization was attributed to "faceted growth," 

primarily a nucleation-limited process. [112]   
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Figure 2.5. Detection of target DNA using the coffee ring effect. Microspheres functionalized with 

DNA probes hybridize with target DNA to form non-spherical aggregates, suppressing the coffee ring 

effect and resulting in uniform particle deposition. This method enables simple, highly specific, and 

low-cost nucleic acid detection without the need for specialized equipment. Adapted from [111] 

 

Histones 

 

Over two decades, there has been significant attention focused on the drying of droplets 

containing various types of proteins. Previous studies categorized the protein-drying droplets 

into three types: globular proteins, fibrous proteins, and composite proteins (a mix of globular 

and fibrous proteins). [1] Histones are essential globular proteins that organize DNA into 

chromatin, ensuring proper packaging while maintaining accessibility for vital processes such 

as replication, transcription, repair, and recombination. [113-115] These proteins prevent DNA 

tangling, protect it from damage, and serve as molecular spools around which DNA wraps to 

form nucleosomes, thereby regulating gene expression and replication. [116, 117] These 

nucleosomes, in turn, are intricately organized into tightly packed chromatin fibers. Without 

histones, the DNA strands within chromosomes would extend to considerable lengths. [118] For 

example, a human cell contains roughly 1.8 meters of DNA when fully extended. However, 

when wrapped around histones, this length is condensed to approximately 90 micrometers 

(0.09 mm) of chromatin fibers with a diameter of 30 nanometers. Histones are classified into 

five families: H1/H5, known as linker histones, and H2, H3, and H4, referred to as core 
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histones. The nucleosome core comprises two H2A-H2B dimers and a H3-H4 tetramer. The 

histone octamer complex consists of two copies each of H2A, H2B, H3, and H4 proteins. This 

complex forms the protein core around which approximately 146 or 147 base pairs of DNA are 

wrapped. The DNA wraps around the histone octamer in about 1.67 turns of a left-handed 

superhelix. This complex of DNA and histone proteins is called a nucleosome and forms the 

fundamental unit of eukaryotic chromatin. [119-122] Between each nucleosome, there is a 

segment of DNA called "linker" DNA, which can vary in length from 20 to 80 base pairs. The 

nucleosomes themselves form a chain about 10 nanometers wide. This chain is then folded into 

a denser fiber that is about 30 nanometers wide. This folded structure further combines into 

higher-order formations. [123, 124] A protein called linker histone H1 (or H5) helps organize this 

linker DNA between nucleosomes (Figure 2.6). When linker histones attach to a nucleosome, 

they shield additional 22 base pairs of DNA around the nucleosome structure, as shown by 

DNase I cleavage experiments. [125] This whole package, including the nucleosomes, linker 

histones, and the DNA they interact with, is called a chromatosome. [125, 126] 

 

 
 

Figure 2.6. Nucleosomes structure. Nucleosomes consist of DNA wrapped around histone octamers, 

with linker DNA and histone H1 facilitating chromatin compaction and organization. Adapted from [127] 
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Since the latter half of the previous century, it has been well-established that the interaction 

between a protein and a DNA molecule plays a pivotal role in the functioning of living cells 

and the overall sustainability of life. This interaction governs fundamental molecular and 

cellular processes, including transcription, transcriptional regulation, recombination, 

replication, DNA repair, DNA packaging, and DNA modifications. [128] Studies have often 

approached this subject from two primary perspectives: i) a transcriptomic level, investigating 

the binding of specific proteins to particular DNA sequences or genes and how this interaction 

influences gene expression, and ii) a chemical perspective, examining the structural aspects of 

the formed complexes. Notably, there is a significant overlap between these two approaches. 

[14, 129] In the 1960s, Leng and Felsenfeld [130] made significant strides in understanding how 

DNA molecules interact with proteins. They discovered patterns and preferences in the 

interactions between amino acids and DNA base sequences. Specifically, they found that 

polylysine polypeptides tend to interact preferentially with A-T-rich DNA, while polyarginine 

shows a preference for G-C-rich DNA. 

A decade later, Seeman et al. [131] contributed more insights into the structure of these 

interactions. They utilized hydrogen-bonding atoms identified on the edges of DNA bases to 

propose that specific amino acid side chains have an affinity for particular nucleotides. 

Furthermore, they suggested that these interactions are more specific within the major groove 

of DNA rather than the minor groove. Subsequently, studies that involved model building, 

following McKay and Steitz's [132] pioneering use of X-ray crystallography to detect DNA-

protein complexes, indicated that the Escherichia coli catabolite gene activator protein (CAP) 

binds to the major groove of DNA. Later, researchers like Pabo and Sauer, [133] along with 

Matthews, [134, 135] continued to delve into the connection between amino acids and DNA bases, 

incorporating electrostatic and van der Waals interactions into their models.  

2.2. Protein-DNA Interaction Classification 
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In summary, based on previous literatures, four forces govern protein-DNA 

interactions: (1) hydrogen bonding between amino acids and the grooves of the DNA helix, (2) 

electrostatic attraction between the negatively charged DNA backbone and positively charged 

amino acids, (3) hydrophobic interactions, including π-π stacking between aromatic amino 

acids and DNA bases, and (4) Van der Waals forces that stabilize interactions over large surface 

areas. [136, 137] 

 

2.2.1. Histone-DNA Interactions 

 

Histone-DNA interactions are crucial for chromosome structure and gene regulation. Acidic 

chromosomal proteins are prominent candidates for regulating specific genes, contrasting with 

the less specific DNA binding histones exhibited by core histones (basic proteins). Linker 

Histone (H1) found in most eukaryotic chromosomes, is known for its preferential binding to 

specific DNA regions and distinct folding patterns within chromosomes. [138-141] The 

investigations indicated that H1 induces compaction of the nucleosome chain, resulting in a 

more densely folded chromatin structure. H1, found on the outside of the nucleosome, keeps 

the higher order of structure by connecting the DNA between neighboring nucleosomes. 

Changes in how tightly chromatin is packed happen due to alterations in H1-DNA interactions. 

[142, 143] In previous studies, the preferential interaction of H1 with eukaryotic DNA in contrast 

to prokaryotic DNA has been demonstrated through filter binding assays utilizing 

nitrocellulose filters. In 2007, Al-Natour et al. showed the binding of highly lysine-rich H1 to 

superhelical DNA, favoring it over linear or nicked circular DNA forms as deduced from direct 

competition experiments. [144] Lymphocyte DNA fragments, weighing 2 × 106 Da exhibited a 

binding affinity with H1 at a magnitude at least 15 times greater than equivalent E. coli 

fragments of the same molecular weight (2 × 106 Da). Moreover, studies have shown that the 

distribution of preferential binding sites for histone I on fragmented DNA is strongly influenced 
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by the size of the DNA fragments. Larger DNA fragments are more likely to contain 

preferential binding sites for histone I, while smaller fragments tend to lack these sites. This 

finding highlights the critical role of DNA type and its fragment size in regulating the 

interaction between DNA and histones, which is important for understanding the dynamics of 

chromatin structure and the specificity of histone-DNA binding.[138]  

A previous study has demonstrated that double-stranded DNA can induce the formation 

of secondary structures, such as helices and turns, in a peptide from the C-terminal (COOH-

terminal) domain of histone H1, which is otherwise mostly unstructured in solution. This 

domain is located next to the globular region of histone H1 and may affect the shape of linker 

DNA where it enters and exits the nucleosome. As a result, it could play a role in gene 

regulation mediated by the histone tail domains. [145] Mello et al. (2012) showed the vibrational 

characteristics of DNA chemical groups, notably PO2, were influenced in distinct ways by 

histone H1, protamine, and histone-mimicking macromolecules. Specifically, they reported 

that the shift of DNA PO2
- antisymmetric stretching to a lower frequency accompanied by an 

enhanced intensity of this vibration is particularly influenced by lysine-rich histones. [146]  

 

 

2.3.1. General Polymer Surface Properties and Classifications  

 

The performance of biomaterials is significantly influenced by their interfacial properties, 

which affect key aspects like cell adhesion, [25] biocompatibility, [27] and wettability. [28] A 

common approach to enhance these surface properties is through the application of polymer 

coatings, which can impart functionalities such as antifouling, bactericidal, or improved 

biocompatibility. [147, 148] After modifying the polymer surfaces, characterization and control of 

the functional groups on material surfaces is essential for optimizing their performance for 

2.3. Surface Classification and Recognition of Functionalized 

Polymer Coatings 
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various applications. [148] Moreover, surface characterization is frequently employed in industry 

to detect potential surface contaminants and to analyze variations in surface chemistry that may 

affect adhesion, wetting, biological integration, catalyst fouling, or other performance 

characteristics. [36]  

Effective polymer surface classification provides a systematic framework to evaluate, 

compare, and predict the performance of polymer coatings under diverse functional 

requirements. This is especially critical in biomedical, environmental, and industrial 

applications, where surface-dependent behaviors such as protein binding significantly impact 

material performance. 

Polymer surfaces can generally be divided into untreated and surface-modified 

categories. While untreated surfaces retain the native characteristics of the polymer, such as 

the inherent properties of natural polymers like chitosan, collagen, and cellulose, surface-

modified variants are engineered through physical or chemical processes to enhance 

functionality for specific applications. Additionally, polymer film surfaces can be classified 

based on variations in molecular structure, composition and ratio of their constituent materials, 

as well as preprocessing methods and environmental conditions during their fabrication. [149, 

150] A reliable classification system not only facilitates material selection and application-

specific optimization but also supports the reproducibility of results across studies and 

industries. 

 

2.3.2. Wettability-Based Surface Classification 

 

Various classification methods have been developed to improve the design and 

optimization of surfaces, focusing on measurable properties such as wettability and hydration 

behavior. These parameters serve as critical indicators for evaluating and recognizing the 

functionality of polymer coatings. Previous studies have highlighted the importance of 
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wettability-driven classification in optimizing the design and performance of functionalized 

polymer coatings. Surfaces are commonly classified based on static contact angle 

measurements, distinguishing them as superhydrophilic (<10 °), hydrophilic (10 °–90 °), 

hydrophobic (90 °–150 °), or superhydrophobic (>150 °). These thresholds are commonly used 

to correlate wetting behavior with biological or industrial performance. Wettability is primarily 

governed by the balance of intermolecular forces at the solid–liquid interface and is affected 

by liquid properties, surface characteristics of the solid, and surrounding environmental 

conditions. This property can be deliberately tuned through physical modification of surface 

morphology or chemical alterations of the surface composition. Extensive research has 

revealed that modifying a material’s surface texture and roughness can effectively influence its 

wetting behavior with different liquids. [151-153] In addition, surface functionalization techniques 

that introduce hydrophilic or hydrophobic chemical groups have been widely employed to 

tailor a surface’s interaction with water, thereby achieving the desired wetting characteristics. 

[154, 155] As a key surface attribute, wettability significantly impacts the biocompatibility of 

polymer materials, particularly in biomedical contexts. It governs protein-surface interactions, 

where increased surface hydrophobicity generally leads to greater protein adsorption and more 

pronounced conformational changes in the adsorbed proteins. [156, 157]  Conversely, highly 

hydrophilic surfaces form a strong hydration layer that acts as a protective barrier, preventing 

nonspecific molecular adhesion and enhancing antifouling performance. [158] Moreover, the 

ability of a surface to retain hydration is closely influenced by both the intrinsic properties of 

the material and its surface architecture. Key factors include the chemical composition, 

hydrophobicity, along with surface-specific features such as film thickness, and the packing 

density of surface molecules. These combined parameters play a critical role in determining 

the surface’s interaction with its environment and thus contribute to the classification of 

polymer coatings based on wettability-related behavior.[158] Integrating multiple 
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physicochemical metrics, including contact angle, surface energy, and chemical composition, 

can lead to a more robust and comprehensive classification framework, enhancing the 

predictability of coating behavior in practical applications. 

 

2.3.3. Thickness-Based Classification of Layer by Layer Films 

 

In addition to wettability, film thickness represents a fundamental parameter for the 

classification and functional assessment of polymer-coated surfaces. This property is closely 

linked to key material behaviors, such as surface packing density and resistance to nonspecific 

protein adsorption, which are critical in both biomedical and industrial applications. [159] 

Thickness-dependent classification provides valuable insights into the performance of 

multilayer assemblies, particularly in layer-by-layer (LbL) fabricated coatings, where precise 

control over structural parameters is essential. Several challenges have been identified in the 

development of LbL films, particularly regarding the empirical selection of polycations and 

polyanions, as well as the inherently time-consuming nature of multilayer construction. The 

accurate control of film thickness remains difficult due to the sensitivity of the deposition 

process to environmental factors, including pH, temperature, and ionic strength. Moreover, the 

diversity in polymer, polymer interactions and growth kinetics, ranging from linear to 

exponential, complicates the formation of homogeneous and reproducible coatings. To assess 

and classify surface coatings based on thickness, various analytical techniques have been 

widely adopted. Among them, quartz crystal microbalance with dissipation monitoring (QCM-

D), atomic force microscopy (AFM), and ellipsometry are frequently employed. However, 

inconsistencies among these methods have been reported, particularly in the quantification of 

ultrathin films, emphasizing the need for standardized and systematic approaches to thickness-

based surface classification. Thickness-based classification serves as a critical parameter for 

the systematic characterization of polymer-coated surfaces. By correlating film thickness with 
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functional performance, this approach enhances the predictive capability of surface behavior 

under specific application conditions and supports the rational design of advanced coating 

systems. [160] 

 

2.3.4. PPX Polymers and their Applications 

 

Poly-p-xylylene polymers are highly regarded for their ability to modify surface properties by 

forming stable, conformal coatings, thereby enhancing the performance of a wide range of 

materials. Certain members of the poly-p-xylylene family, commercially known as Parylenes, 

are particularly valued for their exceptional solvent resistance at elevated temperatures, high 

melting points, low dielectric constants, and outstanding barrier properties. These 

characteristics make PPX highly suitable for applications requiring chemical stability, 

electrical insulation, and effective protection against environmental factors. There is a strong 

focus on understanding how these properties influence performance, particularly in electronic 

materials, biomaterials, and separation technologies. [161] Parylene coatings are found to be 

extensively used as barriers in implantable chemical sensors, stainless steel implants, 

pacemakers, stents, and catheters. Commercially available Parylenes include Parylene N 

derived from non-functionalized PCP, Parylene-C (produced from mono-chloro-PCP), and 

Parylene-D (derived from di-chloro-PCP). [162] Parylene C, a flexible dielectric polymer, is 

commonly utilized in electronic applications for its ability to enable the production of fully 

transparent and flexible devices. Serving as a substrate or encapsulation material, it offers a 

flexible medium conducive to high-frequency electronic signal operation due to its low 

dielectric loss properties. Additionally, its minimal moisture absorption significantly enhances 

the stability of compatible electronic technologies, such as oxides and organics. [163] 

Fluorinated variants such as Parylene HT or Parylene AF-4 offer enhanced thermal and UV 

stability, making them ideal for use in advanced thin-film transistors. [164] For instance, Kim et 
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al. demonstrated the potential of PPX derivatives, including PPX-AF4, as dielectrics for oxide-

based semiconductors on flexible plastic substrates. In their study, a dielectric film of PPX-

AF4, combined with other PPX variants, resulted in organic thin film transistors (TFTs) with 

significantly improved mobility, outperforming conventional SiO2 dielectric top gates. 

Additionally, semiconductor-insulator TFT designs using a PPX-AF4 layer with barium zinc 

tin oxide (BZTO) as the semiconductor material exhibited promising mobility values, 

highlighting the potential of these fluorinated PPX materials in electronic applications. [165] 

Nonfunctional and halogen-containing PCPs are widely accessible and can be used as 

commercial precursors for barrier coatings like Parylene N, C, D, HT, and AF-4. These 

coatings exhibit high solvent, temperature, and chemical stability, along with low dielectric 

constants. [37]  

With the growing focus on advanced medical treatments, such as artery stents, implants, 

bioadhesive sensors, and wound healing patches, there is an increasing demand for customized 

biointerfaces. PPX polymers are particularly promising in this field due to their high molecular 

weight, strong adhesive properties, and ability to provide uniform coverage. These 

characteristics make PPXs highly suitable for use as coatings in drug-eluting stents (DES). 

Significant advancements have been made in DES development, including the FDA-approved 

Taxus product by Boston Scientific. [166] Enhanced methods for synthesizing PCPs, featuring 

functional groups such as hydroxyl, amine, and aldehyde, have been developed. These 

precursors hold promise for producing bioactive coatings. [167, 168] For instance, using 

functionalized PPX coatings, poly-(hydroxymethyl-p-xylylene-co-p-xylylene) (PPX-HM), 

Vorwerk et al. designed biocompatible stents that did not rely on the release of therapeutic 

drugs. Their study demonstrated the in vitro biocompatibility of PPX-HM-coated stents, 

showing reduced platelet adhesion compared to uncoated controls. [161] In a recent study, 

researchers demonstrated the remarkable potential of PPX coatings by developing an alkyne-



Background 

 

24 

 

functionalized variant that serves as an excellent platform for biomolecule attachment via the 

surface-oriented CuAAC click reaction. This functionalized PPX-Alkyne coating enabled the 

conjugation of poly (sulfobetaine methacrylate-co-Az), resulting in highly stable polymer 

layers that effectively inhibited cell adhesion and protein adsorption. [169] Its ability to support 

precise biomolecular modifications enhances its relevance in advanced medical technologies, 

further establishing PPX as a crucial material for next-generation biomedical coating. 

 

 

 

 

Conventional wet chemical coating methods, such as spray, dip, and spin coating, can provide 

satisfactory results for many applications. However, they face significant challenges when 

precise thickness control, high-quality coatings, and uniform coverage of complex geometries 

are required. These limitations arise due to solvent evaporation during drying and baking, 

which can introduce defects like pores and cracks, compromising coating integrity. 

Additionally, the effectiveness of solvent-based coatings depends on the substrate’s surface 

energy and chemical compatibility, making them unsuitable for certain materials. Furthermore, 

achieving uniform coatings on porous or curved surfaces often necessitates multiple processing 

steps. To overcome these challenges, chemical vapor deposition (CVD) polymerization has 

gained increasing attention, offering a solvent-free approach that ensures conformal, 

chemically pure, and defect-free coatings for biomedical and industrial applications. Based on 

the intended application area, various polymer layers with different functional groups can be 

derived using the CVD technique. [161, 170] 

The production of poly(p-xylylene) (PPX) films and their functionalized variants, 

employ various polymerization techniques. One of these methods involves a reaction pathway 

utilizing paracyclophane (PCP) as a precursor molecule, a process first outlined by William 

Gorham at Union Carbide in 1966. [171] This Gorham technique utilizes heat to decompose 

2.4. Chemical Vapor Deposition Polymerization 
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vapor-phase reactants associated with [2.2] paracyclophane (PCP). The resulting radical 

species polymerize on cooled surfaces through a chain growth mechanism. This cyclophane-

based CVD polymerization process involves three distinct stages. Firstly, the PCP precursor 

undergoes sublimation at temperatures ranging from 100 to 200 °C under vacuum conditions 

of 0.1–0.3 Torr. Subsequently, the precursor gas is transported via a stream of inert gas, such 

as argon, to the pyrolysis zone, where the PCP precursor reacts at temperatures between 500 

and 800 °C to form two 1,4-quinodimethane radicals while retaining the functional groups. 

Because of the minimal energy gap between these two states, typically ranging from 8 to 9 kcal 

mol-1, the radical exhibits high reactivity and readily condenses at lower temperatures, forming 

PPX. For this, the pre-formed radicals are transported to a deposition stage maintained at lower 

temperatures (>30 °C). In this stage, the substrate is positioned, leading to the formation of 

parylene polymers or copolymers on the surface. In the deposition chamber, parameters 

including deposition temperature, monomer ratio, and deposition rate significantly influence 

the properties of the deposited polymer. For instance, the deposition temperature and rate 

directly impact the formation of the polymer, thereby affecting characteristics such as barrier 

properties, which in turn influences its suitability for various applications. Lower deposition 

temperatures are associated with higher growth rates and the deposition of polymers with 

higher molecular weights, resulting in superior thermal stability. PPX polymerized at a rapid 

deposition rate tends to exhibit a granular morphology with high surface roughness, whereas 

PPX polymerized at a slower deposition rate tends to have a smoother surface. The flexibility 

of the CVD method allows for the creation of functional parylene coatings with adjustable 

thickness, spatial and temporal compositions, and multi-layer arrangements. [172]  

In conclusion, chemical vapor deposition (CVD) polymerization is a highly efficient 

technique for achieving high-quality surface functionalization and is applicable to a wide range 

of substrates, including metals, ceramics, glass, and synthetic materials. [173-177] Through CVD 
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polymerization, functionalized PCPs can introduce a variety of functional groups without 

altering the underlying backbone chemistry. [37, 178] Since CVD polymerization involves the 

direct deposition of polymer films from the gas phase, it eliminates the need for solvents, 

catalysts, or liquid phases in the process. [179] Moreover, CVD polymerization enables the 

integration of bio-based materials into thin film fabrication, offering a more sustainable 

approach to surface modification. Unlike conventional high-temperature deposition methods 

that may compromise temperature-sensitive substrates, CVD can be carried out at or even 

below room temperature, preserving the structural integrity of delicate materials. This process 

involves high-temperature monomer activation followed by low-temperature deposition, 

allowing the formation of high-quality polymer coatings without causing damage. As a result, 

CVD polymerization serves as a versatile and environmentally friendly technique suitable for 

a wide range of applications. [180, 181] This technique produces uniform, pinhole-free coatings 

with minimal impurities, which can be easily patterned. [180, 182] Chemical vapor deposition 

(CVD) polymerization offers a versatile engineering of surface properties, applicable to various 

substrate types. [162] 

The experimental setup for chemical vapor deposition (CVD) polymerization is 

configured to regulate various factors, such as the temperature of pyrolysis, pressure, flow rate 

of the carrier gas, and the temperature of the substrate (Figure 2.7). 
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Figure 2.7. Conceptual overview and schematic representation of the CVD polymerization 

process. For copolymerization, both precursor components (PCP1 and PCP2) are sublimated and 

pyrolyzed simultaneously, enabling the spontaneous formation of copolymers in the deposition 

chamber. Adapted from [183] 

 

In this dissertation, CVD polymerization is a sustainable method for depositing 

uniform, defect-free thin films with tunable properties. Its high-precision coating capability 

provides a reliable platform for studying droplet drying dynamics by minimizing surface 

defects and ensuring accurate observations, which is essential for optimizing applications 

related to droplet behavior. This approach also allows precise control over the thickness and 

composition of the surface, ensuring consistency across experiments. [184] In this study, CVD-

coated surfaces play a key role in investigating protein/DNA interactions and surface 

chemistries recognition and classification. The uniformity and controllability of these coatings 

reduce surface irregularities, ensuring that droplet patterns, molecular interactions, and protein 

adsorption behaviors mainly depend on the intrinsic properties of the biomolecules rather than 

unintended surface variations. This level of surface consistency is particularly valuable for deep 

learning applications, as it provides high-quality, reliable data for training models to analyze 

droplet behavior, molecular interactions, and surface recognition with high accuracy. 
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Machine learning is the study of algorithms that enable computers to automatically learn from 

data and enhance their performance based on experience, enabling autonomous decision-

making without external aid. [185] These decisions are derived from identifying important 

patterns in complex datasets. There are several primary categories of machine learning 

algorithms, including supervised, unsupervised, and reinforcement learning, based on their 

learning approach and input and output data types, as well as the specific problems they target. 

[186, 187] Additionally, there are hybrid approaches and other common methods that provide 

natural extensions of machine learning problem formulations. Supervised learning is employed 

when data includes input variables along with corresponding output target values. [185] 

Supervised learning consist of two main categories: classification and regression. [188] 

Classification involves predicting an output variable that belongs to a finite set of known 

categories, such as distinguishing between "cat" or "dog" and determining "positive" or 

"negative" outcomes. In contrast, regression focuses on predicting an output variable that is a 

real or continuous value, such as estimating a "price". [189] 

 

2.5.1. Deep Learning 

 

As illustrated in Figure 2.8, deep learning, a subset of machine learning, plays a crucial role in 

various fields such as image recognition, natural language processing, and speech recognition. 

