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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/DumitruScute Every year, 20%—40% of the global harvest is lost to pests and diseases, underlining the need for rapid and

Inic/MME accurate diagnosis. Precision agriculture exploits intelligent devices, such as robots and drones, to enable early
Xe detection of pathogens through non-destructive imaging techniques and Al processing. In this study, we exploit
Deep Learning Deep Learning techniques for handling multispectral images in agriculture field. In particular, we introduce

an adaptive Multi-Model Ensemble framework that processes multispectral data without dimensionality
reduction, fully exploiting spectral information to improve early disease detection. Furthermore, several
comparisons with dimensionality reduction and data combinations were conducted, exploring different image
stack configurations to find the optimal solution in disease detection. We wvalidated our approach on a
dataset of tomato plants affected by Tuta Absoluta and Leveillula Taurica, where it improves the ability of
disease identification and classification even at early developmental stages, offering promising perspectives

Multi-Model Ensemble
Precision agriculture
Multispectral dataset
Plant disease detection

for phytosanitary monitoring and sustainable resource management.

1. Introduction

The Food and Agriculture Organisation of the United Nations es-
timates that 20% to 40% of the global harvest is lost to pests and
diseases each year, despite the application of about two million tons
of pesticides (Manida, 2022). The prevailing method of detecting pests
and diseases generally depends mainly on the knowledge and experi-
ence of farmers; the most common strategy employed to date for risk
management is using plant protection chemicals Brand et al. (2009).
Unfortunately, if pathogens and pests are at an advanced stage of pro-
gression in the crop, the effectiveness of pesticides and fungicides may
be compromised and contribute to developing resistance by pathogens
and pests (Lucas et al.,, 2015; Hawkins et al., 2019). For this reason,
applications of products to counteract are often preventive and applied
throughout the field, thus introducing an additional fixed cost of more
than 15% of the operating cost, besides being a health and environ-
mental hazard (Tudi et al., 2021). Since the incidence of plant diseases
and pests is increasing, new, accurate, and timely methods must be
employed to identify symptoms as early as possible.

In the literature, several works use non-destructive techniques such
as multispectral imaging (Singh et al., 2020; De Silva and Brown,
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2023b), hyperspectral imaging (Rayhana et al, 2023; Zhang et al,
2020), and thermal imaging (Xu et al., 2006; Pineda et al., 2021)
for mapping pathologies in plants. These technologies have long been
known in various fields of application: industrial (Daffara et al., 2020),
medical (Lu and Fei, 2014), and cultural heritage (Daffara et al., 2021;
de Manincor et al., 2020), and more recently in agri-tech (Tsouros
et al., 2019). Multispectral and, especially, hyperspectral imaging tech-
niques can generate vast amounts of data when applied in real-world
scenarios, such as agriculture. For instance, it is possible to acquire
thousands of images from a single hectare, where each sample gen-
erates a multidimensional data (stack of images); in addition, it must
also be considered spatial and temporal information. In multispectral
imaging, each sample is represented as a stack of images (x,y,n;),
where x and y denote the spatial dimensions, and n; indicates the
number of spectral bands acquired. Each band corresponds to a spe-
cific central wavelength, typically with a spectral bandwidth ranging
from 50 nm to 100 nm. In contrast, hyperspectral imaging generates
a three-dimensional data cube at narrow intervals, typically around
10 nm, providing a high spectral resolution across a broad wavelength
range (Bhargava et al., 2024).
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Without artificial intelligence (AI), processing such large volumes
of data would take significantly longer, potentially extending to sev-
eral weeks, resulting in delayed decision-making and an increased
risk of suboptimal or ineffective treatments. Expertise in disease iden-
tification and classification is crucial, as high-performance imaging
alone is insufficient without efficient data processing. Integrating au-
tomated processing systems based on Al becomes essential to handling
large datasets within an acceptable time frame. The synergy between
advanced optical techniques and AI enables the development of au-
tomated disease detection systems, facilitating real-time monitoring
and precise mapping of diseases, pathogens, and biotic or abiotic
stresses in both spatial and temporal domains. By enabling targeted
and localised interventions, Al-driven methods help optimise resource
use and minimise the excessive application of agrochemicals. Addition-
ally, these technologies reduce reliance on manual labour and allow
continuous operation in greenhouses and open fields through fixed or
mobile platforms such as farm vehicles and unmanned ground vehicles
(UGVs) (Halder et al., 2023; Musanase et al., 2023). This marks a
pivotal phase in agriculture’s digital transformation, where AI and
advanced technologies empower farmers to make data-driven decisions.
This paradigm, known as Precision Agriculture (PA) (Nowak, 2021),
is fundamental to enhance productivity while reducing resource con-
sumption and mitigating environmental and health impacts. Thereby,
the task of disease identification and classification can be treated as an
object detection task.

Among the traditional approaches for object detection, a straightfor-
ward solution consists of keypoint matching and subsequent geometric
verification via a least-squares estimation of affine projection parame-
ters (Lowe, 2004). Furthermore, the Histogram of Oriented Gradients
(HOG) detector (Dalal and Triggs, 2005) has been proposed, which is
based on the idea of evaluating local histograms of image gradient ori-
entations on a dense grid. More advanced solutions accounting for more
variability of considered objects are represented by the Deformable
Part-Based Model (DPM) (Felzenszwalb et al., 2008) and Implicit Shape
Model (ISM) (Leibe et al., 2006) approaches. With the advent of mod-
ern Deep Learning (DL) approaches and their capability of learning
robust feature representations, significant advancements have also been
presented for the task of object detection (Zou et al., 2023). In this
regard, two-stage detectors focus on first identifying regions of interest
(ROI) where objects might be present and subsequently classifying
the objects within these regions as well as refining their locations.
The Region-based Convolutional Neural Network (R-CNN) (Girshick
et al.,, 2014) uses a selective search algorithm to propose ROI in an
image and then a Convolutional Neural Network (CNN) to classify each
ROIL Fast R-CNN (Girshick, 2015) improves on R-CNNs by using a
shared CNN to process the entire image and all ROIs in one step with
multi-task learning of a classifier and a bounding box regressor rather
than processing each ROI independently. This significantly reduces the
computation time required for object detection. Faster R-CNN (Ren
et al., 2015) is the modified version of Fast R-CNN. Instead of the
selective search used by the Fast R-CNN to derive ROIs, the Faster R-
CNN relies on a CNN-based approach represented by a Region Proposal
Network (RPN). The RPN uses anchor boxes for object detection; the
generation of regions is faster and better adapted to the data compared
to the selective search used in R-CNN and Fast R-CNN via an external
algorithm. RPN takes image feature maps as input and generates a
series of object proposals, each with an objectivity score as output. It
also enables scale-invariant detections using Feature Pyramid Networks
(FPNs). The features are shared with the detection network to estimate
the object’s position, significantly accelerating detection. Two-stage
detectors deliver accurate results, but typically at higher computational
costs and with more sophisticated network architectures. In some ap-
plications, however, a trade-off between accuracy and inference time
is required. Hence, one-stage detectors have been proposed to solve

the task of object detection in one single step, addressing both the
prediction of bounding box coordinates and the prediction of class
probabilities for the derived bounding boxes. A prominent approach
among the one-stage approaches is the You Only Look Once (YOLO)
detector (Redmon et al., 2016) and its variants.

To date, DL has emerged as the best-performing method for image
analysis, providing robust feature extraction and effectively addressing
non-linear relationships in data and achieving state-of-the-art results
in detection, segmentation, and classification tasks compared to tradi-
tional machine learning techniques (Kumar et al., 2024). It produces
good results and has great potential for applications in many real-world
fields, including the agricultural field (Bharman et al., 2022) for yield
prediction, weed detection, plant stress (Gao et al., 2020), and disease
detection (Saleem et al., 2019). Nowadays, most of the approaches in
literature identify plant diseases using only RGB images (Abade et al.,
2021).

