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. 4
Abstract.

In micro gear manufacturing, quality assessment relies on full-geometry
measurements to evaluate fun¢tional performanced Due to tolerances down to one
micrometer, high-end metrologyis essential. Optical systems enable fast, non-
contact measurements and can, in, principle, be used for full-gear scans. These
scans serve as input for single-flank rolling simulations, which assess how geometric
deviations affect functional;behavior'such as transmission accuracy. However, full
scans remain time-consuming and often unsuitable for inline inspection due to
the trade-off between speed and measurement uncertainty. We address this by
proposing a partial-scan workflow, based on the observation that tool-induced
deviations propagate periodically ‘across gear teeth. This allows reconstruction
of micrometer-accurate point clouds from a subset of teeth. We compare a deep
learning-based completion network with an analytical reconstruction, evaluating
both geometrically and functionally. While the deep learning approach shows
higher geometric\fidelity, it falls short in functional accuracy. This reveals a
common gap in dearning-based methods, where achieving geometric similarity
may fail o preserve the underlying functional behavior. Our approach enables
faster inspection while maintaining confidence in gear performance.



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - MST-128323.R2

1. Introduction

Micro gears are key components in high-precision
applications such as medical devices and microrobotics
[1]. As miniaturization progresses, the demand for
consistently manufactured, high-quality micro gears
increases. Due to their small dimensions, even minor
deviations in tooth flank geometry can severely affect
functional performance, leading to vibration issues,
transmission errors, or noise [2, 3, 4, 5]. Ensuring
geometric and functional precision is therefore critical.

Unlike many other components, gears require a
comprehensive quality assessment that goes beyond
simple dimensional checks [1]. Detailed flank geometry
must be captured and analyzed to assess characteristics
such as noise, vibration, and harshness [4]. This
can be achieved through tactile coordinate metrology,
optical techniques like computed tomography or focus
variation, or through functional testing methods such
as single-flank rolling inspection [5, 2].

Although effective, both geometric and functional
inspections are typically time-consuming [6]. Tight
tolerances and high precision demands increase
sensitivity to measurement uncertainty and limit
throughput, especially in micro gear manufacturing.
Recent studies have focused on accelerating optical
workflows while maintaining accuracy [6]. Simulation-
based functional assessments, such as single-flank
rolling analysis using high-resolution point. clouds;
are promising alternatives [2], but still require, full
geometry acquisition.

However, the highly regular structure of gears
and the recurring nature of their deviation»patterns
offer great potential for point cloud/completion. In
this work, we explore whether full @r geometries
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can be reconstructed from partial scansaising only
a small number of measured teeth, as illustrated in
Figure 1. We investigate two approaches:none based
on parametric gear geometry and another using deep
neural networks trained to reconstruct.full geometries
from incomplete point cloud ‘data. The network learns
a latent representation of gear ‘geometry, enabling it
to infer missing surface regions from ineomplete input
data by leveraging patterns‘observed during training.
Both approaches are evaluated through single-flank
rolling simulations to assess their functional validity.
Rather than demonstrating a complete inline system,
this study providesfa proof-of-method showing that
partial optical méasureflents can be sufficient for
accurate reconstruction and functional evaluation.
These results highlight the potential of the approach
as a step toward fast, reliable quality assessment and
future inlineimspection of micro gears.

In shefollowing, we present the foundations
of geometric and, functional gear quality assessment.
We then, review developments in optical metrology,
rolling simulation, and geometry reconstruction. Next,
we describe o@ur experimental setup, including gear
meagurement and point cloud generation. We
then detail the reconstruction methods and evaluate
their results functionally. Finally, we compare the
approaches in terms of accuracy, robustness, and
suitability for use in production environments.

2. Fundamentals

Micro gears demand stringent quality assessment
through geometric and functional measurements to
ensure reliable operation. In this section, we define
the essential quality metrics that form the foundation

Geometric and
functional properties

Complete point
cloud

Fy Fg F{ fi ..

Single flank rolling simulation

Figure 1: Conceptual schematic to improve measurement time.
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of micro gear inspection. The general geometrical
and functional quality characteristics of the gears are
formalized in [7] and [8] which also specify the following
measurement procedures.

