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 A B S T R A C T

This work presents a homogenization approach for considering process-specific mesostructures typical for 
material extrusion in finite element simulations to predict process-induced deformation. The approach is based 
on adapted orientation tensors and orientation averaging, accounting for the characteristic mesostructure and 
directionality of the material extrusion process. The method addresses the challenge of modeling mesostructural 
effects across entire components with computationally feasible element sizes. It is implemented in Python and
Abaqus, and validated experimentally with PLA, showing good agreement between measured and predicted 
process-induced deformation. Comparative simulations with an isotropic stiffness formulation demonstrate 
the significant impact of considering mesostructural anisotropy, highlighting improvements over conventional 
approaches. Numerical studies further show the evolution of effective material orientation during printing, 
underscoring the advantages of the anisotropic approach. This method enables efficient, physically consistent 
integration of material extrusion mesostructures into process-induced deformation prediction, supporting 
enhanced process design and reliability in material extrusion manufactured components.
1. Introduction

1.1. Motivation and state of the art

Additive manufacturing (AM) enables the layer-by-layer production 
of components with a high degree of design freedom, overcoming 
the limitations of conventional tooling while reducing material waste 
and manufacturing costs, particularly in the production of complex 
or customized components and small series. This paper addresses the 
AM technology material extrusion (MEX), referred to as fused filament 
fabrication (FFF) when using filaments as feedstock, and known com-
mercially as fused deposition modeling (FDM). This emerging process 
for unreinforced [1] and fiber-reinforced [2,3] thermoplastic compo-
nents is of increasing industrial interest due to its ability to precisely 
orient materials locally [4] and introduce controlled anisotropy [5]. 
In particular, fiber-reinforced filaments enable load-adapted designs 
due to the high fiber orientation in the extrusion direction [6]. A 
major challenge in the production of such components is process-
induced deformation (PiD) [7], which complicates the processability 
of warp-sensitive polymers [8,9]. The large number of possible printing 
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parameters directly influence component quality [10] and makes exper-
imental optimization time-consuming. This underscores the potential of 
numerical simulation to predict PiD, thereby improving processability 
and reducing costly trial-and-error approaches.

Finite element (FE) methods are the predominant approach for pre-
dicting PiD and residual stresses in MEX additive manufacturing [11–
14]. The common macroscopic simulation strategy homogenizes the 
strand geometry and voids rather than explicitly modeling them. Zhang 
and Chou [11,12] pioneered FE simulations of MEX by progressively ac-
tivating initially inactive elements along the G-Code-defined deposition 
path. This element activation method, also implemented in commercial 
software like Abaqus [15,16] or Digimat-AM [17], enables the temporal 
and spatial representation of extrusion-based deposition.

The simulation begins with component discretization into finite 
elements, which are activated stepwise according to the printing se-
quence. Abaqus supports partial element activation, allowing multiple 
strands or layers to be modeled within a single element by scaling the 
element mass proportional to the actual printed volume, thus improv-
ing the representation of material distribution. The process simulation 
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approaches typically use a sequentially coupled thermomechanical ap-
proach, where transient temperature fields from the thermal simulation 
serve as thermal loads in the subsequent mechanical simulation to 
compute stresses and deformation. The initial element temperature 
corresponds to the extrusion temperature. In Abaqus, the deposition 
strategy is controlled by an so called event series, which specifies the 
timing, path, and extrusion status [15].

Due to the small size of individual strands relative to the component, 
modeling every strand separately is computationally infeasible. There-
fore, multiple filaments are combined into single elements. Because 
extrusion occurs along defined trajectories, local anisotropic material 
structures arise, leading to anisotropic stiffness within elements [18–
20].

However, most simulations model the material as temperature-
dependent but isotropic. For instance, Zhou et al. [21] use a ther-
moelastic isotropic polymer model, and Cattenone et al. [22] ap-
ply a thermo-elasto-plastic model without considering process-induced 
anisotropy. Abaqus-based studies (e.g., Brenken et al. [14,23] and 
Trofimov et al. [24]) use the Abaqus subroutine ORIENT to determine 
the orientation vector according to the deposition trajectory. In this 
method, implemented in the Abaqus AM Modeler [15], the orientation 
vector is fixed once based on the initial volume fraction deposited 
in each element and does not update when subsequent material with 
differing orientation is added. This means, for example, that a com-
ponent with alternating infill directions of 0◦/90◦ effectively exhibits 
unidirectional material properties (e.g., entirely 0◦). As a result, the 
actual combination of orientations within the element is neglected. This 
simplification can lead to significant errors in predicting stiffness and 
deformation behavior. Moreover, this approach is limited because it 
uses a single orientation vector rather than a full orientation tensor, 
restricting the representation of complex material orientations.

In summary, while various FE-based approaches exist for simulating 
PiD in MEX components, the evolving mesostructure and resulting 
anisotropic material behavior during the process are either oversimpli-
fied or neglected. This gap highlights a critical need for improved mod-
els that accurately capture material anisotropy to enhance prediction 
fidelity in MEX process simulations.

Since the local mesostructure plays a key role in determining the fi-
nal performance of MEX components, several studies have investigated 
characteristic mesostructures within structural simulations to derive 
stiffness properties. The main modeling strategies in this context are 
therefore reviewed and assessed for their suitability in process simula-
tions aimed at predicting PiD. Existing research in this field primarily 
focuses on representing the anisotropic mechanical behavior and stiff-
ness of MEX components through multiscale modeling. Commonly used 
techniques include homogenization based on classical laminate theory 
(CLT) [25–28], representative volume elements (RVEs) [29–31], hybrid 
CLT-RVE methods [32], and fast fourier transformation (FFT)-based 
homogenization [33].

CLT determines effective elastic properties by treating individual 
layers of a MEX component as laminates and calibrating the stiffness 
matrix using unidirectional experimental data [25–28]. Nevertheless, 
one major drawback of this method is its limited accuracy in capturing 
variations in material behavior across the full thickness of each layer.

Homogenized models utilizing RVEs are capable of replicating the 
macroscopic behavior of components with structured infill geome-
tries [29–31]. Despite this, their implementation in FEM-based process 
simulations is constrained, particularly when simulating element acti-
vation, evolving mesostructures, and transient thermal fields. To reflect 
the true effective properties at every location during the process, a 
distinct RVE analysis is needed for each point experiencing different 
temperatures and structural configurations. This necessitates continu-
ous RVE recalculations throughout the simulation, resulting in a high 
computational effort that makes real-time simulations with element 
activation practically unfeasible.
2 
FFT-based homogenization is a computationally efficient method for 
capturing anisotropic properties and spatial variations in MEX com-
ponents. Liu et al. [33] modeled extrusion-path-dependent behavior 
using a rotated transversely isotropic material model. However, in 
process simulations, the method must be recalculated frequently to 
reflect evolving temperatures and mesostructures, which leads to high 
overall computational cost. Additionally, integration into conventional 
FEM tools like Abaqus is challenging, so such methods are typically 
implemented in custom simulation frameworks.

In summary, these homogenization methods require substantial 
numerical or experimental effort and are not yet practical for efficient 
PiD prediction in MEX process simulations, revealing a significant 
research gap.

A common method to more comprehensively describe material ori-
entation in inhomogeneous structures involves the use of second- and 
fourth-order orientation tensors [34,35]. These orientation tensors rep-
resent the statistical distribution of fiber or grain orientations within a 
volume. The second-order orientation tensor characterizes the preferred 
direction of material orientation and indicates whether the distribution 
is anisotropic or isotropic. It captures the mean orientation but lacks 
information about the spread or variability around this direction. In 
contrast, the fourth-order orientation tensor provides a more detailed 
description of the orientation distribution. It accounts not only for the 
preferred direction but also for the degree of dispersion around it. 
This allows for a more accurate determination of anisotropic material 
properties such as stiffness and thermal expansion. By averaging the 
orientation distribution over the volume, effective material properties, 
such as stiffness tensors, can be computed [35].