For early detection of diseases in plants, until today, there are no
commercial products, and research is facing significant challenges:

The state of evolution of the pathology, its irregular shape and
spread, and different patterns of the lesion for the same type of
infection or pathology, making feature learning a difficult task.
The size of infection in the early stages is in the millimetre scale,
requiring imaging at high spatial resolution.

Relevant spectral responses are not only in the visible range,
requiring multispectral imaging.

If the plant is large, in a whole-plant shot some regions may be
out of focus, leaves will cover each other and may be facing
in all directions. Moreover, background is typically heteroge-
neous and non-uniform due to the complex environments (green-
house and open-field), making the acquisition of a quality dataset
challenging and time-consuming.

In addition, early symptoms appear in limited plant areas, only on some
leaves or fruits, and it is challenging to obtain samples of infected
plants, as special conditions are necessary to prevent the spread of
infection and cross-contamination. Furthermore, the involvement of ex-
pert personnel is essential to ensure accurate annotation and diagnosis
of the pathological signs.

Current public datasets for plant disease analysis primarily focus on
classification tasks, as summarised in Table 1. Most of these datasets
are based on RGB images, thus limiting spectral information and gen-
eralisation under variable real-world conditions. Only a few datasets
provide multispectral or hyperspectral data, allowing for more de-
tailed physiological and biochemical assessments of plants. Further-
more, many datasets are acquired in controlled or semi-controlled
environments, which may restrict their applicability in open-field sce-
narios. Finally, annotation types range from simple classification labels
to bounding boxes and pixel-level segmentations.

Up to now, it is unclear which is the best approach to handle
multidimensional data, such as multispectral or hyperspectral data, via
standard DL and transfer learning methods, as these typically only
accept input images in the 1- or 3-channel format, for which they
were designed and trained (Vali et al., 2020). The literature suggests
using PCA (Pesaresi et al.,, 2024), which reduces the dimensionality
of the data by projecting them into an orthogonal feature space and
selecting there a few components that explain most of the variance.
This approach can work well when the essential features are mainly
found in the three principal components, but there is the risk of losing
relevant information.

Multispectral imaging systems for agricultural applications are in-
creasingly equipped with more sensors to capture reflectance (multi-
spectral imaging) and emissivity (i.e. thermal imaging), capable of per-
forming multiple tasks simultaneously, including assessment of plant
health, crop maturity, through to pathogen detection and identification
of various diseases (Scutelnic et al.,, 2024a). In these cases, spectral
responses can have distinctive characteristics in different bands with
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Table 1
Summary of major plant disease datasets with image types, annotations, and key details.
Datasel Image Lype No. of images  Spectrum/Bands Annotations Crops/Main diseases Key notes
PlantVillage RGB 50000 Visible (RGB) Classification (14 Various crops, 26 Controlled environment
(2015) (Hughes images crops, 26 diseases) diseases images
and Salathé,
2015)
PlantDoc (2019) RGB 2600 images Visible (RGB) Classification, 13 species, 17 “In-the-wild” images
(Singh et al,, bounding boxes diseases with real backgrounds
2019)
Raza et al. Thermal + 71 plants Thermal + Healthy vs infected, Tomato (Oidium 14-day monitoring in
(2015) Stereo RGB Visible temporal classes neolycopersici) controlled environment
Wang et al. RGB 286 original Visible (RGB) Bounding boxes, Tomalo (various Natural, complex
(2019) + augmented ation masks di ) backgrounds
VddNet (2020) Multispectral + Not specified Visible (RGB), Pixel-level Grapevine (vineyard UAV multispectral +
(Kerkech et al., Depth Map NIR + Depth ation (4 di ) depth, orthophoto
2020) classes) alignment, parallel
encoder architecture
Khan et al. Hyperspectral Not specified 400-1000 nm Quantitative disease Wheat (powdery Expert validation,
(2021) VIS-NIR severity mildew) greenhouse, early
classification
Fernéndez et al. Multispectral 20 Blue, Green, Pixel-level healthy Cucumber (downy Greenhouse, SVM
(2021) multispectral Red, Red-Edge, vs infected mildew) classifier
images NIR
Polato Stress UAV 360 patches RGB + Green, Bounding boxes Potato High-resolution images
Dataset (2021) Multispectral Red, Red-Edge, (healthy vs stressed) in open-field
(Butte et al., NIR
2021)
Barros et al. RGB + Not specified 5 multispectral Pixel-level vineyard Grapevine Multimodal UAV
(2022) Multispectral + bands + thermal row segmentation dataset in open-field
Thermal
Peng et al. Multispectral Not specified 400-1000 nm Healthy vs infected Cassava — Cassava Early detection 28
(2022) (A-MSI handheld (multispectral) classification brown streak days post-inoculation
device) disease (CBSD) using spatial-spectral
ML handheld device,
field-adapted
Vélez et al. UAV 16500 Blue, Green, Georeferenced, Grapevine (Botrytis Spatial mapping in
(2023) Multispectral images Red, Red-Edge, infection clusters cinerea) open-field
NIR
De Silva and Multispectral 2600 images VIS + NIR Healthy vs stressed Various crops Open-field data
Brown (2023a) (K590, K665, classification
K720, K850)
Giakoumoglou RGB (real-field 659 Visible (RGB) Bounding boxes Tomato (Tuta Ensemble detection
et al. (2023) and greenhouse) (Tuta absoluta) absoluta) with Faster
R-CNN/RetinaNet and
improved mAP via WBF
(from 0.58 to 0.70)
Georgantopoulos 5 Multispectral 263 RGB + Bounding boxes Tomato (Tuta Disease detection in
et al. (2023) + RGB multispectral multispectral absoluta, Leveillula greenhouse
stack taurica)
Ryckewaert Hyperspectral 205 images 400-900 nm Chemical measures Grapevine Spectral-physiological
et al. (2023) VIS-NIR and health modelling in controlled
annolations environment
PlantSeg (2024) RGB 11400 Visible (RGB) Pixel-level disease Various crops In open-field dense
(Wei et al., images symplom segmentation
2024b) segmentation
PlantWild (2024) RGB Not specified Visible (RGB) Segmenta- Various crops In open-field images
(Wei et al., tion/classification with complex
2024a) backgrounds
Zhang et al. Hyperspectral Daily images 400-1000 nm + Infection stages, Tomato Early disease detection
(2024) VIS-NIR + SWIR for 7 days 900-1700 nm pathogen load (Xanthomonas (within 2h)
perforans)
Estrada et al. Multispectral + Not specified 5 multispectral Biomelric Avocado, Olive, Leafl dehydration
(2025) Spectral bands + measurements, Grapevine monitoring, multimodal
Reflectance 350-2500 nm calibrated data data
reflectance
Saceuti et al. Multispectral 172 images 6 multispectral Healthy vs diseased Grapevine Field conditions,
(2025) bands classification (Lambrusco Flavescence dorée and
varielies) Esca

different physics meanings. For this reason, merging these data with
heterogeneous information content can lead to learning difficulties if a
single Al model is used. Consequently, it is necessary to modify the
backbone part of the model architecture (1) to make it possible to
accept image data with more than 3-channels as input by changing
the first convolution layer (i.e. 2D convolution or Conv2D), or (2) to
compute a maximum of 3 spectral bands at a time.