Geometric Quality Features

The geometric quality of micro gears is defined by four
key deviations from the ideal involute: profile deviation
F,, flank line deviation Fj, pitch deviation F},, and
runout deviation F,. [8, 9]. These parameters describe
deviations in tooth form, alignment, spacing, and
concentricity and serve as the basis for standardized
gear quality evaluation.

Figure 2 illustrates the geometric deviations.
The standardization of gear parameters as defined
in [10] guarantees reproducibility at micrometer
level accuracy, which is essential for high-precision
applications in medical devices and robotic systems.

Profile Deviation Flank Deviation

Pitch Deviation Concentricity Deviation

Figure 2: Geometric gear deviations, including profile,
flank, pitch, and runout errors. Based o [11].

Functional Quality Features

In this work, functional performanceis evaluated using
transmission error as the primary metric. Transmission
error quantifies the deviation between the actual and
ideal rotational displacement and is measured through
single-flank and double-flauk rolling tests [7]. In the
single-flank test, the'angular position of a test gear is
recorded as 4t rolls against a master gear. The basic
setup is illustrated 4n Figure 3, where transmission
deviations emerge during meshing and are captured
through angular measurement.

From these \tests, the roll-in deviation f/ which
captureshthe maximum error within a single engage-
ment, and the total transmission error F; which rep-
resents _the peak deviation over a full revolution, are
extracted.” Additionally, the long-wave error f/ and
the short-wave error f; characterize low-frequency

3

shape deviations and high-frequency wavinéss, respec-
tively [7]. These functional metrics reflect how geo-
metric imperfections translate into torquéirregularities
under operating conditions [2].

Test-Gear

n

output

Figure 3: Setup of a_siigle-flank rolling test, where
the test gear rolls against a master gear. Angular
deviations are recorded to determine the transmission
error. Based on [5].

Figure 4 shows a typical transmission error curve
obtained from the single-flank test. From this curve,
key fnctional quality metrics such as runout error,
jump error, and rolling deviation can be derived by
analyzing the angular displacement trace.
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Figure 4: Evaluation of the transmission error curve
from a rolling test. Functional deviations such as
runout error, jump error, and rolling deviation are
derived from the angular displacement trace. Based
on [5].
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3. State-of-the-art

This chapter reviews the main techniques that enable
modern micro gear inspection and reconstruction.
First we examine focus variation as a fast, non-contact
method for capturing gear surface geometry, chosen
here for its favorable trade-off between acquisition
time and resolution. We then consider single-flank
rolling simulations as a direct measure of functional
performance. We outline recent deep learning methods
for reconstructing full geometries from sparse point
clouds.  Although each of these approaches has
matured individually, no existing framework combines
partial optical scans, completion methods and real-
time functional simulation to enable inline quality
assessment.

Micro Gear Metrology

The extensive literature review presented by Goch et
al. [1], as an update to his foundational study from
2003 [12], represents one important contribution to
the niche domain of micro gear metrology. Their
analysis identifies the most relevant measurement
technologies for capturing the geometry and functional
characteristics of micro gears. Due to the miniature
module sizes, typically below 0.3 mm, even slight
deviations in geometry or surface finish can lead
to significant functional impairments. Traditional
tactile coordinate measuring techniques oftemnreach
their physical limits, as probe tip diameters are
in the same order of magnitude “agy critical gear
features, making reliable access to root rand flank
regions difficult [1, 13]. Computed tomography; while
capable of capturing internal structures, suffers from
long acquisition times and limited‘resolution for high
aspect ratio geometries [1]. Optical methods have
therefore gained increasing attention, as they offer
non-contact access to steéprsSurfaces and fine features
with sub-micron resolution [13,14]. In addition to
capturing geometric parameters such as profile and
helix deviations, surfage-sensitive measurements are
essential to assess wear and roughness that critically
influence gear performancerat«the microscale [1, 15].
Overall, micro /gear /metrology requires a careful
balance between ‘resolution, measurement speed, and
accessibility ,of eomplex.géometries.

Focus Variation for Geometric Quality Assessment

Focus/variationds a non-contact optical technique that
captures fine surface geometry by scanning an objective
over a verticalrange and computing a sharpness metric
for each pixel [16]. This enables high-resolution 3D
point clouds, even on steep and reflective surfaces. A
typical setup is shown in Figure 5.