1.2. Originality

This work addresses the central research gap outlined above: the 
integration of process-specific, inhomogeneous mesostructures into full-
scale FE simulations of the MEX process for predicting PiD. The main 
challenge is to accurately capture local anisotropic effects while main-
taining computational efficiency through appropriate discretization 
strategies.

To this end, the paper presents a novel anisotropic homogenization 
method that accounts for the characteristic inhomogeneous mesostruc-
ture of the MEX process. The approach builds on the orientation 
averaging scheme [35], adapted to reflect MEX-specific features. Key 
modifications to the formulation of orientation tensors and the aver-
aging procedure are introduced, along with details of the numerical 
implementation. The fundamental idea of representing the material 
orientation of the mesostructure with orientation tensors was first 
proposed by us in [36]. This work builds on the basic framework 
introduced in [36] by formulating and implementing it efficiently for 
arbitrary component geometries and real G-Code data.

The implementation is verified, and the overall simulation strategy 
is validated against experimental data. A comparison with an equiv-
alent isotropic approach highlights the relevance of including local 
mesostructural effects. Additional numerical studies investigate the 
evolution of effective material orientation during processing and in the 
final printed component.

The key contributions of this study can be summarized as follows:

• Description and categorization of the MEX-typical mesostructure.
• Formulation of the homogenization approach based on orien-
tation averaging. This includes the formulation of orientation 
tensors and the orientation averaging to determine the effective 
stiffnesses based on an experimentally determined orthotropic 
stiffness tensor.

• Implementation of the homogenization approach, considering 
process-typical special cases for application in the FE software
Abaqus.

• Verification of the approach and the implementation in Python
and Abaqus.
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• Numerical studies using the ansiotropic homogenization approach 
to investigate local material orientation during the printing pro-
cess.

• Formulation of an equivalent isotropic approach that derives 
an isotropic description from the experimentally determined or-
thotropic stiffness.

• Experimental validation of the anisotropic homogenization ap-
proach based on experiments. For this purpose, the character-
ization of the PLA used as an example is discussed and the 
experiment is presented.

• Comparison of measured deformation with anisotropic and equiv-
alent isotropic stiffness descriptions.

1.3. Notation

A[𝑩] Mapping of a 2nd-order tensor by a 4th-order tensor, i.e. 
(A[𝑩])𝑖𝑗 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙

tr ∙ Trace, e.g. tr 𝐀 = 𝐴𝑖𝑖

‖ ∙ ‖ Frobenius norm, e.g. ‖𝐀‖ =
√

𝐀 ∶ 𝐀

⋅ Scalar product, e.g. 𝐀 ⋅ 𝐁 = 𝐴𝑖𝑗𝐵𝑖𝑗

∶ Frobenius scalar product (double trace product or trace prod-
uct), e.g. 𝐀∶𝐁 =

∑

𝑖,𝑗 𝐴𝑖𝑗𝐵𝑖𝑗

⊗ Dyadic product, e.g. 𝐧⊗ 𝐧 = 𝑛𝑖𝑛𝑗

□ Product between second-order tensors: (𝐀□𝐂)𝐁 = 𝐴𝑖𝑘𝐵𝑘𝑙𝐶𝑙𝑗

⋆ Rayleigh product: 𝐐 ⋆ 𝐀 = 𝐐𝐀𝐐⊤ with 𝑸 ∈ Orth+

(∙)𝑛⊗ Dyadic product repeated 𝑛 times to form an 𝑛th-order tensor

⟨∙⟩ Averaging over surface 

2. Homogenization approach

2.1. Description of the mesostructure

Components manufactured by using MEX can generally be divided 
into three distinct mesostructural regions:

1. The perimeter area, which defines the contour of the component.
2. The infill, which can be freely specified.
3. The transition zone between the perimeter and the infill, where 
changes in the extrusion nozzle’s movement direction result in a 
modified mesostructure.

The infill pattern is defined by various parameters, including the infill 
angle, which controls the orientation of the deposited strands. Both 
the infill and the number of perimeters can be defined prior to fab-
rication, allowing for a wide range of local mesostructures within the 
same component geometry and material density. Fig.  1 schematically 
illustrates the three regions described. In addition to the orientation of 
the deposited strands, the mesostructure is also characterized by the 
resulting voids. Fig.  2 shows a resulting mesostructure of an infill area 
for a print in which all strands are deposited in the same direction. 
A schematic representation (left) and a microscopic image (right) is 
shown.

The local mesostructure strongly contributes to the stiffness of the 
component and thus directly controls the PiD of the manufactured 
component. Throughout this paper, the coordinate system shown in 
Fig.  2 will be used. An extrusion in the 𝑥-direction is defined as an 
infill angle of 0◦, and an extrusion in the 𝑦-direction is defined as 
an infill angle of 90◦. It should be noted that the mesostructures 
within the three categories ‘‘Perimeter’’, ‘‘Perimeter + Infill + Turning 
points’’, and ‘‘Infill’’ scatter in the real process and are not exactly 
identical throughout the component. The approach presented in this 
paper neglects this process scatter.
3 
Fig. 1. Classification of process-typical mesostructures into three different 
categories: perimeter (green), infill (red) and the area between perimeter and 
infill defined by the turning points of the extrusion and parts of the infill 
(blue).

2.2. Anisotropic approach

To homogenize the resulting mesostructure, the orientation average 
scheme is used in this work [35]. It is used to determine the statistical 
distribution of the orientation of particles or fibers (e.g., in suspensions 
or composites) and to derive effective macroscopic properties.

This approach is applied to the MEX process to determine the influ-
ence of the process-typical complex and directional mesostructure on 
the macroscopic properties of the additively manufactured component. 
The orientation formulation is based on the following assumptions:

• The properties of the resulting material are considered as a func-
tion of the spatial distribution and orientation of its phases (ex-
truded strand and air).

• Periodic mesostructures are assumed.

The orientation distribution function (ODF) 𝑓 (𝒙,𝒑) is used to describe 
the resulting mesostructures statistically [35]. This function represents 
a probability density. Its integration yields the probability of finding 
an extruded strand aligned in the direction 𝒑 at the spatial position 𝒙. 
𝑓 (𝒙,𝒑) is characterized by the following properties: 

𝑓 (𝒙,𝒑) ≥ 0, 𝑓 (𝒙,𝒑) = 𝑓 (𝒙,−𝒑), ∫2 𝑓 (𝒙,𝒑)d𝑆 = 1. (1)

The surface of the unit sphere is denoted by 2 with the surface element 
𝑑𝑆. In a simplified form, the value of ODF 𝑓𝑚(𝒙,𝒑𝑚) represents the 
orientation fraction of material 𝑚 in position 𝒙 with orientation 𝒑𝑚. In 
the context of MEX, the orientation 𝒑, the position 𝒙, and the extrusion 
rate are given by the G-Code. The function 𝑓𝑚(𝒙,𝒑𝑚) can therefore be 
defined as the volume fraction of strand 𝑚 with orientation 𝒑𝑚 within 
a volume (e.g. finite element) at position 𝒙. For a total of 𝑁 extruded 
strands contributing to the volume, this is expressed as: 

𝑓𝑚(𝒙,𝒑𝑚) =
𝑉𝑚(𝒙,𝒑𝑚)

∑𝑁
𝑖=1 𝑉𝑖(𝒙,𝒑𝑖)

(2)

where 𝑉𝑚 is the volume of strand 𝑚 within the considered volume, and 
the denominator represents the total volume of all strands intersecting 
that volume. Owing to the characteristics of the standard MEX process, 
the extruded strands are confined to the x–y plane, with no out-of-
plane (𝑧-direction) orientation (see Appendix  A for a discussion on 
3D deposition paths). For this planar orientation, 𝜃 = 𝜋∕2 applies to 
all strands, and each orientation state is described by the angle 𝜙, as 
illustrated in Fig.  3.
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Fig. 2. Schematic representation of a unidirectionally printed mesostructure and microscopic image of the cross-section in the y–z plane.
Fig. 3. Illustration of a deposited strand 𝑚 with orientation angle 𝜙 within a 
finite element, considered as the control volume for homogenization.