[190] Since 2006, deep learning has become a significant domain within machine learning, 

revolutionizing by promoting end-to-end learning, i.e., processing data from pixel level to real-

world applications. [191] Unlike traditional machine learning models that rely on handcrafted 

features, deep learning models leverage multiple layers of artificial neurons to progressively 

2.5. Machine Learning 
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extract higher-level features from raw input data. At the heart of deep learning are artificial 

neural networks, which are inspired by the structure and functionality of the human brain. 

In recent years, deep learning has enhanced the analysis of noisy biomarker data, 

improving assays for DNA sequences, gene expression, and other biological measurements. It 

also aids in phenotype prediction from genetic data, including traits and disease risks, by 

integrating additional data such as medical images and clinical histories. A promising approach 

involves predicting intermediate molecular phenotypes, such as gene expression or splicing, 

which are easier to forecast and provide valuable insights for disease prediction. Overall, deep 

learning’s ability to process complex data and predict molecular states has made it a powerful 

tool in advancing genetic and medical research. [192] 

The current surge in deep learning can be attributed primarily to three key factors: the 

remarkable enhancement in chip processing power, particularly the widespread use of GPUs, 

the substantial reduction in computing hardware costs, and the notable progress in machine 

learning algorithms. [193] The deep learning algorithms are divided into four categories based 

on the basic method that they are derived from: Convolutional Neural Networks (CNNs), 

Restricted Boltzmann Machines (RBMs), Sparse Autoencoder, and Long Short-Term Memory 

(LSTM). [194]  

 

 
 

Figure 2.8. Data science methods include different approaches. Artificial intelligence (AI) is a part 

of data science and includes traditional programming as well as machine learning (ML). Machine 

learning involves several models and techniques, including deep learning (DL) and Convolutional 

neural networks (CNN). Adapted from [195] 

 



Background 

 

30 

 

The Multi-Layer Perceptron (MLP) is a fundamental feedforward neural network that 

serves as the basis for deep learning models. Conceptually inspired by the structure and 

function of the human brain, the MLP consists of three main layers: an input layer, an output 

layer, and typically one or more hidden layers. In the brain, the approximately 86 billion 

neurons work in parallel, receiving input through dendrites, processing it in the cell body, and 

transmitting output along axons. The synaptic connections between neurons are crucial for 

learning, as they strengthen or weaken over time based on experience, a process called synaptic 

plasticity. This adaptability forms the basis of memory and learning in the brain. Similarly, in 

an MLP, each neuron in a layer is connected to all neurons in the next layer, enabling efficient 

flow of information. 

The input layer of the MLP functions like the brain’s sensory cortex, receiving data 

from the external environment. This data is then passed through one or more hidden layers, 

where the network learns complex patterns and relationships through weighted connections. 

This process mirrors how the brain’s association cortex processes and integrates sensory inputs, 

relating them to past experiences and knowledge. As in the brain, where synaptic connections 

adjust based on experience, the MLP adjusts the weights of its connections through a process 

known as backpropagation, fine-tuning these weights during training using gradient descent. 

Finally, the output layer generates a prediction based on the learned features, similar to how 

the brain responds to inputs and adapts to new information. Figure 2.9 illustrates a biological 

neuron, versus single-neuron perceptron model where multiple input values (x1, x2, …, xn) and 

a bias term (represented as 1) are each assigned corresponding weights (w0, w1, …, wn). These 

weighted inputs are summed at the summation node (∑) before being passed through an 

activation function (g), which determines the final output (y) (Eq 2.5.1). [196] 

 

                                               𝑦 = 𝑔 (𝑤0 +  ∑ 𝑥𝑖  𝑤𝑖
𝑛
𝑖=1 )                                       (Eq 2.5.1) 
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Figure 2.9. The schematic of biological neuron versus single-neuron perceptron. Adapted from [196]  

 

2.5.2. Convolution Neural Networks (CNNs)  

 

The Convolutional Neural Network (CNN) extends the concept of MLPs by incorporating 

specialized layers, such as convolutional and pooling layers, which enable automatic feature 

extraction from spatial data. Unlike MLPs, which treat all input features equally, CNNs 

preserve the spatial structure of images, allowing them to capture important local patterns such 

as edges, textures, and shapes. This makes CNNs particularly effective for image processing 

and classification, object detection, face recognition, automatic handwriting recognition, and 

other computer vision tasks. [197-204] The application of CNN has significantly expanded due to 

its ability to extract crucial patterns from images without human intervention. [205] For instance, 
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if a given dataset containing various images featuring both dogs and cats, a CNN that was 

trained with a large number of examples can automatically distinguish whether a particular 

image represents a dog or a cat by utilizing the key features it has acquired through learning. 

[206]  

As shown in Figure 2.10, the image (which serves as input data for the Convolutional 

Neural Network) has three dimensions: width, height, and depth. Each layer of the CNN takes 

a 3D input and produces a 3D output of neuron activations. For RGB images, the depth is 3, 

representing the three-color channels, while the height and width correspond to the dimensions 

of the image. [203] CNN consists of three neural layers: convolutional, pooling, and fully 

connected. The initial two layers, convolution and pooling, primarily engage in feature 

extraction, while the third layer, a fully connected layer, translates these extracted features into 

the final output, such as classification. [207] The standard image classification CNN architecture 

is presented in Figure 2.10. [208] The training process of the network involves two stages: the 

forward stage (Forward propagation) and the backward stage (Backpropagation). [203, 209] In 

forward propagation, the network processes the input data through its layers to generate 

predictions. During this phase, the kernels in the convolutional layers and weights in the fully 

connected layers are applied to the input data. The predicted outputs are compared to the 

corresponding ground truth labels through a loss function, which quantifies the discrepancy 

between the predicted and actual values. In backpropagation, the loss value obtained from 

forward propagation is used to update the learnable parameters, such as kernels and weights. 

The backpropagation algorithm, combined with the gradient descent optimization method, 

adjusts these parameters to minimize the error, improving the model's performance in future 

iterations. Once enough iterations of the forward and backward stages have been completed, 

the network learning process can be stopped. [194] 
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Figure 2.10. The pipeline of the general CNN architecture. A CNN consists of several parts, 

including: convolution layers, pooling layers, and fully connected layers. The model's performance is 

evaluated using a loss function during forward propagation on the training dataset. The learnable 

parameters, such as kernels and weights, are then updated based on the loss value through 

backpropagation using the gradient descent optimization algorithm. Adapted from [194] 

 

Convolutional Layers  

 

The convolutional layer acts as the fundamental building block of CNN. [210] Its primary 

role is feature extraction, which typically combines linear and nonlinear operations i.e., 

convolution operations and activation functions. [207] The convolution operation offers three 

primary benefits. [211] i) Efficiency through shared weights: Convolution operations contribute 

to increased model efficiency by reducing the number of parameters that need to be learned 

compared to fully connected neural networks. This efficiency arises from the shared weights 

across different positions, leading to a more compact representation of the learned features. ii) 

Translation invariance: It ensures that local feature patterns extracted by kernels remain 

invariant to translation as the kernels traverse through different positions within the image. 

This enables the detection of learned local patterns consistently across the image. iii) Spatial 

hierarchies and downsampling: By incorporating downsampling along with a pooling 

operation, convolution operations facilitate the learning of spatial hierarchies of feature 

 

 

 

 

 

 

Forward propagation 

Back propagation 
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patterns. This process results in the capture of progressively larger fields of view, enhancing 

the network's ability to understand complex spatial relationships. 

This layer takes input data along with a kernel (or filter), typically a 2D array of 

numbers, which contains learned weights, in the case of image input. The configuration of a 

convolutional layer is primarily determined by several hyperparameters, including the number 

of filters, their spatial dimensions (e.g.,3 × 3), stride, and padding. Stride indicates the degree 

of movement of the filter as it scans across the image. The output is determined by the kernel 

configuration. The kernel or filter moves horizontally across the input image with a specific 

stride value until it covers the entire width. It then shifts downward to the starting position on 

the left side of the image with the same stride value and repeats this process until the entire 

image has been traversed. This output then becomes the input for the next stage of processing 

(Figure 2.11). For instance, the convolution operation involves an input image of size 6 × 6 

convolved with a 3 × 3 kernel to generate a 4 × 4 convoluted feature maps. At each position, a 

3 × 3 region of the input is multiplied element-wise with the filter, and the results are summed 

to produce a single value in the output map. [203] The size of the resulting feature map is 

determined by the dimensions of the kernel in use. For RGB-colored images, the multiplication 

process occurs independently for each color channel (red, blue, and green) using the respective 

kernel. Subsequently, the outputs from these operations are combined to form the convolution 

output. [203]  

 

 



Background 

 

35 

 

 
 

Figure 2.11. The operation of the convolutional layer. An illustration of the convolution operation is 

shown with a 3 × 3 kernel, and a stride of 1. The kernel is applied across the input tensor, performing 

element-wise multiplication at each location, followed by summing the results to produce the output 

value in the corresponding position of the output tensor, known as the feature map. Adapted from [212]  

 

Padding is used to maintain the size of the output after applying convolution (Figure 

2.12). By adding zeros around the borders of the image, the filter can slide across the entire 

image without reducing the output dimensions, thereby ensuring that the output size remains 

equal to the input size when using the same padding. This technique is particularly useful for 

preserving spatial information and preventing loss of data at the edges during the convolution 

operation. [213] 

 

 
 

Figure 2.12. Illustration of zero-padding in image processing. The image is padded with zeros along 

its borders to enable the filter to slide over it while maintaining an output size that is equal to the input 

size. Adapted from [212] 
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Size of the kernels, the number of kernels, padding, and stride are hyperparameters that 

must be defined before the training process begins. Kernel weights are considered parameters 

in a CNN, as they are learned and adjusted during the training process. [207] 

 

Nonlinear Activation Function 

 

The activation function selected for a neural network significantly influences its overall 

performance and the efficiency of its learning process. [214] Activation functions are essential 

because they introduce nonlinearity into the model, allowing neural networks to capture 

complex patterns in data. Effective activation functions typically exhibit properties such as 

differentiability to facilitate gradient-based optimization, simplicity for efficient computation, 

minimal parameters to reduce computational complexity, and robustness against saturation 

which helps prevent vanishing gradients that could obstruct parameter updates and hinder deep 

network training. [215] 

The outputs of the convolutional layer pass through a nonlinear activation function 

(Figure 2.13), which is crucial for introducing nonlinearity into the network. However, when 

the input variable takes on either a large positive or small negative value, certain activation 

functions can saturate, becoming unresponsive to small changes in the input data. This 

saturation leads to gradients approaching zero during backpropagation, effectively stopping 

weight updates and obstructing the training of deep neural networks. To address this issue, Nair 

and Hinton proposed the Rectified Linear Unit (ReLU) activation function. ReLU eliminates 

the need for computationally expensive exponential calculations and determines activation 

values using a simple threshold rule. These attributes make ReLU computationally efficient 

and highly effective, establishing it as the default activation function in feedforward neural 

networks, where it has substantially improved training efficiency and overall performance. [216] 
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Other nonlinear functions, such as sigmoid and hyperbolic tangent (tanh), were 

historically favored for their mathematical resemblance to the behavior of biological neurons. 

[217] 

 

     
 

a)    tanh (x) = 
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                    b) σ (x) = 

1

1+𝑒−𝑥
                          c) f (x) = max (0,x) 

 

Figure 2.13. Common activation functions used in neural networks. a) Hyperbolic Tangent (tanh), 

b) Sigmoid, and c) Rectified Linear Unit (ReLU). Adapted from [207] 

 

Pooling Layers 

 

Typically, after a convolutional layer, a pooling layer is employed to diminish the dimensions 

of feature maps and network parameters. This layer helps cut down on the parameters, resulting 

in faster training times. It downsamples each feature map in terms of height and width while 

maintaining the depth. Similar to convolutional layers, pooling layers exhibit translation 

invariance, as they consider neighboring pixels in their computations. The most frequently used 

strategies include average pooling and max pooling. Figure 2.14 illustrates a max pooling 

operation as an example. For an initial set of 8×8 feature maps, this process reduces the output 

maps to dimensions of 4×4 using a max pooling operator with a size of 2×2 and a stride of 2. 

Max pooling selects the maximum value from the pooling window. Conversely, average 

pooling (Fp) can be calculated as shown in Eq. 2.5.2. In this equation, Fp represents the output 

value at position (i, j), obtained by applying the pooling operation (pool (i, j)). The operation 

is performed over a pooling window that contains M elements, where each element within the 
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window is represented by xk, with k indicating the index of the input value in the pooling region. 

[203] 

 

                                           Fp= pool (i, j) = 
1

𝑀
∑ 𝑥𝑘

𝑀
𝑘=1                                 (Eq.2.5.2) 

 

 
 

Figure 2.14. The operation of the max pooling layer. Adapted from [218] 

 

Scherer et al. [219] carried out a comparative analysis of these two pooling operations 

and determined that max-pooling exhibits advantages, including quicker convergence, 

selection of superior invariant features, and enhanced generalization. In recent years, a range 

of efficient GPU implementations of CNN variations has emerged, with a majority of them 

favoring the max-pooling strategy. 

 

Fully-Connected Layers 

 

The fully connected layer represents the final component of a convolutional neural network 

(CNN). After the final pooling layer, as shown in Figure 2.15, the resulting two-dimensional 

feature maps are flattened into a one-dimensional vector. [207] This vector is then passed through 

one or more fully connected (dense) layers, where each node in the input is connected to every 

node in the output through trainable weights. These layers process the features previously 
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extracted by the convolutional operations and reduced in dimensionality by pooling, ultimately 

transforming them into the final outputs of the network, such as class scores in classification 

tasks. Typically, the final fully connected layer contains the same number of output units as 

there are target classes. [220] A nonlinear activation function, such as ReLU, is commonly 

applied after each fully connected layer, as previously discussed. 

 

 
 

Figure 2.15. The operation of the fully-connected layer. Adapted from [218] 

 

Final Layer Activation Function 

 

The activation function applied to the last fully connected layer typically differs from the 

others. It is crucial to select an appropriate activation function based on the task at hand. For 

multiclass classification tasks, the commonly used activation function is Softmax. This 

function normalizes the output real values from the last fully connected layer into target class 

probabilities, ensuring that each value falls between 0 and 1, and the sum of all values equals 

1. [217] The common choices for the activation function in the last layer for various types of 

tasks are summarized in Table 2.1.  
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Table 2.1. A list of frequently used activation functions in the final layer for different tasks. 

Adapted from [207] 

 

Task Last Layer Activation Function 

Binary classification Sigmoid 

Multiclass single-class classification Softmax 

Multiclass multiclass-class classification Sigmoid 

 

2.5.3. Training Strategy of a Network 

 

Training a network involves the iterative process of adjusting kernels in convolution layers and 

weights in fully connected layers to minimize the disparities between predicted outputs and 

provided ground truth labels in a training dataset. The backpropagation algorithm is widely 

utilized technique for training neural networks, where the loss function and gradient descent 

optimization algorithm are pivotal components in the process. [221] 

 

Loss Function 

 

A loss function, sometimes called a cost function, evaluates the agreement between the output 

predictions generated by the network through forward propagation and the provided ground 

truth labels. [222] For multiclass classification tasks, the commonly used loss function is cross-

entropy, [223] while mean squared error is typically employed for regression tasks involving 

continuous values. The selection of the appropriate loss function is considered one of the 

hyperparameters and should be determined based on the specific requirements of the task at 

hand.  

 

Gradient Descent 

 

Gradient descent is a widely used optimization algorithm that iteratively adjusts the learnable 

parameters, kernels and weights, of the network to minimize the loss. The gradient of the loss 
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function indicates the direction in which the function exhibits the steepest rate of increase. 

Consequently, each learnable parameter is updated in the opposite direction of the gradient, 

with the step size determined by a hyperparameter known as the learning rate. The gradient 

represents the partial derivative of the loss concerning each learnable parameter mathematically 

(Figure 2.16). A single update of a parameter is formulated as follows (Eq. 2.5.3): 

 

                                                𝑤: = 𝑤 − 𝛼 ×
𝜕𝐿

𝜕𝑤
                                    (Eq.2.5.3) 

 

Here, “w” represents each learnable parameter, “α” represents the learning rate, and “L” 

signifies the loss function. Noteworthy, setting an appropriate learning rate is crucial as it is 

one of the most significant hyperparameters to determine before training commences. In 

practice, due to constraints such as memory limitations, the gradients of the loss function 

regarding the parameters are calculated using a subset of the training dataset known as a mini-

batch. These gradients are then utilized to update the parameters. [207] There are three main 

types of gradient descent algorithms: i) Batch Gradient Descent (BGD), which processes the 

entire dataset simultaneously during training and then updates the weights, making it a 

deterministic approach; ii) Stochastic Gradient Descent (SGD), which updates the weights after 

processing each individual data point one at a time; and iii) Mini-batch Gradient Descent, a 

hybrid approach that updates the weights using a small subset of data points at each step. These 

methods differ in the amount of data used to calculate the gradient, balancing the trade-off 

between the accuracy of parameter updates and the time required for each update. [224] 
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Figure 2.16. Schematic representation of the gradient descent concept. Learnable parameters are 

iteratively adjusted via gradient descent, minimizing loss (the difference between predicted and true 

values. Adapted from [207] 

 

2.5.4. Challenges in Deep Learning Algorithms: Solutions and 

Strategies 

 

In deep learning classification, data is systematically partitioned into training, validation, and 

test sets to facilitate efficient model development and evaluation. [225] The training set serves 

as the foundation for model learning. [226] During training, the model is exposed to training 

data, calculating errors through forward propagation and iteratively adjusting its learnable 

parameters via backpropagation to improve its ability to learn the underlying patterns. The 

validation set acts as a crucial checkpoint throughout this process. [227] By evaluating the 

model's performance on the validation set, researchers can fine-tune hyperparameters (such as 

learning rates and number of iterations), which are parameters that govern the training process, 

and ultimately select the optimal model configuration. The test set, ideally reserved for use at 

the conclusion of the project, provides an unbiased estimate of the model's generalizability to 

unseen data. This final evaluation step is crucial for determining how well the model would 

perform in real-world scenarios (Figure 2.17).  
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Figure 2.17. Typical data division for machine learning. The data is segregated into training 

(Training Set), validation (Validation Set), and test sets (Test Set). Training Set: Used to train the model. 

Forward propagation calculates the loss, guiding the update of learnable parameters through 

backpropagation. Validation Set: Monitors model performance during training, aiding hyperparameter 

tuning and model selection. Test Set: Evaluates the final model's generalizability on unseen data, ideally 

used only once at the project's conclusion. Adapted from [207] 

 

It is important to have distinct validation and test sets because hyperparameter tuning 

and model selection take place during the training phase. This process relies on the model's 

performance on the validation set, which can result in some information from the validation set 

being unintentionally incorporated into the model, leading to overfitting, despite the model not 

being explicitly trained on the validation set for its learnable parameters. Consequently, the 

model will likely perform well on the validation set. To accurately assess the model's 

performance and generalizability on completely new data, an entirely separate test set is 

required. 

Overfitting occurs when a model learns statistical patterns particular to the training set, 

resulting in memorization of irrelevant noise rather than learning the essential signal (Figure 

2.18). In deep learning, overcoming overfitting and managing computation time are significant 

challenges due to the increased layers of abstraction. A standard method to detect overfitting 

to the training data involves monitoring the loss and accuracy on both the training and 

validation sets. To combat overfitting, several approaches have been suggested to reduce 
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overfitting such as using more training data, data augmentation, regularization (weight decay, 

dropout), batch normalization, and reduce architecture complexity. [203, 207] A model trained on 

a larger dataset often demonstrates better generalization, although achieving this may not 

always be feasible in many applications like medical imaging. [228] 

 

 
 

Figure 2.18. The loss curves for training and validation per epoch, illustrating overfitting. The 

overfitting phase is shown where the validation error (orange curve) begins to rise while the training 

error (blue curve) continues to decrease. This indicates that the model is learning the training data too 

well, capturing noise and specific details, which leads to a poor generalization on unseen data. Adapted 

from [229] 

 

Data augmentation is primarily used to generate additional data from existing samples 

through various transformations, without incurring extra labeling costs. This is often achieved 

through random transformations such as flipping, cropping, and rotation. By applying such 

transformations, data augmentation can significantly expand the training dataset, making it 

especially valuable when working with limited data. [203, 230] 

Besides data augmentation, transfer learning is another widely used and efficient 

technique for training a network with a small dataset (Figure 2.19). In this approach, a network 

is initially trained on a significantly large dataset, like ImageNet, which comprises 1.4 million 

images categorized into 1000 classes. Subsequently, this pre-trained network is repurposed and 

utilized for the specific given task. Transfer learning relies on the premise that common features 
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acquired from a sufficiently extensive dataset can be applied across diverse datasets. This 

ability to transfer learned features is a distinctive strength of deep learning, facilitating its utility 

across different domain tasks, even when datasets are limited in size. There are two methods 

for employing a pretrained network: fixed feature extraction and fine-tuning. Fine-tuning 

method involves not only replace the fully connected layers of the pre-trained model with new 

ones to train on a specific dataset, but also adjusting some or all of the kernels within the pre-

trained convolutional base using backpropagation. This adjustment can involve fine-tuning all 

layers of the convolutional base or selectively freezing earlier layers while fine-tuning deeper 

ones. This approach is driven by the observation that early-layer features, such as edges, are 

more applicable across different datasets and tasks, while later features tend to become 

increasingly tailored to specific datasets or tasks. [207, 231] 

 

 
 

Figure 2.19. Schematic representation of the transfer learning technique. Utilizing transfer learning 

is a widespread and efficient approach for training a network with a limited dataset. Adapted from [207] 
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2.5.5. Gradient-Weighted Class Activation Map (Grad-CAM) 

 

Gradient-weighted class activation map, developed by Selvaraju and colleagues, [232] is a 

powerful visualization technique that enhances the interpretability of convolutional neural 

networks (CNNs) in image classification tasks. It works by leveraging the gradient of the 

classification score with respect to the convolutional features from the final convolutional layer 

to identify the regions of an image most influential for the model’s decision. While deep 

learning models have achieved significant success in computer vision tasks, their complexity 

often creates a challenge in understanding their decision-making processes. Grad-CAM 

addresses this issue by providing visual explanations that highlight the specific regions of an 

image most responsible for the model's predictions, thereby enhancing transparency and 

interpretability. The key innovation of Grad-CAM lies in its ability to generate class-specific 

localization maps, allowing it to highlight different areas of an image based on the model’s 

classification. This technique generates heatmaps to visualize the regions of an image most 

relevant to a deep network's predictions, providing valuable insights into the model's decision-

making process. This capability is particularly valuable in domains such as medical imaging, 

autonomous driving, and security, where model transparency is crucial. Moreover, Grad-CAM 

is an effective method for providing visual insights into deep networks, demonstrating its utility 

across various complex tasks, including object recognition, classification, and action 

recognition. For instance, it can accurately identify attributes like the breed of a dog, or the 

musical instrument being played. Beyond improving model interpretation and debugging, 

Grad-CAM plays a key role in advancing visual recognition algorithms and refining existing 

models. This versatile tool can be applied across various neural network architectures and tasks 

beyond image classification. By visualizing how CNNs make decisions, it helps users gain 

deeper insight into model behavior, identify potential issues, and understand which features 
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influence predictions. In conclusion, Grad-CAM enhances the interpretability and reliability of 

deep networks, making them more transparent and trustworthy. [232] 

 

2.5.6. t-Distributed Stochastic Neighbor Embedding (t-SNE) 

 

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear machine learning 

technique for reducing the dimensionality of high-dimensional data, enabling its representation 

in two- or three-dimensional space. Proposed by Maaten and Hinton as an enhancement of 

Stochastic Neighbor Embedding, this nonlinear technique focuses on maintaining the local 

relationships within the data. By positioning similar points close to each other and separating 

dissimilar ones, t-SNE provides an effective way to visualize and interpret complex datasets in 

reduced dimensions. [233, 234] Although t-SNE visualizations often suggest the presence of 

clusters, these apparent groupings can be significantly influenced by the choice of parameters, 

particularly perplexity, as different perplexities often yield different visualizations. Perplexity 

can be viewed as a trade-off between preserving the global and local structures of data. 

