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ABSTRACT: We report a highly symmetric {Gd,} molecular Spin Frustration " Competing Interactions
nanocage with the formula [Gdy(BA),((OH),,]Cl-3(C,H;OH)- =
4(H,0), which crystallizes in the cubic space group Pn3n. The WL“ W

structure features two crystallographically distinct Gd** ions, A S )

forming highly regular triangular Gd** arrangements leading to a '»v'c‘ "000

geometrically frustrated magnetic network. Magnetization meas- ¢ 80

urements at 2 K reveal a broad plateau between 1.5 and 4 T, while Qedm J

zero-field heat capacity shows a Schottky anomaly centered at Jse, 2

0.6 K—indicative of low-lying excited states and competing &8 ‘;“/

magnetic interactions. The magnetocaloric effect, evaluated Y AR

d(2) '

through both direct and indirect methods, exhibits a re-entrant Wﬂ y
profile in the isentropic curves, pointing to a nontrivial evolution of

magnetic entropy under applied fields. To probe the origin of this

behavior, we employed the finite-temperature Lanczos method on a model spin Hamiltonian. The results reveal that the
antiferromagnetic exchange between Gd** ions, combined with the frustration inherent to the {Gd,} geometry, leads to a degenerate
ground state. An external field lifts this degeneracy, producing a regime with a sharply reduced density of states between 1.5 and 4 K,
which underlies the unconventional magnetocaloric response. The {Gd,} cage thus represents a rare example of a spin-frustrated
arrangement arising from competing antiferromagnetic interactions between the Gd**. These findings demonstrate how frustrated
topologies and tunable low-energy excitations can be exploited to modulate the magnetothermal properties, with potential
implications for cryogenic magnetic cooling technologies.

3
B

B INTRODUCTION the magnetocaloric effect (MCE) at low temperatures by
broadening the temperature range of paramagnetic-like
behavior. Besides, it increases the density of low-lying spin
states and enables field-tunable degeneracies, resulting in large
isothermal entropy changes and pronounced adiabatic temper-
ature shifts under applied magnetic fields—key performance
metrics in solid-state refrigeration.

The investigation of molecular nanomagnets for subkelvin
magneto refrigeration typically relies on isotropic ions with
large magnetic moments,”'*~"” although anisotropic sys-
tems'®'? can likewise be considered. However, unlike
paramagnetic salts, FMN exhibits complex magnetothermal
behavior arising from internal exchange interactions and
quantum level crossings.” These phenomena, associated with

In magnetic systems, the impossibility of simultaneously
satisfying pairwise interactions gives rise to frustration, typically
due to geometric or exchange constraints.””> Geometric spin
frustration—where the topology of the lattice alone prevents
the full minimization of exchange energies—suppresses
classical magnetic order and stabilizes a range of unconven-
tional ground states." This phenomenon is especially
pronounced in triangular lattices,>™> where antiferromagnetic
coupling among half-integer spins in odd-membered rings
creates a macroscopically degenerate manifold.

Crucially, such behavior is not confined to extended lattices:
zero-dimensional molecular architectures, particularly coordi-
nation compounds, frequently incorporate triangular spin
motifs."” These discrete systems offer synthetically tunable
platforms for probing frustration at the molecular scale.'’ Received: July 30, 2025
Frustrated molecular nanomagnets (FMN) are increasingly Revised:  October 1, 2025
recognized as promising candidates for magnetocaloric Accepted:  October 2, 2025
applications. Their discrete energy spectra, well-defined spin
states, and chemical modularity allow fine control over
magnetic entropy.ll_B Moreover, spin frustration enhances
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Figure 1. Crystal structure of [Gdy(BA);cOH,,]Cl {Gd,} side (A—C) and top view (D—F), highlighting the highly regular structure with triangular
Gd* arrangements. The yellow and green dotted lines in panels (B,E) depict the two different interactions occurring in the {Gdy} cage. Color

code: Gd, blue; O, red; C, gray. Hydrogens omitted for clarity.

quantum phase transitions, enable sharp entropy redistrib-
utions that amplify the MCE. Additionally, frustration
preserves residual entropy at zero temgerature, enabling
rapid cooling near the saturation field.”*™>* On the quest for
further understanding of frustration effects on FMN, here, we
investigate a highly symmetric molecular cage, with formula
[Gdy(BA),s(OH),,]Cl-3(C,H,OH)-4(H,0) (where BA =
benzoylacetonate ({Gdo})) with an hourglass-like molecular
structure (Figure 1). The complex, featuring four {Gd;}
vertex-sharing triangular Gd** motifs, displays frustration of its
energy manifold; hence, it exhibits a strongly field-dependent
density of states and a tunable magnetocaloric response,
highlighting the importance of the energy landscape engineer-
ing for molecular coolants.