Therefore, the orientation vector 𝒑𝑚 of each strand 𝑚 can be de-
scribed as 

𝒑𝑚 =
⎡

⎢

⎢

⎣

𝑝x
𝑝y
𝑝z

⎤

⎥

⎥

⎦𝑚

=
⎡

⎢

⎢

⎣

cos(𝜙)
sin(𝜙)
0

⎤

⎥

⎥

⎦𝑚

. (3)

The orientation space is therefore not a sphere, as in the case of 
arbitrary spatial orientations, but rather a circle due to the restriction 
to the 1–2 plane.

An averaged description of the state of orientation can be obtained 
using orientation tensors (OT), where the second-order tensor 𝑨 and 
the fourth-order tensor A are used in practice [35]: 

𝑨 = ∫2 𝑓 (𝒙,𝒑)𝒑⊗ 𝒑d𝑆, A = ∫2 𝑓 (𝒙,𝒑)𝒑⊗ 𝒑⊗ 𝒑⊗ 𝒑d𝑆. (4)

The tensors must fulfill the following requirements: 

𝑨 = 𝑨⊤, tr𝑨 = 1, A[𝑰] = 𝑨 (5)

Using Eq.  (2), the orientation tensors 𝑨 and A can be approximated 
by the following normalized expression for a mesostructure with 𝑁
strands: 

𝑨 =
𝑁
∑

𝑚=1

(

𝑉𝑚
∑𝑁

𝑖=1 𝑉𝑖

)

(𝒑⊗ 𝒑)𝑚 (6)

A =
𝑁
∑

𝑚=1

(

𝑉𝑚
∑𝑁

𝑖=1 𝑉𝑖

)

(𝒑⊗ 𝒑⊗ 𝒑⊗ 𝒑)𝑚 (7)

Unlike the standard procedures used in most other process simulations 
(such as injection molding), this procedure allows for the explicit calcu-
lation of the 4th-order OT, rather than approximating it using a closure. 
This has the advantage that uncertainties associated with the closure 
are not transferred to the effective mechanical properties [37,38]. As 
the mesostructure within a given element evolves during the printing 
process, the orientation tensors 𝑨 (second-order) and A (fourth-order) 
become time-dependent. They are therefore computed at each time 
increment 𝑡𝑖, based on the updated strand orientation at the end of the 
increment.
4 
To determine a valid macroscopic effective stiffness C̄ of the ad-
ditively manufactured component, orientation averaging is performed 
over all strand directions in the mesostructure. This approach is based 
on the orientation averaging framework introduced by Advani and 
Tucker [35], which was originally developed for discontinuous fiber-
reinforced composites. In the context of MEX printing, the framework is 
adapted to account for the layer by layer nature of the MEX mesostruc-
ture. A key characteristic of the standart MEX process is that the third 
orthotropic material axis, 𝒆3, is always aligned with the global build 
direction ([0, 0, 1]⊤). As a result, the orientation averaging emphasizes 
the in-plane variation of strand orientations, represented by the second- 
and fourth-order orientation tensors 𝑨 and A. The following derivation 
presents the orientation averaging procedure specifically tailored to this 
MEX-specific case.

The effective stiffness tensor C̄ is defined as a Voigt-like average: 

C̄ ∶= ⟨C⟩ = ∫2
C(𝒑)𝑓 (𝒙,𝒑)d𝑆, (8)

where C(𝒑) is already an effective (homogenized) stiffness tensor as-
sociated with strands oriented in direction 𝒑, and 𝑓 (𝒙,𝒑) is the orien-
tation distribution function. The goal is to express C̄ in terms of the 
orientation tensors and material parameters: 

C̄ = 𝑓 (A,𝑨,𝒑) . (9)

The derivation begins with hyperelasticity theory, where stresses 𝝈 are 
obtained as the derivative of a strain energy density function 𝑤(𝜺). For 
a linear stress–strain relationship, the strain energy function 𝑤(𝜺) must 
be quadratic in 𝜺:

𝑤(𝜺) = 𝑎
2
𝜀211 +

𝑏
2
𝜀222 +

𝑐
2
𝜀233 + 𝑑𝜀11𝜀22 + 𝑒𝜀11𝜀33 + 𝑓𝜀22𝜀33 + 2𝑔𝜀223

+ 2ℎ𝜀213 + 2𝑝𝜀212 (10)

with nine independent material coefficients 𝑎 to 𝑝.
The symmetric dyadic product is used for the strain basis tensors: 

𝑲 𝑖𝑗 =
1
2
(

𝒆𝑖 ⊗ 𝒆𝑗 + 𝒆𝑗 ⊗ 𝒆𝑖
)

, (11)

which satisfies: 

𝑲 𝑖𝑗 ∶ 𝜺 = 𝜀𝑖𝑗 , so that 𝑲 𝑖𝑗 =
𝜕𝜀𝑖𝑗
𝜕𝜺

. (12)

From this, the stiffness tensor is:

C ∶=
𝜕2𝑤(𝜺)
𝜕𝜺2

= 𝜕𝝈
𝜕𝜺

= 𝑎𝑲11 ⊗𝑲11 + 𝑏𝑲22 ⊗𝑲22 + 𝑐𝑲33 ⊗𝑲33

+ 𝑑(𝑲11 ⊗𝑲22 +𝑲22 ⊗𝑲11)

+ 𝑒(𝑲11 ⊗𝑲33 +𝑲33 ⊗𝑲11)

+ 𝑓 (𝑲22 ⊗𝑲33 +𝑲33 ⊗𝑲22)

+ 4𝑔𝑲23 ⊗𝑲23 + 4ℎ𝑲13 ⊗𝑲13

+ 4𝑝𝑲12 ⊗𝑲12. (13)
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The orthotropic basis vectors in the context of MEX, as shown in
Fig.  3, can be defined: 

𝒆1 =
⎡

⎢

⎢

⎣

cos(𝜙)
sin(𝜙)
0

⎤

⎥

⎥

⎦

= 𝒑 𝒆2 =
⎡

⎢

⎢

⎣

− sin(𝜙)
cos(𝜙)

0

⎤

⎥

⎥

⎦

= 𝒑⟂ 𝒆3 =
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

. (14)

With Eq.  (11), this gives 

𝑲 𝑖𝑗 = sym
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝒑⊗ 𝒑 𝒑⊗ 𝒑⟂ 𝒑⊗ 𝒆3
𝒑⟂ ⊗ 𝒑 𝒑⟂ ⊗ 𝒑⟂ 𝒑⟂ ⊗ 𝒆3
𝒑⊗ 𝒑 𝒑⊗ 𝒑⟂ 𝒆3 ⊗ 𝒆3

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

. (15)

From these, the 𝑲 𝑖𝑗 tensors are constructed and averaged over the ori-
entation space. The results can be expressed in terms of the orientation 
tensors 𝑨 and A, along with the planar identity tensor 𝑰pl = 𝒆21+𝒆22, and 
the dyadic products involving 𝒆3. This leads to analytical expressions 
for the orientation-averaged components ⟨𝑲 𝑖𝑗 ⊗𝑲𝑘𝑙⟩ , as follows: 

⟨𝑲11 ⊗𝑲11⟩ =⟨𝒑4⊗⟩ = A (16a)

⟨𝑲22 ⊗𝑲22⟩ =𝑰pl ⊗ 𝑰pl − 𝑰pl ⊗𝑨 (16b)
− 𝑨⊗ 𝑰pl + A

⟨𝑲33 ⊗𝑲33⟩ =⟨𝒆4⊗3 ⟩ = 𝒆4⊗3 (16c)

⟨𝑲11 ⊗𝑲22 +𝑲22 ⊗𝑲11⟩ =𝑰pl ⊗𝑨 +𝑨⊗ 𝑰pl − 2A (16d)

⟨𝑲11 ⊗𝑲33 +𝑲33 ⊗𝑲11⟩ =𝑨⊗ 𝒆2⊗3 + 𝒆2⊗3 ⊗𝑨 (16e)