Specifically, a higher perplexity value considers a broader range of neighboring points, while 

a lower value focuses on a smaller set of neighbors, making the algorithm more sensitive to 

local variations in the data. Maaten and Hinton recommended typical perplexity values in the 

range of 5 to 50. [234] The optimal value of perplexity depends on the data density, with larger 

and denser datasets typically requiring a higher perplexity value.[235] In most implementations, 

the default value of perplexity is set to 30. [2] Furthermore, the size and distance between 

clusters in t-SNE plots should not be interpreted as an indication of true global distances or 

cluster separability. Studies have demonstrated that t-SNE can effectively identify well-

separated clusters and, with specific parameter settings, can approximate a simplified form of 

spectral clustering. 
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2.6.1. Fluorescence Spectroscopy 

 

Fluorescence spectroscopy is a powerful technique for studying protein-ligand and protein-

DNA interactions. [236] Fluorescence is a type of luminescence that occurs when a molecule 

absorbs photons, exciting its electrons to a higher energy level, typically from a singlet ground 

state to a singlet-excited state. As the molecule returns to its ground state, it emits a photon of 

lower energy and longer wavelength than the absorbed one. Fluorescence spectroscopy 

analyses this emitted fluorescence to study the molecular properties and environment. (Figure 

2.20). [237] 

 

 
 

Figure 2.20. Jablonski diagram. This diagram illustrating various transitions between a molecule’s 

energy states. Adapted from [237] 

 

A fluorescence spectrometer is an analytical instrument primarily designed to measure 

the intensity of fluorescent light emitted by a sample, while also determining the wavelengths 

at which this fluorescence occurs by recording the emission spectrum. It consists of a light 

source, which provides the excitation light, and monochromators that select specific 

2.6. Characterization Methods-Cross Validation with 

Experimental Data 
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wavelengths for excitation and emission (Figure 2.21). The excitation monochromator ensures 

the sample is exposed to the desired wavelength, while the emission monochromator, typically 

placed at a 90° angle to the excitation light to minimize background interference from scattered 

light, isolates the emitted fluorescence. The emitted light is detected by a photomultiplier tube 

(PMT), which converts it into an electrical signal for processing and display. This setup allows 

for fluorescence measurements, making fluorescence spectrometers beneficial tools in valuable 

scientific and analytical applications. [238] 

 

 
 

Figure 2.21. Diagram of simplified fluorescence spectroscopy setup. Adapted from [239] 

 

Fluorescence spectroscopy assays present several limitations, particularly in terms of 

sensitivity when analyzing low-concentration samples or molecules with weak fluorescence. 

Additionally, fluorescence signals are prone to interference from quenching and background 

noise, which can hinder accurate data interpretation. [240-243] The requirement for specific 

fluorescent labels further complicates sample preparation. [243] Moreover, handling dyes such 

as ethidium bromide necessitates skilled personnel and stringent safety precautions and 

protocols to minimize risks to health and the environment. Consequently, there is a growing 

demand for more robust, interference-resistant, and highly sensitive alternatives to 

fluorescence-based assays. 
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2.6.2. Time of Flight Secondary Ion Mass Spectrometry (TOF-

SIMS) 

 

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is an analytical method that 

prioritizes surface analysis. [244] [245] It involves bombarding the specimen's surface with a 

focused primary ion beam, which induces sputtering and the emission of secondary ions. These 

ions, representing the surface composition, are then accelerated into a "flight tube" where their 

mass is determined based on their flight time to a detector (Figure 2.22). By measuring the 

mass-to-charge ratios of these ions, SIMS provides insights into the elemental, isotopic, or 

molecular composition of the surface with a depth resolution typically ranging from 1 to 2 nm. 

Due to significant variations in ionization probabilities among elements sputtered from 

different materials, precise calibration against standards is essential for achieving accurate 

quantitative results with SIMS. A primary ion beam impacts the surface, resulting in the 

emission of various secondary particles. These include secondary electrons, photons, neutrals, 

as well as positive and negative secondary ions from the sample. The sputtering yield is 

influenced by factors such as the energy of the primary ion, the nature of the atoms or 

molecules, experimental conditions, and the surrounding atmosphere. Secondary ions emitted 

from organic samples are subsequently analyzed using a mass spectrometer, generating 

positive or negative mass spectra. These spectra typically include peaks corresponding to 

precursor or molecular ions, as well as fragment ions characteristic of the sample surface. ToF-

SIMS operates in three distinct modes: surface spectroscopy, surface imaging, and depth 

profiling, making it a versatile tool for detailed surface characterization in various scientific 

and industrial applications. 

TOF-SIMS has some limitations that must be considered despite its high sensitivity and 

surface specificity. One of the primary constraints is its requirement for ultrahigh vacuum 

conditions, which increases operational complexity and necessitates the use of advanced 
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instrumentation and maintenance protocols. This not only elevates the overall cost of the 

analysis but also restricts the range of compatible sample types. In particular, volatile, hydrated, 

or biologically sensitive materials may be unsuitable for analysis under such vacuum 

environments, limiting the applicability of TOF-SIMS in certain fields. These factors 

collectively reduce the technique’s flexibility, especially in studies involving delicate or non-

vacuum-stable specimens. [43]  

 

 
 

Figure 2.22. Schematic representation of the TOF-SIMS instrument. Adapted from [246] 

 

2.6.3. Infrared (IR) Spectroscopy 

 

Infrared (IR) spectroscopy is a popular tool utilized by both organic and inorganic chemists to 

analyze a molecule's structure by examining its vibrational and rotational energy level changes 

when it absorbs infrared radiation. [247, 248] The frequencies absorbed are specific to the 

molecule's functional groups and atomic masses. Importantly, for a vibration to be IR-active, 

it must induce a change in the molecule's dipole moment. This capability enables IR 

spectroscopy to provide insights into the specific functional groups and overall structure of 

molecules. The electromagnetic spectrum categorizes infrared radiation into three main regions 
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of the near-infrared, mid-infrared, and far-infrared based on their relationship to the visible 

spectrum (Figure 2.23). [248] [249] The near-infrared region with higher energy, ranging from 

approximately 14000 to 4000 cm⁻1 (0.8-2.5 μm wavelength), can stimulate overtone or 

harmonic vibrations. Mid-infrared wavelengths ranging from 4000 to 400 cm⁻1 (2.5-25 µm) 

are suitable for examining fundamental vibrations and the associated rotational-vibrational 

structure. Far-infrared radiation, adjacent to the microwave region with wavelengths ranging 

from 400 to 10 cm⁻1 (25-1000 µm), possesses lower energy and is employed in rotational 

spectroscopy.  

 

 
 

Figure 2.23. Illustration of the electromagnetic spectrum. It highlights the division of the infrared 

regions into three categories: Near-infrared (12820-4000 cm⁻1), Mid-infrared (4000-400 cm⁻1), and Far-

infrared (400-33 cm⁻1). Adapted from [250] 

 

Infrared spectroscopy (Figure 2.24) is a widely used method for analyzing surfaces and 

adsorbate films. Infrared reflection-absorption spectroscopy (IRRAS), also known as 

reflection-absorption, provides detailed insights into the chemical composition and structure of 

thin surface layers and adsorbed molecules. [251, 252] IRRAS is a vibrational spectroscopy 

technique where infrared light is reflected at a grazing incidence angle from a reflective surface. 
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Most studies have concentrated on metal substrates due to their perfect reflectivity, which 

ensures maximum sensitivity and comparable detection limits to other surface science 

techniques. The first efforts in the mid-1980s to apply external reflection measurements to 

nonmetal substrates like carbon, [253] silicon, [254] or oxide surfaces   led to very complex and 

significantly distorted spectra. 

 

 
 

Figure 2.24. Schematic diagram for infrared spectroscopy. Adapted from [255] 

 

 When molecules are bound to a conductive surface, an additional selection rule applies: 

the induced dipole moment must be perpendicular to the plane of the surface. If the induced 

dipole moment is perpendicular to the surface plane (Figure 2.25 A), the image dipole will 

align in the same direction, enhancing the intensity of the reflected light. Conversely, if the 

dipole moment is parallel to the surface plane, the image dipole will have an equal magnitude 

but opposite direction to the induced dipole, causing the vectors to cancel each other out 

(Figure 2.25 C) and resulting in no observable frequency. If the induced dipole is at an 

intermediate angle, only the perpendicular component of the dipole moment will contribute to 

the observed signal (Figure 2.25 B). 
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Figure 2.25. Illustration of image dipole theory. The black, white, and red vectors represent the dipole 

moment of the molecule, the image dipole induced within a reflective substrate, and the resultant vector 

obtained by summing the black and white vectors, respectively. A) The induced dipole moment is 

perpendicular to the surface. B) The induced dipole moment is at an intermediate angle to the surface. 

C) The induced dipole moment is parallel to the surface plane. Adapted from [256] 

 

The infrared (IR) technique exhibits certain limitations, particularly in sensitivity when 

evaluating samples with minimal thickness or functional groups characterized by weak 

absorption bands [47]. Furthermore, overlapping absorption bands can complicate the 

interpretation of IR spectra. Besides, this characterization method requires advanced and costly 

instrumentation, as well as the expertise of skilled operators for effective operation and 

maintenance. 

 

2.6.4. Circular Dichroism (CD) Spectroscopy 

 

Circular dichroism (CD) spectroscopy is a widely utilized technique for investigating the 

secondary structures of optically active molecules, such as proteins. [257] In a CD spectrometer, 

the sample is placed in a cuvette, and a beam of light is directed through the sample. The light, 

referring to all electromagnetic waves, undergoes circular polarization, where its plane of 

polarization rotates either clockwise (right circular polarization) or counterclockwise (left 

circular polarization) over time as it propagates (Figure 2.26). Clockwise and 

counterclockwise are sometimes used, but their interpretation depends on the perspective, 

whether from the source of light or the target sample. 
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Figure 2.26. Schematic representation of light circular polarization. i) right circularly polarized ii) 

left circularly polarized light. Adapted from [258] 

 

The sample is typically sequentially irradiated with left- and right-circularly polarized 

light, and the absorption is measured. Chiral molecules interact differently with circularly 

polarized light depending on the direction of rotation due to their intrinsic asymmetry, typically 

absorbing more light in one direction than the other (Eq.2.6.1). The difference in absorption 

between left and right circularly polarized light is described by the equation below (Eq.2.6.2), 

where εL and εR represent the molar extinction coefficients for left and right circularly polarized 

light, respectively. The variables c and l denote the molar concentration and path length 

(cuvette width in cm). The difference in absorption can be related to the difference in extinction 

coefficients (Δ𝜀) (Eq.2.6.3). 

 

                                                                             𝐴 = 𝜀𝑐𝑙                                        (Eq.2.6.1) 

 

                                                             ∆𝐴 = 𝐴𝐿 − 𝐴𝑅 = (𝜀𝐿 − 𝜀𝑅)𝑐𝑙                     (Eq.2.6.2) 

 

                                                                          ∆𝜀 = 𝜀𝐿 − 𝜀𝑅                                  (Eq.2.6.3) 
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CD is reported not only as the difference in absorption or extinction coefficients but 

also as the degree of ellipticity, [θ]. The relationship between [θ] and Δε is described by the 

equation in bellow (Eq.2.6.4): 

 

                                                                 [𝜃] =  3298 ∆𝜀                                        (Eq.2.6.4) 

 

Since the CD spectra of proteins uniquely represents their conformation, CD can be 

utilized to monitor structural changes due to complex formation like protein-DNA complex 

formation, folding/unfolding, denaturation caused by temperature increase, amino acid 

sequence changes, or mutations. This makes CD an effective tool for studying the kinetics of 

proteins and conducting stability investigations and interaction modeling in dynamic systems. 

[259] 

While CD spectroscopy is a useful technique, it does have certain drawbacks in protein-

DNA interaction studies. One key limitation is its lack of specificity, which can make it difficult 

to distinguish between different molecular components. When studying large complexes, the 

signals from various structural elements may overlap, complicating the interpretation of 

conformational changes. This overlap can reduce the clarity of the CD signal or distort the 

resulting spectra. Additionally, CD spectroscopy is not very sensitive to small or subtle changes 

in structure, particularly during protein-DNA interactions, making it less effective at detecting 

minor conformational shifts. [15, 16] 
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3. Material and Methods 

 

 

 

 

All chemicals used in the experiments (Table 3.1) were of analytical grade and applied without 

additional purification. Milli-Q water, obtained through a MilliQ-Plus purification system 

(Merck Millipore), was utilized in all procedures. 

 

Table 3.1. List of Chemicals and materials  
 

Chemicals and Materials Company 

Human serum albumin (HSA) Sigma Aldrich 

Immunoglobulin G from human serum Sigma Aldrich 

Histone (Type II-A, lyophilized powder) 
Sigma Aldrich 

Histone H1 Protein, 20 mg 
Sigma Aldrich 

Bovine serum albumin Sigma Aldrich 

Lambda DNA (lambda phage), 500 µg/tube Thermo Fisher Scientific 

Deoxyribonucleic acid, low molecular weight from salmon 

sperm 

Sigma Aldrich 

Ethidium bromide stock solution, biotechnological quality VWR Chemicals 

Histone from calf thymus Sigma Aldrich 

hsDNA, Deoxyribonucleic acid, partially degraded from 

herring sperm 

Sigma Aldrich 

Deoxyribonucleic acid sodium salt from salmon testes Sigma Aldrich 

Ammonium sulfate, for molecular biology, ≥99.0% Sigma Aldrich 

HEPES (biological buffer) ≥99.5% (titration) 
Sigma Aldrich 

Potassium chloride Sigma Aldrich 

Sodium hydroxide Merck KGaA 

3.1. Chemicals 

https://de.vwr.com/store/supplier/id/FERM/thermo-fisher-scientific
https://de.vwr.com/store/supplier/id/VWRC/vwr-chemicals
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Sodium bicarbonate Merck KGaA 

Sodium carbonate (anhydrous) Merck KGaA 

PCP-H 
Curtiss-Wright Surface 

Technologies 

PCP-Cl SCS GmbH, Surrey, UK 

PCP-F TCI Deutschland GmbH 

Glass wafer Optrovision 

Silicon wafer Si-mat 

Gold coated Si wafer Georg Albert 

Microtube Sigma Aldrich 

Syringe filter 0.2 µm Sartorius Stedim Biotech 

Cuvette 1 mm thickness Helma 

 

 

 

 

Table 3-2 lists all the instruments used in this study, including those for cleaning, the CVD 

process, drop dispersion via a pipetting system, microscopy, and chemical analysis of the 

respective samples. 

 

Table 3.2. List of instruments 
 

Instruments Company 

NanoDrop One Thermo Scientific 

SB3 tube rotator Stuart 

Plasma cleaner PIE Scientific 

Microplate pipetting robot (epMotion 5070) 
Eppendorf 

1-channel dispenser (TS10) 
Eppendorf 

Climate chamber (ICH750) Memmert 

Optical microscope (BX-53F) Olympus 

Scanning electron microscopy (SEM) TESCAN  

Time-of -flight secondary-ion mass spectroscopy (TOF-SIMS) ION-TOF GmbH 

Fluorescence spectroscopy  TECAN  

3.2. Instrumentation  

https://www.sigmaaldrich.com/US/en/product/sigald/s6014?context=product
https://www.sigmaaldrich.com/US/en/product/sigald/222321?context=product
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Infrared reflection-absorption spectroscopy (IRRAS) 

Bruker VERTEX 80 FTIR 
Bruker Optik GmbH 

CD spectroscopy (J-1500 spectropolarimeter) JASCO 

 

 

 

 

Table 3.3 provides an overview of the software used for the deep learning approach, imaging, 

generating input data for deep learning, and performing statistical analysis. 

 

Table 3.3. List of software 
 

Software Company 

CellSens  Olympus 

MATLAB R2022a MathWorks 

Origin 2022b 
OriginLab Corporation 

Opus 
Bruker 

 

 

Chemical vapor deposition (CVD) polymerization was employed to apply a layer of poly (p-

xylylene) on glass surface. In this procedure, the monomer is initially vaporized and then 

pyrolyzed, forming reactive intermediates that deposit and polymerize on the cooled clean glass 

surface. [171] Three distinct zones in CVD machine (sublimation zone, the pyrolysis zone, and 

the deposition chamber) maintain different temperatures but share the same pressure 

conditions, which are below 0.2 mbar. A weighted amount of the precursor is introduced into 

the sublimation zone, located 3-5 cm away from the oven (depends on the precursor). In this 

zone, PCP sublimates at approximately 100-110 °C and is transported within a stream of argon 

carrier gas (20 sccm) into the pyrolysis zone. Pyrolysis occurs at 660 °C for PCP-H, PCP-Cl2, 

3.3. Software 

3.4. Chemical Vapor Deposition (CVD) Polymerization 

Coating  
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PCP-Br2, PCP-F8, PCP-Aldehyde, PCP-Amine, PCP-Methyl amine, and PCP-Alkyne (Table 

3.4). For PCP-Methyl Hydroxyl the pyrolysis temperature is 540 °C. The vaporized cyclic 

dimer is gradually disassembled into reactive radicals by breaking the ethylene bond. 

Subsequently, these vaporized monomers make their way to the deposition chamber, where the 

substrates (glass surfaces) are positioned on a stage that is cooled to 25 °C. The concentration 

of monomers increases upon condensation on the cooled surface until an exothermic reaction 

occurs. Two radicals combine to form an uncoupled biradical dimer, serving as the initial 

molecule for the polymerization process. [260] As additional monomers attach, the polymer 

chain extends, creating a transparent, and uniform film on the substrate. The use of a rotating 

sample stage guarantees a uniform thickness of the polymer film. 

The glass wafers, sized at 120 mm × 80 mm and with a thickness of 0.1 ± 0.05 mm 

(Optrovision, München, Germany), were subjected to cleansing using a plasma cleaner 

(Tergeo, Union City, CA, USA). In each deposition batch, two slides of glass substrate were 

put in the deposition chamber. Adjacent to it, two silicon (Si) wafers were placed to gather data 

about the thickness of the coating. The deposition speed was determined and could be adjusted 

to a rate of 0.3-0.5 Å/s by altering the distance between the precursor and the oven, using a 

quartz crystal detector situated within the deposition chamber.  

 

Table 3.4. Polymer structure of different precursors.  
 

Name of precursor Polymer structure 

PCP-H (PCP-n) 

   

PCP-NH2 
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PCP-CH2NH2 

     

PCP- Alkyne 

   

PCP-CHO 

    

PCP- CH2OH 

     

PCP-Cl2 

 

PCP-Br2 

 

PCP-F8 

 

 

 

 

The Deoxyribonucleic acid sodium salt from salmon tests, Deoxyribonucleic acid from herring 

sperm, Lambda DNA, and Histone H1 protein were acquired. Salmon (Sal 1 kbp) DNA was 

generated by sonicating Sal 20 kbp DNA, yielding fragments with an average length of 1000 base 

pairs (Figure S1). The DNA was sonicated on ice at 20 kHz for a duration of 5 minutes. To 

form H1-DNA complexes, their previously equilibrated solutions were directly mixed in a 

binding buffer. This buffer consisted of 100 mM HEPES (pH 7.8), along with 150 mM 

potassium chloride and 50 mM ammonium sulfate. Histone was gradually added to the DNA 

at five ratios: 0.5 (R1), 1 (R2), 1.4 (R3), 3.4 (R4), and 6.8 (R5) moles of histone (H1) per 168 

3.5. Histone-DNA Solutions  
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base pairs of DNAs. The overall mass concentration of H1 and DNA remained unchanged 

across all ratios. The solutions were gently stirred using a tube rotator (Stuart, Stone, UK) at 

10 rpm for 60 minutes at room temperature (25 °C) and then stored at -20 °C. 

 

 

 

Bovine Serum Albumin (BSA) was dissolved into a 100 mM carbonate-bicarbonate buffer to 

a final concentration of 0.1 mg/mL. The buffer, adjusted to a pH of 9.2, was prepared using 

ultrapure water from a Milli-Q Plus system and contained 91 mM NaHCO₃ and 9 mM Na₂CO₃. 

The BSA solution was mixed for 30 minutes at room temperature using a tube rotator (Stuart, 

Stone, UK) set at 10 rpm. Upon thorough mixing, aliquots of the solution were stored at -20 °C 

until further use. 

 

 

 

A microplate pipetting robot with 96 wells (epMotion 5070, Eppendorf AG, Hamburg, 

Germany) was employed to dispense small droplets (2 μL) of the solutions onto the coated 

surface using a single-channel dispenser (TS10, Eppendorf AG, Hamburg, Germany). The 

pipetting setup was configured to distribute 96 droplets on each glass plate, forming a grid of 

12 columns and 8 rows. In each experimental set, four different liquids were randomly 

positioned on the slide, with 24 droplets of each liquid distributed together (H1-DNA 

interaction section). To regulate the evaporation rate, the robot was placed inside a climate 

chamber (ICH 750, Memmert GmbH + Co. KG, Schwabach, Germany) maintained at a 

controlled temperature of 23 ± 0.5 °C and humidity of 40 ± 3%. Following the drying of the 

droplets (approximately 50 minutes), images of the deposited patterns were captured using a 

polarized light microscope (Olympus polarizing optical microscope BX-53F, Tokyo, Japan) 

equipped with an automated stage. All images were captured under uniform microscope 

3.6. Bovine Serum Albumin (BSA) Solutions 

3.7. Droplet Deposition  
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settings, with consistent resolution, 10× magnification, and exposure time, and were combined 

using the Multi Image Alignment (MIA) algorithm from CellSens software (Olympus, Tokyo, 

Japan) to ensure data comparability and interpretability. Each image of a dried droplet had 

rectangular dimensions of 2344 × 1878 pixels in JPG format. To enhance processing speed 

without sacrificing image quality, they were reduced to 75% of their original size, allowing for 

faster import into the network for training. Following this resizing, the images were then 

preprocessed into square dimensions. 

 

 

The training and subsequent processing of PLM images using MATLAB software (R2022a, 

MathWorks Inc.) involved the selection of the InceptionV3, a pre-trained CNN network, due 

to its swift response and satisfactory accuracy. InceptionV3, developed by Google, is a deep 

convolutional neural network architecture specifically designed for image classification tasks. 

It features "Inception modules" to efficiently capture multi-scale features in an image and 

comprises 315 layers, making it relatively deep (Figure 3.1). The network requires input 

images to be resized to 299 × 299 pixels, necessitating preprocessing before feeding them into 

the network for training. Maintaining a uniform format across all groups facilitated consistent 

comparisons and preserved the reliability of the analysis. Standardizing all images to a 

resolution of 299 × 299 pixels ensured consistent input dimensions and reduced the influence 

of original image formats on the outcomes. Employing a transfer learning approach, the 

network, initially pre-trained on a substantial dataset of image features, underwent fine-tuning 

with a relatively small new set of images. In this process, the final classification layer was 

excluded and retrained with the new dataset. Fine-tuning involved adjusting parameters across 

all layers with a consistent global learning rate of 0.001, a minimum batch size of 32 images. 

3.8. Convolutional Neural Network of Training and Testing Set 

Images 
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For each training set, approximately 75-80% of the images per class were used for training, 

with 10% of them randomly selected for validation during the process. After the network was 

trained, a separate set of images, accounting for about 15-20% of the total, was reserved for 

testing to assess its performance. To maintain data integrity, the training, validation, and testing 

datasets were kept completely separate, with no overlap between them. To enhance the 

generalization of the network, minimize the risk of overfitting, and prevent it from simply 

memorizing the training data, images were augmented by applying random horizontal and 

vertical reflections, each with a 50% probability, across all trained networks. 

 
 

Figure 3.1. Architecture of the pre-trained InceptionV3 model. The model comprises multiple 

Inception modules that apply convolutional filters of various sizes in parallel to extract multi-scale 

features. It includes convolutional and max-pooling layers, followed by fully connected layers and a 

final softmax layer for classification. Adapted from [261] 

 

The network’s performance was evaluated by analyzing overall accuracy and confusion 

matrices for the test datasets. Additionally, to determine how well the model could generalize 

to new data, a completely unseen/unknown set of images was introduced for classification. 

This approach allowed for a comparison between these new images and those previously 

learned during training. By conducting this thorough evaluation, CNN’s reliability and 

effectiveness in classifying diverse datasets were validated. 
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To identify the key regions within images that significantly influence the classification 

decisions of the convolutional neural network (CNN), the Gradient-weighted Class Activation 

Mapping (Grad-CAM) algorithm was applied as a visualization tool. By utilizing Grad-CAM, 

the most influential areas contributing to the network’s decision-making process were 

highlighted, providing valuable insights into its interpretability. This technique was 

implemented using MATLAB (Release 2023a, MathWorks Inc.), ensuring an effective 

analysis of the model’s focus during classification. 

