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Abstract

In recent years, machine learning approaches have garnered significant interest across a wide
range of scientific disciplines. By utilizing large datasets, machine learning (ML) algorithms
are capable of identifying intricate patterns and correlations that conventional methods may
overlook or take significantly longer to analyze. This integration of machine learning not only
accelerates data processing but also enhances predictive accuracy and provides more refined
control over experimental measurements and analysis. While experimental approaches remain
essential for generating the data required to train machine learning models, ML offers a
complementary tool that can accelerate analysis and guide future experiments. Once adequately
trained, these models can provide rapid, scalable, and cost-effective insights, enhancing
research efficiency in fields such as molecular biology, chemistry, and materials science.

This dissertation is motivated by the potential of ML techniques to increase our
understanding of i) protein-DNA binding affinities and ii) surface chemistry using deep
learning approaches, with fast and scalable methods that can uncover complex patterns and
provide insights beyond traditional analytical techniques.

Developing simple, fast, scalable and precise predictive analytical techniques for the
stratification of protein-DNA interaction is essential for enhancing the fundamental
understanding of biological processes, disease mechanisms, and for the development of
innovative biotechnological and medical applications. However, this remains an unresolved
challenge to date. We discovered that valuable information about protein-DNA interactions
can be derived from the stains left behind by drying droplets of mixtures of these biological
macromolecules. To decipher the intricate stain patterns, a deep-learning neural network
(InceptionV3) was applied to polarized light microscopy images obtained from drying droplet
deposits of different histone-DNA mixtures. These stain patterns not only demonstrated

reproducibility but also enable a comprehensive categorization of various DNA (dependent on
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both DNA type and size) and their binding affinity with histone. Eukaryotic DNA binds with
a higher affinity to histone than prokaryotic DNA, a trend that resulted in higher prediction
accuracy. This is further corroborated by the fact that the average prediction accuracy is higher
for longer DNA strands compared to shorter DNA strands. These findings suggest that a simple
method like drying a droplet of a protein-DNA mixture solution onto a solid surface could
serve as a reliable indicator for predicting protein-DNA bindings affinities. Moreover,
following the neural network training on polarized light images of various DNA and their
mixtures with histone, the pre-trained model accurately predicted both unknown DNA samples
and the binding affinities of unknown histone-DNA samples which had not been included in
the training image set. The convolutional neural network (CNN) successfully categorizes
unknown histone-DNA samples into strong and medium binders, achieving prediction
accuracy rates of 84.4% and 96.25%, respectively. This scalable approach offers the potential
for rapid screening of new protein candidates capable of interacting with DNA, facilitating
predictions regarding their binding affinity. By employing this advanced methodology,
researchers can efficiently identify proteins that demonstrate desirable interactions with DNA,
thus accelerating the discovery process in molecular biology and related fields.

Similar to the classification of histone-DNA interactions, the same approach was
applied to characterizing material surfaces by classifying surface chemistry using deep learning
algorithms. Categorizing surface chemistry through a simple, fast, precise, and low-tech
method presents a significant challenge, yet holds considerable importance across various
scientific disciplines, including medical implants, biosensors, and regenerative medicine. This
study demonstrated that it is possible to differentiate surface chemistry by analyzing the stain
patterns generated when protein solutions are deposited onto substrates with varying structural
polymer coatings. These coatings share the same polymer backbone but have different

functional groups, highlighting the effectiveness of this approach in discerning subtle




differences in surface chemistry. A deep learning neural network (InceptionV3) was employed
to classify polarized light microscopy images of dried droplet deposits on different surfaces.
These stain patterns exhibited high reproducibility across different surface chemistries,
facilitating comprehensive surface classification with 96% accuracy. To demonstrate the
generalizability of our approach, a pre-trained CNN was tested on images from copolymerized
polymer surfaces not included in the training set, achieving a classification accuracy of 96%.
These findings are significant because they demonstrate that suitably pre-trained CNNs can
predict polymer surface chemistry beyond their original training set. This scalable approach

can be used for rapid screening of new or unknown polymer surface chemistries.
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Kurzzusammenfassung

In den letzten Jahren haben Ansdtze des maschinellen Lernens in einer Vielzahl
wissenschaftlicher Disziplinen grofles Interesse geweckt. Durch die Nutzung grofler
Datensétze sind Algorithmen des maschinellen Lernens in der Lage, komplizierte Muster und
Korrelationen zu erkennen, die bei herkbmmlichen Methoden iibersehen werden oder deren
Analyse erheblich langer dauert. Diese Integration des maschinellen Lernens beschleunigt
nicht nur die Datenverarbeitung, sondern verbessert auch die Vorhersagegenauigkeit und
ermoglicht eine verfeinerte Kontrolle {iber experimentelle Messungen und Analysen. Obwohl
experimentelle Ansédtze nach wie vor unerlésslich sind, um die Daten fiir das Training von
Machine-Learning-Modellen zu generieren, stellt maschinelles Lernen ein ergdnzendes
Werkzeug dar, das Analysen beschleunigen und zukiinftige Experimente gezielt unterstiitzen
kann. Nach ausreichendem Training konnen diese Modelle schnelle, skalierbare und
kosteneffiziente Erkenntnisse liefern und so die Forschungseffizienz in Bereichen wie
Molekularbiologie, Chemie und Materialwissenschaften steigern.

Diese Dissertation ist motiviert durch das Potenzial von ML-Techniken, unser
Verstindnis von 1) Protein-DNA-Bindungsaffinitdten und ii) Oberflachenchemie mithilfe von
Deep-Learning-Ansédtzen zu erweitern, mit schnellen und skalierbaren Methoden, die
komplexe Muster aufdecken und Einblicke iiber traditionelle analytische Techniken hinaus
bieten konnen.

Die Entwicklung einfacher, schneller, skalierbarer, und préziser préadiktiver
Analyseverfahren fiir die Stratifizierung von Protein-DNA-Interaktionen ist fiir die
Verbesserung unseres grundlegenden Verstindnisses biologischer Prozesse und
Krankheitsmechanismen sowie flir die Entwicklung innovativer biotechnologischer und
medizinischer Anwendungen unerldsslich. Dies ist jedoch bis heute eine ungeloste

Herausforderung. Wir haben entdeckt, dass wertvolle Informationen iiber Protein-DNA-
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Wechselwirkungen aus den Flecken abgeleitet werden konnen, die beim Trocknen von
Tropfchenmischungen dieser biologischen Makromolekiile zuriickbleiben. Um die
komplizierten Fleckenmuster zu entschliisseln, wurde ein neuronales Netzwerk mit tiefem
Lernen auf polarisierte Lichtmikroskopie-Bilder angewandt, die beim Trocknen von
Tropfenablagerungen  verschiedener  Histon-DNA-Mischungen  entstanden.  Diese
Trocknungsmuster zeigten nicht nur Reproduzierbarkeit, sondern ermdglichen auch eine
umfassende Kategorisierung verschiedener DNA (abhidngig von DNA-Typ und -Gréf3e) und
ihrer Bindungsaftinitit mit Histon. Eukaryotische DNA bindet mit einer hdheren Affinitét an
Histon als prokaryotische DNA, ein Trend, der zu einer hoheren Vorhersagegenauigkeit fiihrte.
Dies wird auch durch die Tatsache bestitigt, dass die durchschnittliche Vorhersagegenauigkeit
fiir lingere DNA-Strange hoher ist als fiir kiirzere DNA-Strange. Diese Ergebnisse deuten
darauf hin, dass eine einfache Methode wie das Trocknen eines Tropfens einer Protein-DNA-
Mischungslosung auf einer festen Oberflache als zuverldssiger Indikator fiir die Vorhersage
von Protein-DNA-Bindungsaffinititen dienen konnte. Nach dem Training des neuronalen
Netzes auf polarisierten Lichtbildern verschiedener DNA und deren Mischungen mit Histon
konnte das vortrainierte Modell sowohl DNA-Proben als auch die Bindungsaffinititen von
Histon-DNA-Proben, die nicht im Trainingsbildsatz enthalten waren, genau vorhersagen. Das
neuronale Faltungsnetzwerk (CNN) kategorisiert unbekannte Histon-DNA-Proben erfolgreich
in starke und mittlere Bindungen und erreicht dabei Genauigkeitsraten von 84.4 % bzw. 96.25
%. Dieser skalierbare Ansatz bietet das Potenzial fiir ein schnelles Screening neuer
Proteinkandidaten, die in der Lage sind, mit der DNA zu interagieren, und erleichtert
Vorhersagen iiber ihre Bindungsaftinitit. Durch den Einsatz dieser fortschrittlichen Methodik
konnen Forscher effizient Proteine identifizieren, die wiinschenswerte Wechselwirkungen mit
der DNA aufweisen, und so den Entdeckungsprozess in der Molekularbiologie und verwandten

Bereichen beschleunigen.
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Ahnlich wie bei der Klassifikation von Histon-DNA-Interaktionen wurde derselbe
Ansatz auf die Charakterisierung von Materialoberflichen angewendet, indem die
Oberflachenchemie mit Deep-Learning-Algorithmen klassifiziert wurde. Die Klassifikation
von Oberflichenchemie durch eine einfache, schnelle, priazise und kostengiinstige Methode
stellt eine erhebliche Herausforderung dar, hat jedoch eine grofle Bedeutung in verschiedenen
wissenschaftlichen Disziplinen, einschlieBlich medizinischer Implantate, Biosensoren und
regenerativer Medizin. In dieser Studie wurde gezeigt, dass es mdglich ist, die
Oberflachenchemie zu differenzieren, indem die Fleckenmuster analysiert werden, die
entstechen, wenn Proteinlosungen auf Substrate mit unterschiedlichen strukturellen
Polymerbeschichtungen aufgebracht werden. Diese Beschichtungen haben dasselbe
Polymergertist, weisen aber unterschiedliche funktionelle Gruppen auf, was die Wirksamkeit
dieses Ansatzes bei der Unterscheidung feiner Unterschiede in der Oberflichenchemie
unterstreicht. Ein neuronales Deep-Learning-Netzwerk (InceptionV3) wurde eingesetzt, um
polarisierte  Lichtmikroskopie-Bilder von getrockneten Tropfchenablagerungen auf
verschiedenen Oberfldchen zu klassifizieren. Diese Trocknungsmuster zeigten eine hohe
Reproduzierbarkeit liber verschiedene Oberflichenchemien hinweg und ermdglichten eine
umfassende Oberflichenklassifizierung mit 96 % Genauigkeit. Um die Verallgemeinerbarkeit
unseres Ansatzes zu demonstrieren, wurde ein vortrainiertes CNN an Bildern von
copolymerisierten Polymeroberflichen getestet, die nicht in der Trainingsgruppe enthalten
waren, und erreichte eine Klassifizierungsgenauigkeit von 96 %. Diese Ergebnisse sind von
groBer Bedeutung, da sie zeigen, dass entsprechend vortrainierte CNNs die Chemie von
Polymeroberflichen iiber ihren urspriinglichen Trainingssatz hinaus vorhersagen koénnen.
Dieser skalierbare Ansatz kann fiir ein schnelles Screening neuer oder unbekannter chemischer

Eigenschaften von Polymeroberflichen verwendet werden.
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Introduction

1. Introduction

Over the last few decades, there has been significant attention directed toward studying the
dried patterns of biologically relevant sessile droplets. [!l Experimentally, the drying process of
particle droplets (e.g., DNA, protein, blood, etc.) adheres to a simple and fast procedure. In this
process, particles are dispersed in a solvent, such as water or buffer, and a defined volume of
the solution is deposited onto a substrate as a droplet. During the drying process, the solvent
gradually evaporates, leading to an increase in the local concentration of particles, and results
in the development of unique, characteristic, and reproducible patterns. !* 2! These
characteristic patterns arise due to the interplay of heat transfer, mass transport, and fluid
dynamics within the liquid, with key factors such as contact-line dynamics, surface
hydrophobicity, surface-tension-driven forces, Marangoni flow, and thermal instabilities
contributing to the phenomenon, often resulting in the well-known coffee-ring effect. [3-¢
Previous studies have demonstrated that these unique patterns serve as "fingerprints" for
biomolecular screening and classification. [>7]

The interaction between protein and DNA plays a critical role in almost all of the
biological processes, including mechanisms associated with health and disease. **! In recent
years, numerous experiments have been conducted to investigate protein-DNA interactions,
employing a wide range of techniques, both in vivo and in vitro, such as conventional
chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA),
Systematic Evolution of Ligands by Exponential Enrichment (SELEX)-based methods, nuclear
magnetic resonance (NMR), X-ray crystallography, fluorescence-based techniques, circular
dichroism (CD) spectroscopy, atomic force microscopy (AFM), and surface plasmon

resonance (SPR) spectroscopy. ['%13] These methods have provided insights into the nature of

protein-DNA interactions, yet each comes with its own set of limitations and challenges that
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must be carefully considered when choosing the most appropriate technique for a given study.
ChIP requires specific-grade antibodies, which may not always be available or of sufficient
quality. EMSA faces challenges due to the rapid dissociation of protein-DNA complexes
during electrophoresis, which hinders detection, while slow dissociation may lead to
underestimation of binding density. SELEX-based methods are labour-intensive and time-
consuming, often requiring weeks or months to complete. NMR necessitates multimodal
analytics, making it complex, resource-intensive, and technically demanding. X-ray
crystallography requires specialized equipment and facilities, limiting accessibility.
Fluorescence-based assays, such as those using ethidium bromide, pose safety risks due to
mutagenic properties, while fluorescence dye displacement assays can suffer from low
sensitivity. CD spectroscopy has limited sensitivity to small conformational changes and can
experience signal overlap in large protein-DNA complexes. AFM and SPR depend on the
proper immobilization of biomolecules; incorrect orientation affects accuracy, and SPR also
faces mass-transfer limitations that distort binding kinetics. 1% 1418 Given these challenges,
there is a growing need for alternative approaches that are accurate, straightforward, rapid,
cost-effective, and non-toxic. Recent advances in computational modelling, including
molecular dynamics (MD) simulations, have been explored for predicting protein-DNA
binding affinities. However, MD simulations are often constrained by high computational costs
and limited applicability to large biomolecular complexes. Consequently, in this dissertation,
machine learning techniques, with a particular emphasis on deep learning, are proposed as
powerful tools for analyzing protein-DNA complex data and providing efficient alternatives to
traditional experimental approaches. [1%-24]

In addition to protein-DNA interactions, the interfacial characteristics of biomaterials
play a crucial role in determining key performance attributes, including cell adhesion, 2% 26!

biocompatibility, ?7) and wettability. [*®) These surface properties influence biomedical
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29, 30 [31

applications, including tissue engineering, [ ! medical implants, *!1 and drug delivery
systems. [*2] Accurate surface analysis is essential for selecting the appropriate polymer coating
for specific biomedical applications, ensuring optimal coating performance. Surface
characterization techniques are commonly used to identify potential surface contaminants or

variations in surface chemistry that could impact key properties such as adhesion, [

135 or optical performance. 2% 371 The

wettability, ** biological integration, surface fouling,
most commonly used techniques % for surface composition characterization are IR
spectroscopy, 21 XPS, [40-411 SIMS, 38:42. ] e]lipsometry, 44 atomic force microscopy (AFM),

t. 461 However, each of these methods has certain inherent

(45} and contact angle measuremen
limitations. For instance, IR spectroscopy may demonstrate limited sensitivity in analyzing
samples with low thickness or weak absorption bands, and overlapping absorption bands

47. 481 XPS requires ultra-high vacuum conditions

further complicate accurate interpretation. !
and involves complex data interpretation, limiting accessibility. TOF-SIMS is expensive,
requires an ultra-high vacuum, and demands sophisticated data processing algorithms

[3¢1 Ellipsometry suffers from

alongside expertise in surface chemistry and mass spectrometry.
low optical contrast in transparent, low-polarizability films, particularly at solid/liquid
interfaces, making it difficult to accurately characterize film properties. ! Additionally,
contact angle measurement is limited by time-dependent variations caused by evaporation or
contamination, which hinder the achievement of stable and reproducible results. To address
these challenges, an efficient and reproducible method is needed for analyzing surface
properties in a straightforward and scalable manner. Similar to protein-DNA interaction study,
surface characterization and recognition can also benefit from deep learning-based image

analysis techniques, providing a novel approach for identifying surface patterns and correlating

them with functional properties.




Introduction

Deep learning, a subset of machine learning, has revolutionized data-driven analysis by
automatically identifying complex patterns from large datasets without requiring manual
feature extraction. °%-¢1 By leveraging deep learning algorithms, researchers can efficiently
process vast amounts of image data, uncover intricate correlations, and enhance predictive
accuracy. Additionally, deep learning enables more refined control over measurements and
analyses, making it a promising tool for both biomolecular interaction studies and surface

characterization. P7> 3%

' In a previous study conducted in Professor Lahann's lab, a deep
learning-based method was developed to predict single amino acid mismatches in peptides by
analyzing stain patterns left by drying droplets. Using polarized light microscopy images of
dried amyloid-beta peptide deposits, deep learning models successfully identified structural
variations with high accuracy. [?! Inspired by this approach, the application of deep learning
has been extended to two major research areas: (i) studying protein-DNA interactions and (ii)
investigating surface chemistries.

In this study, a conventional image-based neural network was employed to analyze
extensive datasets generated from protein solutions prepared with varying salt conditions. A
systematic workflow was established, in which precise amounts of human serum albumin
(HSA) and immunoglobulin G (IgG) were dispensed, with controlled variations in salt types
and concentrations. The resulting stain patterns were captured using an automated polarized
light microscope (PLM). This approach enabled the efficient creation of a large dataset
capturing subtle variations in solution composition. This simple, fast, and scalable method
provides a powerful tool for studying protein behavior across diverse chemical environments.

Moreover, a pre-trained neural network was employed for image analysis to examine
extensive sets of images derived from dried protein-DNA solution samples. An automated

process was developed to efficiently deposit precise amounts of protein-DNA complexes and

capture images of the resulting stain patterns using an automated polarized light microscope
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(PLM). This streamlined approach generated thousands of images in just a few hours. This
method, which is simple, rapid, and cost-efficient, has been applied successfully in studying
protein-DNA interactions across both eukaryotic and prokaryotic DNA specimens. This
innovative technique offers a powerful tool for researchers to explore different levels of
protein-DNA interactions on a large scale, potentially accelerating discoveries in the field of
molecular biology.

Similarly, a conventional image-based neural network was utilized to analyze large sets
of images obtained from drying Bovine Serum Albumin (BSA) solutions on various
functionalized surfaces. The developed automated workflow, which includes the deposition of
defined volumes of BSA solution in a massively parallel manner, was applied, followed by the
capture of images of the resulting stain patterns using an automated polarized light microscope.
This method has been successfully applied to a wide range of polymer surfaces with different
functional groups and properties, enabling the study of surface classification and recognition
based on BSA-stained patterns. This method not only saves time and reduces cost but also
ensures the continuous reproducibility of surface properties critical for the functionality of

polymeric materials in various application.
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2. Background

2.1. Pattern Formation on Solid State Substrates

Deposits formed by the evaporation of droplets containing non-volatile substances is a well-
known natural phenomenon, attracting significant attention due to its fundamental aspects and

[59-62

practical applications. I This phenomenon has implications in various fields involving

1941 fabrication

evaporation on the surface such as inject printing, %3] nanomaterials assembly,
process, [®*1and colloidal crystals. [®! It also affects the performance of applications including,
electronic devices, [®”) matrix-assisted laser desorption ionization (MALDI) spectrometry, (8]

surface-enhanced Raman spectroscopy, !

fluorescence microarrays, DNA or RNA
microarray, % and disease diagnosis. ["'73! One specific occurrence during this process which
is called the “coffee ring effect”, is contact line pinning and forming the ring-like residues at

s. [4:60.74. 73] The particles within the initial droplet are spread out, defining an

the droplet's edge
initial equilibrium state. It was demonstrated that the evaporation rate is most pronounced near
the periphery, primarily due to the curvature of the droplet. As the droplet dries, the system
undergoes a phase transition away from its initial equilibrium state. This process leads to the
development of concentration gradients, triggering the development of various flows within
the droplet. "I The flow caused by evaporation pulls particles or solute toward the contact line,
to compensate the excessive loss of mass. °?! As the solvent evaporates and the droplet fractures
to relieve stress, a macroscopic fingerprint pattern begins to emerge. Different stain patterns
form when water droplets containing biomolecules like proteins and DNA evaporate. [!! The
final dried pattern is influenced by several factors, including substrate properties, nature of
solute components (size, chemical composition, and concentration), as well as environmental

factors such as temperature and relative humidity. 77 78]
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Lee et al. studied the effect of substrate wettability on the formation of ring-shaped
patterns by nanofluids. They found that substrates with lower contact angles resulted in wider
ring widths, as the smaller contact angle increased the droplet's surface area, leading to faster
evaporation and higher flow velocity. "1 Their study showed that lower contact angle promotes
the formation of more ring-shaped patterns, while higher contact angle substrates, such as
stainless steel, exhibit fewer ring-shaped patterns than glass. Specifically, a larger contact angle
results in greater height and smaller contact diameter for a fixed droplet volume. Consequently,
as the height at the center is maximized during evaporation, more particles will likely remain
at the center. !’ Similarly, Uno et al. examined the formation of patterns during the evaporation
of polymer solutions on surfaces with varying hydrophobicity. Their research revealed that on
hydrophilic surfaces, droplets maintained their initial contact area while their volume gradually
decreased, eventually forming circular residue patterns. Microscopic analysis indicated that
many particles accumulated at the contact boundary due to the presence of a thin water layer,
which resulted from the surface’s hydrophilic nature. In contrast, on hydrophobic surfaces, the
contact area decreased as evaporation progressed, with no significant particle adsorption
occurring in the early stages. Instead, particle aggregation took place once their concentration
exceeded a critical threshold, leading to the formation of small deposits after complete
evaporation. 3%

As mentioned, the second parameter that affects the final dried pattern is the nature of
the solute components. The movement of particles within a droplet can be influenced by their
size. Smaller particles typically migrate towards the three-phase contact line of the droplet,
forming ring-shaped patterns, while larger particles tend to gather nearer the center in the
residue. Therefore, particle size variation leads to distinct residue patterns.

Previous study showed that at low concentrations and small particle sizes (below 2%

by vol and smaller than 13 nm), a ring-shaped pattern emerged. Conversely, at high
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concentrations and larger particle sizes (above 3% by vol and larger than 20 nm), a uniform
pattern was observed. "] Consequently, various residue patterns depending on particle size,
impact the functionality of multiple applications. 8! ¥ Chen et al. investigated the impact of
salt ions on protein pattern formation and observed that salt plays a crucial role in influencing
protein aggregation. In the absence of salt, no protein patterns were observed. However, with
the addition of salt, protein molecules undergo aggregation and self-assembly. At low salt
concentrations (e.g., 0.1 X PBS buffer), dendritic-shaped aggregates and some scalloped
microstructures form. As the salt concentration increases, rosette-shaped patterns emerge due
to salt crystals promoting nucleation events. 5]

Finally, the third parameter influencing the final dried pattern is the set of
environmental factors. Li et al. observed that during slow drying process (T = 25 °C), the
majority of particles accumulate at the droplet periphery, creating a ring-like structure.
Conversely, rapid drying at high temperatures (T = 75 °C) leads to uniform particle deposition
across the droplet surface, with minimal accumulation at the periphery. They suggest that
uniform deposition can be achieved through straightforward control of evaporation kinetics,
without the need to alter the droplet composition or modify particles. ¥ 8 Moreover, a
previous study showed that relative humidity (RH) significantly influences the evaporation
dynamics and pattern formation of drying droplets, including blood droplets. RH affects the
contact angle of the droplet, thereby impacting the initial evaporation rate. Higher RH levels
reduce the evaporation rate, allowing more time for internal fluid movement and particle
redistribution. As a result, the width of mobile plaques in the corona and the fine peripheral
region increases with increasing RH (Figure 2.1). These findings highlight the crucial role of

environmental conditions in shaping the final deposition patterns of dried droplets. (*¢!
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Figure 2.1. Effect of relative humidity on the residue left after the evaporation of a sessile blood
drop. All experiments were conducted using the same droplet volume (V = 14.2 pl) across a range of
relative humidity (RH) levels, with the droplets placed on a microscope-grade ultraclean glass substrate
at room temperature (23.8 °C) and atmospheric pressure. Adapted from [5¢!