1.1. Related works

Recent studies have explored the use of deep neural networks
for multispectral image processing, highlighting the potential in com-
plex tasks such as object detection and segmentation in multi-channel
contexts. Sa et al. (2016) introduced DeepFruits, an automatic fruit
detection system based on DL and transfer learning, designed to operate
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on RGB and NIR images. The authors explore two multimodal fusion
strategies: early fusion, which combines data at the input level before
feature extraction, and late fusion, which combines predictions derived
from separate networks for each modality. Using a pre-trained CNN
adapted via transfer learning demonstrates that multimodal integration
beyond RGB improves the performance in complex environments. Liu
et al. (2016) proposed a framework based on deep CNN for pedestrian
detection by integrating visible and thermal images, exploiting fusion
at different stages of the architecture (early, halfway, and late fusion).
Almahasneh et al. (2022) developed a multi-layer multi-task CNN ar-
chitecture for multispectral images capable of performing detection and
segmentation, even in the presence of weakly supervised annotations.
Kulkarni’s pioneering work (2023) (Kulkarni, 2023) demonstrated the
effectiveness of CNNs even in traditional pixel-wise classification. Each
pixel is treated as a spectral vector that is transformed into a repre-
sentation used by a CNN for classification to obtain accurate feature
maps. However, the study notes a limitation in the quantity of features
that can be processed due to the finite size of the transformed image.
A taxonomy of DL-based fusion strategies for object detection using
multimodal sensors can be found in Liu et al. (2024). Input fusion
(combination of multimodal images at pixel-level, before feature ex-
traction) is simple and fast, but sensitive to noise and requires precise
alignment. Halfway fusion combines intermediate features from multi-
spectral images and is sub-grouped into: Early halfway fusion (at the
input level through channel concatenation), which is fast but sensitive
to noise; Late halfway fusion (combination of features extracted from
different networks) that balances robustness and generalisation, but is
more complex; and Hybrid halfway fusion (at the intermediate level
of the network, after partial feature extraction) offers a good balance
between efficiency and semantic depth, but can be difficult to optimise.
Decision-level fusion (combination of final results predicted by separate
models) is flexible, but less computationally efficient.

The integration of heterogeneous information from RGB, thermal,
and multispectral sensors is challenging due to temporal and spatial
alignment, feature compatibility and computational constraints. To
overcome these limitations, this work introduces a scalable Multi-Model
Ensemble (MME) framework, based on a late or decision-level fusion
strategy, specifically designed to fully exploit multispectral variability
for reliable and early plant disease detection.

1.2. Aims of this work

This research focuses on the implementation and comparison of
state-of-the-art DL methods for extracting information from multidi-
mensional multispectral data, with the aim of exploiting the entire
available spectrum and maximising performance in plant disease de-
tection. To this end, approaches involving dimensionality reduction
through the selection and combination of spectral bands are analysed,
as well as methods that operate directly on the entire multidimen-
sionality of the data. The comparative analysis of the results obtained
made it possible to identify the most effective strategies for the optimal
use of spectral information to improve the predictive accuracy of the
models. To validate the proposed method in agriculture, we used, as
case study, a dataset consisting of RGB images and multispectral stack
of five images in monochrome format, acquired in narrow bands in the
VIS-NIR on tomato plants affected by two distinct diseases.

In addition, we propose a scalable pipeline based on a Multi-Model
Ensemble (MME) approach, which uses a decision-level fusion strategy
and allows the entire multidimensionality of multispectral data to be
processed or, if necessary, only the most informative bands, in order to
maximise detection performance. Several configurations were defined
and tested, including:

* Multi-channels input: processing the entire multispectral stack
or a subset (as 8-channel or 6-,5-, 4-channels input) by adapting
the first network layer (Conv2D). This configuration evaluates the
use of all available spectral information as input.

RGB input: training models on RGB images with and without
enhancement to explore the potentiality of RGB space colour and
transfer learning approach.

Single spectral-band input: training models on individual spec-
tral bands images to identify the most informative for disease
detection.

Independent mixing input: combining the RGB and the multi-
spectral images that showed the best performance in the previous
phase as independent inputs to the same model. This configura-
tion tests whether the most informative spectral components can
be effectively integrated without full decision-level fusion.
Input-level fusion (early fusion): combining channels into
three-channel images or using vegetation indices to represent
the most informative spectral combinations in simplified form.
This approach integrates data directly at the input level, prior
to feature extraction, allowing the model to process false-colour
composites and vegetation indices as a single input.
Decision-level fusion (late fusion): MME method that combines
the results of multiple specialised models, preserving the entire
multispectral stack and integrating predictions to achieve robust
and generalisable detection performance.

2. Materials and methods

For this research, we used the open-source dataset published by
Georgantopoulos et al. (2023), which includes multispectral imaging
samples of tomato plants acquired in a greenhouse. These samples are
annotated with two infections, Tuta Absoluta (labelled as Tuta) and
Leveillula Taurica (labelled as Oidium).

2.1. Description of infections

In the first weeks of development, the Tuta Absoluta midge’s off-
spring are larvae that feed on the leaves and cause complete necrosis
and consequent defoliation. This pathogen is estimated to lead to a 50%
to 100% loss in tomato plant yield (Ghaderi et al., 2019). Leveillula
Taurica, known as powdery mildew or oidiopsis taurica, usually infects
only fully developed mature leaves. The main symptoms are yellow
irregular spots (approximately 10 mm to 15 mm in diameter). It is
generally located on the abaxial side of the leaves, and a thin, light
brown mycelium forms on the adaxial surface due to the emergence
of conidiophores through the stomata (Aegerter et al., 2015). Several
studies report yield losses of up to 40% (Guzman-Plazola et al., 2003)
in greenhouse tomatoes and 80% to 100% (Desneux et al., 2010) in
field tomato crops. Therefore, control in the initial stages is essential
to limit damage as much as possible.

2.2, Dataset

The considered dataset of Georgantopoulos et al. (2023) includes
263 multispectral image samples of tomato plants acquired in a green-
house. The images have a size of 1776 x 2368 pixels with 8-bit
dynamic range; they have been acquired with the MUSES9-MS-PL
camera equipped with a CMOS sensor with sensitivity in the range from
360 nm to 1100 nm. Each sample consists of a stack comprising an RGB
image and 5 narrow band spectral images in the VIS-NIR corresponding
to reflectance information acquired in bands with centre wavelength
and width, of 460 nm (30 nm), 540 nm (30 nm), 630 nm (40 nm),
850 nm (50 nm), and 980 nm (50 nm). An example of a stack is
shown in Fig. 1. From now on, for the sake of simplicity, we refer to
these bands as R460, R540, R630, R850 and R980, where R means
reflectance; the RGB channels are indicated with R, G, B. A total of
229 samples were annotated, resulting in 1757 cases of Tuta Absoluta
infections and only 239 cases of Leveillula Taurica infections, resulting
in a class imbalance.
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Fig. 1. Example of a sample stack from dataset by Georgantopoulos et al. (2023), including RGB and spectral images at different wavelengths (460 nm, 540 nm,

630 nm, 850 nm, and 980 nm) representing the in-band reflectance.

In case of representative and sufficient training data, improving
images through enhancement techniques does not significantly improve
the learning of the model and, therefore, the achieved accuracy (San
tana et al., 2024; Salvi et al., 2021). Thus, high performance is usually
only achieved if the data is acquired optimally. The considered dataset,
however, has only a limited number of samples. The RGB images
reveal that image acquisition was not performed in the optimal condi-
tions, given the non-uniform and yellowish-grey background, leading
to several false positives. Thus, we also employed techniques of image
enhancement by taking into account that RGB colour representations
are less robust with respect to changes in illumination. In particular, we
focus on transformations of the RGB colour dataset to more advanced
representations. Among different options (Weinmann and Weinmann,
2019), we select approaches based on colour constancy, since colour
constancy is able to assign a particular and stable colour percept to an
object, irrespective of its surroundings and illumination (Gegenfurtner
et al,, 2024). On the one hand, we use an approach relying on the
GreyWorld assumption according to which the average reflectance of
surfaces in the scene is considered achromatic (Buchsbaum, 1980). On
the other hand, we use Edge-Based Colour Constancy (EBCC) relying
on the hypothesis that the average edge difference in a scene is achro-
matic (van de Weijer et al., 2007). Both the GreyWorld and the EBCC
approaches transform RGB colour images to a representation with three
entries per pixel.