4

Gauder et al. [14] demonstrated the'successful
inline integration of a Bruker Aliconat pCMM for
micro gear inspection. Their process’achieved, full
3D measurement with low uncertainty in under
3.5 minutes, well below the duration of tactilejor CT
methods. Critical regions such as steep root.aréas were
captured through eccentric positioning, “improving
detectability at the cost of longer measurement time.

By optimizing vertical“resolution and measure-
ment width, the team showedrthat acceptable accuracy
can be achieved within/productien eycle time. Ulti-
mately, the method proved suitable for inline inspec-
tion. Remaining chéllengesiinclude software stability
and automation of cleaning\and clamping.

Among available optical methods, focus variation
offers the best “balances0f speed, resolution, and
surface accessibility " imline inspection. Confocal
and interferometric techniques offer higher vertical
resolution, but arelimited by slower acquisition rates,
while CT scanning entails longer measurement times
and reduced surface fidelity [17].

Semsor Unit

Lens Magazine
Rutational Unit

Granite Table

Figure 5: Inline setup of the focus variation. Based
on [18].

Single Flank Rolling Simulations for Functional
Assessment

Single-flank rolling simulations replicate the meshing
of a test gear with a reference gear to quantify
functional deviations such as transmission error [7].
Tools like Frenco Reany can generate rolling curves
based on 3D STL data or 2D profile sections of the
gear geometry, enabling virtual assessments of meshing
quality without requiring physical contact.

Gauder et al. [3] employed such simulations
to establish a functional quality control loop for the
gear hobbing process. By linking simulated functional
metrics to process parameters, quality feedback could
be integrated into manufacturing. In a preceding study
[2], the uncertainty of simulated single-flank test results
was evaluated, showing that when properly calibrated
simulations can offer reliable functional assessments
within micrometre scale accuracy.

Page 4 of 11
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Point Cloud Completion with Deep Learning

Recent advances in deep learning have enabled
the reconstruction of complete 3D geometries from
sparse input data, with works such as PointNet [19]
establishing a foundation by learning permutation-
invariant features directly from raw point clouds.
Several more advanced deep neural networks have since
been proposed to address point cloud completion [20].
We outline the idea and architecture of the two models
used for our approach and mention other promising
models.

The Point Completion Network (PCN) [21]
implements a two stage reconstruction scheme. First
an encoder composed of convolutional layers and a
global max pooling operation extracts a compact latent
representation of the partial point cloud. Next a fully
connected decoder produces a sparse global outline of
the full geometry. To recover fine local detail PCN
applies a learned deformation grid around each coarse
point and predicts displacement vectors that densify
and refine the surface. This coarse to fine process
preserves overall form while capturing intricate flank
features.

The Morphing and Sampling Network (MSN)
[22] uses an iterative deformation approach. “Its
encoder employs multi-scale feature extraction to
capture both global shape and local surface variation.
Instead of generating an intermediate outline;nMSN
directly learns a continuous flow field that ‘deforms
the input cloud in successive steps. At each iteration,
the network predicts displacement vectors that move
existing points toward the missing regions. An
adaptive sampling module then addspoints im,areas
of high curvature and removes excess. points|where
detail is sufficient. This dynamic sampling strategy
yields high-fidelity reconstructions with efficient use of
computational resources.

More recent transformer-based nmethods further
boost reconstruction fidelity: "SymmCompletion [23]
enforces known symmetry during attention to improve
global consistency and local detail. AdaPoinTr [24]
builds integrates curvature-aware attention that adapts
point weighting based on “lecal surface complexity.
These transformer models demonstrate rapid progress
in point cloud completion/but remain dependent on
large high-quality training sets. Acquiring full three
dimensional micro gear scans at micrometer resolution
is time intemnsive and costly in itself. Consequently,
extensive data ‘augmentation is required to train
networks that generalize to inline inspection scenarios.

While each of the reviewed techniques has
matured “indépendently, they are rarely used in
combination.  This highlights a clear opportunity
to develop” an inline system that combines rapid
measurement, learned reconstruction and immediate

5

functional evaluation. To our knowledge 10 existing
approach achieves this combination, leaving a, critical
gap in enabling inline quality control of'micro gears:

4. Approach

This chapter details the dataset»and workflow for
evaluating partial-scan reconstruction, methods in
inline micro gear quality “assessment.” We begin
with gear specifications and measurement acquisition,
then describe preprocessing andaugmentation steps,
outline both reconstruction strategies, present training
configurations, and ﬁnallk explain the functional
simulation setup.