⟨𝑲22 ⊗𝑲33 +𝑲33 ⊗𝑲22⟩ =𝑰pl ⊗ 𝒆2⊗3 + 𝒆2⊗3 ⊗ 𝑰pl− (16f)

𝑨⊗ 𝒆2⊗3 − 𝒆2⊗3 ⊗𝑨

⟨𝑲13 ⊗𝑲13⟩ =1
4

(

𝑨□ 𝒆2⊗3 +
(

𝑨□ 𝒆2⊗3
)⊤𝑅

(16g)

+ 𝒆2⊗3 □𝑨 +
(

𝒆2⊗3 □𝑨
)⊤𝑅 )

⟨𝑲12 ⊗𝑲12⟩ =1
4

(

𝑨□ 𝑰pl +
(

𝑨□ 𝑰pl
)⊤𝑅 (16h)

+ 𝑰pl□𝑨 +
(

𝑰pl□𝑨
)⊤𝑅

)

−A (16i)

⟨𝑲23 ⊗𝑲23⟩ =1
4

(

𝑰pl□ 𝒆2⊗3 +
(

𝑰pl□ 𝒆2⊗3
)⊤𝑅

(16j)

− 𝑨□ 𝒆2⊗3 −
(

𝑨□ 𝒆2⊗3
)⊤𝑅

+ 𝒆2⊗3 □ 𝑰pl +
(

𝒆2⊗3 □ 𝑰pl
)⊤𝑅

− 𝒆2⊗3 □𝑨 −
(

𝒆2⊗3 □𝑨
)⊤𝑅 )

.

With Eqs. (6), (7), (13), and (16), the effective stiffness tensor C̄ of 
the MEX-printed mesostructure can be expressed as a function of the 
second- and fourth-order orientation tensors 𝑨 and A. The material-
specific coefficients 𝑎 to 𝑝 in Eq.  (13) are obtained directly from ex-
perimental characterization of the unidirectionally printed orthotropic 
material, represented by the stiffness tensor Cexp

ortho.

2.2.1. Implementation
The implementation relies on custom Python scripts and Abaqus

subroutines to calculate the effective stiffness C̄, which evolves during 
the process, in each finite element. This calculation is based on the 
strands deposited during the manufacturing process and their orien-
tation 𝒑 within each element during the simulation. The input data 
consists of G-Code, generated by standard slicing software. This G-
Code is processed using the open-source Python package pyGCodeDe-
code (pyGCD) [39,40], which extracts the necessary event series for 
the process simulation in Abaqus. This package [40] enables precise 
reconstruction of the nozzle trajectory, accounting for the printer’s 
firmware, as well as its specific settings and limitations. The process 
is summarized in Fig.  4, and the steps are described in detail below.
5 
Fig. 4. Flowchart of the implemented workflow for the computation of 
orientation tensors 𝑨 and A and the corresponding effective stiffness C̄ in each 
element at every time increment.

Processing Event-Series. In the next step of the algorithm, the generated 
event series is processed line by line. For each event, it is determined 
which finite elements are intersected by the corresponding nozzle 
motion. Only movements associated with material extrusion are taken 
into account. To minimize computational effort, the centroids of all 
elements are organized in a kd-tree structure, enabling an efficient 
search within the current nozzle height level. This allows restricting 
the search to the eight elements surrounding the element currently 
occupied by the nozzle, thereby significantly reducing the number of 
intersection checks. The underlying search uses a k-nearest neighbor 
(kNN) approach as a practical tool to achieve this efficiency. As a result, 
the algorithm remains computationally efficient even for components 
with a large number of elements.

When analyzing nozzle motion within an element, several relevant 
scenarios must be considered to accurately map the extrusion process 
onto the mesh. The scenarios are listed below and illustrated in Fig.  5:

(a) Both the start point (1) and the end point (2) of the nozzle 
motion lie outside the element.
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Fig. 5. Representation of a nozzle motion (1 → 2) as it passes through 
elements. As well as the considered scenarios for such a nozzle motion (a–e).

(b) The start point (1) lies inside the element, while the end point 
(2) lies outside.

(c) The start point (1) lies outside the element, while the end point 
(2) lies inside.

(d) Both the start point (1) and the end point (2) lie inside the 
element.

(e) The extruded strand spans across two adjacent elements.

For each element in which a strand is deposited, the respective 
length of the nozzle motion, the width of the deposited strand, and the 
orientation vector 𝒑 according to Eq.  (3) are also determined. For the 
width of the deposited strand, pyGCD is used to calculate the average 
extrusion width from the G-Code during the analyzed nozzle motion. 
The orientation is defined with regard to the 𝑥-axis (1-direction). The 
information with the according Element-IDs (E-IDs) are stored in a CSV-
file for each motion. The structure is shown in Fig.  5. This information 
can then be used to calculate and interpret the resulting orientation 
tensors at specific times during the process.
Processing CSV-file. The information in the CSV-file is further inter-
preted for use in Abaqus. For a given time increment 𝑡inc from the 
subsequent process simulation, the algorithm evaluates how many 
strands with a certain orientation 𝒑 are deposited in which element 
(E-ID). For each time increment and each element, the strands with the 
same orientation are grouped. In addition, their volume fraction 𝑉frac
in the element and the total volume 𝑉all deposited in the element up to 
this time increment are stored in a file.
Importing Abaqus file. At the start of the process simulation, a user 
subroutine UEXTERNALDB reads the file and stores the information 
in global arrays. In this way, the file only needs to be read once per 
simulation.

Compute 𝑨, A, and C̄. The material model used in the simulation 
(see Section 3.1.2) is implemented as a user subroutine UMAT. Within 
this UMAT, which is called for each integration point in each time 
increment, the information in the global arrays is accessed. For each 
element, the orientation tensors 𝑨 and A are calculated here in each 
time increment using Eqs.  (6) and (7). Eqs. (13) and (16) then provide 
C̄. If no strand is added to the element in the current time increment, 
𝑨, A, and C̄ are not recalculated. C̄ is then the starting point for the 
further material model, which is described in Section 3.1.2.

2.2.2. Verification
To verify the implemented workflow, a plate with dimensions of 

27mm × 27mm × 1mm and elements with dimensions of 9mm × 9mm ×
1mm is analyzed. Based on the G-Code generated for each case, the
Abaqus file was created according to the procedure described in Sec-
tion 2.2.1. The implemented Abaqus subroutines were then used to 
calculate the orientation tensors and volume fraction for the example 
geometry. An extrusion width of 3mm and different trajectories were 
6 
considered to cover different cases, as illustrated in Fig.  6. The dimen-
sions of the component and its discretization allow an easy comparison 
of the volume fractions and a direct evaluation of the results of the 
implemented subroutines. To verify the calculated orientation of each 
element, the planar fractional anisotropy given by 

𝑎plfr =
√

8
5

‖Apl − Aiso
pl ‖

‖Apl‖
(17)

is used. Here Apl is the planar fourth-order orientation tensor and Aiso
pl

is its isotropic fraction. This provides a scalar comparison value for the 
orientation. Here, 𝑎plfr = 0 stands for planar isotropy in the x–y plane and 
𝑎plfr = 1 for unidirectional orientation. Fig.  6 shows the corresponding 
calculated orientations and volume fractions in the nine elements of the 
component with Abaqus. The results show that the resulting orientation 
and volume fraction are correctly assigned to the individual elements 
for all cases described in Section 2.2.1. The resulting volume fraction is 
easy to calculate, except for the fourth case, and can therefore be easily 
checked. Since this is not the case in the fourth case, the information on 
the volume fraction has been omitted here, but checked by an analytical 
calculation using Python.

Fig. 6. Analyzed trajectories and the corresponding planar fractional 
anisotropy 𝑎plfr and volume fractions 𝑉f rac in the nine elements of the component 
used to verify the implemented workflow from Fig.  4 within Abaqus.