2.1.1. General Physics of Drying Droplets

As illustrated in Figure 2.2, two modes of profile evolution occur during the evaporation of a
droplet: the constant contact radius (CCR) and the constant contact angle (CCA). In the CCR
mode, the diameter of the droplet (or the contact radius) stays constant while the height of the
droplet decreases during evaporation. In the CCA mode, the contact radius of the droplet
gradually decreases over time, but the contact angle remains constant. The combination of both
the contact angle and contact radius modes during the drying process is referred to as the mixed
mode (MM). "' As mentioned above, the evaporation mode relies on the solid substrate where
the droplet is located. CCR is typical on hydrophilic substrates, while CCA is prevalent on

hydrophobic surfaces. [87)

W a\-

(a) Solid substrate (b) Solid substrate

Figure 2.2. Schematic representation of two modes of drying process of droplets. (a) constant
contact radius (CCR) and (b) constant contact angle (CCA). Adapted from "
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The two primary flows within an evaporating droplet are Marangoni flow and capillary
flow (Figure 2.3). 8 In capillary flow, the drying occurs in the CCR mode, where the droplet
remains pinned to the substrate surface. Droplets with a contact angle below 90° exhibit the
highest evaporative flux at the outer edge, known as the Triple Phase Contact Line (TPCL). "1l
As a result, fluid is needed to replace the evaporated liquid at the TPCL. This causes fluid to
flow radially outward from the center to the edge. [

Marangoni flow is induced by a gradient in surface tension at the droplet's external
interface. ®1 This tension gradient can originate from two factors. Firstly, a temperature
gradient across the droplet surface (thermal Marangoni effect) is induced by variations in the
evaporative flux across the droplet surface. Since evaporation is an endothermic process, the
bulk liquid maintains a higher temperature compared to the liquid at the droplet's surface. [!]
The second factor is a shift in local composition (solute Marangoni effect), where the
concentration of dissolved solute varies across the droplet. Different solutes can have diverse
impacts on surface tension. Yl At room temperature, capillary flow often dominates drying

within a droplet, while Marangoni flow driven by temperature becomes more prominent on

heated surfaces. [

Marangoni flow
Capillary flo

Substrate

Figure 2.3. The flow patterns inside an evaporating droplet, illustrating both Capillary and
Marangoni flows. The lines indicate the direction of the flow. Adapted from !
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2.1.2.  Biomolecules Within Drying Droplets

Biological fluids, or biofluids, are a type of complex fluid that typically contain salts. > %3

The drying behavior of droplets containing biologically relevant substances, such as DNA,
proteins, plasma, blood, bacteria, and algal dispersions, has attracted considerable attention in
recent decades. °*°7) These droplets form distinct patterns upon drying, which have promising
applications in medical fields such as biosensors, diagnostics, drug delivery, and combating

(71, 98, 991 Consequently, substantial progress has been made in

antimicrobial resistance.
understanding these patterns and developing advanced image-based analysis techniques for
potential biomedical applications. [!! The drying process of drops of these fluids involves

several physical and physiochemical steps depending on several parameters including nature

of salute components, the substrate chemistry, and environmental conditions. [8%-190- 1011

Deoxyribonucleic acid (DNA)

Recent research focused on leveraging the drying droplet method to comprehend self-
assembly, microarray techniques, and the patterning of DNA in diverse microenvironments.
(102, 1031 DNA is a double helix polymer consisting of polynucleotide chains, where each
nucleotide comprises a 2-deoxyribose sugar, a phosphate group, and a nitrogenous base. [1%4
The nitrogenous bases, as depicted in Figure 2.4, consist of purines (adenine 'A' and guanine

1051 The deoxyribose sugar and phosphate

'G") and pyrimidines (thymine 'T" and cytosine 'C"). |
group form a backbone to which the nitrogenous bases attach directly to the sugar unit. 1%
Notably, DNA carries a negative charge, which is attributed to the phosphate groups in the
DNA backbone, making both the phosphate backbone and overall DNA structure negatively

107

charged. %! Each nitrogenous base possesses a unique structure and can create particular

hydrogen bonds (Figure 2.4, red boxes) because of its electron-accepting and donating
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characteristics. Adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C),
resulting in equal amounts of A and T, and G and C in a given sample of DNA. ['% The
arrangement of base pairs creates major and minor grooves, offering unique chemical
environments for interaction. %! The major groove provides multiple interaction sites,
resulting in strong binding to drugs or ligands compared to the minor groove. The major groove
has a width of 11.6 A and a depth of 8.5 A, allowing larger molecules like proteins to easily fit
in. In contrast, the minor groove, which is smaller and has fewer binding sites, is often
unoccupied due to its 8.2 A depth, making it accessible for smaller drug molecules to interact.
Since many antibiotic and anticancer drugs consist of small molecules, the minor groove acts

as their primary binding site. [19 110]
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Purine
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(a) Double helix (b) Antip o on of st

Figure 2.4. DNA molecule structure. (a) Double helix model showing two antiparallel strands twisted
around each other. The strands consist of a sugar-phosphate backbone and nitrogenous base pairs:
adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C), connected by hydrogen
bonds. Major and minor grooves are visible along the helix.
(b) Base pairing and strand orientation illustrating the antiparallel arrangement (5’ to 3" and 3’ to 5") and
specific hydrogen bonding between complementary bases. 'A' pairs with 'T' through two hydrogen
bonds, and 'G' pairs with 'C' through three hydrogen bonds. Adapted from %"

12




Background

Li et al. introduced a method for nucleic acid detection by applying the hybridization-
induced suppression of the coffee ring effect. Typically, as a droplet evaporates on a solid
surface, suspended spherical particles migrate outward, forming a ring-shaped pattern.
However, non-spherical particles tend to adhere to each other at the air-water interface,
resisting this outward flow and suppressing the coffee ring effect. In this method, suspended
microspheres were functionalized with oligonucleotide probes complementary to target DNA.
Upon hybridization, these probes connected multiple microspheres, forming non-spherical
particle agglomerates that resist capillary flow, resulting in more uniform particle deposition
(Figure 2.5). They exhibited high specificity and could even detect a single nucleotide
mismatch. Due to the simplicity of its operation and the visual readout without requiring a
special detector, the "coffee ring" approach demonstrates the immense potential for
inexpensive and convenient nucleic acid detection in resource-limited settings. [!!! Moreover,
another study highlights the impact of DNA strand length, varying in the number of base pairs,
on drying dynamics, the coffee-stain effect, nanoscale structure, and aggregation. Intriguingly,
the study suggested a connection between DNA viscosity and drying behavior. Their findings
indicated that lower viscosity, observed in solutions with shorter DNA chains, facilitates
mobility within the droplet, promoting continuous deposit growth during drying. The
crystallization mechanism likely involves DNA strands serving as nucleation sites at the solid-
liquid interface, causing dendrite crystal formation through diffusion-limited growth.
Conversely, for longer DNA chains, crystallization was attributed to "faceted growth,"

primarily a nucleation-limited process. [!!%]
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Figure 2.5. Detection of target DNA using the coffee ring effect. Microspheres functionalized with
DNA probes hybridize with target DNA to form non-spherical aggregates, suppressing the coffee ring
effect and resulting in uniform particle deposition. This method enables simple, highly specific, and
low-cost nucleic acid detection without the need for specialized equipment. Adapted from ']

Histones

Over two decades, there has been significant attention focused on the drying of droplets
containing various types of proteins. Previous studies categorized the protein-drying droplets
into three types: globular proteins, fibrous proteins, and composite proteins (a mix of globular
and fibrous proteins). [' Histones are essential globular proteins that organize DNA into
chromatin, ensuring proper packaging while maintaining accessibility for vital processes such
as replication, transcription, repair, and recombination. [!!3-15] These proteins prevent DNA
tangling, protect it from damage, and serve as molecular spools around which DNA wraps to
form nucleosomes, thereby regulating gene expression and replication. !'® 7] These
nucleosomes, in turn, are intricately organized into tightly packed chromatin fibers. Without
histones, the DNA strands within chromosomes would extend to considerable lengths. ['!8] For
example, a human cell contains roughly 1.8 meters of DNA when fully extended. However,
when wrapped around histones, this length is condensed to approximately 90 micrometers
(0.09 mm) of chromatin fibers with a diameter of 30 nanometers. Histones are classified into

five families: H1/HS, known as linker histones, and H2, H3, and H4, referred to as core
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histones. The nucleosome core comprises two H2A-H2B dimers and a H3-H4 tetramer. The
histone octamer complex consists of two copies each of H2A, H2B, H3, and H4 proteins. This
complex forms the protein core around which approximately 146 or 147 base pairs of DNA are
wrapped. The DNA wraps around the histone octamer in about 1.67 turns of a left-handed
superhelix. This complex of DNA and histone proteins is called a nucleosome and forms the
fundamental unit of eukaryotic chromatin. '!°122 Between each nucleosome, there is a
segment of DNA called "linker" DNA, which can vary in length from 20 to 80 base pairs. The
nucleosomes themselves form a chain about 10 nanometers wide. This chain is then folded into
a denser fiber that is about 30 nanometers wide. This folded structure further combines into
higher-order formations. 1231241 A protein called linker histone H1 (or H5) helps organize this
linker DNA between nucleosomes (Figure 2.6). When linker histones attach to a nucleosome,
they shield additional 22 base pairs of DNA around the nucleosome structure, as shown by

125

DNase I cleavage experiments. [>>! This whole package, including the nucleosomes, linker

histones, and the DNA they interact with, is called a chromatosome. [12% 12¢]
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Figure 2.6. Nucleosomes structure. Nucleosomes consist of DNA wrapped around histone octamers,
with linker DNA and histone H1 facilitating chromatin compaction and organization. Adapted from [!2"]
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2.2. Protein-DNA Interaction Classification

Since the latter half of the previous century, it has been well-established that the interaction
between a protein and a DNA molecule plays a pivotal role in the functioning of living cells
and the overall sustainability of life. This interaction governs fundamental molecular and
cellular processes, including transcription, transcriptional regulation, recombination,
replication, DNA repair, DNA packaging, and DNA modifications. ['?8] Studies have often
approached this subject from two primary perspectives: 1) a transcriptomic level, investigating
the binding of specific proteins to particular DNA sequences or genes and how this interaction
influences gene expression, and i1) a chemical perspective, examining the structural aspects of
the formed complexes. Notably, there is a significant overlap between these two approaches.
(141291 In the 1960s, Leng and Felsenfeld [1*Y1 made significant strides in understanding how
DNA molecules interact with proteins. They discovered patterns and preferences in the
interactions between amino acids and DNA base sequences. Specifically, they found that
polylysine polypeptides tend to interact preferentially with A-T-rich DNA, while polyarginine
shows a preference for G-C-rich DNA.

A decade later, Seeman et al. ['*!l contributed more insights into the structure of these
interactions. They utilized hydrogen-bonding atoms identified on the edges of DNA bases to
propose that specific amino acid side chains have an affinity for particular nucleotides.
Furthermore, they suggested that these interactions are more specific within the major groove
of DNA rather than the minor groove. Subsequently, studies that involved model building,

[132] pioneering use of X-ray crystallography to detect DNA-

following McKay and Steitz's
protein complexes, indicated that the Escherichia coli catabolite gene activator protein (CAP)
binds to the major groove of DNA. Later, researchers like Pabo and Sauer, [** along with

Matthews, ['3%13%] continued to delve into the connection between amino acids and DNA bases,

incorporating electrostatic and van der Waals interactions into their models.
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In summary, based on previous literatures, four forces govern protein-DNA
interactions: (1) hydrogen bonding between amino acids and the grooves of the DNA helix, (2)
electrostatic attraction between the negatively charged DNA backbone and positively charged
amino acids, (3) hydrophobic interactions, including n-m stacking between aromatic amino
acids and DNA bases, and (4) Van der Waals forces that stabilize interactions over large surface

areas. [136-137]

2.2.1. Histone-DNA Interactions

Histone-DNA interactions are crucial for chromosome structure and gene regulation. Acidic
chromosomal proteins are prominent candidates for regulating specific genes, contrasting with
the less specific DNA binding histones exhibited by core histones (basic proteins). Linker
Histone (H1) found in most eukaryotic chromosomes, is known for its preferential binding to
specific DNA regions and distinct folding patterns within chromosomes. [3-141] The
investigations indicated that HI induces compaction of the nucleosome chain, resulting in a
more densely folded chromatin structure. H1, found on the outside of the nucleosome, keeps
the higher order of structure by connecting the DNA between neighboring nucleosomes.
Changes in how tightly chromatin is packed happen due to alterations in H1-DNA interactions.
[142. 193] In previous studies, the preferential interaction of H1 with eukaryotic DNA in contrast
to prokaryotic DNA has been demonstrated through filter binding assays utilizing
nitrocellulose filters. In 2007, Al-Natour et al. showed the binding of highly lysine-rich HI to
superhelical DNA, favoring it over linear or nicked circular DNA forms as deduced from direct
competition experiments. **! Lymphocyte DNA fragments, weighing 2 x 10° Da exhibited a
binding affinity with HI at a magnitude at least 15 times greater than equivalent E. coli
fragments of the same molecular weight (2 x 10° Da). Moreover, studies have shown that the

distribution of preferential binding sites for histone I on fragmented DNA is strongly influenced
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by the size of the DNA fragments. Larger DNA fragments are more likely to contain
preferential binding sites for histone I, while smaller fragments tend to lack these sites. This
finding highlights the critical role of DNA type and its fragment size in regulating the
interaction between DNA and histones, which is important for understanding the dynamics of
chromatin structure and the specificity of histone-DNA binding.[!*®]

A previous study has demonstrated that double-stranded DNA can induce the formation
of secondary structures, such as helices and turns, in a peptide from the C-terminal (COOH-
terminal) domain of histone H1, which is otherwise mostly unstructured in solution. This
domain is located next to the globular region of histone H1 and may affect the shape of linker
DNA where it enters and exits the nucleosome. As a result, it could play a role in gene
regulation mediated by the histone tail domains. [1**] Mello et al. (2012) showed the vibrational
characteristics of DNA chemical groups, notably PO;, were influenced in distinct ways by
histone H1, protamine, and histone-mimicking macromolecules. Specifically, they reported
that the shift of DNA PO, antisymmetric stretching to a lower frequency accompanied by an

enhanced intensity of this vibration is particularly influenced by lysine-rich histones. 14!

2.3. Surface Classification and Recognition of Functionalized

Polymer Coatings

2.3.1. General Polymer Surface Properties and Classifications

The performance of biomaterials is significantly influenced by their interfacial properties,
which affect key aspects like cell adhesion, > biocompatibility, *”! and wettability. 28 A
common approach to enhance these surface properties is through the application of polymer
coatings, which can impart functionalities such as antifouling, bactericidal, or improved

147, 148

biocompatibility. [ 1 After modifying the polymer surfaces, characterization and control of

the functional groups on material surfaces is essential for optimizing their performance for
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(1481 Moreover, surface characterization is frequently employed in industry

various applications.
to detect potential surface contaminants and to analyze variations in surface chemistry that may
affect adhesion, wetting, biological integration, catalyst fouling, or other performance
characteristics. (¢

Effective polymer surface classification provides a systematic framework to evaluate,
compare, and predict the performance of polymer coatings under diverse functional
requirements. This is especially critical in biomedical, environmental, and industrial
applications, where surface-dependent behaviors such as protein binding significantly impact
material performance.

Polymer surfaces can generally be divided into untreated and surface-modified
categories. While untreated surfaces retain the native characteristics of the polymer, such as
the inherent properties of natural polymers like chitosan, collagen, and cellulose, surface-
modified variants are engineered through physical or chemical processes to enhance
functionality for specific applications. Additionally, polymer film surfaces can be classified
based on variations in molecular structure, composition and ratio of their constituent materials,
as well as preprocessing methods and environmental conditions during their fabrication. 4%
1501 A reliable classification system not only facilitates material selection and application-

specific optimization but also supports the reproducibility of results across studies and

industries.

2.3.2. Wettability-Based Surface Classification

Various classification methods have been developed to improve the design and
optimization of surfaces, focusing on measurable properties such as wettability and hydration
behavior. These parameters serve as critical indicators for evaluating and recognizing the

functionality of polymer coatings. Previous studies have highlighted the importance of
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wettability-driven classification in optimizing the design and performance of functionalized
polymer coatings. Surfaces are commonly classified based on static contact angle
measurements, distinguishing them as superhydrophilic (<10 ©), hydrophilic (10 °-90 °),
hydrophobic (90 °—150 °), or superhydrophobic (>150 °). These thresholds are commonly used
to correlate wetting behavior with biological or industrial performance. Wettability is primarily
governed by the balance of intermolecular forces at the solid—liquid interface and is affected
by liquid properties, surface characteristics of the solid, and surrounding environmental
conditions. This property can be deliberately tuned through physical modification of surface
morphology or chemical alterations of the surface composition. Extensive research has
revealed that modifying a material’s surface texture and roughness can effectively influence its
wetting behavior with different liquids. 3153} In addition, surface functionalization techniques
that introduce hydrophilic or hydrophobic chemical groups have been widely employed to
tailor a surface’s interaction with water, thereby achieving the desired wetting characteristics.
[154.155] A5 a key surface attribute, wettability significantly impacts the biocompatibility of
polymer materials, particularly in biomedical contexts. It governs protein-surface interactions,
where increased surface hydrophobicity generally leads to greater protein adsorption and more

pronounced conformational changes in the adsorbed proteins. [1%¢ 157]

Conversely, highly
hydrophilic surfaces form a strong hydration layer that acts as a protective barrier, preventing
nonspecific molecular adhesion and enhancing antifouling performance: '**] Moreover, the
ability of a surface to retain hydration is closely influenced by both the intrinsic properties of
the material and its surface architecture. Key factors include the chemical composition,
hydrophobicity, along with surface-specific features such as film thickness, and the packing
density of surface molecules. These combined parameters play a critical role in determining
the surface’s interaction with its environment and thus contribute to the classification of

[158]

polymer coatings based on wettability-related behavior. Integrating multiple
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physicochemical metrics, including contact angle, surface energy, and chemical composition,
can lead to a more robust and comprehensive classification framework, enhancing the

predictability of coating behavior in practical applications.

2.3.3.  Thickness-Based Classification of Layer by Layer Films

In addition to wettability, film thickness represents a fundamental parameter for the
classification and functional assessment of polymer-coated surfaces. This property is closely
linked to key material behaviors, such as surface packing density and resistance to nonspecific
protein adsorption, which are critical in both biomedical and industrial applications. >
Thickness-dependent classification provides valuable insights into the performance of
multilayer assemblies, particularly in layer-by-layer (LbL) fabricated coatings, where precise
control over structural parameters is essential. Several challenges have been identified in the
development of LbL films, particularly regarding the empirical selection of polycations and
polyanions, as well as the inherently time-consuming nature of multilayer construction. The
accurate control of film thickness remains difficult due to the sensitivity of the deposition
process to environmental factors, including pH, temperature, and ionic strength. Moreover, the
diversity in polymer, polymer interactions and growth kinetics, ranging from linear to
exponential, complicates the formation of homogeneous and reproducible coatings. To assess
and classify surface coatings based on thickness, various analytical techniques have been
widely adopted. Among them, quartz crystal microbalance with dissipation monitoring (QCM-
D), atomic force microscopy (AFM), and ellipsometry are frequently employed. However,
inconsistencies among these methods have been reported, particularly in the quantification of
ultrathin films, emphasizing the need for standardized and systematic approaches to thickness-

based surface classification. Thickness-based classification serves as a critical parameter for

the systematic characterization of polymer-coated surfaces. By correlating film thickness with
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functional performance, this approach enhances the predictive capability of surface behavior
under specific application conditions and supports the rational design of advanced coating

systems. [160]

2.3.4. PPX Polymers and their Applications

Poly-p-xylylene polymers are highly regarded for their ability to modify surface properties by
forming stable, conformal coatings, thereby enhancing the performance of a wide range of
materials. Certain members of the poly-p-xylylene family, commercially known as Parylenes,
are particularly valued for their exceptional solvent resistance at elevated temperatures, high
melting points, low dielectric constants, and outstanding barrier properties. These
characteristics make PPX highly suitable for applications requiring chemical stability,
electrical insulation, and effective protection against environmental factors. There is a strong
focus on understanding how these properties influence performance, particularly in electronic
materials, biomaterials, and separation technologies. [!®!] Parylene coatings are found to be
extensively used as barriers in implantable chemical sensors, stainless steel implants,
pacemakers, stents, and catheters. Commercially available Parylenes include Parylene N
derived from non-functionalized PCP, Parylene-C (produced from mono-chloro-PCP), and
Parylene-D (derived from di-chloro-PCP). [!%2] Parylene C, a flexible dielectric polymer, is
commonly utilized in electronic applications for its ability to enable the production of fully
transparent and flexible devices. Serving as a substrate or encapsulation material, it offers a
flexible medium conducive to high-frequency electronic signal operation due to its low
dielectric loss properties. Additionally, its minimal moisture absorption significantly enhances
the stability of compatible electronic technologies, such as oxides and organics. !9

Fluorinated variants such as Parylene HT or Parylene AF-4 offer enhanced thermal and UV

stability, making them ideal for use in advanced thin-film transistors. [!®* For instance, Kim et
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al. demonstrated the potential of PPX derivatives, including PPX-AF4, as dielectrics for oxide-
based semiconductors on flexible plastic substrates. In their study, a dielectric film of PPX-
AF4, combined with other PPX variants, resulted in organic thin film transistors (TFTs) with
significantly improved mobility, outperforming conventional SiO> dielectric top gates.
Additionally, semiconductor-insulator TFT designs using a PPX-AF4 layer with barium zinc
tin oxide (BZTO) as the semiconductor material exhibited promising mobility values,
highlighting the potential of these fluorinated PPX materials in electronic applications. [!6]
Nonfunctional and halogen-containing PCPs are widely accessible and can be used as
commercial precursors for barrier coatings like Parylene N, C, D, HT, and AF-4. These
coatings exhibit high solvent, temperature, and chemical stability, along with low dielectric
constants. 71

With the growing focus on advanced medical treatments, such as artery stents, implants,
bioadhesive sensors, and wound healing patches, there is an increasing demand for customized
biointerfaces. PPX polymers are particularly promising in this field due to their high molecular
weight, strong adhesive properties, and ability to provide uniform coverage. These
characteristics make PPXs highly suitable for use as coatings in drug-eluting stents (DES).
Significant advancements have been made in DES development, including the FDA-approved
Taxus product by Boston Scientific. ['®! Enhanced methods for synthesizing PCPs, featuring
functional groups such as hydroxyl, amine, and aldehyde, have been developed. These
precursors hold promise for producing bioactive coatings. 67 168 For instance, using
functionalized PPX coatings, poly-(hydroxymethyl-p-xylylene-co-p-xylylene) (PPX-HM),
Vorwerk et al. designed biocompatible stents that did not rely on the release of therapeutic
drugs. Their study demonstrated the in vitro biocompatibility of PPX-HM-coated stents,
showing reduced platelet adhesion compared to uncoated controls. ! In a recent study,

researchers demonstrated the remarkable potential of PPX coatings by developing an alkyne-
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functionalized variant that serves as an excellent platform for biomolecule attachment via the
surface-oriented CuUAAC click reaction. This functionalized PPX-Alkyne coating enabled the
conjugation of poly (sulfobetaine methacrylate-co-Az), resulting in highly stable polymer
layers that effectively inhibited cell adhesion and protein adsorption. [!%°) Its ability to support
precise biomolecular modifications enhances its relevance in advanced medical technologies,

further establishing PPX as a crucial material for next-generation biomedical coating.