The dataset was split into 80% training samples and 20% test
samples, so that all experiments rely on the same disjoint image samples
for training and testing.

2.3. Methods and performed analyses

In this study, we adopt the Faster R-CNN architecture (Ren et al.,
2015), a two-stage object detection framework that enables both local-

isation and classification of target instances within an image. We em-
ployed pre-trained ResNet-50 backbones to initialise the model weights
and used the Adam optimiser with a fixed learning rate of 0.0001 across
all experiments. To investigate the sensitivity of the models to training
dynamics, we varied the number of training epochs (30, 50, and 100)
and batch sizes (1, 5, 10, 15, and 20). This analysis aimed to evaluate
whether performance metrics improved or degraded under different
training configurations, particularly in scenarios where baseline results
were already satisfactory.

2.3.1. Multi-channels method

The first method that we investigated is the adaptation of a standard
Faster R-CNN architecture by modifying the first convolutional layer.
Specifically, we modified the first convolutional layer (Conv2D) of
the backbone to accommodate non-standard input formats, enabling
the processing of images with an arbitrary number of channels, thus,
allowing a single 8-channel image (Full Stack) to be passed to the model
as a stack of RGB and VIS-NIR multispectral monochromatic images
(R460, R540, R630, R850, and R980). The pipeline is shown in Fig. 2.
We also considered image stacks of RGB images and subgroups of the
spectral bands (S1, S2, S3 and S4), resulting in a 6, 5, and 4 channel
image stack as follows:

« Full Stack: [R, G, B, R460, R540, R630, R850, R980]
- Stack S1: [R, G, B, R460, R540, R630]

« Stack S2: [R, G, B, R540, R630]

- Stack S3: [R, G, B, R540]

« Stack S4: [R, G, B, R630].

In this method, the network processes all channel jointly and learns
spectral-spatial relationships across the entire input stack in a single
forward pass.
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Fig. 2. Pipeline of the multi-channels method that handles image stacks made by n-channels (RGB plus multispectral images).
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Fig. 3. Classic pipeline of the RGB method, where only RGB images are used as input.

2.3.2. RGB method

The subsequent analysis uses only the original, unprocessed RGB
images. This reflects a classic and most commonly approach for detec-
tion and classification, where only 3-channel RGB images are used, as
shown in Fig. 3.

In a second analysis, we applied image enhancement techniques to
improve the quality since, as mentioned, the original RGB images were
acquired under non-optimal conditions and calibration. Specifically, we
employed the GreyWorld and EBCC methods to enhance colour balance
and ensure consistency across all RGB images. This pre-processing
phase allows us to assess the impact of image quality optimisation on
model performance, particularly in scenarios such as an open field or
greenhouse with different environmental conditions.

2.3.3. Spectral band method (single-channel)

In the third method, individual models were trained separately
for the single spectral band (R460, R540, R630, R850 or R980), as
illustrated in Fig. 4. The model learns features based solely on spatial
and intensity variations within that specific band. This analysis enabled
the evaluation of learning rates and the identification of the most
relevant spectral bands for our purpose. The results indicate that the

manifestation of a specific plant disease exhibits a distinct spectral
signature within particular wavelength ranges. Consequently, not all
spectral bands contribute equally to the classification task, highlight-
ing the importance of selecting the most informative wavelengths to
optimise model performance.

2.3.4. Independent mixing method
In the fourth method, we have used all the RGB images and all spec-

tral images in the different bands R460, R540, R630, R850 and R980
as independent input. Fig. 5 shows the architecture of this pipeline.

We used as inputs the RGB images with the most relevant spec-
tral images, demonstrating the highest performance to detect the two
tomato diseases, which manifest their symptoms predominantly in
the R540 and R630, during the learning process in previous stages,
when considered individually in the spectral band method. RGB and
multispectral bands are not stacked into a single input but are consid-
ered as separate inputs during training, Specifically, the dataset was
constructed by generating independent inputs that are passed to the
model based on the following combinations:

« D1: RGB images and all spectral images (R460, R540, R630,
R850, and R980)
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Fig. 5. Pipeline of the independent mixing method, where RGB and multispectral images are used together as independent input.

« D2: RGB images and spectral images (R460, R540, and R630)
« D3: RGB images and spectral images (R540 and R630)

« D4: RGB images and R540 spectral images

« D5: RGB images and R630 spectral images.

2.3.5. Reconstructed 3-channel method

In the fifth method, we combined the spectral images with RGB
images, removing one or more channels from the RGB images to obtain
false-colour images. In addition, we combined the bands by taking 3 at
a time to reconstruct 3-channel images. This selection was guided by
the bands that yielded the best results in previous analyses, leading to
the following combinations:

- FCI: [R630, R, G]

- FC2: [R540, R, G]

- FC3: [R850, R, G]

- FC4: [R, R540, R630]

- FC5: [G, R540, R630]

- FC6: [R630, R540, R460].

Fig. 6 presents a schematic representation of the processing pipeline,
where C1, C2, and C3 correspond to different combinations of three
channels. Each channel can represent a specific multispectral band or
a channel from the RGB image.

This method differs significantly from training the model on single-
band (monochromatic) inputs. When the three bands are combined
into a single input, the network can also learn inter-band relationships,
i.e., learn how the spectral contrast between the bands correlates
with disease symptoms. This interplay between bands may be key for
detecting spectral cues that may not be apparent in a single band.

In addition, we also computed the Normalised Difference Vegetation
Index (NDVI) and included it as an alternative input representation.
NDVI is a well-established vegetation index widely used in remote sens-
ing to assess plant health and photosynthetic activity, as it emphasises
the contrast between red (absorbed by chlorophyll) and NIR (reflected
by healthy vegetation). In our context, NDVI was computed using the
R630 (Red) and R850 (NIR) bands, as follows

_ R850 — R630

R850 + R630
It was integrated into the experimental framework to investigate the
effectiveness in enhancing the detection and identification of diseased

NDVI (1

regions, as compared to the use of raw spectral input. This approach
aims to explore the potential of vegetation indices as low-dimensional,
interpretable inputs for disease identification tasks.

2.3.6. The proposed multi-model ensemble method

In the sixth method, we have developed a scalable Multi-Model
Ensemble approach consisting of several independent models that were
previously trained. This pipeline uses multispectral data integrated with
visible information (RGB) and spectral data to make partial predic-
tions independently of each other, considering the entire dataset or
subgroups:

« M1: RGB, R460, R540, R630, R850, and R980
» M2: RGB, R540, and R630

« M3: RGB and R540

« M4: RGB and R630.

Subsequently, the results obtained from the different models are
merged and selected according to the highest scores, thereby optimising
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Fig. 7. The proposed MME approach is an adaptive fusion pipeline that integrates multispectral information from different spectral bands efficiently.

the final prediction through the Non-Maximum Suppression (NMS)
technique (Felzenszwalb et al., 2008), as illustrated in Fig. 7.

NMS is a post-processing technique widely used in object detection
to eliminate duplicate detections and select the most relevant bounding
boxes corresponding to the detected objects. This approach allows one
or more spectral bands to be exploited, individually or in combination,
to improve prediction accuracy in plant disease detection. Each model
learns the characteristics of the data independently, avoiding the need
to reduce the number of channels to three or to use a single model.

In the proposed methodology, the input data may include various
types of images from multi-modal acquisition, such as RGB, multi-
spectral (VIS-NIR), thermal, as well as reconstructed images, such as
false-colour, vegetation indices, etc. The employed architectures are
flexible, ranging from individual models like Faster R-CNN, YOLO, etc.,
to combinations of these models within the same pipeline. Techniques
such as Weighted Boxes Fusion (WBF) can be integrated alongside NMS
to refine the most relevant predictions. These strategies are geared
towards maximising the overall predictive performance.