F. Frölich et al. Additive Manufacturing 113 (2025) 105023 
2.2.3. Numerical studies of the resulting material orientation
To analyze the resulting material orientation in additively manu-

factured components during and at the time of completion, a plate 
measuring 48mm × 48mm × 2.4mm was examined. The component 
was sliced with three perimeters and alternating 0◦ and 90◦ infill. The 
strand width was 0.4mm and the height was 0.2mm. To demonstrate the 
influence of the element size, hexahedral elements with edge lengths of 
0.6mm, 0.8mm, 1.2mm and 2.4mm in all three spatial directions were 
examined. The following figures in this section show the details of 
the plate with the respective discretization and the planar fractional 
anisotropy 𝑎plfr according to Eq.  (17).

Fig.  7(a) shows the resulting orientation states at the end of the 
component production. A visualization plot of the planar fourth-order 
orientation tensor Apl using so-called HOME-glyphs [41] is shown for 
different locations within the component. It represents the in-plane 
orientation of the material in the x–y plane. The 𝑎plfr of each element 
shows the uniformly distributed infill mesostructure in the center of the 
component. Due to the element size, the ‘‘Perimeter’’ and ‘‘Perimeter + 
Infill + Turning points’’ mesostructures are combined. The visualization 
7 
plots reveal a pronounced alignment of the material in the outer areas 
of the component. This is due to the perimeters and turning points. 
Such a prediction is plausible given the actual material orientation in 
the component.

Fig.  7(b) shows the evolution of 𝑎plfr throughout the process time at 
different points in the component.The progression of the orientation 
after printing the first strand in the respective element is shown. It 
can be seen that although the same material orientation is partially 
reached at the end, the orientation evolves differently during the 
printing process. The time dependence of the material orientation is 
due to the alternating infill. As a result, alternating orientations of 
the extruded material are added during the process until the element 
is completely filled with strands. These results show that the compo-
nent has locally different stiffness during the printing process, which 
affects the PiD. This study demonstrates that the presented approach 
can capture the evolving material orientation within an individual 
element, thereby representing a significant advancement beyond the 
fixed-orientation approach currently available in Abaqus. To achieve 
an identical stiffness evolution (apart from the influence of perimeters 
(a) 

(b) 

Fig. 7. (a) Visualization of the planar fourth-order orientation tensor Apl at different locations within the component. The component is discretized using elements 
with edge lengths of 2.4mm in all three spatial directions. The plot illustrates the in-plane orientation of the material in the x–y plane, showing a uniform 
mesostructure in the center and a pronounced alignment in the outer regions due to perimeters and turning points of the extrusion. (b) Evolution of 𝑎plfr over 
the process time at different points in the component. The plots illustrate the evolution of the material orientation, showing time-dependent variations due to 
alternating infill. The printing time for one layer is approximately 200 s.
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Fig. 8. Influence of element size on the evolution of material orientation over 
time for the infill mesostructure. Element sizes 2.4mm, 1.2mm, 0.8mm and 
0.6mm are shown in this order from top left to bottom right. The strand width 
was 0.4mm and the height was 0.2mm.

and turning points) using the built-in method in Abaqus, the element 
height would have to correspond to the layer height, which would 
drastically increase the number of elements and computation time. The 
presented method therefore offers a practical advantage by accurately 
representing evolving anisotropy even with coarser meshes and, more 
generally, represents an advancement beyond the state of the art in 
computational modeling of material orientation in MEX.

Fig.  8 shows the influence of the element size on the change in 
material orientation over time for the infill mesostructure. The element 
size affects the local stiffness evolution during the process, as it de-
termines how many layers are combined within a single element. The 
study further reveals that the number of layers per element, specifically 
whether it is even or odd, has a significant impact on the resulting 
orientation distribution. When the element height is an even multiple 
of the layer height and alternating infill patterns are used, each element 
in the infill region tends to receive the same orientation. In contrast, for 
odd multiples, alternating orientations are retained within the element 
layers. This leads to a stepwise variation in stiffness between adjacent 
elements, which can in turn cause convergence issues in the simulation. 
Additionally, the variation in resulting orientation decreases with in-
creasing element size. When the infill pattern remains constant across 
all layers, the resulting orientation per element is unaffected by the 
element height.

The investigations in this section show that the presented methodol-
ogy can generally be used to represent local changes in the mesostruc-
ture, such as the mesostructure categories introduced in Section 2.1. A 
smaller element size allows a finer resolution of the different structures, 
8 
Fig. 9. Illustration of local mesostructure changes for an element edge length 
of 0.6mm.

however, an even number of layers per element is recommended to 
avoid stiffness jumps. This is illustrated again in Fig.  9 for the element 
edge length of 0.6mm. It can be seen that the element size and the 
associated uneven number of layers in the element result in different 
orientation states in the ‘‘Perimeter + Infill + Turning points’’ region.

2.3. Equivalent isotropic approach

To obtain a representative equivalent isotropic description of an 
orthotropic stiffness tensor Cortho (representative of the material and 
its microstructure), the equivalent isotropic stiffness tensor C̄iso can be 
calculated by integrating over all possible rotations 𝑸 in the special 
orthogonal group (3): 

C̄iso = ∫(3)
𝑸 ⋆ Cortho, d𝑄. (18)

Using the isotropic projection operators P1 and P2, this expression 
can be algebraically transformed as follows:

C̄iso =∫(3)
𝑸 ⋆ Cortho, d𝑄 =

(

Cortho ⋅ P1
) P1

|P1|
2

+
(

Cortho ⋅ P2
) P2

|P2|
2

(19)

with P1 = 1∕3(𝑰 ⊗ 𝑰) and P2 = IS − P1, where IS denotes the identity 
on symmetric second-order tensors. This formulation is derived from 
the orthogonal decomposition of Cortho into its isotropic components. 
The projection coefficients are obtained by contraction with P1 and 
P2, ensuring that only the isotropic contributions are retained. The 
normalization by |P𝑖|

2 guarantees the correct scaling of the projected 
components.

3. Experimental validation

In the experimental validation, the proposed approach is addition-
ally compared with an isotropic stiffness description, as commonly used 
in literature. The equivalent isotropic approach used here was pre-
sented in Section 2.3. A comparison with the Abaqus fixed-orientation 
approach is not included, since for the 0◦ and 90◦ infill cases, used 
here as boundary cases, both anisotropic models yield nearly identical 
stiffness tensors, apart from minor perimeter and turning-point effects, 
which are captured by the proposed approach presented in this work. 
The advantage of the proposed approach over the Abaqus build-in 
approach has already been discussed in Section 2.2.3 for alternating 
infill angles on coarse meshes.

3.1. Material

The exemplary material used for validation is the commercial Ultra-
fuse polylactic acid (PLA) filament from Forward AM with a processing 
temperature of 𝑇 = 210 ◦C − 230 ◦C according to the supplier [42].
proc
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Table 1
Engineering constants for the orthotropic stiffness tensor Cexp

ortho.
 𝐸11 𝐸22 𝐸33 𝜈12 𝜈13 𝜈23 𝐺12 𝐺13 𝐺23  
 (MPa) (MPa) (MPa) – – – (MPa) (MPa) (MPa) 
 3257 2469 2667 0.35 0.27 0.31 [45] 953 1029 803  

3.1.1. Material characterization
The density is 1208 kgm−3 according to [43]. The temperature-

dependent specific heat capacity 𝑐p(𝑇 ) was also taken from [43]. The 
thermal conductivity was assumed to be constant and isotropic, with a 
value of 𝜅 = 0.17W∕mK, based on the average values reported in [44].