2.4. Chemical Vapor Deposition Polymerization

Conventional wet chemical coating methods, such as spray, dip, and spin coating, can provide
satisfactory results for many applications. However, they face significant challenges when
precise thickness control, high-quality coatings, and uniform coverage of complex geometries
are required. These limitations arise due to solvent evaporation during drying and baking,
which can introduce defects like pores and cracks, compromising coating integrity.
Additionally, the effectiveness of solvent-based coatings depends on the substrate’s surface
energy and chemical compatibility, making them unsuitable for certain materials. Furthermore,
achieving uniform coatings on porous or curved surfaces often necessitates multiple processing
steps. To overcome these challenges, chemical vapor deposition (CVD) polymerization has
gained increasing attention, offering a solvent-free approach that ensures conformal,
chemically pure, and defect-free coatings for biomedical and industrial applications. Based on
the intended application area, various polymer layers with different functional groups can be
derived using the CVD technique. 16! 170]

The production of poly(p-xylylene) (PPX) films and their functionalized variants,
employ various polymerization techniques. One of these methods involves a reaction pathway

utilizing paracyclophane (PCP) as a precursor molecule, a process first outlined by William

Gorham at Union Carbide in 1966. [!”!] This Gorham technique utilizes heat to decompose
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vapor-phase reactants associated with [2.2] paracyclophane (PCP). The resulting radical
species polymerize on cooled surfaces through a chain growth mechanism. This cyclophane-
based CVD polymerization process involves three distinct stages. Firstly, the PCP precursor
undergoes sublimation at temperatures ranging from 100 to 200 °C under vacuum conditions
of 0.1-0.3 Torr. Subsequently, the precursor gas is transported via a stream of inert gas, such
as argon, to the pyrolysis zone, where the PCP precursor reacts at temperatures between 500
and 800 °C to form two 1,4-quinodimethane radicals while retaining the functional groups.
Because of the minimal energy gap between these two states, typically ranging from 8 to 9 kcal
mol™!, the radical exhibits high reactivity and readily condenses at lower temperatures, forming
PPX. For this, the pre-formed radicals are transported to a deposition stage maintained at lower
temperatures (<30 °C). In this stage, the substrate is positioned, leading to the formation of
parylene polymers or copolymers on the surface. In the deposition chamber, parameters
including deposition temperature, monomer ratio, and deposition rate significantly influence
the properties of the deposited polymer. For instance, the deposition temperature and rate
directly impact the formation of the polymer, thereby affecting characteristics such as barrier
properties, which in turn influences its suitability for various applications. Lower deposition
temperatures are associated with higher growth rates and the deposition of polymers with
higher molecular weights, resulting in superior thermal stability. PPX polymerized at a rapid
deposition rate tends to exhibit a granular morphology with high surface roughness, whereas
PPX polymerized at a slower deposition rate tends to have a smoother surface. The flexibility
of the CVD method allows for the creation of functional parylene coatings with adjustable
thickness, spatial and temporal compositions, and multi-layer arrangements. !!7]

In conclusion, chemical vapor deposition (CVD) polymerization is a highly efficient
technique for achieving high-quality surface functionalization and is applicable to a wide range

of substrates, including metals, ceramics, glass, and synthetic materials. [!>17"! Through CVD
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polymerization, functionalized PCPs can introduce a variety of functional groups without

371781 Since CVD polymerization involves the

altering the underlying backbone chemistry. |
direct deposition of polymer films from the gas phase, it eliminates the need for solvents,
catalysts, or liquid phases in the process. [!”’1 Moreover, CVD polymerization enables the
integration of bio-based materials into thin film fabrication, offering a more sustainable
approach to surface modification. Unlike conventional high-temperature deposition methods
that may compromise temperature-sensitive substrates, CVD can be carried out at or even
below room temperature, preserving the structural integrity of delicate materials. This process
involves high-temperature monomer activation followed by low-temperature deposition,
allowing the formation of high-quality polymer coatings without causing damage. As a result,
CVD polymerization serves as a versatile and environmentally friendly technique suitable for
a wide range of applications. 8% 81 This technique produces uniform, pinhole-free coatings
with minimal impurities, which can be easily patterned. 3% 821 Chemical vapor deposition
(CVD) polymerization offers a versatile engineering of surface properties, applicable to various
substrate types. [19?]

The experimental setup for chemical vapor deposition (CVD) polymerization is

configured to regulate various factors, such as the temperature of pyrolysis, pressure, flow rate

of the carrier gas, and the temperature of the substrate (Figure 2.7).
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Figure 2.7. Conceptual overview and schematic representation of the CVD polymerization
process. For copolymerization, both precursor components (PCP1 and PCP2) are sublimated and
pyrolyzed simultaneously, enabling the spontaneous formation of copolymers in the deposition
chamber. Adapted from [13%!

In this dissertation, CVD polymerization is a sustainable method for depositing
uniform, defect-free thin films with tunable properties. Its high-precision coating capability
provides a reliable platform for studying droplet drying dynamics by minimizing surface
defects and ensuring accurate observations, which is essential for optimizing applications
related to droplet behavior. This approach also allows precise control over the thickness and
composition of the surface, ensuring consistency across experiments. [!341 In this study, CVD-
coated surfaces play a key role in investigating protein/DNA interactions and surface
chemistries recognition and classification. The uniformity and controllability of these coatings
reduce surface irregularities, ensuring that droplet patterns, molecular interactions, and protein
adsorption behaviors mainly depend on the intrinsic properties of the biomolecules rather than
unintended surface variations. This level of surface consistency is particularly valuable for deep
learning applications, as it provides high-quality, reliable data for training models to analyze

droplet behavior, molecular interactions, and surface recognition with high accuracy.
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2.5. Machine Learning

Machine learning is the study of algorithms that enable computers to automatically learn from
data and enhance their performance based on experience, enabling autonomous decision-
making without external aid. !®*) These decisions are derived from identifying important
patterns in complex datasets. There are several primary categories of machine learning
algorithms, including supervised, unsupervised, and reinforcement learning, based on their
learning approach and input and output data types, as well as the specific problems they target.
[186. 187] Additionally, there are hybrid approaches and other common methods that provide
natural extensions of machine learning problem formulations. Supervised learning is employed

when data includes input variables along with corresponding output target values. [18%

Supervised learning consist of two main categories: classification and regression. [!%]
Classification involves predicting an output variable that belongs to a finite set of known
categories, such as distinguishing between "cat" or "dog" and determining "positive" or
"negative" outcomes. In contrast, regression focuses on predicting an output variable that is a

real or continuous value, such as estimating a "price". [!3°]

2.5.1.  Deep Learning

As illustrated in Figure 2.8, deep learning, a subset of machine learning, plays a crucial role in
various fields such as image recognition, natural language processing, and speech recognition.
[19] Since 2006, deep learning has become a significant domain within machine learning,
revolutionizing by promoting end-to-end learning, i.e., processing data from pixel level to real-
world applications. !°!] Unlike traditional machine learning models that rely on handcrafted

features, deep learning models leverage multiple layers of artificial neurons to progressively
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extract higher-level features from raw input data. At the heart of deep learning are artificial
neural networks, which are inspired by the structure and functionality of the human brain.

In recent years, deep learning has enhanced the analysis of noisy biomarker data,
improving assays for DNA sequences, gene expression, and other biological measurements. It
also aids in phenotype prediction from genetic data, including traits and disease risks, by
integrating additional data such as medical images and clinical histories. A promising approach
involves predicting intermediate molecular phenotypes, such as gene expression or splicing,
which are easier to forecast and provide valuable insights for disease prediction. Overall, deep
learning’s ability to process complex data and predict molecular states has made it a powerful
tool in advancing genetic and medical research. %%

The current surge in deep learning can be attributed primarily to three key factors: the
remarkable enhancement in chip processing power, particularly the widespread use of GPUs,
the substantial reduction in computing hardware costs, and the notable progress in machine

(193] The deep learning algorithms are divided into four categories based

learning algorithms.
on the basic method that they are derived from: Convolutional Neural Networks (CNNs),
Restricted Boltzmann Machines (RBMs), Sparse Autoencoder, and Long Short-Term Memory

(LSTM). [194]

Data science

Artificial Intelligence

Machine Learning

Deep Learning

Convolutional
Neural Network

Figure 2.8. Data science methods include different approaches. Artificial intelligence (Al) is a part
of data science and includes traditional programming as well as machine learning (ML). Machine
learning involves several models and techniques, including deep learning (DL) and Convolutional
neural networks (CNN). Adapted from !
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The Multi-Layer Perceptron (MLP) is a fundamental feedforward neural network that
serves as the basis for deep learning models. Conceptually inspired by the structure and
function of the human brain, the MLP consists of three main layers: an input layer, an output
layer, and typically one or more hidden layers. In the brain, the approximately 86 billion
neurons work in parallel, receiving input through dendrites, processing it in the cell body, and
transmitting output along axons. The synaptic connections between neurons are crucial for
learning, as they strengthen or weaken over time based on experience, a process called synaptic
plasticity. This adaptability forms the basis of memory and learning in the brain. Similarly, in
an MLP, each neuron in a layer is connected to all neurons in the next layer, enabling efficient
flow of information.

The input layer of the MLP functions like the brain’s sensory cortex, receiving data
from the external environment. This data is then passed through one or more hidden layers,
where the network learns complex patterns and relationships through weighted connections.
This process mirrors how the brain’s association cortex processes and integrates sensory inputs,
relating them to past experiences and knowledge. As in the brain, where synaptic connections
adjust based on experience, the MLP adjusts the weights of its connections through a process
known as backpropagation, fine-tuning these weights during training using gradient descent.
Finally, the output layer generates a prediction based on the learned features, similar to how
the brain responds to inputs and adapts to new information. Figure 2.9 illustrates a biological
neuron, versus single-neuron perceptron model where multiple input values (x;, x2, ..., x,) and
a bias term (represented as 1) are each assigned corresponding weights (wg, wy, ..., ws). These
weighted inputs are summed at the summation node (3)) before being passed through an

activation function (g), which determines the final output (y) (Eq 2.5.1). 1

y =g Wy + Xt x; wy) (Eq2.5.1)
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Figure 2.9. The schematic of biological neuron versus single-neuron perceptron. Adapted from (%!

2.5.2. Convolution Neural Networks (CNNs)

The Convolutional Neural Network (CNN) extends the concept of MLPs by incorporating
specialized layers, such as convolutional and pooling layers, which enable automatic feature
extraction from spatial data. Unlike MLPs, which treat all input features equally, CNNs
preserve the spatial structure of images, allowing them to capture important local patterns such
as edges, textures, and shapes. This makes CNNs particularly effective for image processing
and classification, object detection, face recognition, automatic handwriting recognition, and
other computer vision tasks. [1°7-2041 The application of CNN has significantly expanded due to

1. [205

its ability to extract crucial patterns from images without human interventio I For instance,
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if a given dataset containing various images featuring both dogs and cats, a CNN that was
trained with a large number of examples can automatically distinguish whether a particular
image represents a dog or a cat by utilizing the key features it has acquired through learning.
[206]

As shown in Figure 2.10, the image (which serves as input data for the Convolutional
Neural Network) has three dimensions: width, height, and depth. Each layer of the CNN takes
a 3D input and produces a 3D output of neuron activations. For RGB images, the depth is 3,
representing the three-color channels, while the height and width correspond to the dimensions
of the image. ?**) CNN consists of three neural layers: convolutional, pooling, and fully
connected. The initial two layers, convolution and pooling, primarily engage in feature
extraction, while the third layer, a fully connected layer, translates these extracted features into

[207

the final output, such as classification. 27 The standard image classification CNN architecture

208

is presented in Figure 2.10. 2% The training process of the network involves two stages: the

forward stage (Forward propagation) and the backward stage (Backpropagation). (203201 |

n
forward propagation, the network processes the input data through its layers to generate
predictions. During this phase, the kernels in the convolutional layers and weights in the fully
connected layers are applied to the input data. The predicted outputs are compared to the
corresponding ground truth labels through a loss function, which quantifies the discrepancy
between the predicted and actual values. In backpropagation, the loss value obtained from
forward propagation is used to update the learnable parameters, such as kernels and weights.
The backpropagation algorithm, combined with the gradient descent optimization method,
adjusts these parameters to minimize the error, improving the model's performance in future
iterations. Once enough iterations of the forward and backward stages have been completed,

the network learning process can be stopped. 4
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Figure 2.10. The pipeline of the general CNN architecture. A CNN consists of several parts,
including: convolution layers, pooling layers, and fully connected layers. The model's performance is
evaluated using a loss function during forward propagation on the training dataset. The learnable
parameters, such as kernels and weights, are then updated based on the loss value through
backpropagation using the gradient descent optimization algorithm. Adapted from %4

Convolutional Layers

The convolutional layer acts as the fundamental building block of CNN. 219 Its primary
role is feature extraction, which typically combines linear and nonlinear operations i.e.,
convolution operations and activation functions. #°”) The convolution operation offers three
primary benefits. ?'!) i) Efficiency through shared weights: Convolution operations contribute
to increased model efficiency by reducing the number of parameters that need to be learned
compared to fully connected neural networks. This efficiency arises from the shared weights
across different positions, leading to a more compact representation of the learned features. i1)
Translation invariance: It ensures that local feature patterns extracted by kernels remain
invariant to translation as the kernels traverse through different positions within the image.
This enables the detection of learned local patterns consistently across the image. iii) Spatial
hierarchies and downsampling: By incorporating downsampling along with a pooling

operation, convolution operations facilitate the learning of spatial hierarchies of feature
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patterns. This process results in the capture of progressively larger fields of view, enhancing
the network's ability to understand complex spatial relationships.

This layer takes input data along with a kernel (or filter), typically a 2D array of
numbers, which contains learned weights, in the case of image input. The configuration of a
convolutional layer is primarily determined by several hyperparameters, including the number
of filters, their spatial dimensions (e.g.,3 % 3), stride, and padding. Stride indicates the degree
of movement of the filter as it scans across the image. The output is determined by the kernel
configuration. The kernel or filter moves horizontally across the input image with a specific
stride value until it covers the entire width. It then shifts downward to the starting position on
the left side of the image with the same stride value and repeats this process until the entire
image has been traversed. This output then becomes the input for the next stage of processing
(Figure 2.11). For instance, the convolution operation involves an input image of size 6 X 6
convolved with a 3 x 3 kernel to generate a 4 x 4 convoluted feature maps. At each position, a
3 x 3 region of the input is multiplied element-wise with the filter, and the results are summed
to produce a single value in the output map. **! The size of the resulting feature map is
determined by the dimensions of the kernel in use. For RGB-colored images, the multiplication
process occurs independently for each color channel (red, blue, and green) using the respective
kernel. Subsequently, the outputs from these operations are combined to form the convolution

output. 29I
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Figure 2.11. The operation of the convolutional layer. An illustration of the convolution operation is
shown with a 3 x 3 kernel, and a stride of 1. The kernel is applied across the input tensor, performing
element-wise multiplication at each location, followed by summing the results to produce the output
value in the corresponding position of the output tensor, known as the feature map. Adapted from ?'?!

Padding is used to maintain the size of the output after applying convolution (Figure
2.12). By adding zeros around the borders of the image, the filter can slide across the entire
image without reducing the output dimensions, thereby ensuring that the output size remains
equal to the input size when using the same padding. This technique is particularly useful for
preserving spatial information and preventing loss of data at the edges during the convolution

operation. 1213
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Figure 2.12. Illustration of zero-padding in image processing. The image is padded with zeros along
its borders to enable the filter to slide over it while maintaining an output size that is equal to the input
size. Adapted from 21!
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Size of the kernels, the number of kernels, padding, and stride are hyperparameters that
must be defined before the training process begins. Kernel weights are considered parameters

in a CNN, as they are learned and adjusted during the training process. [2°7]

Nonlinear Activation Function

The activation function selected for a neural network significantly influences its overall
performance and the efficiency of its learning process. [*'*1 Activation functions are essential
because they introduce nonlinearity into the model, allowing neural networks to capture
complex patterns in data. Effective activation functions typically exhibit properties such as
differentiability to facilitate gradient-based optimization, simplicity for efficient computation,
minimal parameters to reduce computational complexity, and robustness against saturation
which helps prevent vanishing gradients that could obstruct parameter updates and hinder deep
network training. (2%

The outputs of the convolutional layer pass through a nonlinear activation function
(Figure 2.13), which is crucial for introducing nonlinearity into the network. However, when
the input variable takes on either a large positive or small negative value, certain activation
functions can saturate, becoming unresponsive to small changes in the input data. This
saturation leads to gradients approaching zero during backpropagation, effectively stopping
weight updates and obstructing the training of deep neural networks. To address this issue, Nair
and Hinton proposed the Rectified Linear Unit (ReLU) activation function. ReLU eliminates
the need for computationally expensive exponential calculations and determines activation
values using a simple threshold rule. These attributes make ReLLU computationally efficient
and highly effective, establishing it as the default activation function in feedforward neural

networks, where it has substantially improved training efficiency and overall performance. [2!]
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Other nonlinear functions, such as sigmoid and hyperbolic tangent (tanh), were

historically favored for their mathematical resemblance to the behavior of biological neurons.

[217]
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Figure 2.13. Common activation functions used in neural networks. a) Hyperbolic Tangent (tanh),
b) Sigmoid, and c) Rectified Linear Unit (ReLU). Adapted from [2°7)

Pooling Layers

Typically, after a convolutional layer, a pooling layer is employed to diminish the dimensions
of feature maps and network parameters. This layer helps cut down on the parameters, resulting
in faster training times. It downsamples each feature map in terms of height and width while
maintaining the depth. Similar to convolutional layers, pooling layers exhibit translation
invariance, as they consider neighboring pixels in their computations. The most frequently used
strategies include average pooling and max pooling. Figure 2.14 illustrates a max pooling
operation as an example. For an initial set of 8x8 feature maps, this process reduces the output
maps to dimensions of 4x4 using a max pooling operator with a size of 2x2 and a stride of 2.
Max pooling selects the maximum value from the pooling window. Conversely, average
pooling (Fp) can be calculated as shown in Eq. 2.5.2. In this equation, Fp represents the output
value at position (i, j), obtained by applying the pooling operation (pool (i, j)). The operation

is performed over a pooling window that contains M elements, where each element within the
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window is represented by xx, with k£ indicating the index of the input value in the pooling region.

[203]

.. 1
Fp=pool (i, j) = — ¥iey Xk (Eq.2.5.2)
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Figure 2.14. The operation of the max pooling layer. Adapted from [>!*]

Scherer et al. [21°]

carried out a comparative analysis of these two pooling operations
and determined that max-pooling exhibits advantages, including quicker convergence,
selection of superior invariant features, and enhanced generalization. In recent years, a range

of efficient GPU implementations of CNN variations has emerged, with a majority of them

favoring the max-pooling strategy.

Fully-Connected Layers

The fully connected layer represents the final component of a convolutional neural network
(CNN). After the final pooling layer, as shown in Figure 2.15, the resulting two-dimensional
feature maps are flattened into a one-dimensional vector. ?°71 This vector is then passed through
one or more fully connected (dense) layers, where each node in the input is connected to every

node in the output through trainable weights. These layers process the features previously
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extracted by the convolutional operations and reduced in dimensionality by pooling, ultimately
transforming them into the final outputs of the network, such as class scores in classification
tasks. Typically, the final fully connected layer contains the same number of output units as
there are target classes. 2?1 A nonlinear activation function, such as ReLU, is commonly

applied after each fully connected layer, as previously discussed.

. WAL A

] fe7 fc8

Figure 2.15. The operation of the fully-connected layer. Adapted from [?'#!

Final Layer Activation Function

The activation function applied to the last fully connected layer typically differs from the
others. It is crucial to select an appropriate activation function based on the task at hand. For
multiclass classification tasks, the commonly used activation function is Softmax. This
function normalizes the output real values from the last fully connected layer into target class
probabilities, ensuring that each value falls between 0 and 1, and the sum of all values equals
1. 21 The common choices for the activation function in the last layer for various types of

tasks are summarized in Table 2.1.
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Table 2.1. A list of frequently used activation functions in the final layer for different tasks.
Adapted from 207!

Task Last Layer Activation Function
Binary classification Sigmoid
Multiclass single-class classification Softmax
Multiclass multiclass-class classification Sigmoid

2.5.3. Training Strategy of a Network

Training a network involves the iterative process of adjusting kernels in convolution layers and
weights in fully connected layers to minimize the disparities between predicted outputs and
provided ground truth labels in a training dataset. The backpropagation algorithm is widely
utilized technique for training neural networks, where the loss function and gradient descent

optimization algorithm are pivotal components in the process. 22!}

Loss Function

A loss function, sometimes called a cost function, evaluates the agreement between the output
predictions generated by the network through forward propagation and the provided ground
truth labels. ???! For multiclass classification tasks, the commonly used loss function is cross-
entropy, 2231 while mean squared error is typically employed for regression tasks involving
continuous values. The selection of the appropriate loss function is considered one of the
hyperparameters and should be determined based on the specific requirements of the task at

hand.

Gradient Descent

Gradient descent is a widely used optimization algorithm that iteratively adjusts the learnable

parameters, kernels and weights, of the network to minimize the loss. The gradient of the loss
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function indicates the direction in which the function exhibits the steepest rate of increase.
Consequently, each learnable parameter is updated in the opposite direction of the gradient,
with the step size determined by a hyperparameter known as the learning rate. The gradient
represents the partial derivative of the loss concerning each learnable parameter mathematically

(Figure 2.16). A single update of a parameter is formulated as follows (Eq. 2.5.3):

oL
Wi=w—aXo— (Eq.2.5.3)

Here, “w” represents each learnable parameter, “a’ represents the learning rate, and “L”
signifies the loss function. Noteworthy, setting an appropriate learning rate is crucial as it is
one of the most significant hyperparameters to determine before training commences. In
practice, due to constraints such as memory limitations, the gradients of the loss function
regarding the parameters are calculated using a subset of the training dataset known as a mini-
batch. These gradients are then utilized to update the parameters. 2°71 There are three main
types of gradient descent algorithms: 1) Batch Gradient Descent (BGD), which processes the
entire dataset simultaneously during training and then updates the weights, making it a
deterministic approach; ii) Stochastic Gradient Descent (SGD), which updates the weights after
processing each individual data point one at a time; and iii) Mini-batch Gradient Descent, a
hybrid approach that updates the weights using a small subset of data points at each step. These
methods differ in the amount of data used to calculate the gradient, balancing the trade-off

between the accuracy of parameter updates and the time required for each update. (224
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Figure 2.16. Schematic representation of the gradient descent concept. Learnable parameters are
iteratively adjusted via gradient descent, minimizing loss (the difference between predicted and true
values. Adapted from (%7

2.54. Challenges in Deep Learning Algorithms: Solutions and

Strategies

In deep learning classification, data is systematically partitioned into training, validation, and
test sets to facilitate efficient model development and evaluation. 221 The training set serves
as the foundation for model learning. ! During training, the model is exposed to training
data, calculating errors through forward propagation and iteratively adjusting its learnable
parameters via backpropagation to improve its ability to learn the underlying patterns. The
validation set acts as a crucial checkpoint throughout this process. ** By evaluating the
model's performance on the validation set, researchers can fine-tune hyperparameters (such as
learning rates and number of iterations), which are parameters that govern the training process,
and ultimately select the optimal model configuration. The test set, ideally reserved for use at
the conclusion of the project, provides an unbiased estimate of the model's generalizability to
unseen data. This final evaluation step is crucial for determining how well the model would

perform in real-world scenarios (Figure 2.17).
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Figure 2.17. Typical data division for machine learning. The data is segregated into training
(Training Set), validation (Validation Set), and test sets (Test Set). Training Set: Used to train the model.
Forward propagation calculates the loss, guiding the update of learnable parameters through
backpropagation. Validation Set: Monitors model performance during training, aiding hyperparameter
tuning and model selection. Test Set: Evaluates the final model's generalizability on unseen data, ideally
used only once at the project's conclusion. Adapted from 12°7)

It is important to have distinct validation and test sets because hyperparameter tuning
and model selection take place during the training phase. This process relies on the model's
performance on the validation set, which can result in some information from the validation set
being unintentionally incorporated into the model, leading to overfitting, despite the model not
being explicitly trained on the validation set for its learnable parameters. Consequently, the
model will likely perform well on the validation set. To accurately assess the model's
performance and generalizability on completely new data, an entirely separate test set is
required.

