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Abstract
Real-world training data is often noisy; for example, human annotators assign conflict-
ing class labels to the same instances. Partial-label learning (PLL) is a weakly supervised 
learning paradigm that allows training classifiers in this context without manual data clean-
ing. While state-of-the-art methods have good predictive performance, their predictions are 
sensitive to high noise levels, out-of-distribution data, and adversarial perturbations. We 
propose a novel PLL method based on subjective logic, which explicitly represents uncer-
tainty by leveraging the magnitudes of the underlying neural network’s class activation val-
ues. Thereby, we effectively incorporate prior knowledge about the class labels by using 
a novel label weight re-distribution strategy that we prove to be optimal. We empirically 
show that our method yields more robust predictions in terms of predictive performance 
under high PLL noise levels, handling out-of-distribution examples, and handling adver-
sarial perturbations on the test instances.

Keywords  Weakly-supervised learning · Partial-label learning · Learning under noise · 
Robust classification · Deep learning

1  Introduction

In real-world applications, one often encounters ambiguously labeled data. In crowd 
labeling, for example, human annotation produces instances with multiple conflicting 
class labels (Huiskes & Lew, 2008). Other examples with ambiguous data include web 
mining (Guillaumin et  al., 2010; Zeng et  al., 2013) and audio classification (Briggs 
et al., 2012). Partial-label learning (PLL; Grandvalet, 2002; Nguyen & Caruana, 2008; 
Xu et  al., 2023; Zhang et  al., 2017) is a weakly-supervised learning paradigm that 
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targets classification with such inexact supervision, where training data can have several 
candidate labels of which only one is correct. While cleaning is costly, PLL algorithms 
allow to handle such ambiguously labeled data directly.

As predictions by machine-learning systems often impact actions or decisions by 
humans, they should be robust regarding several criteria to limit mispredictions and 
their effects. Three common criteria are robustness against (a) high noise levels (Zhang 
et  al., 2021), (b) out-of-distribution data (Sensoy et  al., 2018), and (c) adversarial 
attacks (Madry et  al., 2018). Consider, for example, safety-critical domains such as 
medical image classification (Lambrou et al., 2011; Reamaroon et al., 2019; Yang et al., 
2009) or financial fraud detection  (Berkmans & Karthick, 2023; Cheng et  al., 2020; 
Xiang et al., 2023), where all three criteria are of interest.

Robustness in terms of (a), (b), and (c) is especially important in PLL because of 
its noisy and inexact supervision. While different noise generation processes (a) are 
well-examined in PLL, it is still open to investigate the impact of (b) and (c) on PLL 
algorithms. Dealing with out-of-distribution data (b) is essential in the web mining use 
case of PLL as the closed-world assumption usually does not hold, that is, an algorithm 
should recognize instances that do not belong to any known class. Addressing adver-
sarial modifications of input features (c) is also critical, given that much of the training 
data is human-based, presenting a potential vulnerability. Tackling (a)–(c) is particu-
larly challenging in the PLL domain as there is no exact ground truth on which an algo-
rithm can rely to build robust representations. Our proposed PLL method is unique in its 
ability to perform well across all three aspects.

In this work, we propose a novel PLL deep-learning algorithm that leverages the 
magnitudes of class activation values within the subjective logic framework (Jøsang, 
2016). Subjective logic allows for explicitly representing uncertainty in predictions, 
which is highly beneficial in dealing with the challenges (a)–(c). The details are as fol-
lows. When dealing with noise from the PLL candidate sets (a), having good uncertainty 
estimates supports the propagation of meaningful labeling information as it allows us to 
put more weight on class labels with a low uncertainty and to restrict the influence of 
noisy class labels, which have high uncertainty. We tackle out-of-distribution data (b) 
by optimizing for high uncertainty when the correct class label is excluded from the 
set of all possible class labels. Adversarial modifications of the input features (c) are 
addressed similarly to (a), as our approach provides reliable uncertainty estimates near 
the decision boundaries of the class labels.

The supervised classification approach by Sensoy et al. (2018) is the most similar to the 
proposed approach as both employ the subjective logic framework. However, it is highly 
non-trivial to extend the methods from the supervised to the PLL setting as the existing 
work relies on exact ground truth, which is generally unavailable in PLL. We attack this 
problem by proposing a novel representation of partially-labeled data within the subjec-
tive logic framework and give an optimal update strategy for the candidate label weights 
with respect to the model’s loss term. Subjective logic allows us to deal with the partially 
labeled data in a principled fashion by jointly learning the candidate labels’ weights and 
their associated uncertainties.

Our contributions are as follows.

•	 We introduce RobustPll, a novel partial-label learning algorithm, which leverages the 
model’s class activation values within the subjective logic framework.

•	 We empirically demonstrate that RobustPll yields more robust predictions than our 
competitors. The proposed method achieves state-of-the-art prediction performance 
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under high PLL noise and can deal with out-of-distribution examples and examples 
corrupted by adversarial noise more reliably. Our code and data are publicly available.1

•	 Our analysis of RobustPll shows that the proposed label weight update strategy is 
optimal in terms of the mean-squared error and allows for reinterpretation within the 
subjective logic framework. Further, we discuss our method’s runtime and show that it 
yields the same runtime complexity as other state-of-the-art PLL algorithms.

Outline. Section 2 discusses related work. Section 3 defines the problem and our notations. 
We propose our PLL method in Sect. 4 and show our experiments in Sect. 5. Section 6 
concludes. We defer all proofs and hyperparameter choices to the appendices.