B RESULTS AND DISCUSSION

The hourglass-like complex crystallizes in the Pn3n space
group, with six cationic {Gd,} cages residing per unit cell.
Three differently oriented molecules compose the unit cell,
with the shortest Gd-+-Gd distance being 12.904 A (See Figure
S1). The asymmetric unit represents one-eighth of the
molecule, indicating that the complete cage exhibits Sg
symmetry. The {Gd,} cage consists of two pentanuclear
square pyramids sharing a central Gd*" ion, forming an
hourglass-like shape (Figure 1C,D). These pyramids are
twisted relative to each other by about 45° resulting in a
square antiprismatic geometry at the central Gd** ion (Figure
1B).

Single-crystal X-ray diffraction reveals that the cage contains
only two distinct types of Gd** ions: the central ion (Gd(1)) is
octacoordinated, possessing a nearly perfect square anti-
prismatic geometry with D,y symmetry, as confirmed by
Continuous Shape Measures” (CShM, Table S1). Its
coordination sphere consists exclusively of eight pu;-OH™
groups; the eight peripheral ions (Gd(2)), also octacoordi-
nated, but with a more irregular geometry. Each Gd** ion is
chelated by three BA™ ligands—two with coordination mode
u-BA(x*0,0’; k'O) and one with yu-BA(k*0,0’)—along with

two p13-OH™ groups. These ions adopt a trigonal dodecahedral
geometry with D,4 symmetry (Table S1).

The metallic core of the {Gd,} cage can also be described as
a pyramidal assembly of four {Gd,} triangles, each formed by
one Gd(1) and two Gd(2) ions. These triangles share Gd(1)
as a common vertex, while also sharing edges with adjacent
triangles. Each Gd(2) is stabilized by a y;-OH™ bridge and is
collectively capped by a u,-OH™ group at the base of the
pyramid. The Bond Valence Sum (BVS) for the y;-OH™ is
found to be 1.073, while for the u,-OH, the BVS is 1.02, both
being consistent with OH™ groups.”* The overall complex is
charge-balanced by a CI” ion. Due to the highly symmetric
triangular arrangement of Gd** ions within the {Gd,} cage,
magnetic frustration effects are likely to occur.

To explore how the highly regular {Gd,} cage influences the
magnetic behavior, we conducted magnetic susceptibility (yy
= M/B) measurements. The y,, properties were collected
employing a polycrystalline sample under an applied field of
0.1 T in the temperature range of 2—300 K (top panel in
Figure 2). At room temperature, the yyT value amounts to
67.4 emu K mol™!, in line with nine ®S,, ions (cf. 68 emu K
mol™! for nine noninteracting s = 7/2 ions with g = 1.96). As
the temperature decreases, the yyT(T) remains nearly
constant down to ca. 20 K, where it sharply drops to 29.3
emu K mol™". The downturn is indicative of antiferromagnetic
interactions within the cage, as commonly observed in systems
with similarly highly symmetric motifs.

Magnetization studies (M) were conducted in the temper-
ature range of 2—10 K and with applied fields between 0 and 7
T. The M(B,T) data shows that saturation is achieved for fields
above 6 T (bottom panel in Figure 2). Remarkably, a plateau is
also observed between 1.5 and 4 T for the M(B) traces below 3
K. Note that such a type of plateau is uncommon in
lanthanide-based complexes and is a signature of spin
frustration effects.” To further investigate the system, we
employed p#SQUID arrays from S K down to 30 mK, in the
field range of +1.4 T. No major structure is revealed in the
M(B) loops. Notably, the M(B) loops above 2 K, however,
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Figure 2. Magnetic susceptibility versus temperature (yT, T) at B =
0.1 T (top) and magnetization versus applied magnetic field (M, B)
for temperatures from 10 down to 2 K (bottom). R is the number of
random vectors employed for the computation. The experimental
data are given by symbols, while the theoretical calculations are shown
by curves (see text).

yield a vanishing magnetic signal, likely due to the large density
of populated states at such temperature and field, a signature of
frustration (See Figure S3).