In summary, using independent models for detection and leveraging
multidimensional data enables more accurate final predictions. To our
knowledge, this is the first approach applied to multispectral data for
plant disease detection, validated in a real-world scenario. Further-
more, this methodology is inherently scalable and can be extended to
other application domains.

2.4. Performance evaluation

For each method, we compute the standard Precision, Recall, F1-
score, Average Precision (AP), and mean Average Precision (mAP)
metrics to evaluate the efficiency of object detection. The class-wise
metrics are based on the ratio of negative to positive; i.e, true positive
(TP), and true negative (TN) instances that have been correctly clas-
sified and the number of positive and negative incorrectly classified,
false positive (FP), and false negative cases (FN)

TP
TP + FP TP +FN’
The F1-Score represents the harmonic mean of precision and recall into
a single metric to understand model performance better
_ 2 - Precision - Recall
" Precision + Recall

Precision = and Recall = )

Fl 3

Intersection over Union (IoU) is the ratio of the intersection of the
two boxes’ areas to their combined areas. The ground truth bounding
box and the anticipated bounding box both encompass the area of
union, which is the denominator. We calculate the overlap between the
ground-truth bounding box (A) and the predicted bounding box (B) in
the numerator

ou = ANB

AUB’ “
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Table 2

Results of the Faster R-CNN model based on ResNet50 backbone modified through Conv2D to accept input images with more
than 3 channels. The mAP appears in bold; the scores for each pathology class are also provided. Scores for mAP, AP, Precision,

Recall and F1-score refer to %.

Dataset Batch size  mAP AP Precision Recall Fl-score

Tuta Oidium  Tuta Oidium  Tuta Oidium  Tuta Oidium
Multi-channels method
Full Stack 5 46.99 24.68 69.32 41.63 80.00 36.10 70.59 38.67 75.00
Stack S1 5 49.97 24.93 75.03 45.50 72.22 37.76 76.47 41.27 7429
Stack S2 5 50.95 27.44 74.47 44.08 74.29 38.59 76.47 41.15  75.36
Stack S3 5 50.08 27.80 72.36 41.74 83.87 37.76 76.47 39.65 80.00
Stack S4 5 48.19 23.33 73.06 39.01 78.79 36.10 76.47 37.50 77.61
RGB method
Original 1 47.94 25.28 70.61 41.12 71.43 36.51 73.53 38.68 7246
Original 5 46.81 2291 70.71 30.41 78.12 37.34 73.53 33.52 75.76
EBCC 1 46.83 23.33 70.34 39.90 75.76 31.95 75.53 3548 74.63
EBCC 5 45.03 20.26 69.82 40.37 80.65 26.97 73.53 32.34 76.92
GreyWorld 1 52.42 23.98 80.86 37.55 75.68 36.93 82.35 37.24 78.87
GreyWorld 5 46.83 21.14 72.53 34.20 81.25 34.78 76.47 3347 7879
Spectral band method
R460 5 11.97 8.46 15.48 28.67 35.29 17.01 17.65 21.35 23.53
R540 5 35.00 17.47 52.54 33.50 70.37 28.63 55.88 30.87 62.30
R630 5 40.04 20.24 59.84 34.38 77.78 31.95 61.76 33.12 6885
R850 5 4.26 2.65 5.88 15.70 100.0 7.88 5.88 10.50 11.11
R980 5 2.13 1.32 294 8.33 14.29 6.22 294 7.13 4.88
Independent mixing method
D1 5 16.51 6.78 26.24 45.89 82.19 927 29.41 15.42 43.32
D2 5 25.01 14.30 35.73 45.72 83.61 19.40 37.50 27.24 51.78
D3 5 34.64 12.91 56.38 36.96 74.07 21.16 58.82 26.91 65.57
D4 5 40.05 18.03 62.09 40.78 80.00 26.14 64.71 31.86 71.54
D5 5 39.14 19.58 58.72 50.00 77.36 25.93 60.29 34.15 67.77
Reconstructed 3-channels method
FC1 5 41.50 20.55 62.45 35.21 62.16 31.12 67.65 33.04 64.79
FC2 5 44.04 21.49 66.60 33.61 79.31 33.20 67.65 33.40 73.02
FC3 5 39.29 20.68 57.91 33.05 67.74 32.37 61.76 3270 64.62
FC4 5 47.90 25.29 70.53 40.19 71.43 35.68 73.53 37.80 7246
FC5 5 47.22 28.60 65.84 34.47 85.19 41.91 67.65 37.83 7541
FC6 5 48.27 24.16 72.39 30.69 78.79 38.59 76.47 34.19 77.61
NDVI 5 39.82 20.06 59.59 36.51 84.00 28.63 61.76 32.09 7119
Multi-Model Ensemble method
M1 5 31.32 16.63 46.02 11.89 30.11 43.57 82.35 18.68 44.09
M2 5 32.68 17.91 47.47 16.80 35.90 43.15 82.35 24.19 50.00
M3 5 38.94 17.22 60.67 25.07 50.91 37.34 82.35 30.00 6292
M4 5 37.68 20.65 54.72 23.84 49.02 40.66 73.53 30.06 58.82

Average Precision (AP) is computed as the mean of the precision values
(Precision(r;)) at discrete recall points (r;), where N represents the total
number of recall points considered in the calculation

N
1 i

AP = ~ ; Precision(r;). (5)

The mean Average Precision (mAP) is the mean of AP between the dif-

ferent categories or classes detected and summarises the performance

of a detection model

N
1
AP = — AP, . 6
m NZ% A (6)

3. Results

All results are reported in Table 2. Hereby, the different experiments
are discussed.

3.1. Multi-channels method

In Table 2, the results are reported by considering the entire mul-
tispectral stack as a single 8-channel image (Full Stack), as well as by
following the stacks of RGB and subgroups of spectral bands (S1, S2,
S3, S4) described previously. The metrics show that the Tuta class has

significantly lower results than the Oidium class. This discrepancy is
due to numerous false positives in the background, which share similar
visual characteristics to Tuta, probably due to the non-optimal image
acquisition conditions.

Analysing the mAP using the entire image stack or many spectral
bands (S1 and S2) leads to inferior performance. Similarly, excessively
reducing the number of available bands (S3 and S4) does not increase
the model’s accuracy. Instead, the most balanced compromise in terms
of performance is obtained by combining RGB images with the most
informative multispectral bands, also demonstrated by the subsequent
analysis, as evidenced in the case of S2.

Fig. 8 shows some examples of disease detection. As can be ob-
served, most of the diseases were correctly identified with a high
confidence score. On the other side, there are some cases located in the
background, therefore slightly out of focus or in a darker area, which
are not identified. In this context, the main objective is to improve
the scalability of the method, maximising the capacity to identify as
many diseases as possible, especially in the early stages. In addition,
the first example shows a failure to identify Oidium in the early stages
of disease development, highlighting the difficulties for detection using
this method. Consequently, further analyses are conducted to refine the
predictions and explore additional strategies to improve the accuracy
and robustness of detection.
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Fig. 8. Results output of the multi-channels method using full stack images (8-channels, a batch size of 5 and 30 epochs). The colour red is used to mark the

Tuta and blue the Oidium for recognition.

3.2. RGB method

The results in Table 2 were obtained by considering the original
RGB images and, subsequently, those optimised using two image en-
hancement approaches: EBCC and GreyWorld. The complete analysis is
reported in Table 4 in Appendix.