Data Acquisition and, Géar Specifications

We utilize a dataset of 280 real, high-resolution point
cloud scamsyof ‘industrial micro gears manufactured
with a/module of 0.28 mm, a face width of 0.9 mm,
a pitéh diameter of 4.424 mm, and a root diameter of
3.22:mm. Each gear features 13 involute teeth. Scans
were acquiredy using the focus variation microscope
nCMM by Bruker Alicona. A measurement of
the {studied gear is illustrated in Figure 6. The
measurement parameters were adapted from the
optimized measurement program presented by Gauder
et al.” [14], which achieves a full-geometry scan time
of approximately 3.48 minutes per gear. The specific
acquisition settings, including magnification, tilt angle,
and resolution, are listed in Table 1. This setup
ensures high vertical and lateral resolution, but is
not compatible with inline integration due to its long
acquisition time.

While the optical scans provide sufficient fidelity
for reconstruction and simulation, they differ in
important aspects from the formal requirements
of standardized gear inspection procedures such as
ISO 1328 [25]. Focus variation produces irregular point
clouds rather than measurements along predefined
sampling traces, and perpendicular access to the gear
surface replaces the tangential acquisition directions
assumed in the standard. In addition, standardized
references, evaluation paths, and uncertainty budgets
prescribed in conventional accuracy grading are not
established in our setup. Consequently, the scans are
not intended for assigning ISO accuracy grades, but
serve as a representative proof-of-method dataset for
reconstruction and functional assessment studies.

In order to minimize rotational input variation on
the rotation axis and guarantee consistency between
samples, all gear measurements were aligned to a
shared coordinate system and filtered to preserve only
the relevant gear surface. The common rotational
axis was defined by the clamping mandrel used during
measurement. To extract the tooth regions, we first
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Figure 6: Full gear measurement.

Table 1: Optimized measurement parameters adapted
from Gauder et al. [14].

Parameter Value

Measurement strategy Alicona Real3D

Magnification 800A (10x)
Tilt angle +25°
Exposure time 1.810 ms
Contrast 0.6
Vertical resolution 0.030 pm
Lateral resolution 3.914 pm

Downsampling 16

Mean number of points 23,243
Width of measurement 1.312 mm
Polarization Active
Precision mode Off
Overlap percentage 19%
Outlier filter 0.93
Mean measurement time 3.476 min

identified the front surface of the point_cloud using a
histogram along the z-axis, which exhibits a distinct
peak caused by the angled measurement process.
Individual teeth were then detected Bynsegmenting
connected regions in the xy-plane. Figure 7 shows the
extracted parts of the gear. For eachpartial input, only
four consecutive adjacent teeth were retained, resulting
in oriented partial point cloudswith consistent spatial
positioning across the dataset. ~Although we tested
different tooth counts and alternative configurations,
such as selecting every second tooth or sampling across
the diameter, foursconsecutivesteeth yielded the best
reconstruction performances

Data Augmentation

To increase dataset diversity and robustness, several
augmentation strategies were applied to training and
validation sets.o These included mirroring each gear
across a plane through the rotation axis and applying
discrete rotational transformations corresponding to
the number of gear teeth. For each rotation step,
a different, subset of teeth is presented as input,
simulating various partial measurement scenarios.

IIi!‘fiu
i
i .:,:ﬂ

Figuire 7: Gear decomposition for data processing.

These augmer’tation steps result in 26 unique samples
per (gear /by combining mirroring with 13 discrete
tooth-aligned rotations. The partial point clouds were
randomly down-sampled to 2,048 points, while the full
target geometries were represented with 8,192 points.
These operations preserve the geometric structure of
the gear while exposing the model to a broader range
of unique spatial configurations.

Our dataset was divided into 70% training, 15%
validation and 15% test sets. Only the training and
validation sets were augmented, resulting in 5,096 and
1,092 point clouds, respectively. The test set remained
non-augmented, allowing for a consistent and unbiased
evaluation of model performance.