A better insight into the magnetic characteristics of {Gd,}
can be gained by conducting field-dependent heat capacity (c,)
studies. These studies are a powerful tool for probing spin
frustration in molecular nanomagnets, since they sensitively
capture low-energy excitations and quantum level crossings,
offering insight into the system’s magnetic energy land-
scape.”” """ The ¢, response of {Gdy} under different magnetic
fields was investigated between 30 K and 50 mK with fields up
to 7 T (Figure 3).

In the temperature range above liquid helium, ¢, is

p
predominantly influenced by the nonmagnetic lattice con-

op -

C/kg

T (K

Figure 3. Heat capacity (c,) per molecule as a function of
temperature T for various magnetic fields B. The dots denote
experimental values, while the curves are theoretical calculations.

tribution, which can be effectively represented by the Debye
function. This analysis leads to the determination of the
characteristic Debye temperature, 0y, calculated to be 27.7 K.
Interestingly, the zero-field data exhibit no lambda-like
anomaly, indicating the absence of any phase transitions.
Instead, the data are marked by a broad Schottky-like anomaly
centered around 0.6 K. This anomaly not only shifts to higher
temperatures but also increases in magnitude with the
application of a magnetic field. Below the temperature range
of 60—70 mK, the zero-field ¢, appears to plateau.

The entropy at constant magnetic field, S = / ¢,/ TdT
(Figure S4), was used to obtain the MCE main figure of merit,
namely the magnetic entropy change (—AS,, Figure SS). The
—AS,, reaches a maximal 23.1 J kg™' K™ at temperature T =
2.1 K and magnetic field change AB = 7 T, which corresponds
to 79% of the available entropy, i.e, RIn (2s + 1) =29.1 J kg™
K™L. Besides indirect estimations, the MCE was also measured
directly (Figure 4, bottom panel, and Supporting Information
for details). We conducted demagnetization processes starting
from a relatively high magnetic field of B = 8 T, while varying
the initial temperatures T,. As a representative example, when
T, is set to 1.0 K, we observed that the sample temperature
initially decreases linearly as the magnetic field B decreases,

o 2 4 6
B (1)

Figure 4. (top panel) Zeeman diagram of low-lying energy levels; the
size of the bullet points reflects the weight of the respective energy in
the FTLM. E* = E; — E,, where E; and E, are the energies of the ith
and ground Zeeman states, respectively, at the respective field.
(middle panel) Normalized magnetization M(B) curve at zero
temperature. (bottom panel) Calculated (thin curves) and directly
measured (symbols) isentropes, i.e.,, curves of constant entropy.

https://doi.org/10.1021/jacs.5c13048
J. Am. Chem. Soc. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/jacs.5c13048/suppl_file/ja5c13048_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c13048/suppl_file/ja5c13048_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c13048/suppl_file/ja5c13048_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.5c13048/suppl_file/ja5c13048_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.5c13048?fig=fig4&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.5c13048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of the American Chemical Society

pubs.acs.org/JACS

which aligns with the expected behavior of a paramagnet.
Notably, between the magnetic field values of B = 4.8 and 1.5
T, a bump anomaly is encountered in the temperature
readings. Specifically, the temperature first experiences an
increase as B decreases to 3.4 T, demonstrating an inverse
MCE. Following this, the temperature steadily declines with
further decreases in B down to 1.5 T. Below B = 1.5 T, there is
a smaller, yet discernible bump anomaly centered at B = 0.6 T.
Ultimately, upon completing the demagnetization process, the
sample temperature stabilizes at T = 0.35 K. The inverse MCE
observation is characteristic of frustrated topologies.”” Note
that the recorded temperatures are not adiabatic temperatures;
hence, they do not fully reflect the potential of the system
under ideal conditions. These readings are influenced not only
by the magnetothermal properties of {Gd,} but also by the
unique characteristics of the sample and experimental setup
used. Due to the inevitable heat exchanged between the sample
and the thermal bath, lower temperatures should be achieved
under adiabatic conditions.