The mAP results show that good learning results are obtained even
if only RGB images are considered. However, it should be noted that
several false positives are observed in the original images due to the
non-uniform yellowish-grey background usually associated with Tuta.
These false positives were reduced in the datasets with the enhanced
images, in which the yellow tones in the background were smoothed
out, minimising similarities with leaf disease characteristics, as shown
in Fig. 9. Although the most representative class of Tuta continues to
perform significantly low for all evaluation metrics.

In addition, we observed that some predictions classified as false
positives may represent true positives that were inaccurately annotated.
This discrepancy likely arises partly from the inherent limitations of
human visual inspection, where subtle features may be overlooked due
to limited attention to detail and partly from increased error rates
associated with observer tiredness.

3.3. Spectral band method (single-channel)

Table 2 reports the results related to the analysis obtained from the
individual spectral bands (R460, R540, R630, R850, and R980) using
Faster R-CNN with the ResNet50 backbone. The full analysis is reported
in Table 5 in Appendix.

We observed that the R540 and R630 spectral bands produced the
best performance in terms of detection, while the R460 band showed
poor results, and the NIR bands, R850 and R980 bands showed signifi-
cantly lower performance, as illustrated in Figs. 10. This behaviour can
be explained by analysing the nature of the symptoms associated with
the two tomato diseases (Tuta absoluta and Leveillula taurica), which
manifest themselves as colour changes in shades of yellow, orange
and brown. In particular, the R540 band is effective because, in the
presence of the disease, there is a decrease in reflectance due to the
degradation of the chlorophyll, while healthy leaves tend to reflect this
wavelength more, returning a visual appearance perceived as green.

Conversely, an increase in reflectance in the R630 band is associated
with the appearance of yellow-orange pigmentation on infected leaves,
making it particularly informative for early detection. Regarding the
NIR bands, the results obtained with R850 and R980 were lower than
those obtained with the visible bands. This can be attributed to the fact
that the pathologies analysed produce visible symptoms mainly in the
form of superficial changes in leaf aspect, which are mainly manifested
in the visible spectrum. Although NIR imaging is generally effective
for analysing physiological parameters such as water content, internal
tissue structure or biomass index, it is less sensitive to the surface
pigment changes that characterise the early stages of leaf diseases. As
a result, NIR bands provide limited information to object detection-
based detection models, which rely heavily on visible spectral contrast
to identify and locate affected areas accurately. This is reflected in
an overall decrease in the precision and recall metrics associated with
these bands.

Segmentation of Tuta shows much worse results than Oidium, in-
dicating that the acquired bands are unsuitable for accurately charac-
terising the manifestation of the Tuta. This aspect underlines the need
to identify spectral signatures and acquire imaging in the bands that
better characterise such phenomena.

3.4. Independent mixing method

Table 2 reports the results of the combined analysis of RGB and
multispectral images using all bands or only those with higher learning
scores obtained from the previous analyses as independent samples.
The dataset consisting of RGB and spectral images, considering all data,
is called D1 or, in subgroups, as D2, D3, D4 and D5, described in
Section 2.3.

As expected, considering RGB images with all spectral bands as
separate examples for models leads to lower learning scores than those
with a combination of RGB and bands with higher scores from previous
analyses (R540 and R630). Moreover, this method has not improved
performance compared to previous methods. So, using a single model
with data with different spectral information leads to more confusion
than helping to extract useful features. This aspect motivated us to
explore further methods.
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Fig. 10. Results output of the spectral band (single-channel) method, where models was trained with a batch size of 5 and 30 epochs.

3.5. Reconstructed 3-channel method

Table 2 shows the results of analysing combinations of spectral
images with RGB images by replacing one or more channels of the RGB
images with spectral bands, resulting in false-colour images, called FC1,
FC2, FC3, FC4 and FC5 or as a spectral bands combination called FC6,

described in Section 2.3. In addition, we also use the NDVI as input
data.

The mAP metrics show that combining the spectral bands leads to
superior performance compared to analysing each band independently.
Although the improvement is not drastically more significant than
the initial methods, which were already performing well, this method
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Fig. 11. Results output of our MME pipeline with the complete multispectral dataset M1.

shows excellent potential as it reduces false positives associated with
the background. This is probably due to the increased discriminative
ability to integrate spectral information, which allows relevant features
to be more accurately distinguished from background signals. These
results underline the importance of spectral data fusion to increase the
robustness and reliability of detection models, especially in complex
environments. This led to the design of the novel MME pipeline with
a partial results fusion block to merge the predictions and select the
most valuable predictions via NMS for a more precise and accurate final
result.

3.6. Multi-model ensemble method

Table 2 summarises the results obtained from the different configu-
rations. The mean mAP of the MME is slightly lower than that of some
individual models, which is expected due to the aggregation of multiple
predictions and the presence of both false positives and false negatives.
However, the ensemble produces more stable and consistent outputs,
reducing background-related errors and highlighting unlabelled regions
that likely correspond to true disease instances at an early stage. This
suggests a higher generalisation capability and robustness to imperfect
or inconsistent annotations, aspects that conventional metrics do not
fully capture.

Fig. 11 illustrates examples of the MME outputs, where most an-
notated instances were correctly detected and classified. Some of the
predictions initially labelled as false positives may actually correspond
to early symptoms of disease, visible in leaf areas not included in
the original annotations. These findings confirm the effectiveness and
reliability of the proposed approach, although further validation on
larger and more diverse datasets is required, particularly for early-stage
disease detection, where visual identification is inherently challenging.

4. Discussion

The proposed MME pipeline allows to handling different multispec-
tral configurations and it has been demonstrated in an agriculture case
study. We analysed and compared different multispectral data process-
ing and integration approaches to identify optimal channel selection
and method strategies that maximise the learning effectiveness. The
training (and so the inference) of deep CNN depends on the structure

of the input channels, which significantly affects the initial feature
extraction and the learning process. An RGB image or a three-channel
false-colour image is processed differently from individual channels
considered separately, as the model learns the relevant features using
convolutional layers by applying in one step a set of filters to all three
channels to produce a single feature map. While, in the case of multiple
monochromatic image inputs the CNN produces multiple features maps
resulting more informative.

In the work by Johnson et al. (2021) it is demonstrated that the het-
erogeneous inputs affect how the model learn robust spatio-temporal
representations. For example, converting images to alternative colour
spaces facilitates the extraction of discriminative features that are
less sensitive to environmental and lighting variations. These results
highlight the importance of dataset composition to learn more relevant
features, especially in complex and noisy scenarios. Anyway, not all
multispectral bands are equally informative; treating the entire mul-
tispectral stack as a single input may introduce redundancy or noise,
compromising the learning phase.

The results highlight several critical aspects and points for im-
provement in early disease detection using multispectral images and
DL. In particular, the metrics indicate that the class related to Tuta
performs significantly poorer than that of Oidium due to the presence of
numerous false positives in the background, which share similar visual
characteristics to the disease, due to non-optimal image acquisition
conditions. In addition, several samples exhibit out-of-focus regions,
resulting in difficulties for both detection and annotation.

The mAP metrics revealed that the multi-channel method, when
using either the entire multispectral stack or too many bands (S1 and
S2 configurations), decreases the performance; on the other hand, an
excessive reduction of the number of bands (S3 and S4), does not allow
spectral information to be fully exploited. The most significant trade-
off in performance is obtained by combining RGB images with the most
informative multispectral bands, as evidenced by the S2 configuration.
This aspect highlights the importance of carefully selecting spectral
bands to acquire data with relevant information, especially in the
case of early disease detection in plants (Scutelnic et al., 2024b). This
spectral characterisation will make it possible to optimise the optical
chain and thus the imaging, reducing costs, the data to be acquired
and the computing power required without decreasing performance.
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Table 3

Comparative summary of recent studies using multispectral data for plant disease detection. mAP and Accuracy values are expressed in %.

6

indicates not reported.