4.1. Point cloud completion networks

In this work, we employ the point cloud completion
networks PCN and MSN to reconstruct complete micro
gear geometries from partial measurements. During
training, we optimize the network parameters using
either the Chamfer Distance (CD) or the Earth-Mover
Distance (EMD) as the loss function. Let S; and
Sy denote two point clouds, where x € S and
y € Sy represent individual points from each set.
The Chamfer Distance provides an efficient measure
of local similarity by averaging the squared Euclidean
distances between each point in one set and its nearest
neighbor in the other:

Page 6 of 11
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Lep(Sh,52) = |S | Z mln llz — yl|3

+ o > min [z — |3
|SQ| A €S

(1)

In contrast, the Earth-Mover Distance evaluates
the global similarity by determining the minimum cost
required to transform one point cloud into the other:

Lpmp(S1,52) = |51 s Z |z — o)z, (2)

Although EMD generally offers a more faithful
evaluation of overall similarity, its computational
complexity is higher. To address this, we use an
approximation method as implemented in [22].

Training was performed for 200 epochs with a
batch size of 16, using either Lop or Lgyp as
the loss function. An initial learning rate of 5e~3
was employed, decaying gradually to a minimum of
le*. The networks were optimized using the AdamW
optimizer [26] with a weight decay of A = lei?.
The training and validation loss curves of all models
exhibited similar trends and stability, as shown in
Figure 8. To mitigate overfitting, the model achieving
the lowest validation loss during training was seleeted
for evaluation.

1 —
——— Frain Loss

11 <"Vl Loss

P O
|n'3-; '\V\-a.-.a’ . et

1 00
Epoch

0 5(] 150 200

Figure 8: Train andwalidation loss curves for the MSN
model using{Lcp for training.

4.2. Geometricireconstruction

In additien to/the methods presented, a geometric
reconstruction (GA) baseline model is implemented
for comparison. This approach reconstructs the gear
geometry by iteratively duplicating existing teeth and
placing them into unmeasured gaps based on their

7

relative positions.  The reconstruction./begins by
inserting the first available measured toothisegment
into the nearest missing position in clockwise direction
and continuing with the next awvailable “segment
until all gaps are filled. This méthod exploits the
rotational symmetry of the géar and assumies. structural
consistency between neighboring teeth. The resulting
point cloud is resized to 8,192(points either by random
sampling or interpolation by ¢hoosing a random point
and adding a point halfway to its elosest neighbor.

4.8. Functional simulation

Reconstructed and’ ground-fruth clouds are evaluated
with single-flank rolling simulations in Frenco Reany.
The simulation outputs diréctly quantify transmission
error under load and reveal how geometric reconstruc-
tion errors impact funetional performance.

Thissecomprehensive setup enables direct compar-
ison of [geometric fidelity and functional reliability for
inline‘micro gear quality control. The reconstruction
models can, be trained on new gear designs to accom-
miodate differgnt modules and tooth counts. Each par-
tial scan is processed with minimal latency, enabling
realstime inline integration.

5. Point cloud reconstruction

The trained models are evaluated using the reserved
test data with the different distance measures to the
ground truth (GT). The results are summarized in
Table 2

Table 2: Model inference quality comparison using
the test data set. Models highlighted with ' and 2 are
trained using Lop and Lgpp respectively.

GA  PCN! PCN2 MSN! MSN?2
Lepl[104] 1 1.74 229 1.44 1.96 1.76
Lempll03] L 1287 1424  10.82  19.33  12.61

The distance measures to the GT of all models
including the GA have similar orders of magnitude.
The models trained on Lgap have a consistently
better score when comparing it to their trained models
with ACCD~

A sample of predictions were displayed for
further analysis. The simulation software requires a
uniformly distributed point cloud for the evaluation.
If no structural features of the tooth surfaces are
recognizable, the simulation cannot be carried out. A
subset of predictions are illustrated in Figure 9 where
the coloring highlights the distance of the measured
point to the master geometry. The master geometry
is used as a reference because the goal is not to
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Gear | Gear 2 Gedr’3

Figure 9: Distances to the master geometry from predictions in pm.
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match individual points exactly, but to capture the
correct shape. Accordingly, the color gradients should
exhibit similar patterns if the overall geometry is
preserved. The predictions of all models show the
shape of our desired micro gear. However, the distances
to the real geometry deviate between models. The
colored representation shows that the models trained
with Lgap has a good agreement of the tooth flank
deviations to the real point clouds. This is particularly
noticeable for the MSN model, where the tooth gaps
show a deviation similar to that in the real point
cloud. In contrast, the models trained with L&p
show stronger deviations along the teeth that do not
correspond to reality.