Overfitting occurs when a model learns statistical patterns particular to the training set,
resulting in memorization of irrelevant noise rather than learning the essential signal (Figure
2.18). In deep learning, overcoming overfitting and managing computation time are significant
challenges due to the increased layers of abstraction. A standard method to detect overfitting
to the training data involves monitoring the loss and accuracy on both the training and

validation sets. To combat overfitting, several approaches have been suggested to reduce
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overfitting such as using more training data, data augmentation, regularization (weight decay,

[203, 207

dropout), batch normalization, and reduce architecture complexity. I A model trained on

a larger dataset often demonstrates better generalization, although achieving this may not

always be feasible in many applications like medical imaging. 2%
The Learning Curve
¢ T
1]
o
—
Overfitting
Training

Epochs

Figure 2.18. The loss curves for training and validation per epoch, illustrating overfitting. The
overfitting phase is shown where the validation error (orange curve) begins to rise while the training
error (blue curve) continues to decrease. This indicates that the model is learning the training data too
well, capturing noise and specific details, which leads to a poor generalization on unseen data. Adapted
from 122

Data augmentation is primarily used to generate additional data from existing samples
through various transformations, without incurring extra labeling costs. This is often achieved
through random transformations such as flipping, cropping, and rotation. By applying such
transformations, data augmentation can significantly expand the training dataset, making it
especially valuable when working with limited data. 29323

Besides data augmentation, transfer learning is another widely used and efficient
technique for training a network with a small dataset (Figure 2.19). In this approach, a network
is initially trained on a significantly large dataset, like ImageNet, which comprises 1.4 million

images categorized into 1000 classes. Subsequently, this pre-trained network is repurposed and

utilized for the specific given task. Transfer learning relies on the premise that common features
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acquired from a sufficiently extensive dataset can be applied across diverse datasets. This
ability to transfer learned features is a distinctive strength of deep learning, facilitating its utility
across different domain tasks, even when datasets are limited in size. There are two methods
for employing a pretrained network: fixed feature extraction and fine-tuning. Fine-tuning
method involves not only replace the fully connected layers of the pre-trained model with new
ones to train on a specific dataset, but also adjusting some or all of the kernels within the pre-
trained convolutional base using backpropagation. This adjustment can involve fine-tuning all
layers of the convolutional base or selectively freezing earlier layers while fine-tuning deeper
ones. This approach is driven by the observation that early-layer features, such as edges, are
more applicable across different datasets and tasks, while later features tend to become

increasingly tailored to specific datasets or tasks. (2972311

Pretrained
convolutional

Pretrained base
convolutional —m
base Fine-tuned

convolutional

base m

Pretrained network
Fine-tuning method

Pretrained FC

New FC layers
layers

Figure 2.19. Schematic representation of the transfer learning technique. Utilizing transfer learning
is a widespread and efficient approach for training a network with a limited dataset. Adapted from [(2°7)
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2.5.5. Gradient-Weighted Class Activation Map (Grad-CAM)

Gradient-weighted class activation map, developed by Selvaraju and colleagues, **2! is a
powerful visualization technique that enhances the interpretability of convolutional neural
networks (CNNs) in image classification tasks. It works by leveraging the gradient of the
classification score with respect to the convolutional features from the final convolutional layer
to identify the regions of an image most influential for the model’s decision. While deep
learning models have achieved significant success in computer vision tasks, their complexity
often creates a challenge in understanding their decision-making processes. Grad-CAM
addresses this issue by providing visual explanations that highlight the specific regions of an
image most responsible for the model's predictions, thereby enhancing transparency and
interpretability. The key innovation of Grad-CAM lies in its ability to generate class-specific
localization maps, allowing it to highlight different areas of an image based on the model’s
classification. This technique generates heatmaps to visualize the regions of an image most
relevant to a deep network's predictions, providing valuable insights into the model's decision-
making process. This capability is particularly valuable in domains such as medical imaging,
autonomous driving, and security, where model transparency is crucial. Moreover, Grad-CAM
is an effective method for providing visual insights into deep networks, demonstrating its utility
across various complex tasks, including object recognition, classification, and action
recognition. For instance, it can accurately identify attributes like the breed of a dog, or the
musical instrument being played. Beyond improving model interpretation and debugging,
Grad-CAM plays a key role in advancing visual recognition algorithms and refining existing
models. This versatile tool can be applied across various neural network architectures and tasks
beyond image classification. By visualizing how CNNs make decisions, it helps users gain

deeper insight into model behavior, identify potential issues, and understand which features
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influence predictions. In conclusion, Grad-CAM enhances the interpretability and reliability of

deep networks, making them more transparent and trustworthy. (232!

2.5.6.  t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear machine learning
technique for reducing the dimensionality of high-dimensional data, enabling its representation
in two- or three-dimensional space. Proposed by Maaten and Hinton as an enhancement of
Stochastic Neighbor Embedding, this nonlinear technique focuses on maintaining the local
relationships within the data. By positioning similar points close to each other and separating
dissimilar ones, t-SNE provides an effective way to visualize and interpret complex datasets in
reduced dimensions. 2*% 234" Although t-SNE visualizations often suggest the presence of
clusters, these apparent groupings can be significantly influenced by the choice of parameters,
particularly perplexity, as different perplexities often yield different visualizations. Perplexity
can be viewed as a trade-off between preserving the global and local structures of data.
Specifically, a higher perplexity value considers a broader range of neighboring points, while
a lower value focuses on a smaller set of neighbors, making the algorithm more sensitive to
local variations in the data. Maaten and Hinton recommended typical perplexity values in the

234

range of 5 to 50. [2*¥ The optimal value of perplexity depends on the data density, with larger

e.[*>] In most implementations,

and denser datasets typically requiring a higher perplexity valu
the default value of perplexity is set to 30. [*! Furthermore, the size and distance between
clusters in t-SNE plots should not be interpreted as an indication of true global distances or
cluster separability. Studies have demonstrated that t-SNE can effectively identify well-

separated clusters and, with specific parameter settings, can approximate a simplified form of

spectral clustering.
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2.6. Characterization Methods-Cross Validation with

Experimental Data

2.6.1.  Fluorescence Spectroscopy

Fluorescence spectroscopy is a powerful technique for studying protein-ligand and protein-
DNA interactions. 23¢! Fluorescence is a type of luminescence that occurs when a molecule
absorbs photons, exciting its electrons to a higher energy level, typically from a singlet ground
state to a singlet-excited state. As the molecule returns to its ground state, it emits a photon of
lower energy and longer wavelength than the absorbed one. Fluorescence spectroscopy
analyses this emitted fluorescence to study the molecular properties and environment. (Figure

2.20). 1237)
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Figure 2.20. Jablonski diagram. This diagram illustrating various transitions between a molecule’s
energy states. Adapted from 27

A fluorescence spectrometer is an analytical instrument primarily designed to measure
the intensity of fluorescent light emitted by a sample, while also determining the wavelengths
at which this fluorescence occurs by recording the emission spectrum. It consists of a light

source, which provides the excitation light, and monochromators that select specific
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wavelengths for excitation and emission (Figure 2.21). The excitation monochromator ensures
the sample is exposed to the desired wavelength, while the emission monochromator, typically
placed at a 90° angle to the excitation light to minimize background interference from scattered
light, isolates the emitted fluorescence. The emitted light is detected by a photomultiplier tube
(PMT), which converts it into an electrical signal for processing and display. This setup allows

for fluorescence measurements, making fluorescence spectrometers beneficial tools in valuable

scientific and analytical applications. 2*®]
|[m———m—mmmm e mm e m e e e e e e e m———— - = - I
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Figure 2.21. Diagram of simplified fluorescence spectroscopy setup. Adapted from 1>*!

Fluorescence spectroscopy assays present several limitations, particularly in terms of
sensitivity when analyzing low-concentration samples or molecules with weak fluorescence.
Additionally, fluorescence signals are prone to interference from quenching and background

[240-243

noise, which can hinder accurate data interpretation. I The requirement for specific

(2431 Moreover, handling dyes such

fluorescent labels further complicates sample preparation.
as ethidium bromide necessitates skilled personnel and stringent safety precautions and
protocols to minimize risks to health and the environment. Consequently, there is a growing

demand for more robust, interference-resistant, and highly sensitive alternatives to

fluorescence-based assays.
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2.6.2. Time of Flight Secondary Ion Mass Spectrometry (TOF-

SIMS)

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is an analytical method that

s. 241291 It involves bombarding the specimen's surface with a

prioritizes surface analysi
focused primary ion beam, which induces sputtering and the emission of secondary ions. These
ions, representing the surface composition, are then accelerated into a "flight tube" where their
mass is determined based on their flight time to a detector (Figure 2.22). By measuring the
mass-to-charge ratios of these ions, SIMS provides insights into the elemental, isotopic, or
molecular composition of the surface with a depth resolution typically ranging from 1 to 2 nm.
Due to significant variations in ionization probabilities among elements sputtered from
different materials, precise calibration against standards is essential for achieving accurate
quantitative results with SIMS. A primary ion beam impacts the surface, resulting in the
emission of various secondary particles. These include secondary electrons, photons, neutrals,
as well as positive and negative secondary ions from the sample. The sputtering yield is
influenced by factors such as the energy of the primary ion, the nature of the atoms or
molecules, experimental conditions, and the surrounding atmosphere. Secondary ions emitted
from organic samples are subsequently analyzed using a mass spectrometer, generating
positive or negative mass spectra. These spectra typically include peaks corresponding to
precursor or molecular ions, as well as fragment ions characteristic of the sample surface. ToF-
SIMS operates in three distinct modes: surface spectroscopy, surface imaging, and depth
profiling, making it a versatile tool for detailed surface characterization in various scientific
and industrial applications.

TOF-SIMS has some limitations that must be considered despite its high sensitivity and
surface specificity. One of the primary constraints is its requirement for ultrahigh vacuum

conditions, which increases operational complexity and necessitates the use of advanced
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instrumentation and maintenance protocols. This not only elevates the overall cost of the
analysis but also restricts the range of compatible sample types. In particular, volatile, hydrated,
or biologically sensitive materials may be unsuitable for analysis under such vacuum
environments, limiting the applicability of TOF-SIMS in certain fields. These factors

collectively reduce the technique’s flexibility, especially in studies involving delicate or non-

vacuum-stable specimens. [*]
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Figure 2.22. Schematic representation of the TOF-SIMS instrument. Adapted from %%

2.6.3. Infrared (IR) Spectroscopy

Infrared (IR) spectroscopy is a popular tool utilized by both organic and inorganic chemists to
analyze a molecule's structure by examining its vibrational and rotational energy level changes
when it absorbs infrared radiation. [**”- ¥ The frequencies absorbed are specific to the
molecule's functional groups and atomic masses. Importantly, for a vibration to be IR-active,
it must induce a change in the molecule's dipole moment. This capability enables IR
spectroscopy to provide insights into the specific functional groups and overall structure of

molecules. The electromagnetic spectrum categorizes infrared radiation into three main regions
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of the near-infrared, mid-infrared, and far-infrared based on their relationship to the visible

241 The near-infrared region with higher energy, ranging from

spectrum (Figure 2.23). 48]
approximately 14000 to 4000 cm™' (0.8-2.5 pm wavelength), can stimulate overtone or
harmonic vibrations. Mid-infrared wavelengths ranging from 4000 to 400 cm™' (2.5-25 pm)
are suitable for examining fundamental vibrations and the associated rotational-vibrational

structure. Far-infrared radiation, adjacent to the microwave region with wavelengths ranging

from 400 to 10 cm™' (25-1000 um), possesses lower energy and is employed in rotational

spectroscopy.
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Figure 2.23. Illustration of the electromagnetic spectrum. It highlights the division of the infrared
regions into three categories: Near-infrared (12820-4000 cm™"), Mid-infrared (4000-400 cm™), and Far-
infrared (400-33 cm™"). Adapted from 25"

Infrared spectroscopy (Figure 2.24) is a widely used method for analyzing surfaces and
adsorbate films. Infrared reflection-absorption spectroscopy (IRRAS), also known as
reflection-absorption, provides detailed insights into the chemical composition and structure of
thin surface layers and adsorbed molecules. *°!> 221 [RRAS is a vibrational spectroscopy

technique where infrared light is reflected at a grazing incidence angle from a reflective surface.
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Most studies have concentrated on metal substrates due to their perfect reflectivity, which
ensures maximum sensitivity and comparable detection limits to other surface science
techniques. The first efforts in the mid-1980s to apply external reflection measurements to
nonmetal substrates like carbon, °% silicon, [ or oxide surfaces led to very complex and

significantly distorted spectra.

Light 1 — A
=
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Figure 2.24. Schematic diagram for infrared spectroscopy. Adapted from 25!

When molecules are bound to a conductive surface, an additional selection rule applies:
the induced dipole moment must be perpendicular to the plane of the surface. If the induced
dipole moment is perpendicular to the surface plane (Figure 2.25 A), the image dipole will
align in the same direction, enhancing the intensity of the reflected light. Conversely, if the
dipole moment is parallel to the surface plane, the image dipole will have an equal magnitude
but opposite direction to the induced dipole, causing the vectors to cancel each other out
(Figure 2.25 C) and resulting in no observable frequency. If the induced dipole is at an
intermediate angle, only the perpendicular component of the dipole moment will contribute to

the observed signal (Figure 2.25 B).
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A) B) C)

<+t
I | -
Figure 2.25. Illustration of image dipole theory. The black, white, and red vectors represent the dipole
moment of the molecule, the image dipole induced within a reflective substrate, and the resultant vector
obtained by summing the black and white vectors, respectively. A) The induced dipole moment is

perpendicular to the surface. B) The induced dipole moment is at an intermediate angle to the surface.
C) The induced dipole moment is parallel to the surface plane. Adapted from 25

!

The infrared (IR) technique exhibits certain limitations, particularly in sensitivity when
evaluating samples with minimal thickness or functional groups characterized by weak
absorption bands 7. Furthermore, overlapping absorption bands can complicate the
interpretation of IR spectra. Besides, this characterization method requires advanced and costly
instrumentation, as well as the expertise of skilled operators for effective operation and

maintenance.

2.6.4. Circular Dichroism (CD) Spectroscopy

Circular dichroism (CD) spectroscopy is a widely utilized technique for investigating the
secondary structures of optically active molecules, such as proteins. [?*”1 In a CD spectrometer,
the sample is placed in a cuvette, and a beam of light is directed through the sample. The light,
referring to all electromagnetic waves, undergoes circular polarization, where its plane of
polarization rotates either clockwise (right circular polarization) or counterclockwise (left
circular polarization) over time as it propagates (Figure 2.26). Clockwise and
counterclockwise are sometimes used, but their interpretation depends on the perspective,

whether from the source of light or the target sample.
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Figure 2.26. Schematic representation of light circular polarization. i) right circularly polarized ii)
left circularly polarized light. Adapted from (2%

The sample is typically sequentially irradiated with left- and right-circularly polarized
light, and the absorption is measured. Chiral molecules interact differently with circularly
polarized light depending on the direction of rotation due to their intrinsic asymmetry, typically
absorbing more light in one direction than the other (Eq.2.6.1). The difference in absorption
between left and right circularly polarized light is described by the equation below (Eq.2.6.2),
where ¢ and ¢r represent the molar extinction coefficients for left and right circularly polarized
light, respectively. The variables ¢ and / denote the molar concentration and path length
(cuvette width in cm). The difference in absorption can be related to the difference in extinction

coefficients (A¢) (Eq.2.6.3).

A = ecl (Eq.2.6.1)
AA = AL - AR = (SL - ER)CZ (Eq2.62)
Ae = ¢ — &g (Eq.2.6.3)
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CD is reported not only as the difference in absorption or extinction coefficients but
also as the degree of ellipticity, [0]. The relationship between [0] and Aeg is described by the

equation in bellow (Eq.2.6.4):

[6] = 3298 A¢ (Eq.2.6.4)

Since the CD spectra of proteins uniquely represents their conformation, CD can be
utilized to monitor structural changes due to complex formation like protein-DNA complex
formation, folding/unfolding, denaturation caused by temperature increase, amino acid
sequence changes, or mutations. This makes CD an effective tool for studying the kinetics of
proteins and conducting stability investigations and interaction modeling in dynamic systems.
[259]

While CD spectroscopy is a useful technique, it does have certain drawbacks in protein-
DNA interaction studies. One key limitation is its lack of specificity, which can make it difficult
to distinguish between different molecular components. When studying large complexes, the
signals from various structural elements may overlap, complicating the interpretation of
conformational changes. This overlap can reduce the clarity of the CD signal or distort the
resulting spectra. Additionally, CD spectroscopy is not very sensitive to small or subtle changes
in structure, particularly during protein-DNA interactions, making it less effective at detecting

minor conformational shifts. ['3 1]
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3. Material and Methods

3.1. Chemicals

All chemicals used in the experiments (Table 3.1) were of analytical grade and applied without
additional purification. Milli-Q water, obtained through a MilliQ-Plus purification system

(Merck Millipore), was utilized in all procedures.

Table 3.1. List of Chemicals and materials

Chemicals and Materials Company
Human serum albumin (HSA) Sigma Aldrich
Immunoglobulin G from human serum Sigma Aldrich
Histone (Type II-A, lyophilized powder) S Aldtisln
Histone H1 Protein, 20 mg Sigma Aldrich
Bovine serum albumin Sigma Aldrich
Lambda DNA (lambda phage), 500 pg/tube Thermo Fisher Scientific
Deoxyribonucleic acid, low molecular weight from salmon

Sigma Aldrich
sperm
Ethidium bromide stock solution, biotechnological quality VWR Chemicals
Histone from calf thymus Sigma Aldrich
hsDNA, Deoxyribonucleic acid, partially degraded from

Sigma Aldrich
herring sperm
Deoxyribonucleic acid sodium salt from salmon testes Sigma Aldrich
Ammonium sulfate, for molecular biology, >99.0% Sigma Aldrich
HEPES (biological buffer) 299.5% (titration) Stz Al
Potassium chloride Sigma Aldrich
Sodium hydroxide Merck KGaA
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Sodium bicarbonate

Sodium carbonate (anhydrous)
PCP-H

PCP-Cl1

PCP-F

Glass wafer

Silicon wafer

Gold coated Si wafer
Microtube

Syringe filter 0.2 pm

Cuvette 1 mm thickness

3.2. Instrumentation

Merck KGaA

Merck KGaA

Curtiss-Wright Surface
Technologies

SCS GmbH, Surrey, UK
TCI Deutschland GmbH
Optrovision

Si-mat

Georg Albert

Sigma Aldrich

Sartorius Stedim Biotech

Helma

Table 3-2 lists all the instruments used in this study, including those for cleaning, the CVD

process, drop dispersion via a pipetting system, microscopy, and chemical analysis of the

respective samples.

Table 3.2. List of instruments

Instruments
NanoDrop One
SB3 tube rotator

Plasma cleaner

Microplate pipetting robot (epMotion 5070)

1-channel dispenser (TS10)
Climate chamber (ICH750)

Optical microscope (BX-53F)

Scanning electron microscopy (SEM)

Time-of -flight secondary-ion mass spectroscopy (TOF-SIMS)

Fluorescence spectroscopy
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Company
Thermo Scientific
Stuart

PIE Scientific

Eppendorf

Eppendorf

Memmert
Olympus
TESCAN
ION-TOF GmbH

TECAN
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Infrared reflection-absorption spectroscopy (IRRAS)
Bruker Optik GmbH
Bruker VERTEX 80 FTIR

CD spectroscopy (J-1500 spectropolarimeter) JASCO

3.3. Software

Table 3.3 provides an overview of the software used for the deep learning approach, imaging,

generating input data for deep learning, and performing statistical analysis.

Table 3.3. List of software

Software Company

CellSens Olympus

MATLAB R2022a MathWorks

Crulgtn 282205 OriginLab Corporation
Opus Bruker

3.4. Chemical Vapor Deposition (CVD) Polymerization
Coating

Chemical vapor deposition (CVD) polymerization was employed to apply a layer of poly (p-
xylylene) on glass surface. In this procedure, the monomer is initially vaporized and then
pyrolyzed, forming reactive intermediates that deposit and polymerize on the cooled clean glass

(1711 Three distinct zones in CVD machine (sublimation zone, the pyrolysis zone, and

surface.
the deposition chamber) maintain different temperatures but share the same pressure
conditions, which are below 0.2 mbar. A weighted amount of the precursor is introduced into
the sublimation zone, located 3-5 cm away from the oven (depends on the precursor). In this

zone, PCP sublimates at approximately 100-110 °C and is transported within a stream of argon

carrier gas (20 sccm) into the pyrolysis zone. Pyrolysis occurs at 660 °C for PCP-H, PCP-Cl,,
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PCP-Br,, PCP-Fs, PCP-Aldehyde, PCP-Amine, PCP-Methyl amine, and PCP-Alkyne (Table
3.4). For PCP-Methyl Hydroxyl the pyrolysis temperature is 540 °C. The vaporized cyclic
dimer is gradually disassembled into reactive radicals by breaking the ethylene bond.
Subsequently, these vaporized monomers make their way to the deposition chamber, where the
substrates (glass surfaces) are positioned on a stage that is cooled to 25 °C. The concentration
of monomers increases upon condensation on the cooled surface until an exothermic reaction
occurs. Two radicals combine to form an uncoupled biradical dimer, serving as the initial
molecule for the polymerization process. [*°! As additional monomers attach, the polymer
chain extends, creating a transparent, and uniform film on the substrate. The use of a rotating
sample stage guarantees a uniform thickness of the polymer film.

The glass wafers, sized at 120 mm x 80 mm and with a thickness of 0.1 + 0.05 mm
(Optrovision, Miinchen, Germany), were subjected to cleansing using a plasma cleaner
(Tergeo, Union City, CA, USA). In each deposition batch, two slides of glass substrate were
put in the deposition chamber. Adjacent to it, two silicon (Si) wafers were placed to gather data
about the thickness of the coating. The deposition speed was determined and could be adjusted
to a rate of 0.3-0.5 A/s by altering the distance between the precursor and the oven, using a

quartz crystal detector situated within the deposition chamber.

Table 3.4. Polymer structure of different precursors.

Name of precursor Polymer structure
PCP-H (PCP-n) 5=
-

PCP-NH; )
-

NH,
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3.5. Histone-DNA Solutions

The Deoxyribonucleic acid sodium salt from salmon tests, Deoxyribonucleic acid from herring
sperm, Lambda DNA, and Histone H1 protein were acquired. Salmon (Sal 1kp) DNA was
generated by sonicating Sal 20 kop DNA, yielding fragments with an average length of 1000 base
pairs (Figure S1). The DNA was sonicated on ice at 20 kHz for a duration of 5 minutes. To
form H1-DNA complexes, their previously equilibrated solutions were directly mixed in a
binding buffer. This buffer consisted of 100 mM HEPES (pH 7.8), along with 150 mM
potassium chloride and 50 mM ammonium sulfate. Histone was gradually added to the DNA

at five ratios: 0.5 (R1), 1 (R2), 1.4 (R3), 3.4 (R4), and 6.8 (R5) moles of histone (H1) per 168
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base pairs of DNAs. The overall mass concentration of HI and DNA remained unchanged
across all ratios. The solutions were gently stirred using a tube rotator (Stuart, Stone, UK) at

10 rpm for 60 minutes at room temperature (25 °C) and then stored at -20 °C.

3.6. Bovine Serum Albumin (BSA) Solutions

Bovine Serum Albumin (BSA) was dissolved into a 100 mM carbonate-bicarbonate buffer to
a final concentration of 0.1 mg/mL. The buffer, adjusted to a pH of 9.2, was prepared using
ultrapure water from a Milli-Q Plus system and contained 91 mM NaHCO; and 9 mM Na.CO:s.
The BSA solution was mixed for 30 minutes at room temperature using a tube rotator (Stuart,
Stone, UK) set at 10 rpm. Upon thorough mixing, aliquots of the solution were stored at -20 °C

until further use.

3.7. Droplet Deposition

A microplate pipetting robot with 96 wells (epMotion 5070, Eppendorf AG, Hamburg,
Germany) was employed to dispense small droplets (2 uL) of the solutions onto the coated
surface using a single-channel dispenser (TS10, Eppendorf AG, Hamburg, Germany). The
pipetting setup was configured to distribute 96 droplets on each glass plate, forming a grid of
12 columns and 8 rows. In each experimental set, four different liquids were randomly
positioned on the slide, with 24 droplets of each liquid distributed together (HI-DNA
interaction section). To regulate the evaporation rate, the robot was placed inside a climate
chamber (ICH 750, Memmert GmbH + Co. KG, Schwabach, Germany) maintained at a
controlled temperature of 23 + 0.5 °C and humidity of 40 + 3%. Following the drying of the
droplets (approximately 50 minutes), images of the deposited patterns were captured using a
polarized light microscope (Olympus polarizing optical microscope BX-53F, Tokyo, Japan)

equipped with an automated stage. All images were captured under uniform microscope
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settings, with consistent resolution, 10x magnification, and exposure time, and were combined
using the Multi Image Alignment (MIA) algorithm from CellSens software (Olympus, Tokyo,
Japan) to ensure data comparability and interpretability. Each image of a dried droplet had
rectangular dimensions of 2344 x 1878 pixels in JPG format. To enhance processing speed
without sacrificing image quality, they were reduced to 75% of their original size, allowing for
faster import into the network for training. Following this resizing, the images were then

preprocessed into square dimensions.