Study Data type Approach mAP/Accuracy Crop/Disease Environment Contribution
(%)
Georgantopoulos Multispectral + Faster R-CNN with mAP Tomato (T. Greenhouse Public dataset and
et al. (2023) RGB feature fusion 18.5-20.2/F1 = absoluta, L. multispectral
90 taurica) detection baseline
Giakoumoglou RGB Object detection mAP 58-70 Tomato (T. Green- Improved mAP
et al. (2023) with ensemble absoluta) house,/Field using ensemble
(WBF, NMS) detection
De Silva and RGB + NIR CNN (MobileNet, Accuracy up to Mixed crops Natural Spectral bands boost
Brown (2023a) ResNet-50V2) and 98 conditions accuracy over RGB
ViT
Kerkech et al. Multispectral + VddNet - Vine Field Deep segmentation
(2020) Depth Map segmentation combining spectral
network and depth
This study Multispectral + MME object mAP 38.94 Tomato (T. Applied Adaptive fusion and
RGB detection pipeline absoluta, L. Greenhouse spatial detection
taurica) from spectral inputs

The comparison between the original RGB and images obtained
with enhancement techniques (EBCC and GreyWorld) showed a re-
duction in false positives. However, the Tuta class performed lower,
underlining the importance of further optimisation in the acquisition
and pre-processing phases. It is important to note that images provide
physical information, and if some of them is lost during acquisition,
even the most advanced algorithms cannot accurately reconstruct real
phenomena. This is one of the main limitations to consider, especially
in complex operational contexts such as imaging in an open field or
in low light conditions that increase the difficulty of acquisition and
analysis.

The individual analysis of the spectral bands confirmed that the
R540 and R630 bands provide the best results, while the R460 band
shows bad performance, and the R850 and R980 bands perform poorly.
These results are consistent with the physical properties associated with
the disease: reduced reflectance of chlorophyll in the R540 band and
increased reflectance in the R630 band, which manifests itself in the
yellow-orange tones and brown hues observed in these two diseases.

The mixing method, combining of RGB and all spectral images (D1)
shows low learning ability: different spectral inputs confuse the model
rather than help it. By progressively reducing the number of bands (D2,
D3, D4 and D5) to those significant for diagnosis, an improvement in
learning is noted, but with a mAP no higher than that of the previously
analysed methods.

Combining the spectral bands as a reconstructed 3-channel method
improves performance compared to analysing each band separately,
reducing false positives due to background. Although enhancing the
initial methods is not radical, integrating spectral information increases
the discriminative capacity, strengthening the robustness and reliability
of the models, especially in complex contexts.

Finally, the proposed method, based on the MME, highlights the
potential of a hybrid approach to exploit the full dimensionality of the
data: independent models generate predictions, and NMS removes du-
plicates to achieve a more accurate final prediction with a higher con-
fidence score. Unlike traditional fusion strategies that rely on feature-
level concatenation or fixed-band selection, the MME architecture pre-
serves the full multispectral diversity by operating at the decision
level. This design enables the model to integrate data with opposite
physical meanings, such as reflectance and absorbance, or even emis-
sivity information from thermal sensors. Consequently, it can process
heterogeneous datasets without requiring spectral homogenisation or
dimensionality reduction, a capability not reported in prior literature.
The results obtained support the use of ensemble-based methods and
multispectral data as promising tools for plant disease monitoring.
However, the aggregation of results resulted in a slight reduction in
mAP, partly due to the quality of the data and partly due to false
negatives, which we suspect to be true positives not annotated due

to the limitations of the human eye, attention to details and tiredness.
This suggests the need for further studies and the use of multispectral
datasets with temporal data to evaluate the proposed method further.

Recent studies (reported in Table 3) have explored the use of
multispectral data and DL techniques for the early detection of dis-
eases in tomato plants and other crops. Georgantopoulos et al. (2023)
proposed a multispectral dataset comprising 5 multispectral bands
plus RGB, aimed at detecting Tuta absoluta and Leveillula taurica in
greenhouse environments. Their approach uses a Faster R-CNN with
band fusion, achieving a Fl-score > 0.9 and a mAP between 18.5%
and 20.2%. Giakoumoglou et al. (2023) applied ensemble techniques
to object detection models on real RGB datasets acquired both in
greenhouses and in open fields, achieving an improvement in mAP
from 0.58 to 0.70 using Weighted Boxes Fusion. A relevant study is
that of De Silva and Brown (2023a), which addressed the classification
of multispectral images of diseased leaves in natural environments
by combining CNN and vision transformers (ViT) to improve accu-
racy. Their work focused on comparative analysis between RGB, NIR
and multispectral data, demonstrating that the integration of different
spectral bands, particularly those covering both the visible and NIR
spectrum, produces a significant improvement in classification accuracy
compared to the use of RGB channels alone. This result suggests that
combining adjacent spectral regions can better highlight the symptoms
associated with different diseases, even in the early stages. Kerkech
et al. (2020) developed VddNet, an architecture that uses multispectral
images and depth maps to detect vine diseases, offering spatial seg-
mentation and robustness in real environments. Although these studies
focus on classification rather than object detection, they reinforce our
choice to design a pipeline that makes targeted use of spectral selection
and adaptive fusion, avoiding arbitrary reductions in dimensionality
and fully exploiting the informational potential of multispectral images.

Based on these results, our work adopts a strategy that is not limited
to classification but fully exploits the multidimensionality of spectral
information through object detection techniques. We have designed a
pipeline based on an MME approach for object detection, which inte-
grates different spectral fusion and selection strategies, achieving better
performance and more accurate localisation of infections compared to
previous methods. However, the generalisability of the results will need
to be verified with larger datasets, different plant species and variable
acquisition conditions, aspects that represent the natural continuation
of this work.

4.1. Limitations and future work
Despite the promising results obtained through the proposed ap-

proach based on a MME pipeline, it is worth highlighting some limi-
tations. First, the open-source dataset used for training and validation,
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Table 4

Results of the Faster R-CNN detector evaluation with the ResNet50 backbone with the dataset consisting only of original and
optimised RGB images. The average accuracy appears in bold; two pathology classes organise the other scores. Scores for mAP,

AP, Precision, Recall and Fl-score refer to %.

Dataset Batch size Epochs mAP AP Precision Recall Fl-score
Tuta Oidium Tuta Oidium Tuta Oidium Tuta Oidium

Original 1 30 47.94 25.28 70.61 41.12 71.43 36.51 73.53 38.68 72.46
Original 1 50 47.76 24.37 71.15 44.51 78.79 31.95 76.47 37.20 77.61
Original 1 100 36.35 16.10 56.60 46.34 76.92 23.65 58.82 31.32 66.67
Original 5 30 46.81 2291 70.71 30.41 78.12 37.34 73.53 33.52 75.76
Original 5 50 49.85 24.27 75.44 39.71 71.79 34.44 82.35 36.89 76.71
Original 5 100 49.79 20.49 79.10 41.71 82.35 30.29 82.35 35.10 82.35
EBCC 1 30 46.83 2333 70.34 39.90 75.76 31.95 75.53 35.48 74.63
EBCC 1 50 36.82 20.02 53.64 40.70 70.37 29.05 55.88 33.90 62.30
EBCC 1 100 43.32 20.89 65.76 52.42 82.14 30.29 67.65 38.42 74.19
EBCC 5 30 45.03 20.26 69.82 40.37 80.65 26.97 73.53 32.34 76.92
EBCC 5 50 50.14 23.10 77.19 41.43 61.70 36.10 85.29 38.58 71.60
EBCC 5 100 50.42 23.36 77.49 34.60 66.67 34.02 82.35 34.31 73.68
EBCC 10 30 45.40 19.39 71.43 38.04 70.27 29.05 76.47 32.94 73.24
EBCC 10 50 46.18 21.67 70.70 37.62 70.27 31.54 76.47 34.31 73.24
EBCC 10 100 45.27 24.84 65.70 40.31 77.42 3278 70.59 36.16 73.85
EBCC 15 30 44.06 21.04 67.09 34.77 70.59 36.93 70.59 35.81 70.59
EBCC 15 50 47.78 25.22 70.35 3372 70.27 36.51 76.47 35.06 73.24
EBCC 15 100 48.90 26.44 71.36 34.55 78.79 39.42 76.47 36.82 77.61
EBCC 20 30 43.44 19.95 66.93 28.57 77.42 34.01 70.59 31.06 73.85
EBCC 20 50 46.46 23.40 69.52 38.22 71.43 34.02 73.53 36.04 72.46
EBCC 20 100 45.70 24.09 67.31 35.37 72.73 36.10 70.59 35.73 71.64
GreyWorld 1 30 52.42 23.98 80.86 37.55 75.68 36.93 82.35 37.24 78.87
GreyWorld 1 50 46.07 23.02 69.13 48.45 85.71 32.37 70.59 38.81 77.42
GreyWorld 1 100 37.81 13.98 61.64 49.51 78.57 21.16 64.71 29.65 70.97
GreyWorld 5 30 46.83 21.14 72.53 34.20 81.25 34.78 76.47 33.47 78.79
GreyWorld 5 50 46.86 23.20 70.54 41.21 78.12 31.12 73.53 35.46 75.76
GreyWorld 5 100 49.66 25.08 74.24 40.27 77.14 36.93 79.41 38.53 78.26