To demonstrate the network's ability to effectively cluster data, the t-distributed 

Stochastic Neighbor Embedding (t-SNE) algorithm, known for its strength in visualizing high-

dimensional data, was applied to the Softmax layer of the trained convolutional neural network 

(CNN). This layer, typically used for classification tasks, converts the network’s raw output 

(logits) into a probability distribution. The t-SNE technique was implemented using the 

MATLAB Machine Learning Package, with a learning rate of 500 and a perplexity value set 

to 30, to reduce the complex high-dimensional data to a lower-dimensional space while 

maintaining the relationships between data points. By mapping the Softmax layer outputs to a 

two-dimensional representation, t-SNE allowed for clear visualization of distinct clusters 

corresponding to different classes, providing valuable insights into the network's performance 

and the underlying patterns within the data. 

 

 

 

Analyzing the structural features of the H1/DNA complex and salt of stain droplets was carried 

out using scanning electron microscopy (SEM) (TESCAN VEGA3). To address potential 

surface charging effects, a fine layer of gold was sputtered onto the samples before performing 

SEM imaging. The SEM images were obtained at an electron accelerating voltage of 15 kV, 

maintaining a working distance of 7.2 mm. 

3.9. Scanning Electron Microscopy (SEM) 
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Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) experiments were performed 

using an ION-TOF instrument (ION-TOF GmbH, Münster, Germany). The instrument featured 

a liquid metal primary-ion source utilizing a Bi cluster and a non-linear time-of-flight analyzer. 

The Bi source, operating in the "bunched" mode for spectrometry, generated short primary-ion 

pulses (<1 ns) providing Bi1+ or Bi3+ ion pulses at 25 keV energy with a lateral resolution of 

approximately 4 μm. As the droplets' size exceeded the maximum deflection range of the 

primary-ion gun (500 × 500 μm2), images were acquired using the manipulator stage scan 

mode. Negative polarity spectra were calibrated based on the C−, CH−, and CH2
− peaks. 

Spectrometry was performed in static SIMS mode, ensuring the primary-ion dose remained 

below <1011 ions cm−2. High lateral-resolution images were obtained in a primary-ion source 

mode, offering a lateral resolution of around 200 nm with nominal mass resolution in "burst 

alignment" mode. Charge compensation was essential due to the glass substrate, necessitating 

the use of an electron flood gun delivering electrons of 21 eV. The secondary-ion reflectron 

was tuned accordingly to ensure precise measurements. 

For the surface recognition section, the main chamber pressure was 5 × 10−9 mbar. For 

high mass resolution, the Bi source was operated in the “high current bunched” mode providing 

short Bi3
+ primary ion pulses at 25 keV energy and a lateral resolution of approximately 5 µm. 

The short pulse length of 1.1 ns allowed for high mass resolution. Primary ion doses were kept 

below 2 × 1011 ions cm−2 (static SIMS limit) for all measurements. Spectra were calibrated on 

the omnipresent CH−, C2
−, C2H

−, OH−; or on the CH+, CH2
+, CH3

+, and C2H3
+ peaks. Spectra 

were normalized by the total ion dose. 

 

 

3.10. Time of Flight Secondary Ion Mass Spectrometry (TOF-

SIMS) 
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Infrared spectral analysis of the polymer films was conducted using a Bruker VERTEX 80 

FTIR (Bruker Optik GmbH, Ettlingen, Germany). The spectra were scanned with a resolution 

of 2 cm⁻¹ across the range of 500 to 4000 cm⁻¹. The device featured a horizontal reflection unit 

for measurements in grazing incidence reflection mode with an 80° incident angle to the surface 

normal. Background correction was carried out using the onboard Bruker OPUS software. 

 

 

 

The far-UV CD spectra of the protein solutions (BSA) were captured using a J-

1500spectropolarimeter (JASCO, Germany) at a temperature of 20 °C. For the solution 

samples it was conducted in quartz glass cuvettes with a 1 mm optical path length within the 

wavelength range of 260 to 190 nm, with measurements taken at 0.5 nm intervals. Each sample 

underwent two repeated scans at a scan rate of 100 nm min−1, an 8 s response time, and 8 nm 

bandwidth. The obtained data were averaged for each sample, along with its respective baseline 

obtained from the protein-free sample (buffer solution). For protein samples on solid surface, 

the quartz glass was used. The protein concentration used was 0.1 mg mL−1 in a 20 mM 

carbonate-bicarbonate buffer, with and without 50 mM at pH 9.2. 

 

 

 

The ethidium bromide displacement assays, following the method by Geall et al. (2000), were 

conducted in 10 mM HEPES buffer (pH 7.8) with 15 mM KCl and 5 mM (NH4)2 SO4 . 
[262] 

Steady-state fluorescence measurements were performed using a Tecan Spark multimode 

reader. In a 96-well black plate maintained at a temperature of 293.15 K, a working volume of 

200 µL solution was prepared, containing 0.1 M EtBr for every 168 base pairs of DNAs. 

Ethidium bromide solution was introduced into the stirring solution and allowed to equilibrate 

3.11. Infrared Reflection-Absorption Spectroscopy (IRRAS) 

3.12.  Circular Dichroism (CD) Spectroscopy  

3.13. Ethidium Bromide Displacement Assay 
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for 15 minutes. Subsequently, aliquots of histone were added to the stirring solution, and 

fluorescence was measured after 30 minutes of equilibration. 

 

 

 

Statistical analysis of the results was performed using the analysis of variance, employing both 

the least significant difference (LSD) and Tukey methods. For least significant difference 

(LSD), the analysis utilized SAS 9.1.3 software (SAS Institute, Inc., 1999, Cary, NC, USA). 

Tukey analysis was done with Origin software (2022b). The LSD and Tukey methods were 

specifically employed to detect significant differences, with a predetermined significance level 

set at p < 0.05, as outlined by Montgomery and Runger (2011). [263]

3.14. Statistical Analysis 
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4. Results and Discussion 

 

 

 

To evaluate the effect of various salts on dried droplet patterns, a library comprising twelve 

different salts and concentrations was prepared (Table 4.1). To achieve uniform hydrophobic 

substrates with consistent droplet deposition (water contact angle: 80 ± 1°) over large areas, 

chemical vapor deposition (CVD) polymerization of (PPX-H) was employed. The process 

enabled precise control over the coating thickness, which was maintained in the range of 50-

55 nm to ensure consistent surface characteristics and reproducibility. Human serum albumin 

(HSA) and Immunoglobulin G (IgG) were dissolved separately in each salt solution at a 

concentration of 0.1 mg/mL (as indicated in the table below). A defined 2 μL volume of the 

solution was dispensed onto the PPX-H-coated surface and left to dry for 45 minutes under 

controlled conditions (23 °C, 40% humidity). A total of 7400 images were collected, with 6200 

allocated for the training and validation sets, and 1200 images for the test set.  

 

Table 4.1. A library of buffer solutions with various salt types and concentrations. 
 

Nr Salts Protein 

1 NH₄HCO₃ (0.1 M) + KH2PO4 (0.1 M) HSA 

2 NH₄HCO₃ (0.1 M) + KH2PO4 (0.1 M) IgG 

3 NH₄HCO₃ (0.1 M) + KH2PO4 (0.05 M) HSA 

4 NH₄HCO₃ (0.1 M) + KH2PO4 (0.05 M) IgG 

5 NH₄HCO₃ (0.1 M) + NaHCO3 (0.1 M) HSA 

6 NH₄HCO₃ (0.1 M) + NaHCO3 (0.1 M) IgG 

7 NH₄HCO₃ (0.1 M) + NaHCO3 (0.05 M) HSA 

4.1. Effect of Various Salts on Stain Patterns 
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8 NH₄HCO₃ (0.1 M) + NaHCO3 (0.05 M) IgG 

9 NH₄HCO₃ (0.1 M) + Tris (0.1 M) HSA 

10 NH₄HCO₃ (0.1 M) + Tris (0.1 M) IgG 

11 NH₄HCO₃ (0.05 M) + NaHCO3 (0.1 M) HSA 

12 NH₄HCO₃ (0.05 M) + NaHCO3 (0.1 M) IgG 

13 (NH₄)2SO4 (0.05 M) + NaHCO3 (0.1 M) HSA 

14 (NH₄)2SO4 (0.05 M) + NaHCO3 (0.1 M) IgG 

15 HEPES (0.05 M) + NaHCO3 (0.1 M) HSA 

16 HEPES (0.05 M) + NaHCO3 (0.1 M) IgG 

17 KH2PO4 (0.1 M) + HEPES (0.1 M)   HSA 

18 KH2PO4 (0.1 M) + Tricin (0.1 M)  HSA 

19 Tricin (0.05 M) + NaHCO3 (0.1 M) HSA 

20 Tricin (0.05 M) + NaHCO3 (0.1 M) IgG 

21 Tris (0.1 M) + NaHCO3 (0.1 M) HSA 

22 Tris (0.1 M) + NaHCO3 (0.1 M) IgG 

23 Tris (0.05 M) + NaHCO3 (0.1 M) HSA 

24 Tris (0.05 M) + NaHCO3 (0.1 M) IgG 

 

Figure 4.1 illustrates the distinct patterns emerging from each solution. Generally, 

patterns from the same salt solution (with identical salt types and concentrations) exhibit 

noticeable similarities. In most cases, the dissolved Human Serum Albumin (HSA) and 

Immunoglobulin G (IgG) do not show significant differences in their resulting patterns (e.g., 

samples 23 and 24). However, in some instances, notable variations can be observed between 

HSA and IgG, even within the same salt conditions (e.g., samples 5 and 6). 
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 Inception V3 was employed to classify various patterns, demonstrating exceptional 

performance. As depicted in Figure 4.2, the Convolutional Neural Network (CNN) achieved 

an impressive average prediction accuracy of 99%. The trained network effectively 

distinguished between Human Serum Albumin (HSA) and IgG within identical salt solutions, 

those containing the same salt components at equal concentrations (e.g., samples 3 and 4). 

Notably, it was capable of differentiating between samples with varying salt concentrations 

while maintaining the same protein type and salt components (e.g., samples 1 and 3). 

Furthermore, the model also successfully identified differences in samples where the protein 

and salt concentration remained unchanged, but the salt type varied (e.g., samples 17 and 18). 

The highest misclassification rate was observed in sample 10, where 6% of the samples 

were incorrectly classified as belonging to sample 9. Despite sharing similar salt components 

at comparable concentrations, these samples differ in protein content, contributing to the 

misclassification. The second-highest misclassification rate (4%) was recorded for samples 2 

and 7. 

Further analysis revealed that misclassifications in sample 2 primarily involved samples 

1 and 4, with 2% of the errors linked to their resemblance to sample 1 in terms of salt 

composition and concentration, and another 2% attributed to its similarity to sample 4 in protein 

type. Similarly, sample 7 exhibited misclassification errors with sample 11, as these samples 

share the same protein type and salt components but differ in salt concentrations.  

The high classification accuracy indicates that the model effectively captures subtle 

differences in pattern features, even when those differences arise from minimal changes in salt 

composition or protein type. This robustness suggests that deep learning approaches like 

Inception V3 can be valuable tools for analyzing complex biochemical data. Additionally, these 

results emphasize the potential of CNNs in applications beyond basic classification, such as 

predictive modeling for understanding how proteins behave under different environmental 

conditions. 
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Figure 4.1. Representative PLM images showing the patterns formed by two proteins (HSA and 

IgG), dissolved in different buffers, and deposited as 2 µL droplets of each solution onto a PPX-

H-coated glass wafer. The corresponding buffer compositions are detailed in Table 4.1. Odd-numbered 

samples contain HSA, while even-numbered samples contain IgG, except for sample 18, which also 

contains HSA.   
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Figure 4.2. Confusion matrix obtained from the stains of various salts containing two different proteins (HSA and IgG). The stains were prepared by 

depositing 2 µL droplets of each solution onto hydrophobic glass wafers coated with PPX-H. The model parameters were optimized with a global learning rate 

of 0.001, a minimum batch size of 32 images, and up to 20 epochs. 
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In the previous study, a single protein dissolved in buffer solutions was analyzed and classified. 

In the present study, the approach was expanded by introducing an additional biomolecule, 

DNA, to explore more complex classification scenarios. By incorporating DNA into the 

system, the potential of a deep learning model to effectively differentiate mixtures containing 

multiple biomolecular components was investigated. To evaluate the ability of Convolutional 

Neural Networks (CNN) in classifying mixtures of two components, specifically protein and 

DNA, various ratios of histone to Calf thymus DNA and Salmon DNA were prepared (Tables 

4.2, 4.3). The significance of this study lies in assessing whether the CNN could discern 

patterns or classifications based on not only the ratios of the components, the relative amounts 

of histone and DNA, but also the total mass concentration of the mixtures. By focusing on both 

the component ratios and the total mass concentrations, the research aimed to provide insights 

into the application of CNNs for analyzing complex biological mixtures and identifying key 

parameters that should be taken into account when studying interactions between proteins and 

nucleic acids.  

To ensure a systematic evaluation, two specific total mass concentrations, 0.1 mg/mL 

and 0.3 mg/mL, were selected. Uniform hydrophobic surfaces with consistent droplet behavior 

across large areas were obtained using chemical vapor deposition (CVD) polymerization of 

PPX-H. This technique enabled precise control of the coating thickness, which was maintained 

at 50 ± 5 nm to ensure stable surface properties and experimental reproducibility. A defined 

2 μL volume of the solution was dispensed onto the coated surface and left to dry for 50 minutes 

under controlled conditions (23 °C, 40% humidity). This enabled an evaluation of the CNN’s 

ability to classify different mixture ratios according to their total mass concentration, regardless 

of variations in the proportions of individual components. By comparing results across different 

4.2.  Screening and Classification of Protein-DNA Ratios with 

Various Total Mass Concentrations 
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total mass concentration levels, it was assessed whether high classification accuracy could be 

maintained by the network despite changes in overall sample composition.  

 

Table 4.2. Average prediction accuracies of two various total mass concentrations of histone-Calf 

thymus DNA mixture. 
 

Scenario Group 
Prediction 

Accuracy 

Histone/Calf 

DNA (mg/mg) 

Total Mass 

Concentration 

I 

(Low-Ratios) 

A 

90% 

1/5 

0.3 mg/ml 

B 1/10 

C 1/15 

II 

(High-

Ratios) 

D 

95% 

5/1 

E 15/1 

F 30/1 

I 

(Low-Ratios) 

G 

93% 

1/5 

0.1 mg/ml 

H 1/10 

I 1/15 

II 

(High-

Ratios) 

J 

100% 

5/1 

K 15/1 

L 30/1 

 

Table 4.3. Average prediction accuracies of histone-Salmon DNA mixture. 
 

Scenario Group 
Prediction 

Accuracy 

Histone/ Salmon 

DNA (mg/mg) 

Total Mass 

Concentration 

I 

(Proof of 

concept) 

A´´ 

87% 

1/5 

0.1 mg/ml 

B´´ 1/10 

C´´ 1/15 

II 

(Proof of 

concept) 

D´´ 

97% 

5/1 

E´´ 15/1 

F´´ 30/1 

 

In total, 7,600 images of deposition stains from histone-Calf and -Salmon DNA 

mixtures were prepared. Among these, 6,650 images were allocated for training and validation, 

while an additional 900 images comprised the test set that the network had not encountered 

during training. This division ensured a robust evaluation of the model’s performance. For the 

histone-Calf thymus DNA mixtures, ratios of 1/15, 1/10, 1/5, 5/1, 15/1, and 30/1 were 
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examined at two total mass concentrations of 0.1 mg/mL and 0.3 mg/mL. These specific ratios 

were selected to evaluate how varying proportions of histone to DNA influence the CNN’s 

ability to classify the mixtures accurately. Figure 4.3 presents the CNN-derived confusion 

matrix, offering a clear representation of the network's performance across different scenarios. 

Overall, InceptionV3 achieved an impressive average prediction accuracy of 94%. 

For the lower ratios, which contained a higher amount of Calf DNA, the average 

prediction accuracies were 90% for a total mass concentration of 0.3 mg/mL and 93% for 

0.1 mg/mL. This suggests that the network performed slightly better at the lower concentration, 

likely due to the agglomeration of the complex at the 0.3 mg/mL total mass concentration. 

Furthermore, the average prediction accuracy for the lower histone-to-DNA ratios (1/15, 1/10, 

1/5) was lower than that for the higher ratios (5/1, 15/1, and 30/1).  

Notably, the results indicated that, regardless of the total mass concentration (either 0.1 

or 0.3 mg/mL), the trend in prediction accuracies remained consistent across two categories of 

low and high ratios. Additionally, the CNN demonstrated the ability to distinguish similar ratios 

with varying total mass concentrations. This ability to differentiate between mixtures with 

identical histone-to-DNA ratios but differing total mass concentrations highlights the network's 

sensitivity to changes in mass, which could reflect subtle variations in sample composition. 

The histone/Salmon DNA mixtures were evaluated at a total mass concentration of 0.1 mg/mL, 

and consistent with the observations for Calf thymus DNA, the average prediction accuracy 

was higher for high histone-to-DNA ratios (97%) compared to low ratios (87%). These results 

prompted further investigation into the protein-DNA binding affinity. This suggests that CNN 

is capable of detecting changes in histone/DNA ratios in the same total mass concentrations, 

which reflect the outcomes of physiochemical interactions.
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Figure 4.3. Confusion matrix obtained from the stains of various histone/DNA ratios (Calf and Salmon) at two different total mass concentrations. The 

stains were prepared by depositing 2 µL droplets of histone/DNA complexes, dissolved in an aqueous HEPES buffer solution, onto hydrophobic glass wafers 

coated with PPX-H. The model parameters were optimized with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 40 epochs.
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Developing a simple technique to classify protein-DNA complexes according to their binding 

affinities would be highly interesting for many applications. The findings presented in this 

section have been previously published in Small Science and can be accessed via 

https://doi.org/10.1002/smsc.202400252. [261] To assess the ability of deep learning approaches 

to predict the relative binding affinity of protein-DNA interactions, the composition of stains 

formed after drying droplets of H1-DNA mixtures was investigated, and their deposition 

patterns were analyzed using polarized light microscopy (PLM). Figure 4.4.A displays a PLM 

image depicting a typical drying pattern of the histone-Salmon 20 kbp DNA mixture dissolved in 

a HEPES buffer. Chemical vapor deposition (CVD) polymerization was employed to coat glass 

surfaces with PPX-H, resulting in uniform hydrophobic substrates with a coating thickness of 

50 ± 5 nm. This approach ensured consistent droplet deposition over extensive regions of the 

surface. [264] Subsequently, a defined volume of 2 μL of the histone-DNA mixture solution was 

dispensed onto the coated surfaces and left to dry for 50 min under controlled conditions of 

40% humidity and 23 °C temperature. In this investigation, solutions containing different ratios 

of histone (H1) and DNA, dissolved in the same binding buffer consisting of 100 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (pH 7.8), 150 mM potassium 

chloride, and 50 mM ammonium sulfate, were employed. [265] To incorporate kosmotropic ions 

into the buffer solution, potassium chloride and ammonium sulfate were used, which help 

reduce protein denaturation and increase the salting-out effect, promoting protein-DNA 

interactions. [266, 267] The deposition patterns from protein-DNA mixtures are compositionally 

simple, but structurally complex supramolecular systems. These systems are influenced by 

multiscale processes that are interconnected both locally and temporally. [60] [268] The 

manipulation of parameters such as the substrate on which the droplet is placed, or the 

4.3.  Deep Learning-Based Classification of Linker Histone 

(H1)-DNA Interactions 

https://doi.org/10.1002/smsc.202400252
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environmental conditions directly impacts the resulting stain patterns. As the protein-DNA 

solution evaporates, it becomes saturated, leading to the precipitation of its components 

alongside the crystallization of salts in the buffer. The deposition of salts and biomolecules 

begins at the edges of the stain and gradually moves toward the center. To gain deeper insights 

into the stain patterns, scanning electron microscopy (SEM) was employed. The SEM images 

revealed high-aspect structures distributed throughout the stain, providing a detailed view that 

closely matched the features seen in the PLM image, thus improving our understanding of the 

pattern’s characteristics (Figure 4.4.A).  

 

 

 
 

Figure 4.4. The deposition patterns of H1-DNA droplets provide detailed insights into protein-

DNA interactions. These stains were created by placing 2 µL droplets of an aqueous HEPES buffer 

solution onto hydrophobic glass wafers coated with PPX-H A) A schematic of dispensing H1/DNA 

complex droplets, their drying process, and subsequent imaging. Representative images from PLM and 

SEM of a dried stain derived from a H1-Sal 20 kbp DNA mixture showcase complex deposition patterns. 

B) Analysis of the H1-Sal 20 kbp DNA mixture stain using TOF-SIMS imaging indicates the presence of 

PO3
− (intensity color scale 0-2 counts), shown in blue. CNO− fragments, marking the amino acids of 

histone and the nucleotides of DNA, are displayed in green (intensity color scale 0-30 counts). The 

distribution of chloride ions from the buffer solution is represented in red (intensity color scale 0-30 

counts). The first row shows the RGB channels and their combined overlay. Adapted from [261] 
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To gain a deeper understanding of the variations in chemical composition within the 

pattern on the solid surface, time-of-flight secondary-ion mass spectrometry (TOF SIMS) was 

utilized, as illustrated in Figure 4.4.B, which shows the H1-Sal 20 kbp DNA complex stains. The 

analysis of the separate Sal 20 kbp DNA and H1 patterns can be found in supporting information 

(Figure S2-3). This imaging method is surface-sensitive with a sampling depth of 

approximately 2 nanometers. The signal from the PO3
− ion is attributed to the phosphate 

backbone of the DNA crystal, whereas the CNO− ion signal is indicative of the presence of 

both protein (amino acids) and DNA (nucleotides). The Cl− signal was utilized to track the 

presence of salt originating from the buffer. The signals of CNO− and PO3
−, as well as the one 

of Cl− reveal the homogeneous distribution over the entire deposited pattern and thus confirm 

co-deposition of the protein and DNA. 

Based on a previous study, [2] it was hypothesized that the deposited patterns could be 

utilized to classify diverse types of DNA by discerning their differences in type and size, as 

well as distinguishing various levels of protein-DNA interactions (Figure 4.5.A). To 

investigate this hypothesis, a range of drying droplet stains generated from four distinct DNA 

samples, as well as their mixtures with H1, was analyzed (Figure 4.5.B), and approximately 

400-500 PLM images were collected for each group. It is observed that approximately 100 

images can be captured within a 60-minute timeframe. A transfer learning approach utilizing a 

commercially available deep learning (DL) neural network was employed for pattern analysis, 

thereby reducing the need for extensive training datasets. [2, 269]  

The InceptionV3 network was chosen for its combination of high accuracy on the given 

dataset and shorter training time compared to other high-performance pretrained CNNs, such 

as NasNetLarge. [2]  
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Figure 4.5. Schematic representation of the protein-DNA interaction study using deep learning 

approaches. A) The study aimed to classify a diverse level of histone-DNA interactions and the 

prediction of histone binding affinities to unknown DNA based on dried droplet patterns. B) 

Representative PLM images of H1-DNA stains from four distinct DNA types dissolved in HEPES 

buffer, deposited onto a CVD-coated glass slide, highlighting the variability in deposition patterns. 

From left to right: H1-Sal 20 kbp DNA, H1-Sal 1 kbp DNA, H1-Her DNA, and H1-λ DNA. Adapted from 

[261] 

 

4.3.1 Classification of Various DNA 

 

Figure 4.6.A presents PLM images of four distinct DNA types: Salmon DNA (Sal 20 kbp), 

Sheared Salmon DNA (Sal 1 kbp), Herring DNA (Her), and Lambda DNA (λ). These DNA 

types differ in both their genetic composition and molecular weight, influencing their structural 

and optical properties. Sal 20 kbp DNA, Sal 1 kbp DNA, and Her DNA originate from eukaryotic 

sources, sharing similarities in genetic content, while λ DNA is of prokaryotic origin, 

 

A) 
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representing a fundamentally different genomic structure. The variations in molecular weight 

also contribute to differences in DNA structure, which are evident in the PLM images. 