3.8. Convolutional Neural Network of Training and Testing Set

Images

The training and subsequent processing of PLM images using MATLAB software (R2022a,
MathWorks Inc.) involved the selection of the InceptionV3, a pre-trained CNN network, due
to its swift response and satisfactory accuracy. InceptionV3, developed by Google, is a deep
convolutional neural network architecture specifically designed for image classification tasks.
It features "Inception modules" to efficiently capture multi-scale features in an image and
comprises 315 layers, making it relatively deep (Figure 3.1). The network requires input
images to be resized to 299 x 299 pixels, necessitating preprocessing before feeding them into
the network for training. Maintaining a uniform format across all groups facilitated consistent
comparisons and preserved the reliability of the analysis. Standardizing all images to a
resolution of 299 x 299 pixels ensured consistent input dimensions and reduced the influence
of original image formats on the outcomes. Employing a transfer learning approach, the
network, initially pre-trained on a substantial dataset of image features, underwent fine-tuning
with a relatively small new set of images. In this process, the final classification layer was
excluded and retrained with the new dataset. Fine-tuning involved adjusting parameters across

all layers with a consistent global learning rate of 0.001, a minimum batch size of 32 images.
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For each training set, approximately 75-80% of the images per class were used for training,
with 10% of them randomly selected for validation during the process. After the network was
trained, a separate set of images, accounting for about 15-20% of the total, was reserved for
testing to assess its performance. To maintain data integrity, the training, validation, and testing
datasets were kept completely separate, with no overlap between them. To enhance the
generalization of the network, minimize the risk of overfitting, and prevent it from simply
memorizing the training data, images were augmented by applying random horizontal and

vertical reflections, each with a 50% probability, across all trained networks.
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Figure 3.1. Architecture of the pre-trained InceptionV3 model. The model comprises multiple
Inception modules that apply convolutional filters of various sizes in parallel to extract multi-scale
features. It includes convolutional and max-pooling layers, followed by fully connected layers and a
final softmax layer for classification. Adapted from [26!]

The network’s performance was evaluated by analyzing overall accuracy and confusion
matrices for the test datasets. Additionally, to determine how well the model could generalize
to new data, a completely unseen/unknown set of images was introduced for classification.
This approach allowed for a comparison between these new images and those previously
learned during training. By conducting this thorough evaluation, CNN’s reliability and

effectiveness in classifying diverse datasets were validated.

64




Materials and Methods

To identify the key regions within images that significantly influence the classification
decisions of the convolutional neural network (CNN), the Gradient-weighted Class Activation
Mapping (Grad-CAM) algorithm was applied as a visualization tool. By utilizing Grad-CAM,
the most influential areas contributing to the network’s decision-making process were
highlighted, providing valuable insights into its interpretability. This technique was
implemented using MATLAB (Release 2023a, MathWorks Inc.), ensuring an effective
analysis of the model’s focus during classification.

To demonstrate the network's ability to effectively cluster data, the t-distributed
Stochastic Neighbor Embedding (t-SNE) algorithm, known for its strength in visualizing high-
dimensional data, was applied to the Softmax layer of the trained convolutional neural network
(CNN). This layer, typically used for classification tasks, converts the network’s raw output
(logits) into a probability distribution. The t-SNE technique was implemented using the
MATLAB Machine Learning Package, with a learning rate of 500 and a perplexity value set
to 30, to reduce the complex high-dimensional data to a lower-dimensional space while
maintaining the relationships between data points. By mapping the Softmax layer outputs to a
two-dimensional representation, t-SNE allowed for clear visualization of distinct clusters
corresponding to different classes, providing valuable insights into the network's performance

and the underlying patterns within the data.

3.9. Scanning Electron Microscopy (SEM)

Analyzing the structural features of the HI/DNA complex and salt of stain droplets was carried
out using scanning electron microscopy (SEM) (TESCAN VEGA3). To address potential
surface charging effects, a fine layer of gold was sputtered onto the samples before performing
SEM imaging. The SEM images were obtained at an electron accelerating voltage of 15 kV,

maintaining a working distance of 7.2 mm.
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3.10. Time of Flight Secondary Ion Mass Spectrometry (TOF-
SIMS)

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) experiments were performed
using an ION-TOF instrument (ION-TOF GmbH, Miinster, Germany). The instrument featured
a liquid metal primary-ion source utilizing a Bi cluster and a non-linear time-of-flight analyzer.
The Bi source, operating in the "bunched" mode for spectrometry, generated short primary-ion
pulses (<1 ns) providing Bi'* or Bi*" ion pulses at 25 keV energy with a lateral resolution of
approximately 4 um. As the droplets' size exceeded the maximum deflection range of the
primary-ion gun (500 x 500 um?), images were acquired using the manipulator stage scan
mode. Negative polarity spectra were calibrated based on the C°, CH, and CH, peaks.
Spectrometry was performed in static SIMS mode, ensuring the primary-ion dose remained
below <10'! ions cm™. High lateral-resolution images were obtained in a primary-ion source
mode, offering a lateral resolution of around 200 nm with nominal mass resolution in "burst
alignment" mode. Charge compensation was essential due to the glass substrate, necessitating
the use of an electron flood gun delivering electrons of 21 eV. The secondary-ion reflectron
was tuned accordingly to ensure precise measurements.

For the surface recognition section, the main chamber pressure was 5 x 10~° mbar. For
high mass resolution, the Bi source was operated in the “high current bunched” mode providing
short Bis" primary ion pulses at 25 keV energy and a lateral resolution of approximately 5 pm.
The short pulse length of 1.1 ns allowed for high mass resolution. Primary ion doses were kept
below 2 x 10! ions cm ™2 (static SIMS limit) for all measurements. Spectra were calibrated on
the omnipresent CH™, C2~, C2H™, OH™; or on the CH", CH,*, CHs", and C,H3" peaks. Spectra

were normalized by the total ion dose.
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3.11.Infrared Reflection-Absorption Spectroscopy (IRRAS)

Infrared spectral analysis of the polymer films was conducted using a Bruker VERTEX 80
FTIR (Bruker Optik GmbH, Ettlingen, Germany). The spectra were scanned with a resolution
of 2 cm™ across the range of 500 to 4000 cm™. The device featured a horizontal reflection unit
for measurements in grazing incidence reflection mode with an 80° incident angle to the surface

normal. Background correction was carried out using the onboard Bruker OPUS software.

3.12. Circular Dichroism (CD) Spectroscopy

The far-UV CD spectra of the protein solutions (BSA) were captured using a J-
1500spectropolarimeter (JASCO, Germany) at a temperature of 20 °C. For the solution
samples it was conducted in quartz glass cuvettes with a 1 mm optical path length within the
wavelength range of 260 to 190 nm, with measurements taken at 0.5 nm intervals. Each sample
underwent two repeated scans at a scan rate of 100 nm min ", an 8 s response time, and 8 nm
bandwidth. The obtained data were averaged for each sample, along with its respective baseline
obtained from the protein-free sample (buffer solution). For protein samples on solid surface,
the quartz glass was used. The protein concentration used was 0.1 mg mL™! in a 20 mM

carbonate-bicarbonate buffer, with and without 50 mM at pH 9.2.

3.13.Ethidium Bromide Displacement Assay

The ethidium bromide displacement assays, following the method by Geall et al. (2000), were
conducted in 10 mM HEPES buffer (pH 7.8) with 15 mM KCl and 5 mM (NH4), SO4 . 262
Steady-state fluorescence measurements were performed using a Tecan Spark multimode
reader. In a 96-well black plate maintained at a temperature of 293.15 K, a working volume of
200 pL solution was prepared, containing 0.1 M EtBr for every 168 base pairs of DNAs.

Ethidium bromide solution was introduced into the stirring solution and allowed to equilibrate
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for 15 minutes. Subsequently, aliquots of histone were added to the stirring solution, and

fluorescence was measured after 30 minutes of equilibration.

3.14. Statistical Analysis

Statistical analysis of the results was performed using the analysis of variance, employing both
the least significant difference (LSD) and Tukey methods. For least significant difference
(LSD), the analysis utilized SAS 9.1.3 software (SAS Institute, Inc., 1999, Cary, NC, USA).
Tukey analysis was done with Origin software (2022b). The LSD and Tukey methods were
specifically employed to detect significant differences, with a predetermined significance level

set at p < 0.05, as outlined by Montgomery and Runger (2011). (263
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4. Results and Discussion

4.1. Effect of Various Salts on Stain Patterns

To evaluate the effect of various salts on dried droplet patterns, a library comprising twelve
different salts and concentrations was prepared (Table 4.1). To achieve uniform hydrophobic
substrates with consistent droplet deposition (water contact angle: 80+ 1°) over large areas,
chemical vapor deposition (CVD) polymerization of (PPX-H) was employed. The process
enabled precise control over the coating thickness, which was maintained in the range of 50-
55 nm to ensure consistent surface characteristics and reproducibility. Human serum albumin
(HSA) and Immunoglobulin G (IgG) were dissolved separately in each salt solution at a
concentration of 0.1 mg/mL (as indicated in the table below). A defined 2 pL. volume of the
solution was dispensed onto the PPX-H-coated surface and left to dry for 45 minutes under
controlled conditions (23 °C, 40% humidity). A total of 7400 images were collected, with 6200

allocated for the training and validation sets, and 1200 images for the test set.

Table 4.1. A library of buffer solutions with various salt types and concentrations.

Nr Salts Protein
1 NH:HCO:s (0.1 M) + KH2PO4 (0.1 M) HSA
2 NH:HCO:s (0.1 M) + KH2PO4 (0.1 M) IeG
3 NH4HCOs (0.1 M) + KH2PO4 (0.05 M) HSA
4 NHsHCOs (0.1 M) + KH2PO4 (0.05 M) IeG
5 NH+HCOs (0.1 M) + NaHCO3 (0.1 M) HSA
6 NH:HCO:s (0.1 M) + NaHCO3 (0.1 M) IgG
7 NHsHCOs (0.1 M) + NaHCOs3 (0.05 M) HSA
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Figure 4.1 illustrates the distinct patterns emerging from each solution. Generally,
patterns from the same salt solution (with identical salt types and concentrations) exhibit
noticeable similarities. In most cases, the dissolved Human Serum Albumin (HSA) and
Immunoglobulin G (IgG) do not show significant differences in their resulting patterns (e.g.,

samples 23 and 24). However, in some instances, notable variations can be observed between

NH4HCOs (0.1 M) + NaHCO3 (0.05 M)
NH<HCO:s (0.1 M) + Tris (0.1 M)
NH<HCO:s (0.1 M) + Tris (0.1 M)

NH<HCO:s (0.05 M) + NaHCOs3 (0.1 M)

NH4HCOs (0.05 M) + NaHCOs3 (0.1 M)

(NH4)2S04(0.05 M) + NaHCO3 (0.1 M)

(NH4)2S04(0.05 M) + NaHCOs3 (0.1 M)

HEPES (0.05 M) + NaHCO3 (0.1 M)
HEPES (0.05 M) + NaHCO3 (0.1 M)
KH>POs4 (0.1 M) + HEPES (0.1 M)
KH>PO4 (0.1 M) + Tricin (0.1 M)
Tricin (0.05 M) + NaHCOs (0.1 M)
Tricin (0.05 M) + NaHCOs3 (0.1 M)
Tris (0.1 M) + NaHCOs3 (0.1 M)
Tris (0.1 M) + NaHCOs3 (0.1 M)
Tris (0.05 M) + NaHCOs3 (0.1 M)

Tris (0.05 M) + NaHCO3 (0.1 M)

IgG
HSA
IgG
HSA
IgG
HSA
IgG
HSA
IgG
HSA
HSA
HSA
IgG
HSA
IegG
HSA

IgG

HSA and IgG, even within the same salt conditions (e.g., samples 5 and 6).
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Inception V3 was employed to classify various patterns, demonstrating exceptional
performance. As depicted in Figure 4.2, the Convolutional Neural Network (CNN) achieved
an impressive average prediction accuracy of 99%. The trained network effectively
distinguished between Human Serum Albumin (HSA) and IgG within identical salt solutions,
those containing the same salt components at equal concentrations (e.g., samples 3 and 4).
Notably, it was capable of differentiating between samples with varying salt concentrations
while maintaining the same protein type and salt components (e.g., samples 1 and 3).
Furthermore, the model also successfully identified differences in samples where the protein
and salt concentration remained unchanged, but the salt type varied (e.g., samples 17 and 18).

The highest misclassification rate was observed in sample 10, where 6% of the samples
were incorrectly classified as belonging to sample 9. Despite sharing similar salt components
at comparable concentrations, these samples differ in protein content, contributing to the
misclassification. The second-highest misclassification rate (4%) was recorded for samples 2
and 7.

Further analysis revealed that misclassifications in sample 2 primarily involved samples
1 and 4, with 2% of the errors linked to their resemblance to sample 1 in terms of salt
composition and concentration, and another 2% attributed to its similarity to sample 4 in protein
type. Similarly, sample 7 exhibited misclassification errors with sample 11, as these samples
share the same protein type and salt components but differ in salt concentrations.

The high classification accuracy indicates that the model effectively captures subtle
differences in pattern features, even when those differences arise from minimal changes in salt
composition or protein type. This robustness suggests that deep learning approaches like
Inception V3 can be valuable tools for analyzing complex biochemical data. Additionally, these
results emphasize the potential of CNNs in applications beyond basic classification, such as
predictive modeling for understanding how proteins behave under different environmental

conditions.
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/ HSA, IgG (Dissolved in different buffers)
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Figure 4.1. Representative PLM images showing the patterns formed by two proteins (HSA and
IgG), dissolved in different buffers, and deposited as 2 pL. droplets of each solution onto a PPX-
H-coated glass wafer. The corresponding buffer compositions are detailed in Table 4.1. Odd-numbered
samples contain HSA, while even-numbered samples contain IgG, except for sample 18, which also
contains HSA.
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Figure 4.2. Confusion matrix obtained from the stains of various salts containing two different proteins (HSA and IgG). The stains were prepared by
depositing 2 pL droplets of each solution onto hydrophobic glass wafers coated with PPX-H. The model parameters were optimized with a global learning rate

0f 0.001, a minimum batch size of 32 images, and up to 20 epochs.
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4.2. Screening and Classification of Protein-DNA Ratios with

Various Total Mass Concentrations

In the previous study, a single protein dissolved in buffer solutions was analyzed and classified.
In the present study, the approach was expanded by introducing an additional biomolecule,
DNA, to explore more complex classification scenarios. By incorporating DNA into the
system, the potential of a deep learning model to effectively differentiate mixtures containing
multiple biomolecular components was investigated. To evaluate the ability of Convolutional
Neural Networks (CNN) in classifying mixtures of two components, specifically protein and
DNA, various ratios of histone to Calf thymus DNA and Salmon DNA were prepared (Tables
4.2, 4.3). The significance of this study lies in assessing whether the CNN could discern
patterns or classifications based on not only the ratios of the components, the relative amounts
of histone and DNA, but also the total mass concentration of the mixtures. By focusing on both
the component ratios and the total mass concentrations, the research aimed to provide insights
into the application of CNNs for analyzing complex biological mixtures and identifying key
parameters that should be taken into account when studying interactions between proteins and
nucleic acids.

To ensure a systematic evaluation, two specific total mass concentrations, 0.1 mg/mL
and 0.3 mg/mL, were selected. Uniform hydrophobic surfaces with consistent droplet behavior
across large areas were obtained using chemical vapor deposition (CVD) polymerization of
PPX-H. This technique enabled precise control of the coating thickness, which was maintained
at 50+ 5 nm to ensure stable surface properties and experimental reproducibility. A defined
2 uL volume of the solution was dispensed onto the coated surface and left to dry for 50 minutes
under controlled conditions (23 °C, 40% humidity). This enabled an evaluation of the CNN’s
ability to classify different mixture ratios according to their total mass concentration, regardless

of variations in the proportions of individual components. By comparing results across different
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total mass concentration levels, it was assessed whether high classification accuracy could be

maintained by the network despite changes in overall sample composition.

Table 4.2. Average prediction accuracies of two various total mass concentrations of histone-Calf
thymus DNA mixture.

Scenario Grou Prediction Histone/Calf Total Mass
P Accuracy DNA (mg/mg) Concentration
A 1/5
I 0
(Low-Ratios) 90% 1/10
¢ 1715 0.3 mg/ml
11 D 5/1
(High- E 95% 15/1
Ratios) F 30/1
I G 1/5
0
(Low-Ratios) 11 3% 1/10
1 1/15
I J 5/] 0.1 mg/ml
(High- K 100% 15/1
Ratios) L 30/1

Table 4.3. Average prediction accuracies of histone-Salmon DNA mixture.

Scenario Grou Prediction Histone/ Salmon Total Mass
P Accuracy DNA (mg/mg) Concentration
I A" 1/5
(Proof of B 87% 1/10
concept) c 1/15
o 0.1 mg/ml
I D 51
(Proof of E”’ 97% 15/1
concept) F 30/1

In total, 7,600 images of deposition stains from histone-Calf and -Salmon DNA
mixtures were prepared. Among these, 6,650 images were allocated for training and validation,
while an additional 900 images comprised the test set that the network had not encountered
during training. This division ensured a robust evaluation of the model’s performance. For the
histone-Calf thymus DNA mixtures, ratios of 1/15, 1/10, 1/5, 5/1, 15/1, and 30/1 were
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examined at two total mass concentrations of 0.1 mg/mL and 0.3 mg/mL. These specific ratios
were selected to evaluate how varying proportions of histone to DNA influence the CNN’s
ability to classify the mixtures accurately. Figure 4.3 presents the CNN-derived confusion
matrix, offering a clear representation of the network's performance across different scenarios.
Overall, InceptionV3 achieved an impressive average prediction accuracy of 94%.

For the lower ratios, which contained a higher amount of Calf DNA, the average
prediction accuracies were 90% for a total mass concentration of 0.3 mg/mL and 93% for
0.1 mg/mL. This suggests that the network performed slightly better at the lower concentration,
likely due to the agglomeration of the complex at the 0.3 mg/mL total mass concentration.
Furthermore, the average prediction accuracy for the lower histone-to-DNA ratios (1/15, 1/10,
1/5) was lower than that for the higher ratios (5/1, 15/1, and 30/1).

Notably, the results indicated that, regardless of the total mass concentration (either 0.1
or 0.3 mg/mL), the trend in prediction accuracies remained consistent across two categories of
low and high ratios. Additionally, the CNN demonstrated the ability to distinguish similar ratios
with varying total mass concentrations. This ability to differentiate between mixtures with
identical histone-to-DNA ratios but differing total mass concentrations highlights the network's
sensitivity to changes in mass, which could reflect subtle variations in sample composition.
The histone/Salmon DNA mixtures were evaluated at a total mass concentration of 0.1 mg/mL,
and consistent with the observations for Calf thymus DNA, the average prediction accuracy
was higher for high histone-to-DNA ratios (97%) compared to low ratios (87%). These results
prompted further investigation into the protein-DNA binding affinity. This suggests that CNN
is capable of detecting changes in histone/DNA ratios in the same total mass concentrations,

which reflect the outcomes of physiochemical interactions.
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Figure 4.3. Confusion matrix obtained from the stains of various histone/DNA ratios (Calf and Salmon) at two different total mass concentrations. The

stains were prepared by depositing 2 uL droplets of histone/DNA complexes, dissolved in an aqueous HEPES buffer solution, onto hydrophobic glass wafers
coated with PPX-H. The model parameters were optimized with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 40 epochs.
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4.3. Deep Learning-Based Classification of Linker Histone

(H1)-DNA Interactions

Developing a simple technique to classify protein-DNA complexes according to their binding
affinities would be highly interesting for many applications. The findings presented in this
section have been previously published in Small Science and can be accessed via

https://doi.org/10.1002/smsc.202400252. 2611 To assess the ability of deep learning approaches

to predict the relative binding affinity of protein-DNA interactions, the composition of stains
formed after drying droplets of HI-DNA mixtures was investigated, and their deposition
patterns were analyzed using polarized light microscopy (PLM). Figure 4.4.A displays a PLM
image depicting a typical drying pattern of the histone-Salmon 20 kp DNA mixture dissolved in
a HEPES buffer. Chemical vapor deposition (CVD) polymerization was employed to coat glass
surfaces with PPX-H, resulting in uniform hydrophobic substrates with a coating thickness of
50+ 5 nm. This approach ensured consistent droplet deposition over extensive regions of the

(2641 Subsequently, a defined volume of 2 uL of the histone-DNA mixture solution was

surface.
dispensed onto the coated surfaces and left to dry for 50 min under controlled conditions of
40% humidity and 23 °C temperature. In this investigation, solutions containing different ratios
of histone (H1) and DNA, dissolved in the same binding buffer consisting of 100 mM 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (pH 7.8), 150 mM potassium
chloride, and 50 mM ammonium sulfate, were employed. 29! To incorporate kosmotropic ions
into the buffer solution, potassium chloride and ammonium sulfate were used, which help
reduce protein denaturation and increase the salting-out effect, promoting protein-DNA
interactions. [266:267] The deposition patterns from protein-DNA mixtures are compositionally
simple, but structurally complex supramolecular systems. These systems are influenced by

multiscale processes that are interconnected both locally and temporally. 6% [268] The

manipulation of parameters such as the substrate on which the droplet is placed, or the
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environmental conditions directly impacts the resulting stain patterns. As the protein-DNA
solution evaporates, it becomes saturated, leading to the precipitation of its components
alongside the crystallization of salts in the buffer. The deposition of salts and biomolecules
begins at the edges of the stain and gradually moves toward the center. To gain deeper insights
into the stain patterns, scanning electron microscopy (SEM) was employed. The SEM images
revealed high-aspect structures distributed throughout the stain, providing a detailed view that
closely matched the features seen in the PLM image, thus improving our understanding of the

pattern’s characteristics (Figure 4.4.A).

A) H1+DNA
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Figure 4.4. The deposition patterns of HI-DNA droplets provide detailed insights into protein-
DNA interactions. These stains were created by placing 2 pL droplets of an aqueous HEPES buffer
solution onto hydrophobic glass wafers coated with PPX-H A) A schematic of dispensing HI/DNA
complex droplets, their drying process, and subsequent imaging. Representative images from PLM and
SEM of a dried stain derived from a H1-Sal 20 xp DNA mixture showcase complex deposition patterns.
B) Analysis of the H1-Sal 2 kop DNA mixture stain using TOF-SIMS imaging indicates the presence of
PO;™ (intensity color scale 0-2 counts), shown in blue. CNO™ fragments, marking the amino acids of
histone and the nucleotides of DNA, are displayed in green (intensity color scale 0-30 counts). The
distribution of chloride ions from the buffer solution is represented in red (intensity color scale 0-30
counts). The first row shows the RGB channels and their combined overlay. Adapted from ¢!
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To gain a deeper understanding of the variations in chemical composition within the
pattern on the solid surface, time-of-flight secondary-ion mass spectrometry (TOF SIMS) was
utilized, as illustrated in Figure 4.4.B, which shows the H1-Sal 2 xop DNA complex stains. The
analysis of the separate Sal 20 kop DNA and H1 patterns can be found in supporting information
(Figure S2-3). This imaging method is surface-sensitive with a sampling depth of
approximately 2 nanometers. The signal from the PO;™ ion is attributed to the phosphate
backbone of the DNA crystal, whereas the CNO™ ion signal is indicative of the presence of
both protein (amino acids) and DNA (nucleotides). The CI™ signal was utilized to track the
presence of salt originating from the buffer. The signals of CNO™ and POs", as well as the one
of CI” reveal the homogeneous distribution over the entire deposited pattern and thus confirm
co-deposition of the protein and DNA.