A positive aspect about the PCN models is the
regular spacing of the predicted points. The MSN
models show a direct difference. The micro gear
structure is recognizable, but the point distributions of
the model show a non-uniformity compared to the PCN
architecture. The point distribution of the prediction
is more consistent with the original input, which was
reduced by random sampling. The structure of the
input can be inferred from the GA in Figure 10, as
this copies the existing input.

This behavior can further be seen the two-
dimensional visualization in Figure 10 where the gear
is unrolled. It uses the same coloring scheme as the
three-dimensional visualization. It further highlights
the nearly identical deviation from the GT to the GA
with the other models performing worse.

6. Simulation result

For each GT and predicted point cloud, the simulation
software computes the geometric %d funetional
properties of the left and right tooth flanks based on
the gear characteristics outlined in/Section 2. The
result is averaged across bothytooth flanks. Figure 11
shows the boxplots of the simulation results.

The key takeaway from. the boxplots is the good
performance of the geometric approach. For all of the
six selected parameters it only has very slight deviation
from the GT. Similazbehavior isachieved by the PCN?
model for F} and f;. /Generally speaking, the MSN
models show less accordance tothe GT. For easier
comparisons, the median of the feature values is noted
in Table 3 and the median difference to the GT is noted
in Table 4.

Thesresults, are/interpreted using Table 4. The
simulation shows that the models trained with Lgyp
perform better| than its counterpart except for the
features Fy,and Fj3. The values of the predictions fall
in the range of measurement uncertainty described in
[2] formspecific features. The geometric model shows
thedhighest accordance to the ground truth overall.

9

Table 3: Feature simulation results foréeach model.
Feature =~ GT ~ GA PCN! PCN? (MSNY, MSN?
Fo 10.33 10.31 10.99 8.85 8.22 717
Fg 1.18 1.31 1.04 0.71 2.08 3.59
Fy 5.90 5.82 13.04 11.27 16.47 10.08
FZ' 16.78 16.81 25.30 18.95 34.18 31.58

l, 4.74 4.62 7.88 6.97 8.86 4.71

f]’C 13.14 13.05 25.35 13.77 31.96 30.54

Table 4: Median simulation differences to GT across
gear quality features.

Feature ~ GR [ PCN!" PCN? MSN' MSN?
Fa -0.045, 080 A-142  -177  -3.01
Fg 0.14 . 20.15°" -0.46 0.90 2.39
Fyp 0.03  6.9%7, 494 1008  3.66
F] 0:10 1039 209 1633 1219
I 0.04n, 295 275 433 040
Ih <0:02 1241 070  18.43  12.98

7. Discussion and conclusions

The| tests/show that the base belief model with the
geometric approach for reconstructing point clouds
has a greater predictive power with regard to the
quality characteristics compared to the learning based
architectures. Despite a larger deviation from the
original point cloud using the distance metrics, the
model delivers better results in the single-flank rolling
simulation. These features are of crucial importance
for practical use in the evaluation of micro gears.
While the proposed approach reduces measurement
time, our experiments confirm that deviations in the
reconstructed quality features remain and must be
explicitly considered. Further improvements could
be achieved by fine-tuning the loss functions to
incorporate topological information, as the current
metrics evaluate only point-wise accuracy and not
overall shape fidelity.

The ability to retrain both neural models on new
gear variants ensures adaptability to different modules
tooth counts and design features. Moreover, the
near-instant processing of partial scans demonstrates
the feasibility of real-time analysis in principle,
supporting prospects for deployment in quality control
workflows. These factors demonstrate the feasibility of
automated high-throughput inspections in production
environments.

In conclusion, the analytical method provides a
dependable foundation for inline micro gear quality
control. Optimized learning-based approaches hold
promise for scalable automated inspection once they
incorporate domain-specific knowledge and expanded
training data. Together with explicit consideration
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Figure 11: Boxplot of the simulation results for each gear with cutoff at 3o.
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of measurement and reconstruction deviations, these
strategies pave the way toward future inline evaluation
of micro gears in advanced manufacturing workflows.

Data availability

Due to legal constraints, the data cannot be shared
publicly. The data supporting this study’s findings can
be obtained from the authors upon reasonable request.
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