The material parameters for the typical orthotropic behavior of the 
material resulting from the process are listed in Table  1. The material 
constants were primarily determined through uniaxial tensile tests 
conducted at various orientations. These tests were performed on spec-
imens composed of multiple layers, ensuring that effective properties 
of the mesostructure inherently account for interlayer and intralayer 
effects influencing the deformation behavior. The elastic moduli (𝐸11, 
𝐸22, 𝐸33) and Poisson’s ratios (𝜈12, 𝜈13) were determined directly by 
experiment. Then, the shear moduli 𝐺ij were calculated using classical 
laminate theory (CLT), as recommended by Tröger et al. [45], which is 
based on the assumption of a laminate-like structure. The shear moduli 
𝐺𝑖𝑗 are determined by the following equation: 

𝐺𝑖𝑗 =

(

4
𝐸̂𝑥𝑥
𝑖𝑗

− 1
𝐸𝑖𝑖

− 1
𝐸𝑗𝑗

+
2𝜈𝑖𝑗
𝐸𝑖𝑖

)−1

, (20)

where 𝐸̂𝑥𝑥
𝑖𝑗  describes the Young’s modulus of tensile specimens rotated 

45◦ in the i-j plane.
Due to experimental limitations, values from the literature (⋅)Tr [45] 

were used for parameters that could not be determined directly (in 
particular, 𝜈23, 𝐸̂𝑥𝑥

13 , and 𝐸̂𝑥𝑥
23 ). These values were adjusted to align with 

our measurements using the following scaling: 

𝜈23 = 𝜈Tr23 , 𝐸̂xx
13 = 𝐸̂xx

12
𝐸̂xx,Tr
13

𝐸̂xx,Tr
12

, 𝐸̂xx
23 = 𝐸̂xx

12
𝐸̂xx,Tr
23

𝐸̂xx,Tr
12

(21)

In this way, the orthotropic stiffness tensor Cexp
ortho of the investigated 

MEX mesostructure could be determined based on experimental results 
and validated literature data (see Table  1).

In order to minimize manufacturing influences, such as those from 
the perimeter or inflection points of the deposited polymer strands, our 
previous investigations were referenced to ensure accurate characteri-
zation of the mechanical properties [46]. The specimens were cut from 
an additively manufactured plate following the specifications outlined 
in [46].

Dynamic mechanical analysis (DMA) experiments were conducted 
to evaluate the temperature dependence of stiffness. Fig.  11(a) shows, 
in gray, the measured storage modulus 𝐸′ in the extrusion direction (0◦
infill angle) previously published by Frölich et al. [47]. The increase 
around 75 °C is attributed to cold crystallization effects. As the tests 
were conducted on printed specimens, the material was amorphous, 
which is confirmed by additional experimental investigations presented 
in [47]. The resulting amorphous modeling of the process leads to the 
assumed curve of 𝐸′ in black in Fig.  10(a), without the increase due 
to cold crystallization. A further decrease in stiffness for temperatures 
above 75 °C has been neglected here.

To determine the coefficient of thermal expansion (CTE) 𝛼th, ther-
momechanical analysis (TMA) was performed on printed specimens. 
The experimental procedure and results are published in [47], showing 
that a temperature-dependent, isotropic description is permissible. The 
measured length change is shown in gray in Fig.  10(b), with the 
simulation assuming a smoothed curve, represented in black in the 
figure.
9 
(a) 

(b) 

Fig. 10. (a) Storage modulus 𝐸′ as a function of temperature obtained from 
DMA measurements on unidirectionally printed specimens with extrusion 
direction aligned with the load. The assumed curve for simulation includes 
the softening range, but no cold crystallization as the PLA remains amorphous 
during printing. (b) Thermal expansion behavior from TMA measurements 
on printed specimens, along with the assumed curve used to determine the 
coefficient of thermal expansion (CTE) 𝛼th used in simulation. Experimental 
data were published in previous work [47].

3.1.2. Material modeling
In the thermal simulation, an isotropic and temperature-independent

heat transfer coefficient and a isotropic as well as temperature-dep-
endent specific heat capacity are set as described in Section 3.1.1.

In the mechanical simulation a path-dependent material model is 
used to consider the viscoelastic behavior [48]. The viscoelastic behav-
ior is modeled in a simplified way by assuming that the relaxation time 
𝜏 below a certain vitrification temperature 𝑇vitr tends toward infinity 
(glassy state) and above this temperature tends toward 0 (rubbery 
state). According to the path-dependent material model, the resulting 
Cauchy stress 𝝈 can be additively decomposed into an elastic part (𝝈el) 
and a simplified pseudo-viscoelastic part (𝝈ve): 

𝝈 = 𝝈el + 𝝈ve. (22)

The elastic part 𝝈el in the current time increment 𝑡i is described by 

𝝈el(𝑡i) ≈ 𝝈el(𝑡i−1) + C∞(𝛥𝜺(𝑡i) − 𝛥𝜺th(𝑡i)). (23)

with 𝝈el in the preceding time increment 𝑡i−1, the stiffness C∞ above 
𝑇 , the strain increment 𝛥𝜺, and the thermal strain increment 𝛥𝜺 . 
vitr th
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𝛥𝜺th is described by 
𝛥𝜺th(𝑡i) = 𝛼th(𝑇 (𝑡i) − 𝑇 (𝑡i−1)). (24)

The viscoelastic part 𝝈ve of the Cauchy stress is simplified by the two 
limit cases: 

𝝈ve(𝑡i) =

{

𝟎, 𝑇 ≥ 𝑇vitr
𝝈ve(𝑡i−1) + 𝛥C[𝛥𝜺(𝑡i) − 𝛥𝜺th(𝑡i)], 𝑇 < 𝑇vitr .

(25)

Above 𝑇vitr , 𝝈ve is 𝟎, since the relaxation time tends to 0. Below 𝑇vitr , 𝝈ve
is calculated from 𝝈ve from the previous time increment, the softening 
of the stiffness 𝛥C at 𝑇vitr , 𝛥𝜺 and 𝛥𝜺th. The viscoelastic behavior is thus 
simplified by a purely elastic response in two successive, independent 
steps (in contrast to the Chile model). This is important because the 
material can exceed and fall below 𝑇vitr several times and the relaxation 
of the built-up stresses is taken into account when reheating.

The softening of the stiffness 𝛥C is described with the relative 
softening coefficient 𝑎 as follows: 
𝛥C = C0 − C∞ = 𝑎C0. (26)

Here, C0 is the local stiffness tensor below 𝑇vitr .
In this research, 𝑇vitr is defined as the midpoint of the softening 

range. The corresponding softening range is illustrated in Fig.  10(a). 
Since there is no uniform definition of the softening range of ther-
moplastic materials based on DMA measurements, this study used a 
consistent and practical criterion. The upper limit of the softening 
range is the temperature at which the storage modulus transitions to 
a plateau (d𝐸′∕d = 0) and reaches its minimum. This reflects the 
complete softening of the material. The lower limit of the softening 
range is defined as the temperature at which 𝐸′ decreases by 20% of 
the maximum d𝐸′∕d change. This procedure provides a reproducible, 
transparent definition of mechanical softening behavior based on the 𝐸′

curve characteristics. Therefore, using this approach, 𝑇vitr is determined 
to be 59.23 ◦C.

The DMA measurements were also used to determine the relative 
softening coefficient 𝑎: The coefficient 𝑎 = 0.991 was calculated using 

𝑎 = 1 −
(

min(𝐸′)
max(𝐸′)

)

. (27)

The effective stiffness tensors C̄0 used in the simulations are de-
rived from the experimentally determined orthotropic stiffness tensor 
in Table  1, following the anisotropic and equivalent isotropic homog-
enization approaches introduced in Section 2. The anisotropic model 
uses a locally varying C̄0 that evolves with the element-wise orientation 
tensors over time according to the explanations in Section 2.2. In 
contrast, the equivalent isotropic model employs a spatially and tem-
porally constant stiffness tensor, obtained by projecting the orthotropic 
10 
Table 2
Slicer and process parameters selected.
 Process parameter Value Unit  
 Nozzle temperature 𝑇N 220 °C  
 Bed temperature 𝑇bed 40 °C  
 Layer height 𝑙height 0.2 mm  
 Extrusion width 𝑒width 0.4 mm  
 Infill density 100 %  
 Print speed 𝑣print 50 mms−1 

tensor onto the isotropic subspace via Eq.  (19). The resulting direc-
tional strain energy densities 𝑊 (𝒏) of the equivalent isotropic stiffness 
tensor, compared to those derived from the experimentally determined 
orthotropic tensor, are shown in Fig.  11. The thermomechanical model 
is implemented via a UMAT  subroutine.