Based on a previous study, %! it was hypothesized that the deposited patterns could be
utilized to classify diverse types of DNA by discerning their differences in type and size, as
well as distinguishing various levels of protein-DNA interactions (Figure 4.5.A). To
investigate this hypothesis, a range of drying droplet stains generated from four distinct DNA
samples, as well as their mixtures with H1, was analyzed (Figure 4.5.B), and approximately
400-500 PLM images were collected for each group. It is observed that approximately 100
images can be captured within a 60-minute timeframe. A transfer learning approach utilizing a
commercially available deep learning (DL) neural network was employed for pattern analysis,
thereby reducing the need for extensive training datasets. [> 2]

The InceptionV3 network was chosen for its combination of high accuracy on the given
dataset and shorter training time compared to other high-performance pretrained CNNs, such

as NasNetLarge. [°]
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Figure 4.5. Schematic representation of the protein-DNA interaction study using deep learning
approaches. A) The study aimed to classify a diverse level of histone-DNA interactions and the
prediction of histone binding affinities to unknown DNA based on dried droplet patterns. B)
Representative PLM images of HI-DNA stains from four distinct DNA types dissolved in HEPES
buffer, deposited onto a CVD-coated glass slide, highlighting the variability in deposition patterns.

From left to right: H1-Sal 2k, DNA, H1-Sal 1 p DNA, HI-Her DNA, and H1-A DNA. Adapted from
261]

4.3.1 Classification of Various DNA

Figure 4.6.A presents PLM images of four distinct DNA types: Salmon DNA (Sal 20 kbp),
Sheared Salmon DNA (Sal 1 kbp), Herring DNA (Her), and Lambda DNA (A). These DNA
types differ in both their genetic composition and molecular weight, influencing their structural
and optical properties. Sal 20kp DNA, Sal 1 kop DNA, and Her DNA originate from eukaryotic
sources, sharing similarities in genetic content, while A DNA is of prokaryotic origin,
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representing a fundamentally different genomic structure. The variations in molecular weight
also contribute to differences in DNA structure, which are evident in the PLM images.

To classify these DNA types based on their PLM images, the InceptionV3 deep learning
(DL) network, a convolutional neural network known for its high efficiency in image
classification tasks, was employed. The trained model achieved an outstanding accuracy rate
of 100% in distinguishing between the four DNA categories, as demonstrated by the confusion
matrix in Figure 4.6.B. The evaluation was conducted using a well-structured dataset: a
combined training and validation set consisting of approximately 1,600 images (400 images
per DNA type) and an independent test set of 320 images (80 per category). The test set
comprised randomly selected images that were entirely unseen by the network during training,
ensuring that the model’s performance was evaluated on truly novel data.

The flawless classification performance underscores the robustness of the InceptionV3
model in identifying subtle, yet distinct optical patterns associated with different DNA types.
This result highlights the potential of deep learning-based image analysis for DNA
characterization and opens avenues for automated, high-throughput screening applications in

molecular biology and biomedical research.

A) DNA
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Figure 4.6. DL-based classification of different DNA types. A) PLM images of Sal 20 xp DNA
(outlined in red dashed line), Sal | v,p DNA (outlined in green dashed line), Her DNA (outlined in blue
dashed line), and A DNA (outlined in orange dashed line). B) Confusion matrix based on the deposition
patterns of four distinct DNA types, varying in both size and type. The model parameters were
optimized with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 40 epochs.
Adapted from (261

Gradient-weighted class activation mapping (Grad-CAM) was applied to produce
activation maps, highlighting the key features learned in the most informative regions of the
PLM images. [*’%1 Figure 4.7 presents heat map layers of the PLM images, illustrating the deep
learning network's focus on the crystalline areas of the stain patterns, rather than the
surrounding regions (image background). This selective attention enables the network to
differentiate between various DNA types based on their unique deposition patterns, size, and
structural features. The Grad-CAM results highlight the network's capability to accurately
classify DNA samples, offering valuable insights into the model's decision-making process.
These visualizations not only enhance the interpretability of the deep learning model but also

provide a more efficient and precise approach to analyzing and distinguishing different DNA

types.
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Figure 4.7. Grad-CAM activation maps. Heatmap overlays on the PLM images highlight regions
most influential in the model's classification decisions, providing insight into how CNN interprets DNA
patterns. Scale bars indicate 1 mm. Adapted from 26!

The t-distributed stochastic neighbor embedding (t-SNE) algorithm **#! (Figure 4.8)
was applied to the "Softmax" layer of InceptionV3, resulting in clear clustering of four different
DNA types. The output of this layer is a 4-dimensional array representing the spatial
dimensions (x,y) of the images, along with the image channels and the batch dimension. [*"!]
This observation further confirms that the stain patterns are distinctly separable and indicative,
demonstrating their ability to reliably predict deposition patterns of particular DNA type
generated under controlled conditions. The t-SNE results further highlight this by clearly

clustering the DNA types, showcasing the model's capability to differentiate between them

based on their unique deposition characteristics.
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Figure 4.8. The t-SNE plot shows the results from the ""Softmax Activation" layer of the trained
CNN model. Sal »xp DNA, Sal 1 wp DNA, Her DNA, and A DNA were represented by the colors red,
green, blue, and orange, respectively. Adapted from 261!

4.3.2 Relative Affinity of HI-DNA Interaction-Based on DNA

Type (Eukaryotic and Prokaryotic DNA)

The application of DL has emerged as a pivotal tool for comprehensive classification of
protein-DNA complexes based on their binding affinity. Histone (H1) is commonly used as a
DNA-binding candidate to study interactions with both prokaryotic and eukaryotic DNA. As
previously mentioned, experimental studies have shown that H1 binds more strongly to
eukaryotic DNA than to prokaryotic DNA. For example, lymphocyte DNA fragments were
found to exhibit a binding affinity for H1 that is at least 15 times greater than that of E. coli
DNA fragments of the same size, highlighting the selective interaction of H1 with eukaryotic
DNA in comparison to prokaryotic DNA. [13% 1441 Byilding on the previously described
experimental methods, the InceptionV3 model was applied to classify different protein-DNA

272, 273] Fiye

mixtures, which differed in DNA type and exhibited distinct binding affinities. !
various HI/DNA ratios (0.5-6.8 mole H1/168 base pairs DNA) were prepared for each DNA

type. To achieve a more thorough comprehension, eukaryotic DNA and prokaryotic DNA with
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similar number of base pairs, chosen from commercially available DNA samples, were
gathered for comparative analysis.

As depicted in Figure 4.9.A, Sal 20 kop DNA (sourced from eukaryotes), forms a double-
helix molecule comprising approximately 20 K base pairs. Conversely, Lambda DNA is a
linear, double-stranded molecule with around 48 K base pairs, from Escherichia coli
bacteriophage. About 480 PLM images were collected for each ratio (400 images for the
training and validation sets and 80 images for the testing set). The polarized light images
(Figure 4.9.B) display distinct patterns in association with eukaryotic and prokaryotic DNA.
The patterns that emerged from eukaryotic DNA before and after adding the H1 appear almost
similar to the histone patterns. However, the deposited patterns for HI-prokaryotic DNA
mixtures show distinct visual characteristics compared to those observed in the patterns of

histone alone.
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B) DNA H1 D(':‘(\;';l
Sal ,, kbp
(Eukaryote)
A
(Prokaryote)

Figure 4.9. Effect of DNA type on H1-DNA binding affinity. A) Schematic representation of
Sal 20 kop (eukaryote) DNA, A (prokaryote) DNA, and histone (H1). B) PLM images of Sal 2, DNA
(without histone), & DNA (without histone), histone (without any DNA), and each H1-DNA mixture
deposition patterns. Adapted from (26!

In Figure 4.10, the Inception V3 network classifies similar ratios of Hl with two
different DNA types (eukaryotic and prokaryotic). The samples containing Sal 20 kp DNA,
which show a higher binding affinity for H1, reveal that even small quantities of histone can
form affinity complexes, as detected by CNN. These changes are not visible to the naked eye
but are detectable with CNN. As structural changes become more pronounced, the CNN's
ability to distinguish between the deposition patterns of different HI/DNA ratios improves,
reflected in the higher prediction accuracy obtained. [2) As depicted in Figure 4.10, the average
prediction accuracy for various ratios of H1-Sal 20 kop DNA (eukaryotic) was 99%, surpassing
the 93% accuracy observed for H1-A DNA (prokaryotic).

The CNN-derived confusion matrix indicated that prediction accuracies declined as the
histone-to-base pair ratio decreased, reaching their lowest values for R0.5 and R1, which
correspond to 0.5 and 1 mol of H1 per 168 base pairs of Sal 20kp DNA. According to the
results, 2.5% of the stain images from the R0.5 group were incorrectly classified as belonging

to the R1 group, while 5% of the R1 group were misclassified as R0.5. Increasing the quantity
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of histone in Sal 20xsp DNA (e.g., R1.4, R3.4, and R6.8) resulted in prediction accuracy rates
reaching 100%. In contrast, the mixtures of H1-A DNA (prokaryotic) showed a lower average
prediction accuracy of 93%. The prediction accuracies for the R0.5, R1, R1.4, and R3.4 groups
were 90%, 85%, 97.5%, and 80%, respectively, reflecting an average dissimilarity of
approximately 88% among these groups. A complete prediction accuracy of 100% was only
observed at the R6.8 ratio of H1-A DNA. In comparison, the H1- Sal 20 xop DNA groups already

achieved this 100% accuracy at a lower histone concentration with the R1.4 ratio (Figure 4.10).
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Figure 4.10. Confusion matrices obtained from stain patterns of HI-DNA mixtures, comparing
the binding affinity of H1 for eukaryotic versus prokaryotic DNA. Two DNA types were used: A)
Sal 2 kp DNA and B) A DNA, both combined with histone H1. The InceptionV3 model was trained
with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 40 epochs. Adapted
from [261]
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The t-SNE visualization (Figure 4.11) revealed distinct clustering among the various
groups in H1-Sal 20 xop DNA, indicating that the samples within this category exhibit well-
defined and separable features. In contrast, no such clustering was observed among the
different groups of H1-A DNA, implying a higher degree of overlap or similarity in their
features. This clear clustering in HI1-Sal 20xop DNA suggests a stronger binding affinity
between H1 and Sal 20kp DNA, as better-defined clusters indicate more consistent and
distinguishable interactions at different ratios. The higher the binding affinity, the more
pronounced the clustering between different H1-DNA ratios, further supporting the notion that

binding affinity-driven structural variations contribute to the classification performance.
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Figure 4.11. The t-SNE plots show the clustering of H1-eukaryote DNA vs Hl-prokaryote DNA.

The visualization of the 'Softmax' layer in the trained CNN model reveals distinct clusters associated
with A) H1- Sal 20y DNA and B) H1- 2 DNA. Adapted from 2!

To validate the results of the CNN analysis, an ethidium bromide displacement
experiment was performed. The results of this experiment confirm the higher binding affinity
of H1-Sal 20 xop DNA compared to H1-A DNA, as indicated by fluorescence quenching of EtBr.
Ethidium bromide typically interacts with DNA via a molecular intercalation mechanism.
When DNA is associated with a strong binder, it causes the displacement of ethidium bromide
from the DNA. This displacement leads to a decrease in fluorescence, due to deactivation of
free EtBr by proton transfer from the excited singlet to water. 2 The findings from this assay,
illustrated in Figure 4.12, indicate that the addition of H1 to a pre-incubated solution of Sal 20
kop DNA-EtBr led to a more significant displacement of ethidium bromide from the complex
than observed with the Z DNA-EtBr solution. This suggests that H1 exhibits a higher binding
affinity for Sal 20 kop DNA compared to A DNA, which aligns with the conclusions drawn from
the CNN analysis. The higher the average prediction accuracy for a DNA type, the greater the
EtBr fluorescence quenching, suggesting a relatively higher binding affinity of that DNA type

with H1.
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Figure 4.12. Ethidium bromide-DNA complex displacement assay. Each data point represents the
average of samples obtained from two distinct experiments. The decrease in relative fluorescence
intensity of the EtBr-Sal 20 xop DNA (red dash-line), and EtBR- A DNA (orange dash-line) complexes is
a result of the interaction between H1 and each DNA. Adapted from (26!

4.3.3 Relative Affinity of H1-DNA Interaction-Based on DNA Size

DNA molecules with longer base pairs present more binding sites for H1, which raises the
chances of H1-DNA interactions, and results in a tighter chromatin compaction. In fact, the
length of DNA can impact on the distribution and density of H1 binding.

The study of Renz ['*%] revealed that the binding affinity of H1 differs among DNA
fragments of the same origin but varying lengths. According to this study, H1 showed a higher
affinity for longer eukaryotic DNA fragments compared to shorter fragments, as they compete
more effectively for their binding. Moreover, Aviles et al. 2’ showed that H1 displays a
stronger binding affinity for high molecular weight Calf thymus DNA than for sonicated Calf
thymus DNA, which has been sheared into shorter fragments. Alterations in the molecular
weight of DNA can affect the binding affinity between DNA and proteins, potentially leading
to modifications in the physical and chemical characteristics of the resulting protein-DNA

complex. [141]
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In this study, the Inception V3 model was utilized to classify the binding affinity
between H1 and DNA, focusing on variations in DNA size. To have a better comparison, three
different sizes of eukaryotic DNA, including Sal 20 xop DNA, Sal | xop DNA, and Herring (Her)
DNA (50 bp) were gathered. Figure 4.13.A presents a schematic overview of the three
different DNA lengths, while Figure 4.13.B provides PLM images of the droplet stain patterns

formed by each DNA sample, H1 protein, and their respective complexes.
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Figure 4.13. Effect of DNA fragments size on H1-DNA binding affinity. A) Schematic
representation of Sal 20k DNA, Sal 1y DNA, Her DNA, and H1. B) PLM images of each DNA
(without histone), histone (without DNA), and each HI-DNA mixture deposition patterns. Adapted
from [261]
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Using the training dataset of approximately 360 PLM images, a validation set of 40
images, and a test set of 80 images per group (Figure 4.14), we observed that the average
classification accuracy from different ratios of H1-Sal 20 kop DNA was notably higher compared
to the prediction accuracy for HI1-Sal | xop DNA and H1-Her DNA complexes. This trend
persisted even when the histone-to-DNA ratios were comparable across the groups, suggesting
that the longer DNA fragment size (Sal 20 kop DNA) enhances the model's ability to differentiate
the complexes more effectively than the shorter DNA fragments. With the image set that had
not been previously encountered by the DL network, InceptionV3 recorded 1%, 9% and 15%
of total misclassification for HI-Sal 20xp DNA, HI-Sal 1xp DNA, and H1-Her DNA,
respectively. At HI- Sal 20 kop DNA ratios of 1.4 and above, the resulting stain patterns were
highly distinguishable. In contrast, for shorter DNA fragments such as Sal 1 xwp and Her DNA,
the stain patterns displayed a greater level of similarity across different ratios, resulting in lower
average prediction accuracies. These similarities imply that for Sal 1 kop DNA and Her DNA, a
high concentration of histone is required to induce significant pattern alterations (leading to
increased interactions and tighter DNA compaction), consequently leading to maximum

classifications.
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Figure 4.14. Confusion matrices derived from stain patterns of HI-DNA mixtures, comparing the
binding affinity of H1 with eukaryotic DNAs differing in fragment sizes. Three eukaryotic DNA
lengths were tested: A) 20 kbp, B) 1 kbp, and C) 50 bp, all combined with histone H1. The InceptionV3
model was trained with a global learning rate of 0.001, a minimum batch size of 32 images, and up to
40 epochs. Adapted from 26"

The t-SNE algorithm revealed clear clustering for HI-Sal 20p DNA, moderate
clustering for H1-Sal | kop DNA, and the least clustering for H1-Her DNA (Figure 4.15). This
pattern indicates that higher binding affinity corresponds to more distinct clustering, as
observed for H1-Sal 20 kop DNA, while lower binding affinity, as seen in H1-Her DNA, results

in greater overlap and less-defined clusters.
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Figure 4.15. The t-SNE plots show the clustering of H1 interactions with eukaryotic DNA of
varying fragment sizes. Visualization of the 'Softmax' layer in the trained CNN model highlights
separate groupings corresponding to each DNA size: A) H1-Sal 2 «p DNA, B) H1-Sal | wp, DNA, and
C) H1-Her DNA, indicating a distinct separation between these clusters. Adapted from 26!
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The binding affinity trend was confirmed through the ethidium bromide displacement
experiment previously discussed. (Figure 4.16). In this experiment, H1-Sal 20 xop DNA
exhibited the highest binding affinity, as shown by the most significant displacement of
ethidium bromide from the DNA complex and corresponding fluorescence quenching. This
was followed by H1-Sal | kop DNA, which demonstrated a moderate displacement of ethidium
bromide, reflecting a moderate binding affinity. Lastly, H1-Her DNA showed the weakest
interaction with histone I, as evidenced by the least displacement of ethidium bromide and
minimal fluorescence quenching. These results further support the notion that DNA fragment

size plays a crucial role in determining histone I binding affinity.
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Figure 4.16. Ethidium bromide-DNA complex displacement assay. Each data point represents the
average of samples obtained from two distinct experiments. The decrease in relative fluorescence
intensity of the EtBr-Sal 2y DNA (red dash-line), and EtBr-Sal | «o, DNA (green dash-line), and EtBr-
Her DNA (blue dash-line) complexes is a result of the interaction between H1 and each DNA. Adapted
from [261)

4.3.4 Stratification of Unknown Histone-DNA Interactions

To evaluate the performance of the trained neural network, we prepared images of unknown

DNA, as well as Hl-unseen/unknown DNA mixture samples that were not included in the
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original network's training set. To achieve this purpose, the neural network was trained using
25 unique (approximately ten thousand PLM images) sample sets, each representing different
H1-DNA ratios. These samples included varying proportions of H1 paired with four distinct
DNA types: Sal 20kp DNA, Sal 1 wp DNA, Herring (Her) DNA, and Lambda (1) DNA.
Additionally, control samples consisting of pure DNA without H1, as well as H1 alone without
any DNA, were incorporated into the original training set. This diverse dataset provided the
neural network with a comprehensive range of interaction patterns, enabling it to better
recognize and classify unknown histone-DNA binding affinity across different DNA types and
sizes. The pre-trained convolutional neural network (CNN) was utilized to predict the binding
affinities between H1 and a range of unseen/unknown DNA samples based on their unique and
unseen patterns. Figure 4.17.A depicts the workflow for the classification of unknown
samples, which involves several steps, including collection of data, feature extraction and
training and evaluation of the model.

Figure 4.17.B illustrates that the pre-trained network successfully predicted the binding
affinities of DNA from the species that were part of the training set. A prediction accuracy of
100% was achieved, even though the CNN had not seen the images, as they were not part of
the training set.

Moreover, the binding affinity of HI-Salmon Sperm 200vp DNA (commercially
available) was examined. The trained network accurately classified and predicted the binding
affinity of unknown samples with 100% accuracy in eukaryotic groups. The DNA samples in
both the unknown and predicted groups were derived from the same source, differing only in
the length of their fragments. Consequently, the unknown samples were predominantly
grouped into the closest related category, specifically identified as H1-Sal | xop DNA groups.
As shown in Figure 4.17.B for the H1-Salmon Sperm 200bp DNA at ratio R3.4, 92.5% of

images were classified into the H1- Sal | xop DNA group (medium binding affinity), 5% of stain

97




Results and Discussion

patterns were categorized as H1- Sal 20 kop DNA (strong binding affinity), and 2.5% of stain
patterns were classified into the H1-Her DNA group (weak binding affinity). Furthermore, the
staining patterns of another ratio (R6.8) of H1-Salmon Sperm 200 bp DNA were examined using
the trained network. The trained network successfully classified 100% of unknown images into
the most similar group based binding affinity (medium binding affinity).

The classification results for images of H1-Calf DNA showed that the majority of the
samples (84.4%) were identified as strong binders, while another 5.6% fell into the medium
binder category. Notably, despite the CNN never having been trained on stain patterns
containing Calf DNA, it accurately categorized 96% of these patterns as eukaryotic DNA,
signifying specific H1 binding. Conversely, only 4% were misclassified as prokaryotic DNA
(non-specific binding). This high classification accuracy is a promising indicator of the
robustness of the deep learning model. The ability to classify binding affinity of unknown
samples with such precision demonstrates the power of the DL approach, offering a significant
advantage over traditional methods, which often rely on manual interpretation and are resource-
intensive. This approach not only provides a simple and fast solution for classifying histone-
DNA interactions but also delivers results with a high level of accuracy, reducing the time and
effort typically required for extensive experimental analyses. Furthermore, the model can be
easily adapted to classify new, previously unseen data, making it a highly flexible tool for rapid
and scalable analysis of protein-DNA interactions.

Moreover, the impact of the test set sample size on prediction accuracy was investigated
(see Figure S4). The CNN achieved a classification rate of 90% for Calf DNA samples as
strong binders when using just ten images. As more images were added (specifically 50, 80,
and 100), the average prediction accuracy improved slightly, reaching only 91%. These results
suggest that reliable and accurate outcomes can be obtained with as few as ten images,

highlighting the effectiveness and feasibility of this machine learning technique for rapid

98




Results and Discussion

analysis. This finding is particularly significant in situations where sample availability is
limited or when there is a need for fast, initial predictions. Furthermore, the minimal increase
in accuracy with the addition of more samples suggests that the CNN has successfully learned
the key features of histone-DNA interactions in the training process, emphasizing the potential
for cost-effective and time-saving applications in high-throughput analysis. This underscores
the practical advantages of applying deep learning models in various experimental settings,
where quick and reliable predictions can significantly reduce the need for extensive data

collection and processing.
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Figure 4.17. Evaluation of the pre-trained network's performance in classifying H1-DNA binding
affinities using new species. A) Overview of the approach used to classify unknown samples. B)
Prediction results for unseen or unknown H1-DNA samples. Adapted from (261!
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4.4. Deep Learning-Based Surface Classification of Functional

Polymer Coatings

The results presented in this chapter have been published in Langmuir, and can be accessed via

https://doi.org/10.1021/acs.langmuir.4c03971. 831 To achieve uniform and functionalized

substrates, chemical vapor deposition (CVD) polymerization of poly(p-xylylene) (PPX) was
employed. In this study, the scientific scope was intentionally limited to poly(para-xylylene)
(PPX) surfaces. The reason is that these polymers share identical polymer backbones but differ
in their functional side groups. As the polymer surfaces become more diverse, the patterns
should be even more characteristic. Additional aspects or selecting PPX substrates for this
study include properties such as low roughness, homogeneous coating, transparency, and
stability against water, ensuring consistent and reliable data acquisition. Ten different PPX
films were deposited onto glass wafers, as shown in Figure 4.18, with coating thicknesses
ranging from 50 to 60 nm. A defined volume of 2 puLL of an aqueous bovine serum albumin
(BSA) solution in buffer were deposited onto each coated surface and left to dry under
controlled environmental conditions (40% humidity, 23 °C) for 45 +£ 5 minutes. During the
drying process of the BSA solution, as saturation is reached, the protein components start to
precipitate, beginning at the droplet's periphery and gradually advancing toward the center.
This process leads to the development of characteristic stain patterns. Figure 4.18.A presents
polarized light microscopy (PLM) images illustrating typical drying patterns of BSA solution
on nine different PPX-coated surfaces: PPX-Amine (A), PPX-Aminomethyl (AM), PPX-
Hydrogen (H), PPX-Aldehyde (CHO), PPX-Hydroxymethyl (CH2OH), PPX-Alkyne (Alk),
PPX-Chloride (Cl), PPX-Bromide (Br), and PPX-Fluoride (F). As it is clear from Figure
4.18.A, dried BSA patterns on each surface were indistinguishable to the naked eye. To ensure
an unbiased classification of the polymer surfaces, the InceptionV3 network was pre-trained

using 400-500 images per group. InceptionV3 was selected for its superior accuracy and faster
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training time compared to other advanced convolutional neural networks (CNNs), such as
NasNetLarge [°®27%], The training and validation sets comprised 85% of the total images, while
100 images (15% of the total) were reserved for the test set, which remained unseen by the
trained network. The trained network was employed to accomplish two main goals: 1)
stratification of subtle variations in surface polymer chemistries, specifically polymers with
identical backbone structures but differing functional groups, by analyzing dried BSA patterns,

and 11) predict and categorize unknown surfaces using the trained network (Figure 4.18.B).