To classify these DNA types based on their PLM images, the InceptionV3 deep learning 

(DL) network, a convolutional neural network known for its high efficiency in image 

classification tasks, was employed. The trained model achieved an outstanding accuracy rate 

of 100% in distinguishing between the four DNA categories, as demonstrated by the confusion 

matrix in Figure 4.6.B. The evaluation was conducted using a well-structured dataset: a 

combined training and validation set consisting of approximately 1,600 images (400 images 

per DNA type) and an independent test set of 320 images (80 per category). The test set 

comprised randomly selected images that were entirely unseen by the network during training, 

ensuring that the model’s performance was evaluated on truly novel data. 

The flawless classification performance underscores the robustness of the InceptionV3 

model in identifying subtle, yet distinct optical patterns associated with different DNA types. 

This result highlights the potential of deep learning-based image analysis for DNA 

characterization and opens avenues for automated, high-throughput screening applications in 

molecular biology and biomedical research. 
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Figure 4.6. DL-based classification of different DNA types. A) PLM images of Sal 20 kbp DNA 

(outlined in red dashed line), Sal 1 kbp DNA (outlined in green dashed line), Her DNA (outlined in blue 

dashed line), and ƛ DNA (outlined in orange dashed line). B) Confusion matrix based on the deposition 

patterns of four distinct DNA types, varying in both size and type. The model parameters were 

optimized with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 40 epochs. 

Adapted from [261] 

 

Gradient-weighted class activation mapping (Grad-CAM) was applied to produce 

activation maps, highlighting the key features learned in the most informative regions of the 

PLM images. [270] Figure 4.7 presents heat map layers of the PLM images, illustrating the deep 

learning network's focus on the crystalline areas of the stain patterns, rather than the 

surrounding regions (image background). This selective attention enables the network to 

differentiate between various DNA types based on their unique deposition patterns, size, and 

structural features. The Grad-CAM results highlight the network's capability to accurately 

classify DNA samples, offering valuable insights into the model's decision-making process. 

These visualizations not only enhance the interpretability of the deep learning model but also 

provide a more efficient and precise approach to analyzing and distinguishing different DNA 

types. 
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Figure 4.7. Grad-CAM activation maps. Heatmap overlays on the PLM images highlight regions 

most influential in the model's classification decisions, providing insight into how CNN interprets DNA 

patterns. Scale bars indicate 1 mm. Adapted from [261] 

 

The t-distributed stochastic neighbor embedding (t-SNE) algorithm [234] (Figure 4.8) 

was applied to the "Softmax" layer of InceptionV3, resulting in clear clustering of four different 

DNA types. The output of this layer is a 4-dimensional array representing the spatial 

dimensions (x,y) of the images, along with the image channels and the batch dimension. [271] 

This observation further confirms that the stain patterns are distinctly separable and indicative, 

demonstrating their ability to reliably predict deposition patterns of particular DNA type 

generated under controlled conditions. The t-SNE results further highlight this by clearly 

clustering the DNA types, showcasing the model's capability to differentiate between them 

based on their unique deposition characteristics. 
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Figure 4.8. The t-SNE plot shows the results from the "Softmax Activation" layer of the trained 

CNN model. Sal 20 kbp DNA, Sal 1 kbp DNA, Her DNA, and ƛ DNA were represented by the colors red, 

green, blue, and orange, respectively. Adapted from [261] 

 

4.3.2 Relative Affinity of H1-DNA Interaction-Based on DNA 

Type (Eukaryotic and Prokaryotic DNA) 

 

The application of DL has emerged as a pivotal tool for comprehensive classification of 

protein-DNA complexes based on their binding affinity. Histone (H1) is commonly used as a 

DNA-binding candidate to study interactions with both prokaryotic and eukaryotic DNA. As 

previously mentioned, experimental studies have shown that H1 binds more strongly to 

eukaryotic DNA than to prokaryotic DNA. For example, lymphocyte DNA fragments were 

found to exhibit a binding affinity for H1 that is at least 15 times greater than that of E. coli 

DNA fragments of the same size, highlighting the selective interaction of H1 with eukaryotic 

DNA in comparison to prokaryotic DNA. [138, 144] Building on the previously described 

experimental methods, the InceptionV3 model was applied to classify different protein-DNA 

mixtures, which differed in DNA type and exhibited distinct binding affinities. [272, 273] Five 

various H1/DNA ratios (0.5-6.8 mole H1/168 base pairs DNA) were prepared for each DNA 

type. To achieve a more thorough comprehension, eukaryotic DNA and prokaryotic DNA with 
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similar number of base pairs, chosen from commercially available DNA samples, were 

gathered for comparative analysis.  

As depicted in Figure 4.9.A, Sal 20 kbp DNA (sourced from eukaryotes), forms a double-

helix molecule comprising approximately 20 K base pairs. Conversely, Lambda DNA is a 

linear, double-stranded molecule with around 48 K base pairs, from Escherichia coli 

bacteriophage. About 480 PLM images were collected for each ratio (400 images for the 

training and validation sets and 80 images for the testing set). The polarized light images 

(Figure 4.9.B) display distinct patterns in association with eukaryotic and prokaryotic DNA. 

The patterns that emerged from eukaryotic DNA before and after adding the H1 appear almost 

similar to the histone patterns. However, the deposited patterns for H1-prokaryotic DNA 

mixtures show distinct visual characteristics compared to those observed in the patterns of 

histone alone.  
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Figure 4.9. Effect of DNA type on H1-DNA binding affinity. A) Schematic representation of 

Sal 20 kbp (eukaryote) DNA, ƛ (prokaryote) DNA, and histone (H1). B) PLM images of Sal 20 kbp DNA 

(without histone), ƛ DNA (without histone), histone (without any DNA), and each H1-DNA mixture 

deposition patterns. Adapted from [261] 

In Figure 4.10, the Inception V3 network classifies similar ratios of H1 with two 

different DNA types (eukaryotic and prokaryotic). The samples containing Sal 20 kbp DNA, 

which show a higher binding affinity for H1, reveal that even small quantities of histone can 

form affinity complexes, as detected by CNN. These changes are not visible to the naked eye 

but are detectable with CNN. As structural changes become more pronounced, the CNN's 

ability to distinguish between the deposition patterns of different H1/DNA ratios improves, 

reflected in the higher prediction accuracy obtained. [2] As depicted in Figure 4.10, the average 

prediction accuracy for various ratios of H1-Sal 20 kbp DNA (eukaryotic) was 99%, surpassing 

the 93% accuracy observed for H1-ƛ DNA (prokaryotic). 

The CNN-derived confusion matrix indicated that prediction accuracies declined as the 

histone-to-base pair ratio decreased, reaching their lowest values for R0.5 and R1, which 

correspond to 0.5 and 1 mol of H1 per 168 base pairs of Sal 20 kbp DNA. According to the 

results, 2.5% of the stain images from the R0.5 group were incorrectly classified as belonging 

to the R1 group, while 5% of the R1 group were misclassified as R0.5. Increasing the quantity 
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of histone in Sal 20 kbp DNA (e.g., R1.4, R3.4, and R6.8) resulted in prediction accuracy rates 

reaching 100%. In contrast, the mixtures of H1-ƛ DNA (prokaryotic) showed a lower average 

prediction accuracy of 93%. The prediction accuracies for the R0.5, R1, R1.4, and R3.4 groups 

were 90%, 85%, 97.5%, and 80%, respectively, reflecting an average dissimilarity of 

approximately 88% among these groups. A complete prediction accuracy of 100% was only 

observed at the R6.8 ratio of H1-ƛ DNA. In comparison, the H1- Sal 20 kbp DNA groups already 

achieved this 100% accuracy at a lower histone concentration with the R1.4 ratio (Figure 4.10). 

 

 

 
 

Figure 4.10. Confusion matrices obtained from stain patterns of H1-DNA mixtures, comparing 

the binding affinity of H1 for eukaryotic versus prokaryotic DNA. Two DNA types were used: A) 

Sal 20 kbp DNA and B) ƛ DNA, both combined with histone H1. The InceptionV3 model was trained 

with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 40 epochs. Adapted 

from [261] 
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The t-SNE visualization (Figure 4.11) revealed distinct clustering among the various 

groups in H1-Sal 20 kbp DNA, indicating that the samples within this category exhibit well-

defined and separable features. In contrast, no such clustering was observed among the 

different groups of H1-λ DNA, implying a higher degree of overlap or similarity in their 

features. This clear clustering in H1-Sal 20 kbp DNA suggests a stronger binding affinity 

between H1 and Sal 20 kbp DNA, as better-defined clusters indicate more consistent and 

distinguishable interactions at different ratios. The higher the binding affinity, the more 

pronounced the clustering between different H1-DNA ratios, further supporting the notion that 

binding affinity-driven structural variations contribute to the classification performance. 

 

  



Results and Discussion 

 

90 

 

 
 

Figure 4.11. The t-SNE plots show the clustering of H1-eukaryote DNA vs H1-prokaryote DNA. 

The visualization of the 'Softmax' layer in the trained CNN model reveals distinct clusters associated 

with A) H1- Sal 20 kbp DNA and B) H1- ƛ DNA. Adapted from [261] 

 

To validate the results of the CNN analysis, an ethidium bromide displacement 

experiment was performed. The results of this experiment confirm the higher binding affinity 

of H1-Sal 20 kbp DNA compared to H1-ƛ DNA, as indicated by fluorescence quenching of EtBr. 

Ethidium bromide typically interacts with DNA via a molecular intercalation mechanism. 

When DNA is associated with a strong binder, it causes the displacement of ethidium bromide 

from the DNA. This displacement leads to a decrease in fluorescence, due to deactivation of 

free EtBr by proton transfer from the excited singlet to water. [262] The findings from this assay, 

illustrated in Figure 4.12, indicate that the addition of H1 to a pre-incubated solution of Sal 20 

kbp DNA-EtBr led to a more significant displacement of ethidium bromide from the complex 

than observed with the ƛ DNA-EtBr solution. This suggests that H1 exhibits a higher binding 

affinity for Sal 20 kbp DNA compared to ƛ DNA, which aligns with the conclusions drawn from 

the CNN analysis. The higher the average prediction accuracy for a DNA type, the greater the 

EtBr fluorescence quenching, suggesting a relatively higher binding affinity of that DNA type 

with H1. 
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Figure 4.12. Ethidium bromide-DNA complex displacement assay. Each data point represents the 

average of samples obtained from two distinct experiments. The decrease in relative fluorescence 

intensity of the EtBr-Sal 20 kbp DNA (red dash-line), and EtBR- ƛ DNA (orange dash-line) complexes is 

a result of the interaction between H1 and each DNA. Adapted from [261] 

 

4.3.3 Relative Affinity of H1-DNA Interaction-Based on DNA Size 

 

DNA molecules with longer base pairs present more binding sites for H1, which raises the 

chances of H1-DNA interactions, and results in a tighter chromatin compaction. In fact, the 

length of DNA can impact on the distribution and density of H1 binding.  

The study of Renz [138] revealed that the binding affinity of H1 differs among DNA 

fragments of the same origin but varying lengths. According to this study, H1 showed a higher 

affinity for longer eukaryotic DNA fragments compared to shorter fragments, as they compete 

more effectively for their binding. Moreover, Aviles et al. [274]  showed that H1 displays a 

stronger binding affinity for high molecular weight Calf thymus DNA than for sonicated Calf 

thymus DNA, which has been sheared into shorter fragments. Alterations in the molecular 

weight of DNA can affect the binding affinity between DNA and proteins, potentially leading 

to modifications in the physical and chemical characteristics of the resulting protein-DNA 

complex. [141] 
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 In this study, the Inception V3 model was utilized to classify the binding affinity 

between H1 and DNA, focusing on variations in DNA size. To have a better comparison, three 

different sizes of eukaryotic DNA, including Sal 20 kbp DNA, Sal 1 kbp DNA, and Herring (Her) 

DNA (50 bp) were gathered. Figure 4.13.A presents a schematic overview of the three 

different DNA lengths, while Figure 4.13.B provides PLM images of the droplet stain patterns 

formed by each DNA sample, H1 protein, and their respective complexes. 

 

 

 
 

Figure 4.13. Effect of DNA fragments size on H1-DNA binding affinity. A) Schematic 

representation of Sal 20 kbp DNA, Sal 1 kbp DNA, Her DNA, and H1. B) PLM images of each DNA 

(without histone), histone (without DNA), and each H1-DNA mixture deposition patterns. Adapted 

from [261] 
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Using the training dataset of approximately 360 PLM images, a validation set of 40 

images, and a test set of 80 images per group (Figure 4.14), we observed that the average 

classification accuracy from different ratios of H1-Sal 20 kbp DNA was notably higher compared 

to the prediction accuracy for H1-Sal 1 kbp DNA and H1-Her DNA complexes. This trend 

persisted even when the histone-to-DNA ratios were comparable across the groups, suggesting 

that the longer DNA fragment size (Sal 20 kbp DNA) enhances the model's ability to differentiate 

the complexes more effectively than the shorter DNA fragments. With the image set that had 

not been previously encountered by the DL network, InceptionV3 recorded 1%, 9% and 15% 

of total misclassification for H1-Sal 20 kbp DNA, H1-Sal 1 kbp DNA, and H1-Her DNA, 

respectively. At H1- Sal 20 kbp DNA ratios of 1.4 and above, the resulting stain patterns were 

highly distinguishable. In contrast, for shorter DNA fragments such as Sal 1 kbp and Her DNA, 

the stain patterns displayed a greater level of similarity across different ratios, resulting in lower 

average prediction accuracies. These similarities imply that for Sal 1 kbp DNA and Her DNA, a 

high concentration of histone is required to induce significant pattern alterations (leading to 

increased interactions and tighter DNA compaction), consequently leading to maximum 

classifications.  
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Figure 4.14. Confusion matrices derived from stain patterns of H1-DNA mixtures, comparing the 

binding affinity of H1 with eukaryotic DNAs differing in fragment sizes. Three eukaryotic DNA 

lengths were tested: A) 20 kbp, B) 1 kbp, and C) 50 bp, all combined with histone H1. The InceptionV3 

model was trained with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 

40 epochs. Adapted from [261] 

 

The t-SNE algorithm revealed clear clustering for H1-Sal 20 kbp DNA, moderate 

clustering for H1-Sal 1 kbp DNA, and the least clustering for H1-Her DNA (Figure 4.15). This 

pattern indicates that higher binding affinity corresponds to more distinct clustering, as 

observed for H1-Sal 20 kbp DNA, while lower binding affinity, as seen in H1-Her DNA, results 

in greater overlap and less-defined clusters. 
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Figure 4.15. The t-SNE plots show the clustering of H1 interactions with eukaryotic DNA of 

varying fragment sizes. Visualization of the 'Softmax' layer in the trained CNN model highlights 

separate groupings corresponding to each DNA size: A) H1-Sal 20 kbp DNA, B) H1-Sal 1 kbp DNA, and 

C) H1-Her DNA, indicating a distinct separation between these clusters. Adapted from [261] 
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The binding affinity trend was confirmed through the ethidium bromide displacement 

experiment previously discussed. (Figure 4.16). In this experiment, H1-Sal 20 kbp DNA 

exhibited the highest binding affinity, as shown by the most significant displacement of 

ethidium bromide from the DNA complex and corresponding fluorescence quenching. This 

was followed by H1-Sal 1 kbp DNA, which demonstrated a moderate displacement of ethidium 

bromide, reflecting a moderate binding affinity. Lastly, H1-Her DNA showed the weakest 

interaction with histone I, as evidenced by the least displacement of ethidium bromide and 

minimal fluorescence quenching. These results further support the notion that DNA fragment 

size plays a crucial role in determining histone I binding affinity. 

 

 
 

Figure 4.16. Ethidium bromide-DNA complex displacement assay. Each data point represents the 

average of samples obtained from two distinct experiments. The decrease in relative fluorescence 

intensity of the EtBr-Sal 20 kbp DNA (red dash-line), and EtBr-Sal 1 kbp DNA (green dash-line), and EtBr-

Her DNA (blue dash-line) complexes is a result of the interaction between H1 and each DNA. Adapted 

from [261] 

 

4.3.4 Stratification of Unknown Histone-DNA Interactions 

 

To evaluate the performance of the trained neural network, we prepared images of unknown 

DNA, as well as H1-unseen/unknown DNA mixture samples that were not included in the 
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original network's training set. To achieve this purpose, the neural network was trained using 

25 unique (approximately ten thousand PLM images) sample sets, each representing different 

H1-DNA ratios. These samples included varying proportions of H1 paired with four distinct 

DNA types: Sal 20 kbp DNA, Sal 1 kbp DNA, Herring (Her) DNA, and Lambda (ƛ) DNA. 

Additionally, control samples consisting of pure DNA without H1, as well as H1 alone without 

any DNA, were incorporated into the original training set. This diverse dataset provided the 

neural network with a comprehensive range of interaction patterns, enabling it to better 

recognize and classify unknown histone-DNA binding affinity across different DNA types and 

sizes. The pre-trained convolutional neural network (CNN) was utilized to predict the binding 

affinities between H1 and a range of unseen/unknown DNA samples based on their unique and 

unseen patterns. Figure 4.17.A depicts the workflow for the classification of unknown 

samples, which involves several steps, including collection of data, feature extraction and 

training and evaluation of the model.  

Figure 4.17.B illustrates that the pre-trained network successfully predicted the binding 

affinities of DNA from the species that were part of the training set. A prediction accuracy of 

100% was achieved, even though the CNN had not seen the images, as they were not part of 

the training set. 

Moreover, the binding affinity of H1-Salmon Sperm 200 bp DNA (commercially 

available) was examined. The trained network accurately classified and predicted the binding 

affinity of unknown samples with 100% accuracy in eukaryotic groups. The DNA samples in 

both the unknown and predicted groups were derived from the same source, differing only in 

the length of their fragments. Consequently, the unknown samples were predominantly 

grouped into the closest related category, specifically identified as H1-Sal 1 kbp DNA groups. 

As shown in Figure 4.17.B for the H1-Salmon Sperm 200 bp DNA at ratio R3.4, 92.5% of 

images were classified into the H1- Sal 1 kbp DNA group (medium binding affinity), 5% of stain 



Results and Discussion 

 

98 

 

patterns were categorized as H1- Sal 20 kbp DNA (strong binding affinity), and 2.5% of stain 

patterns were classified into the H1-Her DNA group (weak binding affinity). Furthermore, the 

staining patterns of another ratio (R6.8) of H1-Salmon Sperm 200 bp DNA were examined using 

the trained network. The trained network successfully classified 100% of unknown images into 

the most similar group based binding affinity (medium binding affinity).  

The classification results for images of H1-Calf DNA showed that the majority of the 

samples (84.4%) were identified as strong binders, while another 5.6% fell into the medium 

binder category. Notably, despite the CNN never having been trained on stain patterns 

containing Calf DNA, it accurately categorized 96% of these patterns as eukaryotic DNA, 

signifying specific H1 binding. Conversely, only 4% were misclassified as prokaryotic DNA 

(non-specific binding). This high classification accuracy is a promising indicator of the 

robustness of the deep learning model. The ability to classify binding affinity of unknown 

samples with such precision demonstrates the power of the DL approach, offering a significant 

advantage over traditional methods, which often rely on manual interpretation and are resource-

intensive. This approach not only provides a simple and fast solution for classifying histone-

DNA interactions but also delivers results with a high level of accuracy, reducing the time and 

effort typically required for extensive experimental analyses. Furthermore, the model can be 

easily adapted to classify new, previously unseen data, making it a highly flexible tool for rapid 

and scalable analysis of protein-DNA interactions. 

Moreover, the impact of the test set sample size on prediction accuracy was investigated 

(see Figure S4). The CNN achieved a classification rate of 90% for Calf DNA samples as 

strong binders when using just ten images. As more images were added (specifically 50, 80, 

and 100), the average prediction accuracy improved slightly, reaching only 91%. These results 

suggest that reliable and accurate outcomes can be obtained with as few as ten images, 

highlighting the effectiveness and feasibility of this machine learning technique for rapid 
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analysis. This finding is particularly significant in situations where sample availability is 

limited or when there is a need for fast, initial predictions. Furthermore, the minimal increase 

in accuracy with the addition of more samples suggests that the CNN has successfully learned 

the key features of histone-DNA interactions in the training process, emphasizing the potential 

for cost-effective and time-saving applications in high-throughput analysis. This underscores 

the practical advantages of applying deep learning models in various experimental settings, 

where quick and reliable predictions can significantly reduce the need for extensive data 

collection and processing. 
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Figure 4.17. Evaluation of the pre-trained network's performance in classifying H1-DNA binding 

affinities using new species. A) Overview of the approach used to classify unknown samples. B) 

Prediction results for unseen or unknown H1-DNA samples. Adapted from [261] 
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The results presented in this chapter have been published in Langmuir, and can be accessed via 

https://doi.org/10.1021/acs.langmuir.4c03971. [183] To achieve uniform and functionalized 

substrates, chemical vapor deposition (CVD) polymerization of poly(p-xylylene) (PPX) was 

employed. In this study, the scientific scope was intentionally limited to poly(para-xylylene) 

(PPX) surfaces. The reason is that these polymers share identical polymer backbones but differ 

in their functional side groups. As the polymer surfaces become more diverse, the patterns 

should be even more characteristic. Additional aspects or selecting PPX substrates for this 

study include properties such as low roughness, homogeneous coating, transparency, and 

stability against water, ensuring consistent and reliable data acquisition. Ten different PPX 

films were deposited onto glass wafers, as shown in Figure 4.18, with coating thicknesses 

ranging from 50 to 60 nm. A defined volume of 2 μL of an aqueous bovine serum albumin 

(BSA) solution in buffer were deposited onto each coated surface and left to dry under 

controlled environmental conditions (40% humidity, 23 °C) for 45 ± 5 minutes. During the 

drying process of the BSA solution, as saturation is reached, the protein components start to 

precipitate, beginning at the droplet's periphery and gradually advancing toward the center. 

This process leads to the development of characteristic stain patterns. Figure 4.18.A presents 

polarized light microscopy (PLM) images illustrating typical drying patterns of BSA solution 

on nine different PPX-coated surfaces: PPX-Amine (A), PPX-Aminomethyl (AM), PPX-

Hydrogen (H), PPX-Aldehyde (CHO), PPX-Hydroxymethyl (CH2OH), PPX-Alkyne (Alk), 

PPX-Chloride (Cl), PPX-Bromide (Br), and PPX-Fluoride (F). As it is clear from Figure 

4.18.A, dried BSA patterns on each surface were indistinguishable to the naked eye. To ensure 

an unbiased classification of the polymer surfaces, the InceptionV3 network was pre-trained 

using 400-500 images per group. InceptionV3 was selected for its superior accuracy and faster 

4.4. Deep Learning-Based Surface Classification of Functional 

Polymer Coatings 

https://doi.org/10.1021/acs.langmuir.4c03971
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training time compared to other advanced convolutional neural networks (CNNs), such as 

NasNetLarge [58, 275]. The training and validation sets comprised 85% of the total images, while 

100 images (15% of the total) were reserved for the test set, which remained unseen by the 

trained network. The trained network was employed to accomplish two main goals: i) 

stratification of subtle variations in surface polymer chemistries, specifically polymers with 

identical backbone structures but differing functional groups, by analyzing dried BSA patterns, 

and ii) predict and categorize unknown surfaces using the trained network (Figure 4.18.B). 
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Figure 4.18. Classification of surface polymer chemistries through image analysis of deposition 

droplets using a deep learning (DL) approach. A) Representative polarized light microscopy (PLM) 

images showing deposition patterns of BSA on nine PPX-coated glass wafers. The stains were created 

by depositing 2 µL droplets of 0.1 mg/mL BSA dissolved in an aqueous 100 mM carbonate-bicarbonate 

buffer with 50 mM sodium chloride (pH=9.2). B) A schematic illustration of the deep learning-based 

recognition of polymer surfaces, alongside the chemical reaction scheme depicting the CVD 

polymerization of ten different PCPs utilized in this study. The aim of the study was to classify a wide 

range of functionalized CVD coatings and to predict unknown surface chemistries based on patterns 

formed by dried droplets. Adapted from [183] 

 

4.4.1 Surface Characterization 

 

To thoroughly investigate the physicochemical properties of the ten polymer-coated surfaces, 

a multi-technique approach was employed, utilizing Time-of-Flight Secondary Ion Mass 

Spectrometry (ToF-SIMS), Infrared Reflection-Absorption Spectroscopy (IRRAS) (Figure 

S5-S6), and contact angle measurements. ToF-SIMS provided detailed molecular and 

elemental surface composition data, enabling the identification of characteristic functional 
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groups and potential contaminants. Contact angle measurements were conducted to assess the 

wettability and hydrophobicity of the coatings, offering insights into their surface energy and 

interactions with aqueous environments. Additionally, IRRAS was used to analyze the 

vibrational signatures of functional groups, allowing for the confirmation of chemical 

modifications and variations among the polymer coatings. The combined results from these 

techniques provided a comprehensive understanding of the surface properties and confirmed 

that the CVD polymerization process was successfully performed, ensuring the presence of the 

corresponding functional groups on each surface. 