3.2. Component design

For the validation, a component geometry was chosen that leads 
to an expected PiD and allows for a simple evaluation. The geometry 
is shown in Fig.  12. The trapezoidal cross-section, leads to residual 
stresses that cause the component to bend around the 𝑦-axis when 
removed from the build plate. This bending is the direct measure of 
the PiD.

Fig. 12. Geometry and dimensions of the validation component in mm.

3.3. Experimental tests

3.3.1. MEX process design
The Ultimaker 2+ from Ultimaker was used to produce the com-

ponents in this work. The Ultimaker has a heated printing bed. The 
standard glass printing bed has been replaced with an unused FilaPrint 
permanent printing bed to ensure the most reproducible adhesion 
possible. The nozzle has a diameter of 0.4mm and a print resolution 
of 200 μm. The print bed was leveled with three adjustment screws. 
The slicer and printer settings listed in Table  2 were selected based on 
printing studies to achieve a consistent and reproducible mesostructure. 
To investigate the influence of the trajectory on the PiD, an infill 
with orientation of 0◦ or 90◦ to the 𝑥-axis was selected. The compo-
nents with the selected fill orientation are shown in Fig.  13. For each 
configuration, three components were printed and measured.
Fig. 11. Directional strain energy density response derived from orthotropic and equivalent isotropic stiffness tensors. The plots show 𝑊 (𝒏) = 1
2
(𝒏⊗𝒏) ∶ C ∶ (𝒏⊗𝒏)

evaluated for all in-plane directions 𝒏 in the XY, XZ, and YZ planes. Units are given in MPa, corresponding to elastic strain energy density under unit strain in 
direction 𝒏.
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Fig. 13. Cross section of the trajectory of the validation components with infill 
of 100% with 0◦ and 90◦ orientations to the 𝑥-axis in orange and one perimeter 
in red.

3.3.2. X-ray computed tomography (𝜇CT)
The validation components were scanned using a YXLON CT pre-

cision 𝜇CT system from Yxlon International CT GmbH in Hattingen, 
Germany. This system features a μm-focused X-ray reflection tube with 
a tungsten target and a high-resolution PerkinElmer Y.XRD1620 flat 
image detector with 2048 pixels × 2048 pixels. The scan parameters 
are listed in Table  B.3 in the Appendix. The contour of each specimen 
was determined from the corresponding scans and exported as an STL 
file.

3.3.3. Experimental results
The measured curvature of the underside of the component was 

evaluated using an in-house Python tool. Within this tool, the scanned 
3D surface model in STL format is loaded to analyze the deformation 
along a defined path on the component (red path in Fig.  14(a)). An 
equidistant point path is generated between a start and end point in 
space, and the points are then projected onto the nearest points on 
the component surface using a k-d tree for nearest neighbor search 
(cKDTree). The projected path points obtained in this way form the 
basis for the quantitative evaluation of the local deformations along 
the path under consideration.

The results, shown in Fig.  14(b), include measurements at both 
0◦ and 90◦ infill angles. The mean of the three measurements and 
their scatter are presented, revealing a reproducible PiD. A significant 
influence of the selected trajectory, shown in Fig.  13, on the PiD can 
bee seen: At 90◦ infill angle, a lower PiD occurs compared to the 0◦
infill angle.

3.4. Process simulation

In the FE process simulation, the entire process chain up to the final 
component is modeled using the AM-Modeler in Abaqus [15]:

(1) Print the component with a sequentially coupled thermomechan-
ical simulation.

(2) Cool the component by a predefined cooling curve of the print-
ing plate.

(3) Detach the component from the printing plate.

Fig.  15 shows the individual steps of the process simulation chain.
To model the printing process, a cube with the maximum dimen-

sions of the validation component in the global coordinate system is 
created and discretized with hexahedral elements as a starting point 
(initial step in Fig.  15). Trilinear hexahedral elements are used for ther-
mal simulations, while tri-quadratic hexahedral elements with reduced 
integration are employed for thermomechanical simulations. Based on 
a sensitivity analysis, a compromise is chosen between the accuracy 
of the component PiD prediction and computational efficiency. A time 
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(a) 

(b) 

Fig. 14. (a) Validation component measured using 𝜇CT, with the evaluation 
path highlighted in red. (b) Mean curvature (solid line) and minimum/max-
imum range (shaded envelope) of the underside of the component for 
specimens printed with 0◦ (green) and 90◦ (orange) infill angle.

increment of 𝑡inc = 5 s and element edge lengths of 1mm×1mm×0.4mm
are specified. Further details on the sensitivity analysis with regard to 
𝑡inc are provided in the Appendix  C. It should be noted that no dedicated 
mesh convergence study was conducted because a finer mesh would 
result in unreasonably long computation times. However, a relatively 
fine mesh with an element height twice the layer height was used. In 
this context, it is also important to note that the presented methodology 
was specifically developed for cases requiring coarse meshes. Neverthe-
less, a finer mesh would provide a more realistic representation of the 
process, including the temperature distribution, which could affect the 
predicted deformations.

The elements are activated according to the specified event series, 
ensuring that only the actual printed material are activated. To consider 
hardware limitations, the event series is decoded from the G-Code 
using the Python tool pyGCodeDecode [39,40]. The initial temperature 
of the elements is set to the extrusion temperature of 220 ◦C. In the 
thermal simulation, the temperature of the printing plate is specified 
as a Dirichlet boundary condition at the nodes located at the bottom 
of the activated component. The build plate temperature is set to 
40 ◦C throughout the printing and cooling steps, consistent with the 
experimental setup. Heat loss to the environment was modeled through 
both convection and radiation. The convection coefficient is set to 
ℎconv = 8W∕m2 K and the emissivity coefficient is set to 𝜖 = 0.97
according to [49].

During the subsequent thermomechanical simulation, the compo-
nent is fixed to the build plate via a Dirichlet boundary condition 
applied to these nodes. This condition remains until the component is 
detached from the plate, at which point the Dirichlet boundary con-
dition is deactivated. The detachment from the build plate is modeled 
as an instantaneous release by deactivating the boundary condition at 
the corresponding nodes in a single simulation step. To ensure static 
determinacy, the boundary conditions are selected according to the 
procedure outlined in [24].
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Fig. 15. Individual steps in the MEX process chain during process simulation to predict PiD. In the ‘‘initial Step’’, domains containing inactive elements are 
created. In the ‘‘printing Step’’, the MEX process is mapped using a sequentially coupled simulation with a fixed build plate temperature 𝑇bp of 40 ◦C. The 𝑇bp is 
then approximated to room temperature over a certain period of time in the ‘‘cooling Step’’. Finally, in the ‘‘detach Step’’, the component is detached from the 
build plate.
Fig. 16. Comparison of experimentally determined and numerically predicted 
deformation in green using the presented anisotropic and equivalent isotropic 
approaches.

3.5. Validation results

Fig.  16 shows the experimentally determined and numerically pre-
dicted PiD for infill angles of 0◦ and 90◦, calculated using both the 
anisotropic (solid line) and equivalent isotropic (dashed line) ap-
proaches. For both infill orientations, the qualitative progression of 
the deformation is captured accurately, with a considerably larger PiD 
observed for 0◦ than for 90◦. The anisotropic approach achieves good 
quantitative agreement, particularly at 0◦. For 90◦, the PiD is slightly 
overestimated. The prediction inaccuracy, especially for 90◦ infill, is 
primarily due to the selected material model, which significantly sim-
plifies the relaxation processes. Note that the maximum deformation is 
also influenced by the selected 𝑇vitr .

Compared to the anisotropic model, the equivalent isotropic ap-
proach underpredicts the deformation at 0◦ by approximately 4%
and overpredicts it at 90◦ by about 16%. This highlights the impor-
tance of incorporating orientation-dependent mechanical properties 
into the simulation. The differences between the two approaches can 
be explained as follows: The deformation observed in the equiva-
lent isotropic model arises from variations in the timing and spatial 
distribution of material deposition. These differences lead to distinct 
thermal histories and, consequently, to infill-dependent deformation, 
even when mechanical anisotropy is not considered. The anisotropic 
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model additionally accounts for the orientation-dependent stiffness 
introduced by the deposition path.