A) BSA + Buffer BSA + Salts
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Figure 4.18. Classification of surface polymer chemistries through image analysis of deposition
droplets using a deep learning (DL) approach. A) Representative polarized light microscopy (PLM)
images showing deposition patterns of BSA on nine PPX-coated glass wafers. The stains were created
by depositing 2 pL droplets of 0.1 mg/mL BSA dissolved in an aqueous 100 mM carbonate-bicarbonate
buffer with 50 mM sodium chloride (pH=9.2). B) A schematic illustration of the deep learning-based
recognition of polymer surfaces, alongside the chemical reaction scheme depicting the CVD
polymerization of ten different PCPs utilized in this study. The aim of the study was to classify a wide
range of functionalized CVD coatings and to predict unknown surface chemistries based on patterns
formed by dried droplets. Adapted from [13!

44.1 Surface Characterization

To thoroughly investigate the physicochemical properties of the ten polymer-coated surfaces,
a multi-technique approach was employed, utilizing Time-of-Flight Secondary Ion Mass
Spectrometry (ToF-SIMS), Infrared Reflection-Absorption Spectroscopy (IRRAS) (Figure
S5-S6), and contact angle measurements. ToF-SIMS provided detailed molecular and

elemental surface composition data, enabling the identification of characteristic functional
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groups and potential contaminants. Contact angle measurements were conducted to assess the
wettability and hydrophobicity of the coatings, offering insights into their surface energy and
interactions with aqueous environments. Additionally, IRRAS was used to analyze the
vibrational signatures of functional groups, allowing for the confirmation of chemical
modifications and variations among the polymer coatings. The combined results from these
techniques provided a comprehensive understanding of the surface properties and confirmed
that the CVD polymerization process was successfully performed, ensuring the presence of the

corresponding functional groups on each surface.

Surface Chemistry Analysis by ToF-SIMS

Figure 4.19 shows the ToF-SIMS analysis of PPX coatings with different functionalization.
All functional groups, except PPX-Alk, displayed distinct heteroatoms detectable by this
method. The halogenated polymers, PPX-F, PPX-CI, and PPX-Br were each identified by their
unique F, ClI, and Br fragments, respectively. PPX-CHO and PPX-CH,OH were
distinguished by the presence of oxygen-containing fragments, with the most pronounced O~
signal observed for PPX-CHO and the strongest CH,OH" signal for PPX-CH,OH. It is
important to note that low-level oxygen signals can be ambiguous, as they may also appear in
other PPX films due to the interaction of molecular oxygen with free radicals during post-
polymerization. PPX-A and PPX-AM were identified through nitrogen-containing fragments
appearing as CN" with similar intensities, although PPX-AM showed a higher intensity of the
CH>NH;" signal due to its additional methylene group. The full spectra across the 10-85 m/z
range are available in supplementary information (Figure S5). Overall, the ToF-SIMS analysis
confirmed the presence of the intended functional groups across the modified PPX surfaces.
Each polymer exhibited characteristic ion fragments correlating with its chemical composition,
enabling differentiation between halogenated, oxygenated, and aminated variants. These

findings reflect the successful chemical modification of the PPX films. Similarly, Infrared
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Reflection Absorption Spectroscopy (IRRAS) was utilized to confirm the existence and
characteristics of the functional groups corresponding to each coated surface, as shown in
Figure S6. The IRRAS spectra exhibited distinctive vibrational bands corresponding to the
chemical functionalities introduced during surface modification. These results, alongside the
ToF-SIMS findings, validated the successful incorporation of the desired functional groups,

confirming the chemical identity of the modified PPX films.
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Figure 4.19. Characteristic TOF-SIMS spectral areas of PPX-coatings with varying
functionalization. Light blue: PPX-NH,, Yellow: PPX-AM, Pink: PPX-NH,-co-AM, Orange: PPX-
CHO, Gray: PPX-HM, Purple: PPX-CI, Brown: PPX-Br, Red: PPX-Fs, and Green: PPX-Alkyne.
Adapted from [1#3]
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Surface Hydrophobicity

To assess the relative hydrophobicity (wettability) of different PPX surfaces, the diameter of
dried droplets on each coating was measured, with an average of 150 measurements per surface
to ensure statistical robustness and reproducibility (Figure 4.20). These measurements
provided a quantitative comparison of the wettability of the various PPX coatings. The
statistical analysis ranked the hydrophobicity of the coatings in a clear trend: PPX-CH-OH
exhibited the highest wettability and was determined to be the least hydrophobic, followed by
PPX-CHO. The next group, consisting of PPX-Alk, PPX-A, PPX-Br, PPX-CIl, PPX-H, and
PPX-AM, displayed similar hydrophobicity levels, indicating that their surface properties
influenced droplet spreading in comparable ways. Finally, PPX-F emerged as the most
hydrophobic among all tested surfaces, with the smallest droplet diameters, suggesting that its
surface chemistry significantly reduced water affinity. These results highlight the role of
functional groups in modifying the surface energy of PPX coatings and provide insights into

their potential applications in areas where controlled wettability is critical.
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Figure 4.20. Average stain diameters of various CVD coatings were determined through image
analysis (mean values, N=150, with error bars representing the standard error). Coating groups labeled
with the same letters indicate no statistically significant differences, as determined by Tukey's test.
Adapted from [1#3]
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4.4.2. Classification and Identification of Surface Chemical

Functionalities

To classify the BSA stains dried on various polymer surfaces, a total of 5,063 PLM images
were utilized with the pre-trained Inception V3 network. All images were analyzed without
any form of selection. Overall, the CNN achieved an average prediction accuracy of 96%
across the nine different PPX-coated surfaces, indicating that the pre-trained network could
accurately differentiate between polymer surfaces.

BSA adsorption onto different functional groups, each with unique physical (free
surface energy) and chemical profiles (molecular moieties, hydrogen bonding, Lewis
acid/base, polarizability, etc.), governs the interactions of the protein with the substrate, which,
in turn, influences the resulting stain patterns. Previous studies have shown that surface
characteristics play a crucial role in interfacial protein assembly. For example, Sarkar et al.
observed that bovine serum albumin formed either multilayer or monolayer adsorption
depending on substrate hydrophobicity. In this study, even subtle variations in surface
chemistry led to distinct protein stain patterns, which the CNN effectively recognized and
categorized. 1276

Figure 4.21.i shows that the CNN identified PPX-CH>OH with 100% accuracy. This
polymer coating exhibited the highest relative hydrophilicity, a property known to affect BSA
adsorption on the surface 7%, Likewise, the PPX-CHO coated surface was also classified with
100% accuracy (refer to Figure 4.20).

As previously described, PPX-Alk, PPX-A, PPX-Br, PPX-Cl, PPX-H, and PPX-AM
demonstrated similar relative hydrophobic properties (Figure 4.20). Misclassifications were
most prevalent among halogenated coatings, with PPX-Br having the lowest prediction
accuracy (83.8%). Notably, 13.7% of PPX-Br samples were misidentified by the CNN as either

PPX-Cl or PPX-Alk, which share similar hydrophobic characteristics. While PPX-F
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demonstrated greater hydrophobicity than other functionalized coatings, the CNN misclassified
PPX-F coatings as either other halogenated PPX types or PPX-Alk. Grad-CAM analysis
(Figure S7) revealed that most of these misclassifications were influenced by background
interference and contrast from stain-free regions, which affected the CNN’s decision-making
process.

PPX-Alk had the second lowest prediction accuracy (91.3%), with around 7.5% of
images misclassify as halogenated PPX surfaces. The CNN results indicate that most of
misclassifications between alkyne and halogen groups can be attributed to their comparable
hydrophobic properties. PPX-A achieved a prediction accuracy of 92.5%, with 2.5% of images
misclassified as groups with similar hydrophobicity (PPX-AM and PPX-Alk), and 5%
misclassified as PPX-CH2OH coatings (Figure S7).

Subsequently, the model's performance in predicting more complex surface
chemistries, i.e., unknown PPX-A/AM copolymer surfaces that were excluded from the
training dataset, was evaluated. The pre-trained network effectively classified the unknown
samples, with a majority being predicted as containing amine groups (56%) and aminomethyl
groups (40%) (Figure 4.21.i).

In the following, as shown in Figure 4.21.ii, the training set was refined by excluding
PPX-Br, allowing the model to focus and retrain on the remaining eight PPX-coated surfaces.
This adjustment led to an improvement in overall prediction accuracy across the groups.
Additionally, the misclassification pattern revealed a similar trend (Figure 4.21.i), with PPX-
Alk and halogenated PPXs exhibiting the highest misclassification rate among all groups.
Subsequently, images from the previously unknown PPX-A/AM copolymer and PPX-Br were
tested by trained network. The results showed that all of the unknown PPX-A/AM binary
copolymer samples were accurately classified as either PPX-A or PPX-AM. For the unknown

PPX-Br coated surfaces, 56% of the images were categorized as halogenated PPX, while 95%
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were grouped with polymer films that exhibiting hydrophobicity levels comparable to PPX-Br

(Figure 4.21.ii).
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Figure 4.21. Confusion matrices derived from BSA stain pattern images of surfaces with various
functionalized polymer CVD coatings. Deep learning-based recognition of PPX-coated glass wafers,
with pre-training conducted 1) including images of PPX-Br and ii) excluding them. BSA deposition
stains were created by applying 2 pL droplets of a 100 mM carbonate-bicarbonate buffer (pH 9.2)
containing 50 mM sodium chloride. The model parameters were optimized with a global learning rate
of 0.001, a minimum batch size of 32 images, and up to 60 epochs. Adapted from [!8*]
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Moreover, to assess the reproducibility of the experiment and the generalization
capability of the trained network, we tested a small set of unknown PPX-Br samples collected
from coated surfaces that were not included in the training, validation, or test sets. The results
demonstrated high prediction accuracy in this "Few-Shot" study, aligning well with the

findings of the original study (Figure 4.22).
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Figure 4.22. Evaluation of the trained network's reproducibility and generalization using
unknown PPX-Br samples. High prediction accuracy was achieved in the Few-Shot study, consistent
with the original findings. Adapted from 183

Additionally, the Grad-CAM analysis revealed that the CNN primarily focused on
central stain patterns during training, rather than edge patterns, indicating that stain size had a
minimal impact on surface recognition (Figure 4.23). This suggests that the network learned
to extract meaningful features from the internal structural characteristics of the stain patterns.
Consequently, the classification was primarily driven by chemically relevant information
encoded within the central morphology of the stains, which facilitated more robust and

generalizable surface recognition across different PPX-coated surfaces.
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4
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Figure 4.23. Grad-CAM activation maps. The heatmap overlay highlights regions that contributed
most to the model's decision, offering insights into how the CNN interprets BSA patterns on various
functionalized polymer surfaces. Adapted from 3]

The t-SNE analysis demonstrated clear clustering of BSA stain images from all distinct
polymer surfaces, highlighting the reproducibility and uniqueness of the stain patterns for each
PPX-coated surfaces (Figure 4.24.i, 4.24.ii). Moreover, this analysis performed with
perplexities of 10, 50, and 100. The results consistently revealed well-defined clusters,
indicating strong feature discrimination. This suggested that the network effectively identifies

patterns and captures meaningful relationships at both global and local levels (Figure S8).

111




Results and Discussion

40 |- - - - - - - (1)
30 P 1 (2) ,—nn
777%77 ’
20 i H
e (3) é
10 | ] W
(5} ;—OH
-10 | 1 (6) Y
20 ® ® 777477
T 21 .o/
'30 B T Br
-, o L4
-40

(=1

-30 -20 -10

10 20 30 . (9) ;

-—
-
—

40 . . . , , . . NH,
- L
30 ¢ 1 (2) —n,

20 | ] 7

10 ¢ .

' |G P
-10 | | 7Wé77
20| < | =84

FIIIIIT
.40 (9) é
-30 -20 -10 0 10 20 30 40 *

Figure 4.24. The t-SNE plots show the clustering of the various functionalized polymer surfaces.
Visualization of the 'Softmax' layer in the trained CNN reveals distinct groupings corresponding to 1)
Nine PPX-coated glass wafers, including images of PPX-Br, and ii) excluding them. Adapted from 13!

4.4.3. Effect of Ionic Strength on CNN Classification

In this section, the effect of ionic strength on secondary structure changes and its influence on
classification performance was investigated. As previously observed by Sarkar et al., 7® BSA
adsorption was significantly influenced by ionic strength. It was suggested that ions in the
protein solution interact with both proteins and surfaces, facilitating stronger binding of protein
layers through electrostatic and hydrophobic interactions. These ionic interactions were found

112




Results and Discussion

to modify the structural organization, density, and orientation of the adsorbed protein layer,
leading to distinct surface patterns. Additionally, it was reported that in the absence of ions,
globular BSA molecules form a tilted monolayer on both hydrophilic and hydrophobic
surfaces, with greater tilting occurring on hydrophobic surfaces, leading to a denser protein
layer. [276.277]

To investigate the influence of ionic strength on surface classification by CNN, PPX-
A and PPX-AM surfaces were analysed and compared in both the presence and absence of
sodium chloride. Notably, the secondary structure of BSA, dissolved in a dilute carbonate-
bicarbonate buffer, remained unchanged at an ionic strength of 50 mM NacCl, as confirmed by
CD spectroscopy analysis (Figure 4.25.A). However, when BSA was deposited onto the
surfaces, the addition of 50 mM sodium chloride resulted in a noticeable increase in the
prevalence of random coil structures in the CD spectrum (Figure 4.25.B). This observation
suggests that the presence of NaCl promoted stronger BSA-surface binding through ionic
interactions, which, in turn, led to a shift in the protein's secondary structure. The increased
random coil formation implies that NaCl enhanced protein adsorption by altering molecular
flexibility and interfacial interactions, ultimately resulting in a conformationally modified
protein layer. These structural changes in BSA altered the organization of the adsorbed protein
layer, affecting surface properties and crystallization behavior. Consequently, this

reorganization influenced CNN classification outcomes, with a higher number of

misclassifications observed in the absence of NaCl compared to samples containing NaCl.
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Figure 4.25. Influence of ionic strength on BSA secondary structure and its significance in
classifying PLM images of BSA deposition patterns on amine and aminomethyl surfaces. A)
Influence of ionic strength on BSA secondary structure when dissolved in a diluted carbonate-
bicarbonate buffer with and without sodium chloride, and B) Impact of the drying process on BSA
secondary structure, deposited on a quartz substrate in the absence and presence of sodium chloride,
analyzed using CD spectroscopy. Adapted from [183]

Subsequently, the 50 mM sodium chloride was removed from the primary buffer
solution, which contained 100 mM carbonate-bicarbonate buffer at pH 9.2. The resulting
patterns, with and without sodium chloride, were distinctly different and easily distinguishable
to the naked eye (see Figures 4.26.i and 4.26.ii). For each group (amine and aminomethyl),

around 80% of the total images were separated for the training and validation sets, while the

remaining 20% were reserved for the testing set.
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Figure 4.26. Effect of ionic strength on PLM images of deposition patterns of BSA on PPX- amine
(blue boxes) and PPX-aminomethyl (yellow boxes) coated glass wafers. Stains were obtained by
depositing 2 pL droplets of BSA solution in an aqueous i) 100 mM carbonate-bicarbonate buffer
(pH=9.2) with 50 mM sodium chloride solution, and ii) 100 mM carbonate-bicarbonate buffer (pH=9.2)
without sodium chloride. Adapted from [133!

Figure 4.27 presents the confusion matrices for each category, with panel 1) showing
the results with sodium chloride and panel i1) showing the results without sodium chloride. The
CNN results indicate that as ionic strength decreased, the images from each category became
harder to distinguish, leading to a drop in overall prediction accuracy from 99% with NaCl to
93% without NaCl.

To assess the performance of the network, we tested it on unknown samples,
specifically BSA dissolved in carbonate-bicarbonate buffer both 1) with and 11) without NaCl,
dried on substrates coated with different PPX A/MA ratios (0.2/0.8, 0.5/0.5, and 0.8/0.2). For
samples containing NaCl and dried on the PPX A/MA = 0.5/0.5 surface, the network classified
56% of the images as PPX-MA and 44% as PPX-A. Notably, it achieved 100% accuracy in
distinguishing these samples from those with lower 1onic strength. Similarly, when evaluating
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samples i1) without NaCl on three copolymer surfaces, the model classified 54% of the binary
copolymer (0.5/0.5) samples as PPX-MA, and 46% as PPX-A. For non-binary copolymers, the
classification followed the dominant composition: 69% of PPX A/MA = (0.2/0.8 samples were
identified as PPX-MA, while 31% were labeled as PPX-A, reflecting the major composition of
the surface. Furthermore, the network demonstrated its ability to differentiate all samples with
lower ionic strength from those with higher ionic strength with 100% accuracy.

To assess the relative hydrophobicity of each functionalized surface, 150 images of
surfaces coated with amine and methyl amine groups were randomly collected, and the
diameters of BSA droplets dissolved in buffers with and without sodium chloride were
measured (Figure S9). Based on the results, for both buffer solutions (pH 9.2, with and without

sodium chloride), the PPX-A and PPX-AM showed similar hydrophobicity.
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Figure 4.27. Confusion matrix derived from BSA stain pattern images, illustrating the model’s
ability to analyze the impact of ionic strength on surface recognition. BSA droplets, dissolved in an
aqueous 100 mM carbonate-bicarbonate buffer (pH 9.2), were applied to glass wafers coated with PPX-
amine and PPX-aminomethyl surfaces, (i) with 50 mM sodium chloride and (ii) without sodium
chloride. The model parameters were fine-tuned across all layers, using a global learning rate of 0.001,
a minimum batch size of 32 images, and a maximum of 60 epochs. Adapted from [!8*]
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The t-SNE algorithm revealed more distinct clusters in BSA-stained images (i) with
sodium chloride than (ii) without it (Figure 4.28). This indicates that the presence of NaCl
enhanced the separation and organization of the data points, leading to clearer differentiation
between the surface patterns. These findings further support the idea that ionic strength plays
a critical role in modifying protein structure and its interaction with surfaces, ultimately
impacting the classification performance and allowing CNN to more effectively distinguish

between different surface chemistries.
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Figure 4.28. The t-SNE plots of the "Softmax'" layer from the trained CNN demonstrate the
clustering of two functionalized surfaces. Both in the i) presence and ii) absence of sodium chloride.
Adapted from 1%
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4.4.4. Effect of Image Rotation on Surface Classification

Addressing bias is a critical factor in the interpretation of deep learning analysis methods. 78]
In this section, particular focus was placed on how the angle of observation might impact the
results of the CNN analysis. To examine the presence of geometric training bias, the test set
images were rotated at two different angles and in both directions, and the classification
accuracy of surface chemistries was subsequently assessed using the pre-trained network.

The trained model (with the unrotated images) was evaluated by systematically rotating
the images from each surface category. As previously mentioned, the CNN was tested on the
original test dataset, achieving an impressive overall accuracy of 96%, as illustrated in the
confusion matrix in Figure 4.21.i. The test images underwent (i) a 180-degree rotation and (ii,
ii1) a 90-degree rotation in both clockwise and counterclockwise directions (Figure 4.29). The
results showed that the 180-degree rotations in both directions resulted in identical confusion
matrices, with the average prediction accuracy remaining unchanged at 96% compared to the
unrotated images (96%). For the 90-degree rotations, both clockwise and counterclockwise,
there was a slight decrease in average prediction accuracy of 1%, lowering it to 95%, which is
considered negligible. Furthermore, the trend of misclassification remained consistent across

all three rotation scenarios when compared to the unrotated images.
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Figure 4.29. Assessment of geometric bias in the CNN analysis. (i) rotation of 180 degrees in both
clockwise and counterclockwise directions, (ii) clockwise rotation of 90 degrees, and (iii)
counterclockwise rotation of 90 degrees. Adapted from 8%

Following a 180-degree rotation in both directions, the unknown sample achieved a
prediction accuracy of 97.5%, with classifications distributed as 60% PPX-A and 37.5% PPX-
AM. For 90-degree rotations, accuracy remained high, with 97.5% accuracy for clockwise
rotation (55% PPX-A and 42.5% PPX-AM) and 98.8% for counterclockwise rotation (52.5%
PPX-A and 46.3% PPX-AM). These results indicate that classification accuracy remained
consistent regardless of the rotation angle (90 or 180 degrees). Overall, the findings indicated
that classification accuracy was unaffected by the rotation angle (90 and 180 degrees),
demonstrating the network's capability to generalize and accurately classify surfaces regardless

of image orientation.
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5. Conclusion and Outlook

In this dissertation, neural networks were successfully trained, significantly aiding
experimental efforts in the laboratory by often reducing the time and limitations associated
with traditional methods. The chemical and physical characteristics of a biomacromolecule
influenced the deposition patterns formed as a droplet of its solution dried on a material’s
surface. These deposition patterns were not only complex and characteristic but also highly
reproducible. Consequently, they could serve as "fingerprints" for the screening and
categorizing biomacromolecular interactions and various polymer surface chemistries. The
main goal of this dissertation was to develop novel deep learning-based approaches for i) rating
histone binding affinity to different DNA types and fragment sizes, and ii) classifying and
identifying functional polymer-coated surfaces. By utilizing large datasets, machine learning
algorithms can detect intricate patterns and correlations, significantly accelerating traditional
analysis methods. In this study, the extensive dataset was generated using a method as simple
as drying a droplet on a surface, allowing thousands of images to be produced within just a few
hours. It enables low-cost, feasible experimentation while offering precise control over
measurements and analyses.

In chapter 4.1, A large dataset consisting of two proteins (HSA and IgG) dissolved in
different salt solutions was prepared. The results demonstrated that the CNN was capable of
distinguishing not only between the proteins but also between different types of salts and even
subtle variations in salt concentration. For example, in the same salt composition and
concentration (NHsHCOs (0.1 M) + KH2POs4 (0.05 M)), both proteins (HSA and IgG) were
classified with 100% accuracy. Furthermore, when the same salt components and protein
(HSA) were used, the trained network precisely distinguished between different salt

concentrations (Tris at 0.05 M and 0.1 M) with 100% accuracy. Additionally, for constant salt
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concentrations, the network accurately classified the type of components with high prediction
accuracy. Overall, the trained network achieved an average prediction accuracy of 99%,
demonstrating the CNN's ability to precisely detect even subtle changes in solution
composition. This highlights the model's robustness and reliability in distinguishing small
variations in experimental conditions.

In chapter 4.2, various mass ratios of histone/DNA mixture solutions were prepared,
and two experimental scenarios were designed to evaluate the CNN's ability to distinguish not
only between different protein-to-DNA ratios, but also between varying total mass
concentrations of the mixtures. Scenario I included histone-Calf DNA mixtures with low
histone-to-DNA mass ratios (1/5, 1/10, and 1/15), while Scenario II focused on histone-Calf
DNA mixtures with higher protein-to-DNA ratios (5/1, 15/1, and 30/1). In both scenarios, the
total mass concentrations of DNA and histone were maintained at two 0.1 and 0.3 mg/mL. In
Scenario I, a higher rate of misclassification was observed compared to Scenario II at both total
mass concentration levels, suggesting that an increase in histone content induces greater
structural changes in the histone and/or DNA. These alterations in secondary structure resulted
in more distinct dried stain patterns, which the CNN classified with higher accuracy. This trend
was further corroborated using Salmon DNA as a proof of concept, where a similar pattern
emerged, consistent with the results obtained for Calf DNA. The CNN also showed the
capability to differentiate similar ratios with differing total mass concentrations. These findings
prompted further exploration of protein-DNA binding affinity, revealing that the CNN can
detect variations in histone/DNA ratios even within the same total mass concentrations,
effectively capturing the effects of physicochemical interactions.

In chapter 4.3, this study utilized an advanced deep-learning method to investigate the
relative binding affinity between DNA and H1. Specifically, using the InceptionV3 model to

analyze stain images of histone-DNA complexes enabled accurate and predictive classification
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of their binding affinities. The network indicated that H1 exhibits a stronger interaction with
eukaryotic DNA compared to prokaryotic DNA. Moreover, due to longer DNA strands
exhibiting a stronger binding affinity to histone, a higher prediction accuracy can be achieved
for these in comparison to shorter DNA strands. This suggests a robust and highly discernible
interaction pattern that the DL model readily identifies and classifies. These findings provide
valuable insights into the intricate dynamics of protein-DNA interactions, highlighting the role
of different parameters including DNA type and DNA size in binding affinity. Besides, all
unseen/unknown images were precisely categorized into the most relevant groups, indicating
the model's ability to assess unknown data effectively. Notably, the size of the test set had
minimal impact on the results, indicating that just 10 images can yield an accuracy of over
90%. Although small sample sizes can be effective for testing, the model's robustness and
reliability still require a large training dataset. In this research, approximately twelve thousand
images were generated to pre-train the network and evaluate its performance using the test set,
followed by evaluation on an unknown/unseen sample. Additionally, this study incorporated
four distinct types and sizes of DNA, showcasing the model's ability to generalize effectively
beyond the initial straightforward cases. The approach established in this research could enable
the swift screening of candidates that bind to DNA or interactions between proteins and DNA,
offering wide-ranging applications in biotechnology and molecular biology. To refine the
training of the network further, additional image screening involving a varied array of proteins
and DNA is essential, which would enhance the accuracy of binding affinity predictions and
improve generalization.