although carefully selected and annotated, is limited in size and vari-
ability. This could affect the models’ ability to generalise to other plant
species, different diseases or more complex environmental conditions.
In particular, the differences in performance observed between the two
diseases analysed, Tuta absoluta and Leveillula taurica, highlight the
importance of disease-specific spectral signatures and the sensitivity of
the detection process to background noise and image quality. A further
limitation is the absence of temporal data. The progression of plant
diseases is a dynamic phenomenon, and the initial symptoms may not
be visible or distinguishable either visually or spectrally in a single ac-
quisition. The integration of multispectral images acquired at different
times would allow for more accurate modelling of disease evolution,
thus improving the predictive power of the models. From a method-
ological point of view, although the ensemble approach has shown an
improvement in detection capability by integrating the strengths of
independent models, it also introduces an increase in computational
load and requires careful calibration of fusion mechanisms (such as the
NMS threshold), potentially limiting its applicability in real time on
embedded or low-power devices.

Further research should focus on expanding and diversifying
datasets to validate the proposed approach by testing it across different
applications. The MME method is also applicable to other fields, as it
can leverage various types of data with different physical meanings,
such as UV, VIS, NIR, Short-Wave Infrared (SWIR), Long-Wave Infrared
(LWIR or thermal), etc., to achieve more accurate results and higher
confidence scores compared to using only visible bands, as in the case
of RGB images.

5. Conclusions

In this study, we conducted a comparative analysis of state-of-the-
art deep learning strategies for multispectral classification and detec-
tion of plant diseases, while also proposing a scalable approach based
on a Multi-Model Ensemble architecture founded on a decision-level
fusion strategy.

The results demonstrate that spectral information provides a sub-
stantial contribution to performance improvement compared with mod-
els trained exclusively on RGB data. Models trained on individual mul-
tispectral bands, particularly at wavelengths R540 and R630, achieved
superior performance relative to the other bands, with mAP values
of approximately 35.0% and 40.0%, respectively. The RGB baseline
configuration, enhanced through GreyWorld normalisation, achieved
an mAP of 47.9%. The integration of multispectral information through
false-colour compositions (FC4, FC5, FC6) further improved perfor-
mance, reaching an mAP of 48.3% and an Fl-score of nearly 77%,
thereby confirming the effectiveness of spectral fusion strategies.

The comparative analysis also revealed that not all spectral bands
contribute equally to the classification process. The visible bands (R540
and R630) proved to be the most discriminative, as they are sensitive
to physiological and pigment-related variations associated with dis-
ease symptoms. Conversely, the near-infrared bands (R850 and R980)
exhibited limited relevance during the early stages of infection, with
mAP values below 10%. The independent combination of RGB chan-
nels with the most informative multispectral bands (R540 and R630)
showed that selective integration, based on the most significant spectral
components, can enhance model generalisation while simultaneously
reducing data redundancy. The D4 and D5 configurations derived from
this strategy achieved an mAP of around 40% and an F1-score of 71%,
demonstrating that even a limited yet well-chosen spectral subset can
deliver competitive results.

The MME approach, based on the decision-level combination of
outputs from specialised models using Non-Maximum Suppression, ul-
timately provided more robust and generalisable performance. The
most effective configuration (M3: RGB + R540) achieved an mAP of
38.9% and an F1-score of 62.9%. Although the mean mAP was slightly
lower than that of some single models, the ensemble produced more
stable and consistent predictions, reducing background-related false
positives and correctly identifying unlabelled instances, presumably
true positives corresponding to early stages of disease development.

Beyond numerical metrics, and from an application perspective,
the main advantage of the proposed MME pipeline lies in its high
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Table 5

Results of the evaluation of the Faster R-CNN detector with the ResNet50 backbone. The dataset consists of
monochrome images, taking each spectral band independently (460 nm, 540 nm, 630 nm, 850 nm, and 980 nm).
Scores for mAP, AP, Precision, Recall, and Fl-score refer to %.

Dataset  Batch size  Epochs mAP AP Precision Recall Fl-score
Tuta Oidium  Tuta Oidium  Tuta Oidium  Tuta Oidium

R460 1 30 6.83 8.76 4.90 3478  50.00 13.28 5.88 19.22 10.53
R460 5 30 11.97 8.46 15.48 28.67 35.29 17.01 17.65 21.35 2353
R540 1 30 34.73 13.84 55.63 38.00 50.00 2365 6176 29.16 55.26
R540 5 30 35.00 17.47  52.54 3350 7037 28.63 55.88 30.87 62.30
R630 1 30 35.39 15.20 55.59 3459 8261 22.82 55.88 27.50 66.67
R630 5 30 40.04  20.24 59.84 3438 77.78 3195 6176 33.12 68.85
RE850 1 30 3.89 2.88 4.90 1498  50.00 12.86 5.88 13.84 10.53
RE850 5 30 4.26 2.65 5.88 15.70 100.00 7.88 5.88 10.50 11.11
R980 1 30 2.23 1.52 2.94 11.67 33.33 5.81 2.94 7.76 5.41
R980 5 30 2.13 1.32 2.94 8.33 14.29 6.22 2.94 7.13 4.88

flexibility and scalability, with the ability to integrate spectrally and
physically heterogeneous data sources (reflectance, absorbance, and
emissivity) within a unified framework, without the need for dimen-
sionality reduction. This makes it particularly suitable for multi-source
and multimodal scenarios (VIS-NIR-SWIR-LWIR). Its robustness to
spectral variability, illumination conditions, and annotation quality
further supports its applicability in real-world precision agriculture
contexts.

In summary, this work demonstrates that the MME approach pro-
vides a practical and generalisable solution for managing and inte-
grating complex multispectral data, overcoming the limitations of tra-
ditional single-model architectures. Future research will focus on ex-
tending the validation to larger datasets and incorporating additional
spectral domains, including thermal and temporal data, to enhance
early-stage disease identification capabilities further.
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Appendix

Table 4 lists all estimates made with the datasets of RGB images at
different batch sizes and epochs.

Table 5 lists all estimates made with the datasets of monochromatic
images acquired in different spectral bands at different batch sizes and
epochs.

Data availability

The used dataset is available in literature: Georgantopoulos et al.
(2023). The source code and weights of the trained models are available
at the GitHub repository: https://github.com/DumitruScutelnic/MME.
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