Surface Chemistry Analysis by ToF-SIMS 

 

Figure 4.19 shows the ToF-SIMS analysis of PPX coatings with different functionalization. 

All functional groups, except PPX-Alk, displayed distinct heteroatoms detectable by this 

method. The halogenated polymers, PPX-F, PPX-Cl, and PPX-Br were each identified by their 

unique F−, Cl−, and Br− fragments, respectively. PPX-CHO and PPX-CH2OH were 

distinguished by the presence of oxygen-containing fragments, with the most pronounced O− 

signal observed for PPX-CHO and the strongest CH2OH+ signal for PPX-CH2OH. It is 

important to note that low-level oxygen signals can be ambiguous, as they may also appear in 

other PPX films due to the interaction of molecular oxygen with free radicals during post-

polymerization. PPX-A and PPX-AM were identified through nitrogen-containing fragments 

appearing as CN+ with similar intensities, although PPX-AM showed a higher intensity of the 

CH2NH2
+ signal due to its additional methylene group. The full spectra across the 10-85 m/z 

range are available in supplementary information (Figure S5). Overall, the ToF-SIMS analysis 

confirmed the presence of the intended functional groups across the modified PPX surfaces. 

Each polymer exhibited characteristic ion fragments correlating with its chemical composition, 

enabling differentiation between halogenated, oxygenated, and aminated variants. These 

findings reflect the successful chemical modification of the PPX films. Similarly, Infrared 



Results and Discussion 

 

105 

 

Reflection Absorption Spectroscopy (IRRAS) was utilized to confirm the existence and 

characteristics of the functional groups corresponding to each coated surface, as shown in 

Figure S6. The IRRAS spectra exhibited distinctive vibrational bands corresponding to the 

chemical functionalities introduced during surface modification. These results, alongside the 

ToF-SIMS findings, validated the successful incorporation of the desired functional groups, 

confirming the chemical identity of the modified PPX films. 

 

 
 

Figure 4.19. Characteristic TOF-SIMS spectral areas of PPX-coatings with varying 

functionalization. Light blue: PPX-NH2, Yellow: PPX-AM, Pink: PPX-NH2-co-AM, Orange: PPX-

CHO, Gray: PPX-HM, Purple: PPX-Cl, Brown: PPX-Br, Red: PPX-F8, and Green: PPX-Alkyne. 

Adapted from [183] 
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 Surface Hydrophobicity 

 

To assess the relative hydrophobicity (wettability) of different PPX surfaces, the diameter of 

dried droplets on each coating was measured, with an average of 150 measurements per surface 

to ensure statistical robustness and reproducibility (Figure 4.20). These measurements 

provided a quantitative comparison of the wettability of the various PPX coatings. The 

statistical analysis ranked the hydrophobicity of the coatings in a clear trend: PPX-CH2OH 

exhibited the highest wettability and was determined to be the least hydrophobic, followed by 

PPX-CHO. The next group, consisting of PPX-Alk, PPX-A, PPX-Br, PPX-Cl, PPX-H, and 

PPX-AM, displayed similar hydrophobicity levels, indicating that their surface properties 

influenced droplet spreading in comparable ways. Finally, PPX-F emerged as the most 

hydrophobic among all tested surfaces, with the smallest droplet diameters, suggesting that its 

surface chemistry significantly reduced water affinity. These results highlight the role of 

functional groups in modifying the surface energy of PPX coatings and provide insights into 

their potential applications in areas where controlled wettability is critical. 

 

 
 

Figure 4.20. Average stain diameters of various CVD coatings were determined through image 

analysis (mean values, N=150, with error bars representing the standard error). Coating groups labeled 

with the same letters indicate no statistically significant differences, as determined by Tukey's test. 

Adapted from [183] 
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4.4.2.  Classification and Identification of Surface Chemical 

Functionalities 

 

To classify the BSA stains dried on various polymer surfaces, a total of 5,063 PLM images 

were utilized with the pre-trained Inception V3 network. All images were analyzed without 

any form of selection. Overall, the CNN achieved an average prediction accuracy of 96% 

across the nine different PPX-coated surfaces, indicating that the pre-trained network could 

accurately differentiate between polymer surfaces.  

BSA adsorption onto different functional groups, each with unique physical (free 

surface energy) and chemical profiles (molecular moieties, hydrogen bonding, Lewis 

acid/base, polarizability, etc.), governs the interactions of the protein with the substrate, which, 

in turn, influences the resulting stain patterns. Previous studies have shown that surface 

characteristics play a crucial role in interfacial protein assembly. For example, Sarkar et al. 

observed that bovine serum albumin formed either multilayer or monolayer adsorption 

depending on substrate hydrophobicity. In this study, even subtle variations in surface 

chemistry led to distinct protein stain patterns, which the CNN effectively recognized and 

categorized. [276] 

Figure 4.21.i shows that the CNN identified PPX-CH2OH with 100% accuracy. This 

polymer coating exhibited the highest relative hydrophilicity, a property known to affect BSA 

adsorption on the surface [276]. Likewise, the PPX-CHO coated surface was also classified with 

100% accuracy (refer to Figure 4.20).  

As previously described, PPX-Alk, PPX-A, PPX-Br, PPX-Cl, PPX-H, and PPX-AM 

demonstrated similar relative hydrophobic properties (Figure 4.20). Misclassifications were 

most prevalent among halogenated coatings, with PPX-Br having the lowest prediction 

accuracy (83.8%). Notably, 13.7% of PPX-Br samples were misidentified by the CNN as either 

PPX-Cl or PPX-Alk, which share similar hydrophobic characteristics. While PPX-F 
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demonstrated greater hydrophobicity than other functionalized coatings, the CNN misclassified 

PPX-F coatings as either other halogenated PPX types or PPX-Alk. Grad-CAM analysis 

(Figure S7) revealed that most of these misclassifications were influenced by background 

interference and contrast from stain-free regions, which affected the CNN’s decision-making 

process.  

PPX-Alk had the second lowest prediction accuracy (91.3%), with around 7.5% of 

images misclassify as halogenated PPX surfaces. The CNN results indicate that most of 

misclassifications between alkyne and halogen groups can be attributed to their comparable 

hydrophobic properties. PPX-A achieved a prediction accuracy of 92.5%, with 2.5% of images 

misclassified as groups with similar hydrophobicity (PPX-AM and PPX-Alk), and 5% 

misclassified as PPX-CH2OH coatings (Figure S7). 

Subsequently, the model's performance in predicting more complex surface 

chemistries, i.e., unknown PPX-A/AM copolymer surfaces that were excluded from the 

training dataset, was evaluated. The pre-trained network effectively classified the unknown 

samples, with a majority being predicted as containing amine groups (56%) and aminomethyl 

groups (40%) (Figure 4.21.i).  

In the following, as shown in Figure 4.21.ii, the training set was refined by excluding 

PPX-Br, allowing the model to focus and retrain on the remaining eight PPX-coated surfaces. 

This adjustment led to an improvement in overall prediction accuracy across the groups. 

Additionally, the misclassification pattern revealed a similar trend (Figure 4.21.i), with PPX-

Alk and halogenated PPXs exhibiting the highest misclassification rate among all groups. 

Subsequently, images from the previously unknown PPX-A/AM copolymer and PPX-Br were 

tested by trained network. The results showed that all of the unknown PPX-A/AM binary 

copolymer samples were accurately classified as either PPX-A or PPX-AM. For the unknown 

PPX-Br coated surfaces, 56% of the images were categorized as halogenated PPX, while 95% 
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were grouped with polymer films that exhibiting hydrophobicity levels comparable to PPX-Br 

(Figure 4.21.ii). 

 

 
 

 
 

Figure 4.21. Confusion matrices derived from BSA stain pattern images of surfaces with various 

functionalized polymer CVD coatings. Deep learning-based recognition of PPX-coated glass wafers, 

with pre-training conducted i) including images of PPX-Br and ii) excluding them. BSA deposition 

stains were created by applying 2 µL droplets of a 100 mM carbonate-bicarbonate buffer (pH 9.2) 

containing 50 mM sodium chloride. The model parameters were optimized with a global learning rate 

of 0.001, a minimum batch size of 32 images, and up to 60 epochs. Adapted from [183] 
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Moreover, to assess the reproducibility of the experiment and the generalization 

capability of the trained network, we tested a small set of unknown PPX-Br samples collected 

from coated surfaces that were not included in the training, validation, or test sets. The results 

demonstrated high prediction accuracy in this "Few-Shot" study, aligning well with the 

findings of the original study (Figure 4.22). 

 

 
 

Figure 4.22. Evaluation of the trained network's reproducibility and generalization using 

unknown PPX-Br samples. High prediction accuracy was achieved in the Few-Shot study, consistent 

with the original findings. Adapted from [183]  

 

Additionally, the Grad-CAM analysis revealed that the CNN primarily focused on 

central stain patterns during training, rather than edge patterns, indicating that stain size had a 

minimal impact on surface recognition (Figure 4.23). This suggests that the network learned 

to extract meaningful features from the internal structural characteristics of the stain patterns. 

Consequently, the classification was primarily driven by chemically relevant information 

encoded within the central morphology of the stains, which facilitated more robust and 

generalizable surface recognition across different PPX-coated surfaces. 
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Figure 4.23. Grad-CAM activation maps. The heatmap overlay highlights regions that contributed 

most to the model's decision, offering insights into how the CNN interprets BSA patterns on various 

functionalized polymer surfaces. Adapted from [183] 

 

The t-SNE analysis demonstrated clear clustering of BSA stain images from all distinct 

polymer surfaces, highlighting the reproducibility and uniqueness of the stain patterns for each 

PPX-coated surfaces (Figure 4.24.i, 4.24.ii). Moreover, this analysis performed with 

perplexities of 10, 50, and 100. The results consistently revealed well-defined clusters, 

indicating strong feature discrimination. This suggested that the network effectively identifies 

patterns and captures meaningful relationships at both global and local levels (Figure S8). 
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Figure 4.24. The t-SNE plots show the clustering of the various functionalized polymer surfaces. 

Visualization of the 'Softmax' layer in the trained CNN reveals distinct groupings corresponding to i) 

Nine PPX-coated glass wafers, including images of PPX-Br, and ii) excluding them. Adapted from [183] 

 

4.4.3. Effect of Ionic Strength on CNN Classification 

 

In this section, the effect of ionic strength on secondary structure changes and its influence on 

classification performance was investigated. As previously observed by Sarkar et al., [276] BSA 

adsorption was significantly influenced by ionic strength. It was suggested that ions in the 

protein solution interact with both proteins and surfaces, facilitating stronger binding of protein 

layers through electrostatic and hydrophobic interactions. These ionic interactions were found 
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to modify the structural organization, density, and orientation of the adsorbed protein layer, 

leading to distinct surface patterns. Additionally, it was reported that in the absence of ions, 

globular BSA molecules form a tilted monolayer on both hydrophilic and hydrophobic 

surfaces, with greater tilting occurring on hydrophobic surfaces, leading to a denser protein 

layer. [276, 277] 

To investigate the influence of ionic strength on surface classification by CNN, PPX-

A and PPX-AM surfaces were analysed and compared in both the presence and absence of 

sodium chloride. Notably, the secondary structure of BSA, dissolved in a dilute carbonate-

bicarbonate buffer, remained unchanged at an ionic strength of 50 mM NaCl, as confirmed by 

CD spectroscopy analysis (Figure 4.25.A). However, when BSA was deposited onto the 

surfaces, the addition of 50 mM sodium chloride resulted in a noticeable increase in the 

prevalence of random coil structures in the CD spectrum (Figure 4.25.B). This observation 

suggests that the presence of NaCl promoted stronger BSA-surface binding through ionic 

interactions, which, in turn, led to a shift in the protein's secondary structure. The increased 

random coil formation implies that NaCl enhanced protein adsorption by altering molecular 

flexibility and interfacial interactions, ultimately resulting in a conformationally modified 

protein layer. These structural changes in BSA altered the organization of the adsorbed protein 

layer, affecting surface properties and crystallization behavior. Consequently, this 

reorganization influenced CNN classification outcomes, with a higher number of 

misclassifications observed in the absence of NaCl compared to samples containing NaCl. 
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Figure 4.25. Influence of ionic strength on BSA secondary structure and its significance in 

classifying PLM images of BSA deposition patterns on amine and aminomethyl surfaces. A) 

Influence of ionic strength on BSA secondary structure when dissolved in a diluted carbonate-

bicarbonate buffer with and without sodium chloride, and B) Impact of the drying process on BSA 

secondary structure, deposited on a quartz substrate in the absence and presence of sodium chloride, 

analyzed using CD spectroscopy. Adapted from [183] 

 

Subsequently, the 50 mM sodium chloride was removed from the primary buffer 

solution, which contained 100 mM carbonate-bicarbonate buffer at pH 9.2. The resulting 

patterns, with and without sodium chloride, were distinctly different and easily distinguishable 

to the naked eye (see Figures 4.26.i and 4.26.ii). For each group (amine and aminomethyl), 

around 80% of the total images were separated for the training and validation sets, while the 

remaining 20% were reserved for the testing set.  
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Figure 4.26. Effect of ionic strength on PLM images of deposition patterns of BSA on PPX- amine 

(blue boxes) and PPX-aminomethyl (yellow boxes) coated glass wafers. Stains were obtained by 

depositing 2 µL droplets of BSA solution in an aqueous i) 100 mM carbonate-bicarbonate buffer 

(pH=9.2) with 50 mM sodium chloride solution, and ii) 100 mM carbonate-bicarbonate buffer (pH=9.2) 

without sodium chloride. Adapted from [183] 

 

Figure 4.27 presents the confusion matrices for each category, with panel i) showing 

the results with sodium chloride and panel ii) showing the results without sodium chloride. The 

CNN results indicate that as ionic strength decreased, the images from each category became 

harder to distinguish, leading to a drop in overall prediction accuracy from 99% with NaCl to 

93% without NaCl.  

To assess the performance of the network, we tested it on unknown samples, 

specifically BSA dissolved in carbonate-bicarbonate buffer both i) with and ii) without NaCl, 

dried on substrates coated with different PPX A/MA ratios (0.2/0.8, 0.5/0.5, and 0.8/0.2). For 

samples containing NaCl and dried on the PPX A/MA = 0.5/0.5 surface, the network classified 

56% of the images as PPX-MA and 44% as PPX-A. Notably, it achieved 100% accuracy in 

distinguishing these samples from those with lower ionic strength. Similarly, when evaluating 
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samples ii) without NaCl on three copolymer surfaces, the model classified 54% of the binary 

copolymer (0.5/0.5) samples as PPX-MA, and 46% as PPX-A. For non-binary copolymers, the 

classification followed the dominant composition: 69% of PPX A/MA = 0.2/0.8 samples were 

identified as PPX-MA, while 31% were labeled as PPX-A, reflecting the major composition of 

the surface. Furthermore, the network demonstrated its ability to differentiate all samples with 

lower ionic strength from those with higher ionic strength with 100% accuracy. 

To assess the relative hydrophobicity of each functionalized surface, 150 images of 

surfaces coated with amine and methyl amine groups were randomly collected, and the 

diameters of BSA droplets dissolved in buffers with and without sodium chloride were 

measured (Figure S9). Based on the results, for both buffer solutions (pH 9.2, with and without 

sodium chloride), the PPX-A and PPX-AM showed similar hydrophobicity.  

 

 
 

Figure 4.27. Confusion matrix derived from BSA stain pattern images, illustrating the model’s 

ability to analyze the impact of ionic strength on surface recognition. BSA droplets, dissolved in an 

aqueous 100 mM carbonate-bicarbonate buffer (pH 9.2), were applied to glass wafers coated with PPX-

amine and PPX-aminomethyl surfaces, (i) with 50 mM sodium chloride and (ii) without sodium 

chloride. The model parameters were fine-tuned across all layers, using a global learning rate of 0.001, 

a minimum batch size of 32 images, and a maximum of 60 epochs. Adapted from [183] 
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The t-SNE algorithm revealed more distinct clusters in BSA-stained images (i) with 

sodium chloride than (ii) without it (Figure 4.28). This indicates that the presence of NaCl 

enhanced the separation and organization of the data points, leading to clearer differentiation 

between the surface patterns. These findings further support the idea that ionic strength plays 

a critical role in modifying protein structure and its interaction with surfaces, ultimately 

impacting the classification performance and allowing CNN to more effectively distinguish 

between different surface chemistries. 

 

 

 
 

Figure 4.28. The t-SNE plots of the "Softmax" layer from the trained CNN demonstrate the 

clustering of two functionalized surfaces. Both in the i) presence and ii) absence of sodium chloride. 

Adapted from [183] 
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4.4.4. Effect of Image Rotation on Surface Classification  

 

Addressing bias is a critical factor in the interpretation of deep learning analysis methods. [278] 

In this section, particular focus was placed on how the angle of observation might impact the 

results of the CNN analysis. To examine the presence of geometric training bias, the test set 

images were rotated at two different angles and in both directions, and the classification 

accuracy of surface chemistries was subsequently assessed using the pre-trained network. 

The trained model (with the unrotated images) was evaluated by systematically rotating 

the images from each surface category. As previously mentioned, the CNN was tested on the 

original test dataset, achieving an impressive overall accuracy of 96%, as illustrated in the 

confusion matrix in Figure 4.21.i. The test images underwent (i) a 180-degree rotation and (ii, 

iii) a 90-degree rotation in both clockwise and counterclockwise directions (Figure 4.29). The 

results showed that the 180-degree rotations in both directions resulted in identical confusion 

matrices, with the average prediction accuracy remaining unchanged at 96% compared to the 

unrotated images (96%). For the 90-degree rotations, both clockwise and counterclockwise, 

there was a slight decrease in average prediction accuracy of 1%, lowering it to 95%, which is 

considered negligible. Furthermore, the trend of misclassification remained consistent across 

all three rotation scenarios when compared to the unrotated images. 
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Figure 4.29. Assessment of geometric bias in the CNN analysis. (i) rotation of 180 degrees in both 

clockwise and counterclockwise directions, (ii) clockwise rotation of 90 degrees, and (iii) 

counterclockwise rotation of 90 degrees. Adapted from [183] 

 

Following a 180-degree rotation in both directions, the unknown sample achieved a 

prediction accuracy of 97.5%, with classifications distributed as 60% PPX-A and 37.5% PPX-

AM. For 90-degree rotations, accuracy remained high, with 97.5% accuracy for clockwise 

rotation (55% PPX-A and 42.5% PPX-AM) and 98.8% for counterclockwise rotation (52.5% 

PPX-A and 46.3% PPX-AM). These results indicate that classification accuracy remained 

consistent regardless of the rotation angle (90 or 180 degrees). Overall, the findings indicated 

that classification accuracy was unaffected by the rotation angle (90 and 180 degrees), 

demonstrating the network's capability to generalize and accurately classify surfaces regardless 

of image orientation. 
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5. Conclusion and Outlook 

 

In this dissertation, neural networks were successfully trained, significantly aiding 

experimental efforts in the laboratory by often reducing the time and limitations associated 

with traditional methods. The chemical and physical characteristics of a biomacromolecule 

influenced the deposition patterns formed as a droplet of its solution dried on a material’s 

surface. These deposition patterns were not only complex and characteristic but also highly 

reproducible. Consequently, they could serve as "fingerprints" for the screening and 

categorizing biomacromolecular interactions and various polymer surface chemistries. The 

main goal of this dissertation was to develop novel deep learning-based approaches for i) rating 

histone binding affinity to different DNA types and fragment sizes, and ii) classifying and 

identifying functional polymer-coated surfaces. By utilizing large datasets, machine learning 

algorithms can detect intricate patterns and correlations, significantly accelerating traditional 

analysis methods. In this study, the extensive dataset was generated using a method as simple 

as drying a droplet on a surface, allowing thousands of images to be produced within just a few 

hours. It enables low-cost, feasible experimentation while offering precise control over 

measurements and analyses.  

In chapter 4.1, A large dataset consisting of two proteins (HSA and IgG) dissolved in 

different salt solutions was prepared. The results demonstrated that the CNN was capable of 

distinguishing not only between the proteins but also between different types of salts and even 

subtle variations in salt concentration. For example, in the same salt composition and 

concentration (NH₄HCO₃ (0.1 M) + KH₂PO₄ (0.05 M)), both proteins (HSA and IgG) were 

classified with 100% accuracy. Furthermore, when the same salt components and protein 

(HSA) were used, the trained network precisely distinguished between different salt 

concentrations (Tris at 0.05 M and 0.1 M) with 100% accuracy. Additionally, for constant salt 
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concentrations, the network accurately classified the type of components with high prediction 

accuracy. Overall, the trained network achieved an average prediction accuracy of 99%, 

demonstrating the CNN's ability to precisely detect even subtle changes in solution 

composition. This highlights the model's robustness and reliability in distinguishing small 

variations in experimental conditions. 

In chapter 4.2, various mass ratios of histone/DNA mixture solutions were prepared, 

and two experimental scenarios were designed to evaluate the CNN's ability to distinguish not 

only between different protein-to-DNA ratios, but also between varying total mass 

concentrations of the mixtures. Scenario I included histone-Calf DNA mixtures with low 

histone-to-DNA mass ratios (1/5, 1/10, and 1/15), while Scenario II focused on histone-Calf 

DNA mixtures with higher protein-to-DNA ratios (5/1, 15/1, and 30/1). In both scenarios, the 

total mass concentrations of DNA and histone were maintained at two 0.1 and 0.3 mg/mL. In 

Scenario I, a higher rate of misclassification was observed compared to Scenario II at both total 

mass concentration levels, suggesting that an increase in histone content induces greater 

structural changes in the histone and/or DNA. These alterations in secondary structure resulted 

in more distinct dried stain patterns, which the CNN classified with higher accuracy. This trend 

was further corroborated using Salmon DNA as a proof of concept, where a similar pattern 

emerged, consistent with the results obtained for Calf DNA. The CNN also showed the 

capability to differentiate similar ratios with differing total mass concentrations. These findings 

prompted further exploration of protein-DNA binding affinity, revealing that the CNN can 

detect variations in histone/DNA ratios even within the same total mass concentrations, 

effectively capturing the effects of physicochemical interactions. 

In chapter 4.3, this study utilized an advanced deep-learning method to investigate the 

relative binding affinity between DNA and H1. Specifically, using the InceptionV3 model to 

analyze stain images of histone-DNA complexes enabled accurate and predictive classification 
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of their binding affinities. The network indicated that H1 exhibits a stronger interaction with 

eukaryotic DNA compared to prokaryotic DNA. Moreover, due to longer DNA strands 

exhibiting a stronger binding affinity to histone, a higher prediction accuracy can be achieved 

for these in comparison to shorter DNA strands. This suggests a robust and highly discernible 

interaction pattern that the DL model readily identifies and classifies. These findings provide 

valuable insights into the intricate dynamics of protein-DNA interactions, highlighting the role 

of different parameters including DNA type and DNA size in binding affinity. Besides, all 

unseen/unknown images were precisely categorized into the most relevant groups, indicating 

the model's ability to assess unknown data effectively. Notably, the size of the test set had 

minimal impact on the results, indicating that just 10 images can yield an accuracy of over 

90%. Although small sample sizes can be effective for testing, the model's robustness and 

reliability still require a large training dataset. In this research, approximately twelve thousand 

images were generated to pre-train the network and evaluate its performance using the test set, 

followed by evaluation on an unknown/unseen sample. Additionally, this study incorporated 

four distinct types and sizes of DNA, showcasing the model's ability to generalize effectively 

beyond the initial straightforward cases. The approach established in this research could enable 

the swift screening of candidates that bind to DNA or interactions between proteins and DNA, 

offering wide-ranging applications in biotechnology and molecular biology. To refine the 

training of the network further, additional image screening involving a varied array of proteins 

and DNA is essential, which would enhance the accuracy of binding affinity predictions and 

improve generalization.  