To comprehend the overall magnetic behavior of {Gd,}, the
magnetic and magnetothermal data were modeled with the
Hamiltonian of the form (1)

ENEN LINPPN i
Z 5 — ZJZZsi-sg+guBBZ§iz
i=1 i=1

i<j(squares)

H=-2]

(1)

where the first term denotes the Heisenberg exchange between
neighboring spins in the two squares, the second term the
exchange of all spins in squares with the central spin, and the
third (Zeeman) term the interaction with the external field
(See Figure 1E). In our simulations, the single-ion anisotropy
is neglected, while a common g-factor of 1.96 is assumed. Since
the total Hilbert space has a dimension of 134,217,728, exact
diagonalization of the Hamiltonian matrix is prohibitable
impossible (even when using symmetry arguments); therefore,
the finite-temperature Lanczos method (FTLM) is suited as an
accurate approxirnation.25 For the calculation, R = 100 random
vectors were used to average observables.”® Figure 2 displays
the M as y\T(T) at a small field (top) and M(B) for various
temperatures (bottom). The experimental data were used to
determine the best values of J), J,, and g describing both
profiles. The best simulations yield J, = —0.09 K, J, = —0.10 K,
and g = 1.96 (See Figures 2 and S6). We estimate that the
uncertainty is not bigger than 10% of these values. With this
set of parameters, we calculate the magnetic contribution to c,,
as well as the isentropes of the direct MCE measurements. The
experimental ¢, and simulations, together with the lattice
contribution, are represented in Figure 3 as solid lines, while
the simulated isentropes for ideal adiabatic conditions are
depicted in Figure 4, together with the experimental data, and
in Figure S7 for several entropy values. The simulations,
although they do not perfectly replicate the experimental data
at the lowest temperatures, offer a remarkably close
description.

By understanding the energy manifold of the {Gd,} system,
we can interpret the structure of its magnetic and magneto-
thermal data. Figure 4 illustrates the system’s unusual
magnetocaloric behavior by showing how the low-lying density
of states varies with the applied external magnetic field. In this
context, the Zeeman energy is represented as the excitation
energy above the respective ground state for each magnetic
field strength. At zero field (B = 0), there is a region with a

high density of states. This is followed by a range between
approximately 1.5 and 4.0 T, where the density of states is
significantly lower, corresponding to a broad magnetization
plateau. Beyond 4.0 T, another region of high density of states
appears, which then transitions into a final region of very low
density, starting at the saturation field around 4.8 T. Since
entropy is related to the number of thermally accessible energy
levels, regions with low density of states require higher
temperatures to achieve the same level of thermal occupation
as regions with higher density. This variation in thermal
accessibility explains the undulating shape of the isentropes
shown in the lower part of Figure 4.

B CONCLUSIONS

This study presents a comprehensive investigation of the
{Gd,} molecular cage, revealing its potential as a model system
for exploring spin frustration and magnetocaloric effects in
lanthanide-based nanomagnets. The unique double-pyramidal
geometry, featuring two distinct Gd** environments and a
highly symmetric arrangement, leads to antiferromagnetic
interactions and geometric frustration. These features manifest
in the magnetic susceptibility, magnetization, and heat capacity
data, with the latter showing broad Schottky anomalies and no
signs of long-range magnetic ordering. The magnetocaloric
properties are particularly noteworthy: both indirect and direct
measurements reveal significant entropy and temperature
changes, including inverse MCE behavior—a hallmark of
frustrated spin networks. Theoretical modeling using the finite-
temperature Lanczos method successfully captures the
essential features of the experimental data, validating the
proposed exchange interactions and highlighting the role of
low-lying energy states in modulating the MCE. The field-
dependent density of states, with alternating regions of high
and low state density, explains the observed isentropic behavior
and underscores the importance of energy landscape engineer-
ing in molecular coolants. Overall, the {Gd,} system
exemplifies how molecular design can be leveraged to achieve
tunable quantum thermodynamic responses, making it a
promising platform for future studies in quantum magnetism
and subkelvin refrigeration technologies.
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