In chapter 4.4, this study applied an advanced deep learning technique to identify
surface chemical functionalization with different CVD coatings. By examining BSA stain
patterns using the InceptionV3 model, the classification and identification of functional groups

were highly accurate and predictive. Increasing ionic strength improved prediction accuracy,
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which corroborates with the slight destabilizing effect of ionic strength on secondary structure
of BSA. Future research should explore the impact of varying salt concentrations and different
protein-surface interactions to further refine machine learning-based classification approaches
in biointerface studies. Furthermore, the findings indicated that image rotation had no impact
on prediction accuracy, eliminating concerns about geometric bias during the network training.
This approach facilitated a rapid, cost-efficient, and straightforward assessment of surface
chemistry candidates, showing great potential for broader applications in surface engineering.
These findings show that the foundational methodology is not restricted to CVD-based polymer
surfaces. In general, if there is a sufficiently diverse and representative dataset available for
training, this work can easily be extended to functionalized polymer surfaces. For the process
to be extended to a greater diversity of polymer coatings, the selection should be based on low
roughness, homogeneity in coating, transparency, and stability against water. Given that
material performance in various settings is closely tied to surface properties, this method was
useful for analyzing protein-material interactions. The identification of functional groups as
unique markers on material surfaces may allow researchers to predict and tailor surface
characteristics for specific biomedical applications. This research highlights the flexibility and
effectiveness of transfer learning and fine-tuning, demonstrating strong performance even in
complex tasks, such as distinguishing chemically similar samples. Future studies could explore
different network architectures to further assess and enhance the generalizability of these

findings.
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Figure 2.1. Effect of relative humidity on the residue left after the evaporation of a sessile blood
drop. All experiments were conducted using the same droplet volume (V = 14.2 pl) across a range of
relative humidity (RH) levels, with the droplets placed on a microscope-grade ultraclean glass substrate

at room temperature (23.8 °C) and atmospheric pressure. Adapted from B¢ ... 9

Figure 2.2. Schematic representation of two modes of drying process of droplets. (a) constant
contact radius (CCR) and (b) constant contact angle (CCA). Adapted from "1 .............ccooeiiinin. 9

Figure 2.3. The flow patterns inside an evaporating droplet, illustrating both Capillary and
Marangoni flows. The lines indicate the direction of the flow. Adapted from PY................ccceveneee. 10

Figure 2.4. DNA molecule structure. (a) Double helix model showing two antiparallel strands twisted
around each other. The strands consist of a sugar-phosphate backbone and nitrogenous base pairs:
adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C), connected by hydrogen
bonds. Major and minor grooves are visible along the helix. (b) Base pairing and strand orientation
illustrating the antiparallel arrangement (5’ to 3" and 3’ to 5) and specific hydrogen bonding between
complementary bases. 'A' pairs with '"T' through two hydrogen bonds, and 'G' pairs with 'C' through
three hydrogen bonds. Adapted from M7 ... 12

Figure 2.5. Detection of target DNA using the coffee ring effect. Microspheres functionalized with
DNA probes hybridize with target DNA to form non-spherical aggregates, suppressing the coffee ring
effect and resulting in uniform particle deposition. This method enables simple, highly specific, and

low-cost nucleic acid detection without the need for specialized equipment. Adapted from !, ...... 14

Figure 2.6. Nucleosomes structure. Nucleosomes consist of DNA wrapped around histone octamers,
with linker DNA and histone H1 facilitating chromatin compaction and organization. Adapted from !*7)

Figure 2.7. Conceptual overview and schematic representation of the CVD polymerization
process. For copolymerization, both precursor components (PCP1 and PCP2) are sublimated and
pyrolyzed simultaneously, enabling the spontaneous formation of copolymers in the deposition
chamber. Adapted from (831 e 27

Figure 2.8. Data science methods include different approaches. Artificial intelligence (Al) is a part
of data science and includes traditional programming as well as machine learning (ML). Machine
learning involves several models and techniques, including deep learning (DL) and Convolutional
neural networks (CNN). Adapted from U3 e 29

Figure 2.9. The schematic of biological neuron versus single-neuron perceptron. Adapted from ['%®!

Figure 2.10. The pipeline of the general CNN architecture. A CNN consists of several parts,
including: convolution layers, pooling layers, and fully connected layers. The model's performance is
evaluated using a loss function during forward propagation on the training dataset. The learnable
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parameters, such as kernels and weights, are then updated based on the loss value through
backpropagation using the gradient descent optimization algorithm. Adapted from 4. 33

Figure 2.11. The operation of the convolutional layer. An illustration of the convolution operation is
shown with a 3 x 3 kernel, and a stride of 1. The kernel is applied across the input tensor, performing
element-wise multiplication at each location, followed by summing the results to produce the output
value in the corresponding position of the output tensor, known as the feature map. Adapted from (!

Figure 2.12. Illustration of zero-padding in image processing. The image is padded with zeros along
its borders to enable the filter to slide over it while maintaining an output size that is equal to the input
size. Adapted from 2121 ettt nnna 35

Figure 2.13. Common activation functions used in neural networks. a) Hyperbolic Tangent (tanh),

b) Sigmoid, and c) Rectified Linear Unit (ReLU). Adapted from 2°71...........ccccoviiiiiiiiiieeee 37
Figure 2.14. The operation of the max pooling layer. Adapted from '8 ... 38
Figure 2.15. The operation of the fully-connected layer. Adapted from '8! ... 39

Figure 2.16. Schematic representation of the gradient descent concept. Learnable parameters are
iteratively adjusted via gradient descent, minimizing loss (the difference between predicted and true
207]

values. Adapted from P07 .. ettt 42

Figure 2.17. Typical data division for machine learning. The data is segregated into training
(Training Set), validation (Validation Set), and test sets (Test Set). Training Set: Used to train the model.
Forward propagation calculates the loss, guiding the update of learnable parameters through
backpropagation. Validation Set: Monitors model performance during training, aiding hyperparameter
tuning and model selection. Test Set: Evaluates the final model's generalizability on unseen data, ideally
used only once at the project's conclusion. Adapted from 071 ... 43

Figure 2.18. The loss curves for training and validation per epoch, illustrating overfitting. The
overfitting phase is shown where the validation error (orange curve) begins to rise while the training
error (blue curve) continues to decrease. This indicates that the model is learning the training data too
well, capturing noise and specific details, which leads to a poor generalization on unseen data. Adapted
FEOIM 2290 ettt ettt ee 44

Figure 2.19. Schematic representation of the transfer learning technique. Utilizing transfer learning
is a widespread and efficient approach for training a network with a limited dataset. Adapted from [2°7]

Figure 2.20. Jablonski diagram. This diagram illustrating various transitions between a molecule’s

energy states. Adapted from 237] ...t 48
Figure 2.21. Diagram of simplified fluorescence spectroscopy setup. Adapted from %!, ............ 49
Figure 2.22. Schematic representation of the TOF-SIMS instrument. Adapted from 2!, ... .. 51
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Figure 2.23. Illustration of the electromagnetic spectrum. It highlights the division of the infrared
regions into three categories: Near-infrared (12820-4000 cm™), Mid-infrared (4000-400 cm™), and Far-
infrared (400-33 ecm™). Adapted from 3% . 52

Figure 2.24. Schematic diagram for infrared spectroscopy. Adapted from 5 ... 53

Figure 2.25. Illustration of image dipole theory. The black, white, and red vectors represent the dipole
moment of the molecule, the image dipole induced within a reflective substrate, and the resultant vector
obtained by summing the black and white vectors, respectively. A) The induced dipole moment is
perpendicular to the surface. B) The induced dipole moment is at an intermediate angle to the surface.

C) The induced dipole moment is parallel to the surface plane. Adapted from %56 .............ccocoonv.. 54

Figure 2.26. Schematic representation of light circular polarization. i) right circularly polarized ii)
left circularly polarized light. Adapted from 58] ..o 55

Figure 3.1. Architecture of the pre-trained InceptionV3 model. The model comprises multiple
Inception modules that apply convolutional filters of various sizes in parallel to extract multi-scale
features. It includes convolutional and max-pooling layers, followed by fully connected layers and a

final softmax layer for classification. Adapted from 261 . ............ccooiiiiiiieeceee e 64

Figure 4.1. Representative PLM images showing the patterns formed by two proteins (HSA and
IgG), dissolved in different buffers, and deposited as 2 uL. droplets of each solution onto a PPX-
H-coated glass wafer. The corresponding buffer compositions are detailed in Table 4.1. Odd-numbered
samples contain HSA, while even-numbered samples contain IgG, except for sample 18, which also
CONtAINS HISA. ..ottt ettt sttt 72

Figure 4.2. Confusion matrix obtained from the stains of various salts containing two different
proteins (HSA and IgG). The stains were prepared by depositing 2 pL droplets of each solution onto
hydrophobic glass wafers coated with PPX-H. The model parameters were optimized with a global
learning rate of 0.001, a minimum batch size of 32 images, and up to 20 epochs........cccceecerrvrrernnen. 73

Figure 4.3. Confusion matrix obtained from the stains of various histone/DNA ratios (Calf and
Salmon) at two different total mass concentrations. The stains were prepared by depositing 2 puL
droplets of histone/DNA complexes, dissolved in an aqueous HEPES buffer solution, onto hydrophobic
glass wafers coated with PPX-H. The model parameters were optimized with a global learning rate of
0.001, a minimum batch size of 32 images, and up to 40 €POChS. ........cccvevvieiiecrieiieeeeecee e 77

Figure 4.4. The deposition patterns of HI-DNA droplets provide detailed insights into protein-
DNA interactions. These stains were created by placing 2 pL droplets of an aqueous HEPES buffer
solution onto hydrophobic glass wafers coated with PPX-H A) A schematic of dispensing HI/DNA
complex droplets, their drying process, and subsequent imaging. Representative images from PLM and
SEM of a dried stain derived from a H1-Sal 20 x,p DNA mixture showcase complex deposition patterns.
B) Analysis of the HI-Sal 2 «»p DNA mixture stain using TOF-SIMS imaging indicates the presence of
PO;™ (intensity color scale 0-2 counts), shown in blue. CNO™ fragments, marking the amino acids of
histone and the nucleotides of DNA, are displayed in green (intensity color scale 0-30 counts). The
distribution of chloride ions from the buffer solution is represented in red (intensity color scale 0-30
counts). The first row shows the RGB channels and their combined overlay. Adapted from [2°! ... 79

Figure 4.5. Schematic representation of the protein-DNA interaction study using deep learning
approaches. A) The study aimed to classify a diverse level of histone-DNA interactions and the
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prediction of histone binding affinities to unknown DNA based on dried droplet patterns. B)
Representative PLM images of HI-DNA stains from four distinct DNA types dissolved in HEPES
buffer, deposited onto a CVD-coated glass slide, highlighting the variability in deposition patterns.

From left to right: H1-Sal 20 xp DNA, H1-Sal 1 xop DNA, H1-Her DNA, and H1-A DNA. Adapted from
[261] 81

Figure 4.6. DL-based classification of different DNA types. A) PLM images of Sal 20 xp DNA
(outlined in red dashed line), Sal | w,p DNA (outlined in green dashed line), Her DNA (outlined in blue
dashed line), and Z DNA (outlined in orange dashed line). B) Confusion matrix based on the deposition
patterns of four distinct DNA types, varying in both size and type. The model parameters were
optimized with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 40 epochs.
Adapted Trom PO ettt e et annna 83

Figure 4.7. Grad-CAM activation maps. Heatmap overlays on the PLM images highlight regions
most influential in the model's classification decisions, providing insight into how CNN interprets DNA
patterns. Scale bars indicate 1 mm. Adapted from P .. ... 84

Figure 4.8. The t-SNE plot shows the results from the "Softmax Activation" layer of the trained
CNN model. Sal » wp DNA, Sal 1 wp DNA, Her DNA, and A DNA were represented by the colors red,
green, blue, and orange, respectively. Adapted from 261 ... 85

Figure 4.9. Effect of DNA type on H1-DNA binding affinity. A) Schematic representation of
Sal 20 kbp (eukaryote) DNA, A (prokaryote) DNA, and histone (H1). B) PLM images of Sal 2 xp DNA
(without histone), & DNA (without histone), histone (without any DNA), and each H1-DNA mixture
deposition patterns. Adapted from PO, ... 87

Figure 4.10. Confusion matrices obtained from stain patterns of H1-DNA mixtures, comparing
the binding affinity of H1 for eukaryotic versus prokaryotic DNA. Two DNA types were used: A)
Sal 20kp DNA and B) 2 DNA, both combined with histone H1. The InceptionV3 model was trained
with a global learning rate of 0.001, a minimum batch size of 32 images, and up to 40 epochs. Adapted
FEOIM 201 ettt sttt ee 88

Figure 4.11. The t-SNE plots show the clustering of Hl1-eukaryote DNA vs Hl-prokaryote DNA.
The visualization of the 'Softmax' layer in the trained CNN model reveals distinct clusters associated
with A) H1- Sal 20xp DNA and B) H1- 2 DNA. Adapted from 21 ..o, 90

Figure 4.12. Ethidium bromide-DNA complex displacement assay. Each data point represents the
average of samples obtained from two distinct experiments. The decrease in relative fluorescence
intensity of the EtBr-Sal 20, DNA (red dash-line), and EtBR- 2 DNA (orange dash-line) complexes is
a result of the interaction between H1 and each DNA. Adapted from 21 ..., 91

Figure 4.13. Effect of DNA fragments size on H1-DNA binding affinity. A) Schematic
representation of Sal 20wy DNA, Sal 1 DNA, Her DNA, and H1. B) PLM images of each DNA
(without histone), histone (without DNA), and each HI-DNA mixture deposition patterns. Adapted

Figure 4.14. Confusion matrices derived from stain patterns of H1-DNA mixtures, comparing the
binding affinity of H1 with eukaryotic DNAs differing in fragment sizes. Three eukaryotic DNA
lengths were tested: A) 20 kbp, B) 1 kbp, and C) 50 bp, all combined with histone H1. The InceptionV3
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model was trained with a global learning rate of 0.001, a minimum batch size of 32 images, and up to
40 epochs. Adapted from PO et 94

Figure 4.15. The t-SNE plots show the clustering of H1 interactions with eukaryotic DNA of
varying fragment sizes. Visualization of the 'Softmax' layer in the trained CNN model highlights
separate groupings corresponding to each DNA size: A) H1-Sal 2w, DNA, B) H1-Sal 1w, DNA, and
C) H1-Her DNA, indicating a distinct separation between these clusters. Adapted from 21 .............. 95

Figure 4.16. Ethidium bromide-DNA complex displacement assay. Each data point represents the
average of samples obtained from two distinct experiments. The decrease in relative fluorescence
intensity of the EtBr-Sal 2y DNA (red dash-line), and EtBr-Sal | «o, DNA (green dash-line), and EtBr-
Her DNA (blue dash-line) complexes is a result of the interaction between H1 and each DNA. Adapted

Figure 4.17. Evaluation of the pre-trained network's performance in classifying H1-DNA binding
affinities using new species. A) Overview of the approach used to classify unknown samples. B)

Prediction results for unseen or unknown H1-DNA samples. Adapted from 6", ........................... 100

Figure 4.18. Classification of surface polymer chemistries through image analysis of deposition
droplets using a deep learning (DL) approach. A) Representative polarized light microscopy (PLM)
images showing deposition patterns of BSA on nine PPX-coated glass wafers. The stains were created
by depositing 2 uL droplets of 0.1 mg/mL BSA dissolved in an aqueous 100 mM carbonate-bicarbonate
buffer with 50 mM sodium chloride (pH=9.2). B) A schematic illustration of the deep learning-based
recognition of polymer surfaces, alongside the chemical reaction scheme depicting the CVD
polymerization of ten different PCPs utilized in this study. The aim of the study was to classify a wide
range of functionalized CVD coatings and to predict unknown surface chemistries based on patterns
formed by dried droplets. Adapted from 33) . ... 103

Figure 4.19. Characteristic TOF-SIMS spectral areas of PPX-coatings with varying
functionalization. Light blue: PPX-NH,, Yellow: PPX-AM, Pink: PPX-NH,-co-AM, Orange: PPX-
CHO, Gray: PPX-HM, Purple: PPX-CI, Brown: PPX-Br, Red: PPX-Fs, and Green: PPX-Alkyne.
Adapted from (830 ettt ettt aennas 105

Figure 4.20. Average stain diameters of various CVD coatings were determined through image
analysis (mean values, N=150, with error bars representing the standard error). Coating groups labeled
with the same letters indicate no statistically significant differences, as determined by Tukey's test.
Adapted from 830 ettt ettt 106

Figure 4.21. Confusion matrices derived from BSA stain pattern images of surfaces with various
functionalized polymer CVD coatings. Deep learning-based recognition of PPX-coated glass wafers,
with pre-training conducted i) including images of PPX-Br and ii) excluding them. BSA deposition
stains were created by applying 2 puL droplets of a 100 mM carbonate-bicarbonate buffer (pH 9.2)
containing 50 mM sodium chloride. The model parameters were optimized with a global learning rate

of 0.001, a minimum batch size of 32 images, and up to 60 epochs. Adapted from 83 ... ... 109

Figure 4.22. Evaluation of the trained network's reproducibility and generalization using
unknown PPX-Br samples. High prediction accuracy was achieved in the Few-Shot study, consistent

with the original findings. Adapted from 183 e 110
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Figure 4.23. Grad-CAM activation maps. The heatmap overlay highlights regions that contributed
most to the model's decision, offering insights into how the CNN interprets BSA patterns on various
functionalized polymer surfaces. Adapted from U331 ..o 111

Figure 4.24. The t-SNE plots show the clustering of the various functionalized polymer surfaces.
Visualization of the 'Softmax' layer in the trained CNN reveals distinct groupings corresponding to 1)
Nine PPX-coated glass wafers, including images of PPX-Br, and ii) excluding them. Adapted from [8*

Figure 4.25. Influence of ionic strength on BSA secondary structure and its significance in
classifying PLM images of BSA deposition patterns on amine and aminomethyl surfaces. A)
Influence of ionic strength on BSA secondary structure when dissolved in a diluted carbonate-
bicarbonate buffer with and without sodium chloride, and B) Impact of the drying process on BSA
secondary structure, deposited on a quartz substrate in the absence and presence of sodium chloride,

analyzed using CD spectroscopy. Adapted from U83. ... 114

Figure 4.26. Effect of ionic strength on PLM images of deposition patterns of BSA on PPX- amine
(blue boxes) and PPX-aminomethyl (yellow boxes) coated glass wafers. Stains were obtained by
depositing 2 pL droplets of BSA solution in an aqueous i) 100 mM carbonate-bicarbonate buffer
(pH=9.2) with 50 mM sodium chloride solution, and ii) 100 mM carbonate-bicarbonate buffer (pH=9.2)

without sodium chloride. Adapted from 831 ... 115

Figure 4.27. Confusion matrix derived from BSA stain pattern images, illustrating the model’s
ability to analyze the impact of ionic strength on surface recognition. BSA droplets, dissolved in an
aqueous 100 mM carbonate-bicarbonate buffer (pH 9.2), were applied to glass wafers coated with PPX-
amine and PPX-aminomethyl surfaces, (i) with 50 mM sodium chloride and (ii) without sodium
chloride. The model parameters were fine-tuned across all layers, using a global learning rate of 0.001,
a minimum batch size of 32 images, and a maximum of 60 epochs. Adapted from ["*3) ... 116

Figure 4.28. The t-SNE plots of the "Softmax'" layer from the trained CNN demonstrate the
clustering of two functionalized surfaces. Both in the i) presence and ii) absence of sodium chloride.
Adapted from (830 ettt ettt aennas 117

Figure 4.29. Assessment of geometric bias in the CNN analysis. (i) rotation of 180 degrees in both
clockwise and counterclockwise directions, (ii) clockwise rotation of 90 degrees, and (iii)

counterclockwise rotation of 90 degrees. Adapted from 831 ... 120
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|

Figure S1) Agarose gel electrophoresis

Agarose gel electrophoresis (1%) for Sal 20kp DNA, sonicated Sal 20wy DNA (bath sonication for 5
second, and direct probe sonication for 5 min with 20 kHz. The determination of fragment sizes is based
on their positioning on the gel compared to the molecular marker.
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Histone 1 (H1)

Figure S2) TOF-SIMS imaging.

Brown scale images of A) H1-Sal 2k, DNA sample: Amino acids of protein and base pairs of DNA
were identified by CNO" (scale 0-30), the backbone of DNA was identified by POs™ (scale 0-2), and
buffer crystals were identified by Cl (scale 0-30); B) Sal 2 wp DNA sample: CNO™ (scale 0-20), PO3
(scale 0-10), CI' (scale 0-30) and C) H1 (histonel) sample: CNO- (scale 0-30), POs (scale 0-2), CI
(scale 0-30). All total ion images (scale 0-1300) represent the combined signals from all detected ions,
displaying the variation in detected ionization over the droplet area. All scale bars represent 500 um.
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Figure S3) TOF-SIMS spectra.

Characteristic spectral areas, corresponding to the images in Figure S2, displaying the total areal
intensity of A) CI, B) CNO™ and C) PO3". The red, blue, and pink spectra represent histone (H1),
Sal 20 kp DNA, and H1+ Sal 2 kp DNA mixture samples, respectively.
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Figure S4) The impact of varying the quantity of unseen test images on the prediction accuracy of the
trained neural network. The error bars in the graphical representation indicate the standard deviation
(N=3). Groups sharing identical letters indicate no statistically significant differences based on least
significant difference (LSD)-adjusted comparisons.
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Figure S5) ToF-SIMS. Survey spectra of negative polarity measurements. All spectra are cut off at
an upper intensity of x10"5 counts, to ensure the visibility of fragment peaks with medium intensity.
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Figure S5) ToF-SIMS: Survey spectra of positive polarity measurements. All spectra are cut off at an
upper intensity of x10"5 counts, to ensure the visibility of fragment peaks with medium intensity.
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Figure S6) IRRAS of various PPXs
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Figure S7) Gradient-weighted Class Activation Mapping (Grad-CAM). Grad-CAM illustrating
misclassified PLM images: A) PPX-F as PPX-Alkyne; Three misclassifications occurred out of 80
unseen PLM images of BSA deposition patterns on PPX-F. B) PPX-A as PPX-CH,OH; Four
misclassifications occurred out of 80 unseen PLM images of BSA deposition patterns on PPX-A.
Background interference, pattern-free spaces, and improper patterns collected from the edges of coated
substrates (where the coating may have been insufficient) were the most causes of this misclassification.
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Figure S8) t-SNE visualizations of the feature space with perplexity values of i) 10, ii) 50, and iii) 100.
These values were chosen to examine the robustness of clustering across both local (low perplexity)

and global (high perplexity) relationships. The consistent clustering observed across all perplexity
values indicates robust feature representations by the network.

142




Supporting Information

BSA Drop Diameter

B Amine with NaCl
2120 1 @ Aminomethyl with NaCl
A [ Amine without NaCl
AB 2104
2097 l O Aminomethyl without NacCl|
—
E 2100 l
E aB
a B 2085
- 2076 ]
£ 1
o 2080 {
° l
2060
2040

PPX-A, PPX-AM Coated Surfaces

Figure S9) Hydrophobicity of PPX-A and PPX-AM functional surfaces, measured by the diameters
size of dried BSA stains dissolved in buffer solutions with and without sodium chloride. A total of 150
randomly selected stains were analyzed per group. The error bars denote the standard error (SE). Groups
sharing the same letters indicate no significant differences, as determined by Tukey-adjusted
comparisons. Significant differences were identified using the Tukey method, with p < 0.05.
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