In chapter 4.4, this study applied an advanced deep learning technique to identify 

surface chemical functionalization with different CVD coatings. By examining BSA stain 

patterns using the InceptionV3 model, the classification and identification of functional groups 

were highly accurate and predictive. Increasing ionic strength improved prediction accuracy, 
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which corroborates with the slight destabilizing effect of ionic strength on secondary structure 

of BSA. Future research should explore the impact of varying salt concentrations and different 

protein-surface interactions to further refine machine learning-based classification approaches 

in biointerface studies. Furthermore, the findings indicated that image rotation had no impact 

on prediction accuracy, eliminating concerns about geometric bias during the network training. 

This approach facilitated a rapid, cost-efficient, and straightforward assessment of surface 

chemistry candidates, showing great potential for broader applications in surface engineering. 

These findings show that the foundational methodology is not restricted to CVD-based polymer 

surfaces. In general, if there is a sufficiently diverse and representative dataset available for 

training, this work can easily be extended to functionalized polymer surfaces. For the process 

to be extended to a greater diversity of polymer coatings, the selection should be based on low 

roughness, homogeneity in coating, transparency, and stability against water. Given that 

material performance in various settings is closely tied to surface properties, this method was 

useful for analyzing protein-material interactions. The identification of functional groups as 

unique markers on material surfaces may allow researchers to predict and tailor surface 

characteristics for specific biomedical applications. This research highlights the flexibility and 

effectiveness of transfer learning and fine-tuning, demonstrating strong performance even in 

complex tasks, such as distinguishing chemically similar samples. Future studies could explore 

different network architectures to further assess and enhance the generalizability of these 

findings. 

 



List of Figures 

 

125 

 

List of Figures 

 

Figure 2.1. Effect of relative humidity on the residue left after the evaporation of a sessile blood 

drop. All experiments were conducted using the same droplet volume (V = 14.2 μl) across a range of 

relative humidity (RH) levels, with the droplets placed on a microscope-grade ultraclean glass substrate 

at room temperature (23.8 °C) and atmospheric pressure. Adapted from [86] ......................................... 9 

 

Figure 2.2. Schematic representation of two modes of drying process of droplets. (a) constant 

contact radius (CCR) and (b) constant contact angle (CCA). Adapted from [71] .................................... 9 

 

Figure 2.3. The flow patterns inside an evaporating droplet, illustrating both Capillary and 

Marangoni flows. The lines indicate the direction of the flow. Adapted from [91] ............................... 10 

 

Figure 2.4. DNA molecule structure. (a) Double helix model showing two antiparallel strands twisted 

around each other. The strands consist of a sugar-phosphate backbone and nitrogenous base pairs: 

adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C), connected by hydrogen 

bonds. Major and minor grooves are visible along the helix. (b) Base pairing and strand orientation 

illustrating the antiparallel arrangement (5′ to 3′ and 3′ to 5′) and specific hydrogen bonding between 

complementary bases. 'A' pairs with 'T' through two hydrogen bonds, and 'G' pairs with 'C' through 

three hydrogen bonds. Adapted from [107].............................................................................................. 12 

 

Figure 2.5. Detection of target DNA using the coffee ring effect. Microspheres functionalized with 

DNA probes hybridize with target DNA to form non-spherical aggregates, suppressing the coffee ring 

effect and resulting in uniform particle deposition. This method enables simple, highly specific, and 

low-cost nucleic acid detection without the need for specialized equipment. Adapted from [111] ......... 14 

 

Figure 2.6. Nucleosomes structure. Nucleosomes consist of DNA wrapped around histone octamers, 

with linker DNA and histone H1 facilitating chromatin compaction and organization. Adapted from [127]

 .............................................................................................................................................................. 15 

 

Figure 2.7. Conceptual overview and schematic representation of the CVD polymerization 

process. For copolymerization, both precursor components (PCP1 and PCP2) are sublimated and 

pyrolyzed simultaneously, enabling the spontaneous formation of copolymers in the deposition 

chamber. Adapted from [183] .................................................................................................................. 27 

 

Figure 2.8. Data science methods include different approaches. Artificial intelligence (AI) is a part 

of data science and includes traditional programming as well as machine learning (ML). Machine 

learning involves several models and techniques, including deep learning (DL) and Convolutional 

neural networks (CNN). Adapted from [195] .......................................................................................... 29 

 

Figure 2.9. The schematic of biological neuron versus single-neuron perceptron. Adapted from [196]

 .............................................................................................................................................................. 31 

 

Figure 2.10. The pipeline of the general CNN architecture. A CNN consists of several parts, 

including: convolution layers, pooling layers, and fully connected layers. The model's performance is 

evaluated using a loss function during forward propagation on the training dataset. The learnable 



List of Figures 

 

126 

 

parameters, such as kernels and weights, are then updated based on the loss value through 

backpropagation using the gradient descent optimization algorithm. Adapted from [194] ..................... 33 

 

Figure 2.11. The operation of the convolutional layer. An illustration of the convolution operation is 

shown with a 3 × 3 kernel, and a stride of 1. The kernel is applied across the input tensor, performing 

element-wise multiplication at each location, followed by summing the results to produce the output 

value in the corresponding position of the output tensor, known as the feature map. Adapted from [212]

 .............................................................................................................................................................. 35 

 

Figure 2.12. Illustration of zero-padding in image processing. The image is padded with zeros along 

its borders to enable the filter to slide over it while maintaining an output size that is equal to the input 

size. Adapted from [212].......................................................................................................................... 35 

 

Figure 2.13. Common activation functions used in neural networks. a) Hyperbolic Tangent (tanh), 

b) Sigmoid, and c) Rectified Linear Unit (ReLU). Adapted from [207] .................................................. 37 

 

Figure 2.14. The operation of the max pooling layer. Adapted from [218] ........................................ 38 

 

Figure 2.15. The operation of the fully-connected layer. Adapted from [218] ................................... 39 

 

Figure 2.16. Schematic representation of the gradient descent concept. Learnable parameters are 

iteratively adjusted via gradient descent, minimizing loss (the difference between predicted and true 

values. Adapted from [207] ...................................................................................................................... 42 

 

Figure 2.17. Typical data division for machine learning. The data is segregated into training 

(Training Set), validation (Validation Set), and test sets (Test Set). Training Set: Used to train the model. 

Forward propagation calculates the loss, guiding the update of learnable parameters through 

backpropagation. Validation Set: Monitors model performance during training, aiding hyperparameter 

tuning and model selection. Test Set: Evaluates the final model's generalizability on unseen data, ideally 

used only once at the project's conclusion. Adapted from [207] ............................................................. 43 

 

Figure 2.18. The loss curves for training and validation per epoch, illustrating overfitting. The 

overfitting phase is shown where the validation error (orange curve) begins to rise while the training 

error (blue curve) continues to decrease. This indicates that the model is learning the training data too 

well, capturing noise and specific details, which leads to a poor generalization on unseen data. Adapted 

from [229] ................................................................................................................................................ 44 

 

Figure 2.19. Schematic representation of the transfer learning technique. Utilizing transfer learning 

is a widespread and efficient approach for training a network with a limited dataset. Adapted from [207]

 .............................................................................................................................................................. 45 

 

Figure 2.20. Jablonski diagram. This diagram illustrating various transitions between a molecule’s 

energy states. Adapted from [237] ........................................................................................................... 48 

 

Figure 2.21. Diagram of simplified fluorescence spectroscopy setup. Adapted from [239] ............... 49 

 

Figure 2.22. Schematic representation of the TOF-SIMS instrument. Adapted from [246] ............ 51 

 



List of Figures 

 

127 

 

Figure 2.23. Illustration of the electromagnetic spectrum. It highlights the division of the infrared 

regions into three categories: Near-infrared (12820-4000 cm⁻1), Mid-infrared (4000-400 cm⁻1), and Far-

infrared (400-33 cm⁻1). Adapted from [250] ............................................................................................ 52 

 

Figure 2.24. Schematic diagram for infrared spectroscopy. Adapted from [255] ............................. 53 

 

Figure 2.25. Illustration of image dipole theory. The black, white, and red vectors represent the dipole 

moment of the molecule, the image dipole induced within a reflective substrate, and the resultant vector 

obtained by summing the black and white vectors, respectively. A) The induced dipole moment is 

perpendicular to the surface. B) The induced dipole moment is at an intermediate angle to the surface. 

C) The induced dipole moment is parallel to the surface plane. Adapted from [256] ............................. 54 

 

Figure 2.26. Schematic representation of light circular polarization. i) right circularly polarized ii) 

left circularly polarized light. Adapted from [258] .................................................................................. 55 

 

Figure 3.1. Architecture of the pre-trained InceptionV3 model. The model comprises multiple 

Inception modules that apply convolutional filters of various sizes in parallel to extract multi-scale 

features. It includes convolutional and max-pooling layers, followed by fully connected layers and a 

final softmax layer for classification. Adapted from [261] ...................................................................... 64 

 

Figure 4.1. Representative PLM images showing the patterns formed by two proteins (HSA and 

IgG), dissolved in different buffers, and deposited as 2 µL droplets of each solution onto a PPX-

H-coated glass wafer. The corresponding buffer compositions are detailed in Table 4.1. Odd-numbered 

samples contain HSA, while even-numbered samples contain IgG, except for sample 18, which also 

contains HSA. ....................................................................................................................................... 72 

 

Figure 4.2. Confusion matrix obtained from the stains of various salts containing two different 

proteins (HSA and IgG). The stains were prepared by depositing 2 µL droplets of each solution onto 

hydrophobic glass wafers coated with PPX-H. The model parameters were optimized with a global 

learning rate of 0.001, a minimum batch size of 32 images, and up to 20 epochs. ............................... 73 

 

Figure 4.3. Confusion matrix obtained from the stains of various histone/DNA ratios (Calf and 

Salmon) at two different total mass concentrations. The stains were prepared by depositing 2 µL 

droplets of histone/DNA complexes, dissolved in an aqueous HEPES buffer solution, onto hydrophobic 

glass wafers coated with PPX-H. The model parameters were optimized with a global learning rate of 

0.001, a minimum batch size of 32 images, and up to 40 epochs. ........................................................ 77 

 

Figure 4.4. The deposition patterns of H1-DNA droplets provide detailed insights into protein-

DNA interactions. These stains were created by placing 2 µL droplets of an aqueous HEPES buffer 

solution onto hydrophobic glass wafers coated with PPX-H A) A schematic of dispensing H1/DNA 

complex droplets, their drying process, and subsequent imaging. Representative images from PLM and 

SEM of a dried stain derived from a H1-Sal 20 kbp DNA mixture showcase complex deposition patterns. 

B) Analysis of the H1-Sal 20 kbp DNA mixture stain using TOF-SIMS imaging indicates the presence of 

PO3
− (intensity color scale 0-2 counts), shown in blue. CNO− fragments, marking the amino acids of 

histone and the nucleotides of DNA, are displayed in green (intensity color scale 0-30 counts). The 

distribution of chloride ions from the buffer solution is represented in red (intensity color scale 0-30 

counts). The first row shows the RGB channels and their combined overlay. Adapted from [261] ....... 79 

 

Figure 4.5. Schematic representation of the protein-DNA interaction study using deep learning 

approaches. A) The study aimed to classify a diverse level of histone-DNA interactions and the 



List of Figures 

 

128 

 

prediction of histone binding affinities to unknown DNA based on dried droplet patterns. B) 

Representative PLM images of H1-DNA stains from four distinct DNA types dissolved in HEPES 

buffer, deposited onto a CVD-coated glass slide, highlighting the variability in deposition patterns. 

From left to right: H1-Sal 20 kbp DNA, H1-Sal 1 kbp DNA, H1-Her DNA, and H1-λ DNA. Adapted from 

[261] ......................................................................................................................................................... 81 

 

Figure 4.6. DL-based classification of different DNA types. A) PLM images of Sal 20 kbp DNA 

(outlined in red dashed line), Sal 1 kbp DNA (outlined in green dashed line), Her DNA (outlined in blue 

dashed line), and ƛ DNA (outlined in orange dashed line). B) Confusion matrix based on the deposition 

patterns of four distinct DNA types, varying in both size and type. The model parameters were 

optimized with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 40 epochs. 

Adapted from [261] .................................................................................................................................. 83 

 

Figure 4.7. Grad-CAM activation maps. Heatmap overlays on the PLM images highlight regions 

most influential in the model's classification decisions, providing insight into how CNN interprets DNA 

patterns. Scale bars indicate 1 mm. Adapted from [261] ......................................................................... 84 

 

Figure 4.8. The t-SNE plot shows the results from the "Softmax Activation" layer of the trained 

CNN model. Sal 20 kbp DNA, Sal 1 kbp DNA, Her DNA, and ƛ DNA were represented by the colors red, 

green, blue, and orange, respectively. Adapted from [261] ..................................................................... 85 

 

Figure 4.9. Effect of DNA type on H1-DNA binding affinity. A) Schematic representation of 

Sal 20 kbp (eukaryote) DNA, ƛ (prokaryote) DNA, and histone (H1). B) PLM images of Sal 20 kbp DNA 

(without histone), ƛ DNA (without histone), histone (without any DNA), and each H1-DNA mixture 

deposition patterns. Adapted from [261] .................................................................................................. 87 

 

Figure 4.10. Confusion matrices obtained from stain patterns of H1-DNA mixtures, comparing 

the binding affinity of H1 for eukaryotic versus prokaryotic DNA. Two DNA types were used: A) 

Sal 20 kbp DNA and B) ƛ DNA, both combined with histone H1. The InceptionV3 model was trained 

with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 40 epochs. Adapted 

from [261] ................................................................................................................................................. 88 

 

Figure 4.11. The t-SNE plots show the clustering of H1-eukaryote DNA vs H1-prokaryote DNA. 

The visualization of the 'Softmax' layer in the trained CNN model reveals distinct clusters associated 

with A) H1- Sal 20 kbp DNA and B) H1- ƛ DNA. Adapted from [261] ..................................................... 90 

 

Figure 4.12. Ethidium bromide-DNA complex displacement assay. Each data point represents the 

average of samples obtained from two distinct experiments. The decrease in relative fluorescence 

intensity of the EtBr-Sal 20 kbp DNA (red dash-line), and EtBR- ƛ DNA (orange dash-line) complexes is 

a result of the interaction between H1 and each DNA. Adapted from [261] ........................................... 91 

 

Figure 4.13. Effect of DNA fragments size on H1-DNA binding affinity. A) Schematic 

representation of Sal 20 kbp DNA, Sal 1 kbp DNA, Her DNA, and H1. B) PLM images of each DNA 

(without histone), histone (without DNA), and each H1-DNA mixture deposition patterns. Adapted 

from [261] ................................................................................................................................................. 92 

 

Figure 4.14. Confusion matrices derived from stain patterns of H1-DNA mixtures, comparing the 

binding affinity of H1 with eukaryotic DNAs differing in fragment sizes. Three eukaryotic DNA 

lengths were tested: A) 20 kbp, B) 1 kbp, and C) 50 bp, all combined with histone H1. The InceptionV3 



List of Figures 

 

129 

 

model was trained with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 

40 epochs. Adapted from [261] ................................................................................................................ 94 

 

Figure 4.15. The t-SNE plots show the clustering of H1 interactions with eukaryotic DNA of 

varying fragment sizes. Visualization of the 'Softmax' layer in the trained CNN model highlights 

separate groupings corresponding to each DNA size: A) H1-Sal 20 kbp DNA, B) H1-Sal 1 kbp DNA, and 

C) H1-Her DNA, indicating a distinct separation between these clusters. Adapted from [261] .............. 95 

 

Figure 4.16. Ethidium bromide-DNA complex displacement assay. Each data point represents the 

average of samples obtained from two distinct experiments. The decrease in relative fluorescence 

intensity of the EtBr-Sal 20 kbp DNA (red dash-line), and EtBr-Sal 1 kbp DNA (green dash-line), and EtBr-

Her DNA (blue dash-line) complexes is a result of the interaction between H1 and each DNA. Adapted 

from [261] ................................................................................................................................................. 96 

 

Figure 4.17. Evaluation of the pre-trained network's performance in classifying H1-DNA binding 

affinities using new species. A) Overview of the approach used to classify unknown samples. B) 

Prediction results for unseen or unknown H1-DNA samples. Adapted from [261] ............................... 100 

 

Figure 4.18. Classification of surface polymer chemistries through image analysis of deposition 

droplets using a deep learning (DL) approach. A) Representative polarized light microscopy (PLM) 

images showing deposition patterns of BSA on nine PPX-coated glass wafers. The stains were created 

by depositing 2 µL droplets of 0.1 mg/mL BSA dissolved in an aqueous 100 mM carbonate-bicarbonate 

buffer with 50 mM sodium chloride (pH=9.2). B) A schematic illustration of the deep learning-based 

recognition of polymer surfaces, alongside the chemical reaction scheme depicting the CVD 

polymerization of ten different PCPs utilized in this study. The aim of the study was to classify a wide 

range of functionalized CVD coatings and to predict unknown surface chemistries based on patterns 

formed by dried droplets. Adapted from [183] ...................................................................................... 103 

 

Figure 4.19. Characteristic TOF-SIMS spectral areas of PPX-coatings with varying 

functionalization. Light blue: PPX-NH2, Yellow: PPX-AM, Pink: PPX-NH2-co-AM, Orange: PPX-

CHO, Gray: PPX-HM, Purple: PPX-Cl, Brown: PPX-Br, Red: PPX-F8, and Green: PPX-Alkyne. 

Adapted from [183] ................................................................................................................................ 105 

 

Figure 4.20. Average stain diameters of various CVD coatings were determined through image 

analysis (mean values, N=150, with error bars representing the standard error). Coating groups labeled 

with the same letters indicate no statistically significant differences, as determined by Tukey's test. 

Adapted from [183] ................................................................................................................................ 106 

 

Figure 4.21. Confusion matrices derived from BSA stain pattern images of surfaces with various 

functionalized polymer CVD coatings. Deep learning-based recognition of PPX-coated glass wafers, 

with pre-training conducted i) including images of PPX-Br and ii) excluding them. BSA deposition 

stains were created by applying 2 µL droplets of a 100 mM carbonate-bicarbonate buffer (pH 9.2) 

containing 50 mM sodium chloride. The model parameters were optimized with a global learning rate 

of 0.001, a minimum batch size of 32 images, and up to 60 epochs. Adapted from [183] .................... 109 

 

Figure 4.22. Evaluation of the trained network's reproducibility and generalization using 

unknown PPX-Br samples. High prediction accuracy was achieved in the Few-Shot study, consistent 

with the original findings. Adapted from [183] ..................................................................................... 110 

 



List of Figures 

 

130 

 

Figure 4.23. Grad-CAM activation maps. The heatmap overlay highlights regions that contributed 

most to the model's decision, offering insights into how the CNN interprets BSA patterns on various 

functionalized polymer surfaces. Adapted from [183] ........................................................................... 111 

 

Figure 4.24. The t-SNE plots show the clustering of the various functionalized polymer surfaces. 

Visualization of the 'Softmax' layer in the trained CNN reveals distinct groupings corresponding to i) 

Nine PPX-coated glass wafers, including images of PPX-Br, and ii) excluding them. Adapted from [183]

 ............................................................................................................................................................ 112 

 

Figure 4.25. Influence of ionic strength on BSA secondary structure and its significance in 

classifying PLM images of BSA deposition patterns on amine and aminomethyl surfaces. A) 

Influence of ionic strength on BSA secondary structure when dissolved in a diluted carbonate-

bicarbonate buffer with and without sodium chloride, and B) Impact of the drying process on BSA 

secondary structure, deposited on a quartz substrate in the absence and presence of sodium chloride, 

analyzed using CD spectroscopy. Adapted from [183] .......................................................................... 114 

 

Figure 4.26. Effect of ionic strength on PLM images of deposition patterns of BSA on PPX- amine 

(blue boxes) and PPX-aminomethyl (yellow boxes) coated glass wafers. Stains were obtained by 

depositing 2 µL droplets of BSA solution in an aqueous i) 100 mM carbonate-bicarbonate buffer 

(pH=9.2) with 50 mM sodium chloride solution, and ii) 100 mM carbonate-bicarbonate buffer (pH=9.2) 

without sodium chloride. Adapted from [183] ....................................................................................... 115 

 

Figure 4.27. Confusion matrix derived from BSA stain pattern images, illustrating the model’s 

ability to analyze the impact of ionic strength on surface recognition. BSA droplets, dissolved in an 

aqueous 100 mM carbonate-bicarbonate buffer (pH 9.2), were applied to glass wafers coated with PPX-

amine and PPX-aminomethyl surfaces, (i) with 50 mM sodium chloride and (ii) without sodium 

chloride. The model parameters were fine-tuned across all layers, using a global learning rate of 0.001, 

a minimum batch size of 32 images, and a maximum of 60 epochs. Adapted from [183] .................... 116 

 

Figure 4.28. The t-SNE plots of the "Softmax" layer from the trained CNN demonstrate the 

clustering of two functionalized surfaces. Both in the i) presence and ii) absence of sodium chloride. 

Adapted from [183] ................................................................................................................................ 117 

 

Figure 4.29. Assessment of geometric bias in the CNN analysis. (i) rotation of 180 degrees in both 

clockwise and counterclockwise directions, (ii) clockwise rotation of 90 degrees, and (iii) 

counterclockwise rotation of 90 degrees. Adapted from [183] .............................................................. 120 

 

  

 



List of Tables 

 

131 

 

List of Tables 
 

Table 2.1. A list of frequently used activation functions in the final layer for different tasks. .... 40 

 

Table 3.1. List of chemicals and materials. ....................................................................................... 57 

 

Table 3.2. List of instruments. ........................................................................................................... 58 

 

Table 3.3. List of software. ................................................................................................................. 59 

 

Table 3.4. Polymer structure of different precursors. ..................................................................... 60 

 

Table 4.1. A library of buffer solutions with various salt types and concentrations. ................... 69 

 

Table 4.2. Average prediction accuracies of two various total mass concentrations of histone-Calf 

thymus DNA mixture. ...................................................................................................... 75 

 

Table 4.3. Average prediction accuracies of histone-salmon DNA mixture. ................................. 75 

 

 

 

 

 

 

 

 

 

 

 

 



Supporting Information  

 

132 

 

Supporting Information  

 

 
 

Figure S1) Agarose gel electrophoresis  

Agarose gel electrophoresis (1%) for Sal 20 kbp DNA, sonicated Sal 20 kbp DNA (bath sonication for 5 

second, and direct probe sonication for 5 min with 20 kHz. The determination of fragment sizes is based 

on their positioning on the gel compared to the molecular marker. 
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Figure S2) TOF-SIMS imaging.  

Brown scale images of A) H1-Sal 20 kbp DNA sample: Amino acids of protein and base pairs of DNA 

were identified by CNO- (scale 0-30), the backbone of DNA was identified by PO3
- (scale 0-2), and 

buffer crystals were identified by Cl- (scale 0-30); B) Sal 20 kbp DNA sample: CNO- (scale 0-20), PO3
- 

(scale 0-10), Cl- (scale 0-30) and C) H1 (histone1) sample: CNO- (scale 0-30), PO3
- (scale 0-2), Cl- 

(scale 0-30). All total ion images (scale 0-1300) represent the combined signals from all detected ions, 

displaying the variation in detected ionization over the droplet area. All scale bars represent 500 µm. 
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Figure S3) TOF-SIMS spectra.  

Characteristic spectral areas, corresponding to the images in Figure S2, displaying the total areal 

intensity of A) Cl-, B) CNO- and C) PO3-. The red, blue, and pink spectra represent histone (H1), 

Sal 20 kbp DNA, and H1+ Sal 20 kbp DNA mixture samples, respectively.  
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Figure S4) The impact of varying the quantity of unseen test images on the prediction accuracy of the 

trained neural network. The error bars in the graphical representation indicate the standard deviation 

(N=3). Groups sharing identical letters indicate no statistically significant differences based on least 

significant difference (LSD)-adjusted comparisons. 
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Figure S5) ToF-SIMS. Survey spectra of negative polarity measurements. All spectra are cut off at 

an upper intensity of x10^5 counts, to ensure the visibility of fragment peaks with medium intensity. 
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Figure S5) ToF-SIMS: Survey spectra of positive polarity measurements. All spectra are cut off at an 

upper intensity of x10^5 counts, to ensure the visibility of fragment peaks with medium intensity. 
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Figure S6) IRRAS of various PPXs 
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Figure S7) Gradient-weighted Class Activation Mapping (Grad-CAM). Grad-CAM illustrating 

misclassified PLM images: A) PPX-F as PPX-Alkyne; Three misclassifications occurred out of 80 

unseen PLM images of BSA deposition patterns on PPX-F. B) PPX-A as PPX-CH2OH; Four 

misclassifications occurred out of 80 unseen PLM images of BSA deposition patterns on PPX-A. 