For an infill angle of 0◦, the strands are aligned along the 𝑥-
direction, resulting in increased stiffness in that direction. This in-
creased stiffness is explicitly captured in the anisotropic model, whereas 
it is averaged out in the equivalent isotropic model. As a result, thermal 
expansion leads to higher residual stresses in the anisotropic model 
during cooling, which in turn cause larger deformations. In contrast, for 
a 90◦ infill, the equivalent isotropic model overestimates the stiffness 
in the 𝑥-direction, leading to an overprediction of deformation.

These findings highlight the importance of incorporating deposition-
induced material anisotropy when aiming to reliably predict process-
induced deformation, especially in materials with high thermal expan-
sion coefficients or pronounced direction-dependent behavior.

4. Conclusion

This work presents a homogenization approach for predicting
trajectory-dependent process-induced deformation (PiD) in material 
extrusion (MEX) using finite element (FE) simulations. The method 
addresses the challenge of integrating process-specific mesostructures 
into component-scale simulations without requiring explicit resolution 
at the layer or strand level, thus maintaining computational efficiency.

The key contributions of this study can be summarized as follows:

• The method builds upon the orientation averaging framework by 
Advani and Tucker, extended to capture the orthotropic nature of 
MEX mesostructures. Second- and fourth-order orientation tensors 
model in-plane strand orientation variations, enabling accurate 
local anisotropic stiffness calculation during printing.

• The print trajectory, specified in the G-Code, is mapped to spatial 
orientation fields via an efficient k-nearest neighbor search. This 
assigns anisotropic stiffness properties to the finite elements.

• The approach is verified with numerical benchmarks. Further-
more, numerical studies showing that orientation states evolve 
within elements and that complex mesostructural features (e.g.,
perimeters, turning points, mixed orientations) can be captured 
without fine layer- or strand-level discretization.

• Experimental validation is carried out using PLA specimens char-
acterized via X-ray computed tomography. The predicted PiD 
showed good quantitative agreement for 0◦ infill and a slight 
overestimation for 90◦, while the overall deformation behavior 
was captured qualitatively well in all cases.

• Comparison with an equivalent isotropic stiffness approach
demonstrates the superior capability of the anisotropic approach 
to reflect trajectory-dependent effects on deformation.
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Based on the results, the key findings of this study are:

• The local mesostructure evolves dynamically during printing, 
resulting in spatially and temporally varying orientation states 
within individual finite elements. Numerical studies for a 0/90◦
infill pattern highlight the importance of continuously updat-
ing orientation tensors, rather than assuming fixed or isotropic 
orientations.

• The anisotropic modeling approach demonstrates that PiD de-
pends not only on local strand deposition and temperature distri-
bution, but also significantly on the spatial variation of effective 
stiffness.

• By relying on orientation states derived solely from printing 
trajectory data and computing effective stiffness tensors from any 
chosen orthotropic material model, the presented method is fun-
damentally material-independent and represents an advancement 
beyond state-of-the-art approaches relying on isotropic assump-
tions or fixed initial orientations (e.g., AM Modeler in Abaqus). 
This flexibility allows broad applicability across different poly-
mers and material behaviors.

The proposed method offers a scalable solution for accurately predict-
ing PiD in MEX processes and provides valuable insights into the im-
pact of inhomogeneous, trajectory-dependent stiffness distributions on 
deformation during printing. This enables more efficient and resource-
conscious processing of deformation-prone materials. Furthermore, the 
method achieves this accuracy without requiring layer-level discretiza-
tion, allowing for significant computational savings compared to fixed-
orientation approaches.

In addition, the method offers clear benefits for subsequent struc-
tural simulations, where capturing the final, spatially varying stiffness 
distribution is essential for reliably predicting component performance 
under real-world loading conditions.

Future work could focus on coupling the presented framework 
with microstructure-informed material models of discontinuous fiber 
reinforces polymers to further enhance its predictive capabilities and 
to establish a more direct link between microstructural formation and 
the resulting anisotropic material behavior.
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Table B.3
Scan parameters for 𝜇CT scans of the validation components.
 Scan parameter Value Unit 
 Voltage 140 kV  
 Current 0.25 mA  
 Voxel size 65.84 μm  
 Line binning parameter 2 –  
 Number of projections 3000 ms  
 Exposure/Integration time 1000 ms  
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Appendix A. Note on out-of-plane orientations and sparse struc-
tures

This work is based on the planar (x–y) deposition that is typical of 
MEX processes. However, the orientation tensor formulation presented 
here can be extended to three-dimensional (3D) deposition paths by 
including a non-zero z-component in the orientation vector, 𝒑. The 
tensor formulation remains valid in this case.

However, to convert the material orientation into a stiffness formu-
lation for 3D additive manufacturing, the orientation averaging would 
need to be revised. This is because the presented approach exploits the 
fact that the third orthotropic material axis, 𝒆3, is always aligned with 
the global build direction.

Furthermore, since the method requires complete filling, stiffness 
predictions for sparse or lattice-like structures must consider the local 
material volume fraction.

Appendix B. Scan parameters for 𝝁CT scans

See Table  B.3.

Appendix C. Sensitivity studies for 𝒕𝐢𝐧𝐜

To evaluate the effect of the time increment 𝑡inc on the resulting 
component deformation, the increment was varied as shown in Fig. 
C.17. Fig.  C.17(a) shows the temperature curve over the entire process 
chain. The initial temperature of 220 ◦C is followed by the period during 
which the material is heated and cooled during the process. After the 
printing process (after about 3200 s), the cooling on the printing plate 
follows. The time increment mainly affects the temperature curve dur-
ing printing immediately after the elements are activated. Fig.  C.17(b) 
illustrates this range. Here it can be seen that the time increment 
influences the maximum temperature during reheating: the smaller 
the increment, the higher the temperature reached. As the increment 
increases, the process-typical temperature curve is no longer accurately 
represented. From a certain increment (here 𝑡inc = 100 s) the typical 
temperature peaks no longer occur.

The thermomechanical simulation based on the corresponding ther-
mal simulation results in the deformations shown in Fig.  C.18. The 
curved progression of the PiD is predicted with all selected 𝑡inc, but 
the predicted PiD is overestimated for larger 𝑡inc Fig.  C.19 provides an 
overview of the influence of time increment size on the computational 
effort and on the deformation results to enable an efficient numerical 
prediction. All simulations were conducted on the same workstation 
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(a) 

(b) 

Fig. C.17. Temperature profiles over time in the center of the component for 
different time increments.

Fig. C.18. Simulation-based determination of component deflection in the 𝑧-
direction for different time increments.

equipped with an AMD Ryzen Threadripper PRO 3975WX CPU @ 
3.50GHz and 32GB of RAM. Each simulation was executed using 4 CPU 
cores. This setup ensures consistent computational performance across 
all cases. Fig.  C.19(a) shows the total computation time required for 
each discretization as a function of the time increment. Fig.  C.19(b) 
shows the maximum deformation versus the time increment, with the 
data points color-coded according to the required computation time. 
The predicted maximum PiD generally decreases with a smaller time 
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(a) 

(b) 

Fig. C.19. (a) Required total computation time for each discretization, plotted 
as a function of time increment. (b) Maximum predicted deformation for 
different time increments. The required computation time is color-coded.

increment. This trend continues down to 𝑡inc = 5 s, below which 
the results begin to fluctuate. This fluctuation indicates that no clear 
systematic improvement in prediction accuracy can be expected below 
this value. In particular, transient thermomechanical effects occurring 
at sub-5-second scales did not significantly alter the predicted deforma-
tion behavior in this model. At the same time, the computational cost 
rises significantly for smaller increments. For example, the simulation 
with a 𝑡inc = 1 s required a total CPU time of 500 h. To compare 
with experimentally measured deformations, a simulation with a time 
increment of 𝑡inc = 5 s was selected as a compromise between numerical 
accuracy and computational efficiency.

Data availability

Data will be made available on request.
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