Background interference, pattern-free spaces, and improper patterns collected from the edges of coated 

substrates (where the coating may have been insufficient) were the most causes of this misclassification. 
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Figure S8) t-SNE visualizations of the feature space with perplexity values of i) 10, ii) 50, and iii) 100. 

These values were chosen to examine the robustness of clustering across both local (low perplexity) 

and global (high perplexity) relationships. The consistent clustering observed across all perplexity 

values indicates robust feature representations by the network. 
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Figure S9) Hydrophobicity of PPX-A and PPX-AM functional surfaces, measured by the diameters 

size of dried BSA stains dissolved in buffer solutions with and without sodium chloride. A total of 150 

randomly selected stains were analyzed per group. The error bars denote the standard error (SE). Groups 

sharing the same letters indicate no significant differences, as determined by Tukey-adjusted 

comparisons. Significant differences were identified using the Tukey method, with p < 0.05.  
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[167] C.J. Friedmann, S. Ay, S. Bräse, Improved synthesis of enantiopure 4-hydroxy [2.2] 

paracyclophane, The Journal of Organic Chemistry 75(13) (2010) 4612-4614. 

 

[168] C. Zippel, T. Bartholomeyzik, C. Friedmann, M. Nieger, Z. Hassan, S. Bräse, Regioselective 

ortho‐Palladation of [2.2] Paracyclophane Scaffolds: Accessing Planar and Central Chiral N, C‐

Palladacycles, European Journal of Organic Chemistry 2021(36) (2021) 5090-5093. 

 

[169] P.-J. Chen, H.-Y. Chen, W.-B. Tsai, Fabrication of Low-Fouling Surfaces on Alkyne-

Functionalized Poly-(p-xylylenes) Using Click Chemistry, Polymers 14(2) (2022) 225. 

 

[170] X. Deng, J. Lahann, Orthogonal surface functionalization through bioactive vapor‐based polymer 

coatings, Journal of Applied Polymer Science (2014) 131(14). 

 

[171] W.F. Gorham, A new, general synthetic method for the preparation of linear poly‐p‐xylylenes, 

Journal of Polymer Science Part A‐1: Polymer Chemistry 4(12) (1966) 3027-3039. 

 

[172] Y. Elkasabi, M. Yoshida, H. Nandivada, H.Y. Chen, J. Lahann, Towards Multipotent Coatings: 

Chemical Vapor Deposition and Biofunctionalization of Carbonyl‐Substituted Copolymers, 

Macromolecular Rapid Communications 29(11) (2008) 855-870. 

 

[173] H.-Y. Chen, M. Hirtz, X. Deng, T. Laue, H. Fuchs, J. Lahann, Substrate-independent dip-pen 

nanolithography based on reactive coatings, Journal of the American Chemical Society 132(51) (2010) 

18023-18025. 

 

[174] X. Jiang, H.-Y. Chen, G. Galvan, M. Yoshida, J. Lahann, Vapor‐based initiator coatings for atom 

transfer radical polymerization, Advanced Functional Materials (2008) 18 (1), 27-35. 

 

[175] H. Nandivada, H.Y. Chen, J. Lahann, Vapor‐based synthesis of poly [(4‐formyl‐p‐xylylene)‐co‐

(p‐xylylene)] and its use for biomimetic surface modifications, Macromolecular rapid communications 

26(22) (2005) 1794-1799. 

 

[176] A. Kausar, Polymer coating technology for high performance applications: Fundamentals and 

advances, Journal of Macromolecular Science, Part A 55(5) (2018) 440-448. 

 

[177] T.M. Hafshejani, X. Zhong, J. Kim, B. Dadfar, J. Lahann, Chemical and Topological Control of 

Surfaces Using Functional Parylene Coatings, Organic Materials 5(02) (2023) 98-111. 

 

[178] A.M. Ross, D. Zhang, X. Deng, S.L. Chang, J. Lahann, Chemical-vapor-deposition-based 

polymer substrates for spatially resolved analysis of protein binding by imaging ellipsometry, 

Analytical chemistry 83(3) (2011) 874-880. 

 

[179] J. Lahann, Reactive polymer coatings for biomimetic surface engineering, Chemical Engineering 

Communications 193(11) (2006) 1457-1468. 

 

[180] J. Lahann, Vapor‐based polymer coatings for potential biomedical applications, Polymer 

international 55(12) (2006) 1361-1370. 

 

[181] D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable 

raw material, Angewandte chemie international edition 44(22) (2005) 3358-3393. 

 



References 

 

155 

 

[182] K.Y. Suh, R. Langer, J. Lahann, A novel photoderinable reactive polymer coating and its use for 

microfabrication of hydrogel elements, (2004) 1401-1405. 

 

[183] S. Vaez, D. Shahbazi, M. Koenig, M. Franzreb, J. Lahann, Deep Learning Based Surface 

Classification of Functionalized Polymer Coatings, Langmuir (2025) in press. 

 

[184] M.M. Byranvand, F. Behboodi-Sadabad, A.A. Eliwi, V. Trouillet, A. Welle, S. Ternes, I.M. 

Hossain, M.R. Khan, J.A. Schwenzer, A. Farooq, Chemical vapor deposited polymer layer for efficient 

passivation of planar perovskite solar cells, Journal of Materials Chemistry A 8(38) (2020) 20122-

20132. 

 

[185] S. Sah, Machine learning: a review of learning types, (2020). 

 

[186] P. Chaovalit, L. Zhou, Movie review mining: A comparison between supervised and unsupervised 

classification approaches, Proceedings of the 38th annual Hawaii international conference on system 

sciences, IEEE (2005) pp. 112c-112c. 

 

[187] E.F. Morales, H.J. Escalante, A brief introduction to supervised, unsupervised, and reinforcement 

learning, Biosignal processing and classification using computational learning and intelligence, 

Elsevier (2022) pp. 111-129. 

 

[188] V. Nasteski, An overview of the supervised machine learning methods, Horizons. b 4(51-62) 

(2017) 56. 

 

[189] S.B. Kotsiantis, I. Zaharakis, P. Pintelas, Supervised machine learning: A review of classification 

techniques, Emerging artificial intelligence applications in computer engineering 160(1) (2007) 3-24. 

 

[190] P.P. Shinde, S. Shah, A review of machine learning and deep learning applications, 2018 Fourth 

international conference on computing communication control and automation (ICCUBEA), IEEE 

(2018) pp. 1-6. 

 

[191] G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural 

computation 18(7) (2006) 1527-1554. 

 

[192] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, 

S. Thrun, J. Dean, A guide to deep learning in healthcare, Nature medicine 25(1) (2019) 24-29. 

 

[193] L. Deng, A tutorial survey of architectures, algorithms, and applications for deep learning, 

APSIPA transactions on Signal and Information Processing 3 (2014) e2. 

 

[194] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, M.S. Lew, Deep learning for visual understanding: 

A review, Neurocomputing 187 (2016) 27-48. 

 

[195] Y.-D. Zhang, X. Jiang, S.-H. Wang, Fingerspelling recognition by 12-layer CNN with stochastic 

pooling, Mobile Networks and Applications (2022) 1-13. 

 

[196] F.M. Shiri, T. Perumal, N. Mustapha, R. Mohamed, A Comprehensive Overview and 

Comparative Analysis on Deep Learning Models, CNN, RNN, LSTM, GRU, arXiv preprint arXiv 

(2023) 2305.17473. 

 

[197] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document 

recognition, Proceedings of the IEEE 86(11) (1998) 2278-2324. 

 



References 

 

156 

 

[198] Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A survey of convolutional neural networks: analysis, 

applications, and prospects, IEEE transactions on neural networks and learning systems 33(12) (2021) 

6999-7019. 

 

[199] P. Arena, A. Basile, M. Bucolo, L. Fortuna, Image processing for medical diagnosis using CNN, 

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, 

Detectors and Associated Equipment 497(1) (2003) 174-178. 

 

[200] N. Sharma, V. Jain, A. Mishra, An analysis of convolutional neural networks for image 

classification, Procedia computer science 132 (2018) 377-384. 

 

[201] J. Du, Understanding of object detection based on CNN family and YOLO, Journal of Physics: 

Conference Series, IOP Publishing, (2018) p. 012029. 

 

[202] M. Coşkun, A. Uçar, Ö. Yildirim, Y. Demir, Face recognition based on convolutional neural 

network, 2017 international conference on modern electrical and energy systems (MEES), IEEE (2017) 

pp. 376-379. 

 

[203] M. Sahu, R. Dash, A survey on deep learning: convolution neural network (CNN), Intelligent and 

Cloud Computing: Proceedings of ICICC 2019, Volume 2, Springer (2021) pp. 317-325. 

 

[204] M. Han, J. Chen, L. Li, Y. Chang, Visual hand gesture recognition with convolution neural 

network, 2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial 

Intelligence, Networking and Parallel/Distributed Computing (SNPD), IEEE (2016) pp. 287-291. 

 

[205] Y. Liu, H. Pu, D.-W. Sun, Efficient extraction of deep image features using convolutional neural 

network (CNN) for applications in detecting and analysing complex food matrices, Trends in Food 

Science & Technology 113 (2021) 193-204. 

 

[206] T. Adriyanto, R.A. Ramadhani, R. Helilintar, A. Ristyawan, Classification of dog and cat images 

using the CNN method, Ilk. J. Ilm 14(3) (2022) 203-208. 

 

[207] R. Yamashita, M. Nishio, R.K.G. Do, K. Togashi, Convolutional neural networks: an overview 

and application in radiology, Insights into imaging 9 (2018) 611-629. 

 

[208] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural 

networks, Advances in neural information processing systems (2012) 25. 

 

[209] X. Zhou, Understanding the convolutional neural networks with gradient descent and 

backpropagation, Journal of Physics: Conference Series, IOP Publishing (2018) p. 012028. 

 

[210] M.M. Taye, Theoretical understanding of convolutional neural network: Concepts, architectures, 

applications, future directions, Computation 11(3) (2023) 52. 

 

[211] M.D. Zeiler, Hierarchical convolutional deep learning in computer vision, Doctoral dissertation 

(2013). 

 

[212] K. Dutta, R. Lenka, M.S. Sarowar, Improvement of Denoising in Images Using Generic Image 

Denoising Network (GID Net), 2021 IEEE 2nd International Conference on Applied Electromagnetics, 

Signal Processing, & Communication (AESPC), IEEE (2021) pp. 1-6. 

 

[213] F. Alrasheedi, X. Zhong, P.-C. Huang, Padding module: Learning the padding in deep neural 

networks, IEEE Access 11 (2023) 7348-7357. 

 



References 

 

157 

 

[214] M. Varshney, P. Singh, Optimizing nonlinear activation function for convolutional neural 

networks, Signal, Image and Video Processing 15(6) (2021) 1323-1330. 

 

[215] W. Hao, W. Yizhou, L. Yaqin, S. Zhili, The role of activation function in CNN, 2020 2nd 

International Conference on Information Technology and Computer Application (ITCA), IEEE (2020) 

pp. 429-432. 

 

[216] Y. Wang, Y. Li, Y. Song, X. Rong, The influence of the activation function in a convolution 

neural network model of facial expression recognition, Applied Sciences 10(5) (2020) 1897. 

 

[217] M.A. Mercioni, S. Holban, The most used activation functions: Classic versus current, 2020 

International Conference on Development and Application Systems (DAS), IEEE (2020) pp. 141-145. 

 

[218] M.M. Adnan, M.S.M. Rahim, A.R. Khan, T. Saba, S.M. Fati, S.A. Bahaj, An improved automatic 

image annotation approach using convolutional neural network-slantlet transform, IEEE Access 10 

(2022) 7520-7532. 

 

[219] D. Scherer, A. Müller, S. Behnke, Evaluation of pooling operations in convolutional architectures 

for object recognition, International conference on artificial neural networks, Springer (2010) pp. 92-

101. 

 

[220] S.S. Basha, S.R. Dubey, V. Pulabaigari, S. Mukherjee, Impact of fully connected layers on 

performance of convolutional neural networks for image classification, Neurocomputing 378 (2020) 

112-119. 

 

[221] N.M. Nawi, R.S. Ransing, M.N.M. Salleh, R. Ghazali, N.A. Hamid, An improved back 

propagation neural network algorithm on classification problems, International Conferences, DTA and 

BSBT 2010, Proceedings, Springer (2010) pp. 177-188 

 

[222] M.R. Rezaei-Dastjerdehei, A. Mijani, E. Fatemizadeh, Addressing imbalance in multi-label 

classification using weighted cross entropy loss function, 2020 27th national and 5th international 

iranian conference on biomedical engineering (ICBME), IEEE (2020) pp. 333-338. 

 

[223] M. Kohler, S. Langer, Statistical theory for image classification using deep convolutional neural 

networks with cross-entropy loss, arXiv preprint arXiv, (2020) 2011.13602. 

 

[224] E.M. Dogo, O. Afolabi, N. Nwulu, B. Twala, C. Aigbavboa, A comparative analysis of gradient 

descent-based optimization algorithms on convolutional neural networks, 2018 international conference 

on computational techniques, electronics and mechanical systems (CTEMS), IEEE (2018) pp. 92-99. 

 

[225] D. Ueda, A. Yamamoto, T. Takashima, N. Onoda, S. Noda, S. Kashiwagi, T. Morisaki, T. Honjo, 

A. Shimazaki, Y. Miki, Training, validation, and test of deep learning models for classification of 

receptor expressions in breast cancers from mammograms, JCO Precision Oncology 5 (2021) 543-551. 

 

[226] T. Eelbode, P. Sinonquel, F. Maes, R. Bisschops, Pitfalls in training and validation of deep 

learning systems, Best Practice & Research Clinical Gastroenterology 52 (2021) 101712. 

 

[227] A. Vabalas, E. Gowen, E. Poliakoff, A.J. Casson, Machine learning algorithm validation with a 

limited sample size, PloS one 14(11) (2019) e0224365. 

 

[228] E. Hoffer, I. Hubara, D. Soudry, Train longer, generalize better: closing the generalization gap in 

large batch training of neural networks, Advances in neural information processing systems, (2017) 30.  

 

[229] Z.S. Aaraji, H.H. Abbas, Automatic Classification of Alzheimer's disease using brain MRI data 

and deep Convolutional Neural Networks, arXiv preprint arXiv, (2022) 2204.00068. 



References 

 

158 

 

[230] Y. Guo, Deep learning for visual understanding, Doctoral dissertation (2017). 

 

[231] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, Computer 

Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, 

Proceedings, Part I 13, Springer (2014) pp. 818-833. 

 

[232] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual 

explanations from deep networks via gradient-based localization, Proceedings of the IEEE international 

conference on computer vision (2017) pp. 618-626. 

 

[233] G.E. Hinton, S. Roweis, Stochastic neighbor embedding, Advances in neural information 

processing systems (2002) 15. 

 

[234] L. Van der Maaten, G. Hinton, Visualizing data using t-SNE, Journal of machine learning research 

9(11) (2008) 2579-605. 

 

[235] C. Xiao, S. Hong, W. Huang, Optimizing graph layout by t-SNE perplexity estimation, 

International Journal of Data Science and Analytics 15(2) (2023) 159-171. 

 

[236] H. Sahoo, Optical spectroscopic and microscopic techniques, Springer (2022).  

 

[237] C. Dysli, S. Wolf, M.Y. Berezin, L. Sauer, M. Hammer, M.S. Zinkernagel, Fluorescence lifetime 

imaging ophthalmoscopy, Progress in retinal and eye research 60 (2017) 120-143. 

 

[238] L.A. Bagatolli, Fluorescence spectroscopy: basic foundations and methods, Analytical techniques 

in the pharmaceutical sciences (2016) 29-59. 

 

[239] A.H. Alami, S. Alasad, H. Aljaghoub, M. Ayoub, A. Alashkar, A. Mdallal, R. Hasan, 

Characterization Techniques for Photovoltaics Manufacturing, PV Technology and Manufacturing, 

Springer (2023) pp. 139-153. 

 

[240] J.R. Lakowicz, J.R. Lakowicz, Instrumentation for fluorescence spectroscopy, Principles of 

fluorescence spectroscopy (1999) 25-61. 

 

[241] B. Valeur, M.N. Berberan-Santos, Molecular fluorescence: principles and applications, John 

Wiley & Sons (2013). 

 

[242] H. Bisswanger, Enzyme kinetics: principles and methods, John Wiley & Sons (2017). 

 

[243] J. Chan, S.C. Dodani, C.J. Chang, Reaction-based small-molecule fluorescent probes for 

chemoselective bioimaging, Nature chemistry 4(12) (2012) 973-984. 

 

[244] J.C. Vickerman, D. Briggs, ToF-SIMS_an overview, surface analysis by mass spectrometry, 

(2001) 1-40. 

 

[245] I.S. Gilmore, SIMS of organics-Advances in 2D and 3D imaging and future outlook, Journal of 

Vacuum Science & Technology A 31(5) (2013) 050819. 

 

[246] N. Tsuyama, H. Mizuno, T. Masujima, Mass spectrometry for cellular and tissue analyses in a 

very small region, Analytical Sciences 27(2) (2011) 163-163. 

 

[247] R.G. Messerschmidt, M.A. Harthcock, Infrared microspectroscopy. Theory and applications, 

(1988). 

 

[248] B.C. Smith, Fundamentals of Fourier transform infrared spectroscopy, CRC press (2011). 



References 

 

159 

 

[249] W. Kemp, Organic spectroscopy, Bloomsbury Publishing (2017). 

 

[250] T.M. Hafshejani, Atomic-Scale Investigation of Strain Effect on Surface Properties of Silicon and 

Mineral Materials, Doctoral dissertation (2021). 

 

[251] B.E. Hayden, Reflection absorption infrared spectroscopy, Vibrational spectroscopy of molecules 

on surfaces, Springer (1987) pp. 267-344. 

 

[252] A. Bradshaw, E. Schweizer, Infrared reflection-absorption spectroscopy of adsorbed molecules, 

Advances in spectroscopy (1986) 16 (1988) 413-483. 

 

[253] M.D. Porter, T.B. Bright, D.L. Allara, T. Kuwana, Quantitative aspects of infrared external 

reflection spectroscopy: polymer/glassy carbon interface, Analytical Chemistry 58(12) (1986) 2461-

2465. 

 

[254] J.S. Wong, Y.-S. Yen, Intriguing absorption band behavior of IR reflectance spectra of silicon 

dioxide on silicon, Applied spectroscopy 42(4) (1988) 598-604. 

 

[255] H. Samuel, E. Etim, U. Nweke-Maraizu, B. Bako, J. Shinggu, Advances in Experimental 

Techniques for Corrosion Inhibition Studies: Insights and Applications, Journal of Applied Sciences 

and Environmental Management 27(12) (2023) 2957-2966. 

 

[256] https://facultyweb.kennesaw.edu. 

 

[257] A.J. Miles, B.A. Wallace, Circular dichroism spectroscopy of membrane proteins, Chemical 

society reviews 45(18) (2016) 4859-4872. 

 

[258] http://www.physicsbootcamp.org/section-polarization-of-light.html. 

 

[259] S. Subadini, P.R. Hota, D.P. Behera, H. Sahoo, Circular Dichroism Spectroscopy: Principle and 

Application, Optical Spectroscopic and Microscopic Techniques: Analysis of Biological Molecules, 

Springer (2022) pp. 19-33. 

 

[260] L. Errede, M. Szwarc, Chemistry of p-xylylene, its analogues, and polymers, Quarterly Reviews, 

Chemical Society 12(4) (1958) 301-320. 

 

[261] S. Vaez, B. Dadfar, M. Koenig, M. Franzreb, J. Lahann, Deep Learning‐Based Classification of 

Histone–DNA Interactions Using Drying Droplet Patterns, Small Science (2024) 2400252. 

 

[262] A.J. Geall, I.S. Blagbrough, Rapid and sensitive ethidium bromide fluorescence quenching assay 

of polyamine conjugate–DNA interactions for the analysis of lipoplex formation in gene therapy, 

Journal of pharmaceutical and biomedical analysis 22(5) (2000) 849-859. 

 

[263] D.C. Montgomery, G.C. Runger, Applied statistics and probability for engineers, John wiley & 

sons (2010). 

 

[264] F.-Y. Chou, T.C. Ramli, C.-Y. Lee, S.-M. Hu, J. Christy, H.-Y. Chen, Vapor-Deposited Polymer 

Films and Structure: Methods and Applications, Organic Materials 5(02) (2023) 118-138. 

 

[265] R. Kothinti, N.M. Tabatabai, D.H. Petering, Electrophoretic mobility shift assay of zinc finger 

proteins: competition for Zn2+ bound to Sp1 in protocols including EDTA, Journal of inorganic 

biochemistry 105(4) (2011) 569-576. 

 

[266] Y. Zhang, P.S. Cremer, Interactions between macromolecules and ions: the Hofmeister series, 

Current opinion in chemical biology 10(6) (2006) 658-663. 

https://facultyweb.kennesaw.edu/
http://www.physicsbootcamp.org/section-polarization-of-light.html


References 

 

160 

 

[267] J. Zhang, Protein-protein interactions in salt solutions, Protein-protein interactions-computational 

and experimental tools 6 (2012) 359-376. 

 

[268] A. Pal, A. Gope, A. Sengupta, Drying of bio-colloidal sessile droplets: Advances, applications, 

and perspectives, Advances in Colloid and Interface Science 314 (2023) 102870. 

 

[269] L. Hamadeh, S. Imran, M. Bencsik, G.R. Sharpe, M.A. Johnson, D.J. Fairhurst, Machine learning 

analysis for quantitative discrimination of dried blood droplets, Scientific reports 10(1) (2020) 3313. 

 

[270] R.R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, D. Batra, Grad-CAM: Why did 

you say that?, arXiv preprint arXiv:1611.07450 (2016). 

 

[271] K. Faust, Q. Xie, D. Han, K. Goyle, Z. Volynskaya, U. Djuric, P. Diamandis, Visualizing 

histopathologic deep learning classification and anomaly detection using nonlinear feature space 

dimensionality reduction, BMC bioinformatics 19 (2018) 1-15. 

 

[272] R. Rohs, S.M. West, A. Sosinsky, P. Liu, R.S. Mann, B. Honig, The role of DNA shape in protein–

DNA recognition, Nature 461(7268) (2009) 1248-1253. 

 

[273] R. Rohs, X. Jin, S.M. West, R. Joshi, B. Honig, R.S. Mann, Origins of specificity in protein-DNA 

recognition, Annual review of biochemistry 79 (2010) 233-269. 

 

[274] F. Aviles, T. Diez-Caballero, J. Palau, A. Albert, On the interaction of histone H1 and H1 peptides 

with DNA: Sedimentation, thermal denaturation and solubility studies, Biochimie 60(5) (1978) 445-

451. 

 

[275] Y. Ünal, Ş. Öztürk, M.N. Dudak, M. Ekici, Comparison of current convolutional neural network 

architectures for classification of damaged and undamaged cars, Advances in Deep Learning, Artificial 

Intelligence and Robotics: Proceedings of the 2nd International Conference on Deep Learning, 

Artificial Intelligence and Robotics,(ICDLAIR) 2020, Springer (2022) pp. 141-149. 

 

[276] S. Sarkar, S. Kundu, Protein (BSA) adsorption on hydrophilic and hydrophobic surfaces, 

Materials Today: Proceedings (2023) 1. 

 

[277] M.K. Braun, A. Sauter, O. Matsarskaia, M. Wolf, F. Roosen-Runge, M. Sztucki, R. Roth, F. 

Zhang, F. Schreiber, Reentrant phase behavior in protein solutions induced by multivalent salts: strong 

effect of anions Cl–versus NO3–, The Journal of Physical Chemistry B 122(50) (2018) 11978-11985. 

 

[278] S.E. Whang, Y. Roh, H. Song, J.-G. Lee, Data collection and quality challenges in deep learning: 

A data-centric ai perspective, The VLDB Journal 32(4) (2023) 791-813. 



 

 

161 

 

 