2 � Related work

This section separately details related work on PLL and on making predictions more robust 
regarding aspects (a)–(c).

2.1 � Partial‑label learning (PLL)

PLL is a typical weakly-supervised learning problem. Early approaches apply common 
supervised learning frameworks to the PLL context: Grandvalet (2002) propose a logistic 
regression formulation, Jin and Ghahramani (2002) propose an expectation-maximization 
strategy, Hüllermeier and Beringer (2005) propose a nearest-neighbors method, Nguyen 
and Caruana (2008) propose an extension of support-vector machines, and Cour et  al. 
(2011) introduce an average loss formulation allowing the use of any supervised method.

As most of the aforementioned algorithms struggle with non-uniform noise, several 
extensions and novel methods have been proposed: Zhang and Yu (2015), Xu et al. (2019), 
Feng and An (2019), Ni et al. (2021) leverage ideas from representation learning, Yu and 
Zhang (2017), Feng and An (2019), Ni et al. (2021) extend the maximum-margin idea, Liu 
and Dietterich (2012), Lv et al. (2020) propose extensions of the expectation-maximization 
strategy, Zhang et al. (2017), Tang and Zhang (2017), Wu and Zhang (2018) propose stack-
ing and boosting ensembles, and Lv et al. (2020), Cabannes et al. (2020) introduce a mini-
mum loss formulation, which iteratively disambiguates the partial labels.

The progress of deep-learning techniques also yields advances in PLL. Feng et  al. 
(2020), Lv et al. (2020) provide risk-consistent loss formulations for PLL, Xu et al. (2021), 
Wang et al. (2022), Zhang et al. (2022), Fan et al. (2024), Tian et al. (2024) use advances in 
deep representation learning and data augmentation to strengthen inference from PLL data, 
and Xu et al. (2023), Fuchs and Kalinke (2025) gradually refine the partial-label learning 
candidate sets by removing unlikely labels. Similar to our approach, Cavl (Zhang et al., 
2022) makes use of the class activation values to identify the correct labels in the candidate 
sets. While they use the activation values as a feature map, we use the activation values to 
build multinomial opinions in subjective logic, which reflect the involved uncertainty in 
prediction-making.

Similar to Proden (Lv et  al., 2020), Pop (Xu et  al., 2023), and CroSel (Tian et  al., 
2024), among many others, we iteratively update a label weight vector keeping track of 

1  https://​github.​com/​mathe​fuchs/​robust-​pll

https://github.com/mathefuchs/robust-pll
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the model’s knowledge about the labeling of all instances. However, those three methods 
do not provide any formal reasoning for their respective update rules. In contrast, we prove 
our update rule’s optimality in Propositions  4.3 and 4.6 for the mean-squared error and 
cross-entropy error, respectively.

We note that, at a first glance, our update rule also appears to be similar to the label 
smoothing proposed by Gong et  al. (2024). Based on a smoothing hyperparame-
ter r ∈ [0, 1] , they iteratively update the label weights: r = 1 uniformly allocates weight 
among all class labels, while r = 0 only allocates label weight on the most likely label. In 
contrast, our update strategy does not involve any hyperparameter and allocates probability 
mass based on the uncertainty involved in prediction-making.

2.2 � Robust prediction‑making

Robust prediction-making encompasses a variety of aspects out of which we consider 
(a) good predictive performance under high PLL noise (Zhang et  al., 2021), (b) robust-
ness against out-of-distribution examples [OOD; Sensoy et  al. (2018)], and (c) robust-
ness against adversarial examples (Madry et al., 2018) to be the most important in PLL. 
Real-world applications of PLL often entail web mining use cases, where the closed-world 
assumption usually does not hold (requiring (b)). Also, PLL training data is commonly 
human-based and therefore a possible surface for adversarial attacks (requiring (c)). Other 
robustness objectives that we do not consider are, for example, the decomposition of the 
involved uncertainties (Kendall & Gal, 2017; Wimmer et al., 2023) or the calibration of the 
confidences (Ao et al., 2023; Mortier et al., 2023).

To address (a) in the supervised setting, one commonly employs Bayesian methods 
(Kingma & Welling, 2014; Kendall & Gal, 2017) or ensembles2 (Lakshminarayanan et al., 
2017; Wimmer et al., 2023). To recognize OOD samples (b), one commonly employs tech-
niques from representation learning (Xu et al., 2021; Zhang & Yu, 2015) or leverages nega-
tive examples using regularization or contrastive learning (Sensoy et al., 2018; Wang et al., 
2022). To address (c), methods incorporate adversarially corrupted features already in the 
training process to strengthen predictions (Lakshminarayanan et al., 2017). To the best of 
our knowledge, we are the first to propose a method that addresses (a), (b), and (c) in PLL. 
Tackling all three aspects is particularly challenging in the PLL domain as there is no exact 
ground truth on which an algorithm can rely to build robust representations.

While evidential deep-learning (Sensoy et al., 2018) fails to learn a well-calibrated epis-
temic uncertainty measure with respect to a reference distribution, it excels at forming a 
relative notion of uncertainty, which is sufficient for most downstream tasks. We further 
improve its performance in this respect by adding a regularization term (Sect.  4.3) and 
using an optimal label-weight update strategy (Sect. 4.4). With these additions, we empiri-
cally observe strong performances for the downstream tasks (a), (b), and (c) in the partial-
label learning setting. We refer to Jürgens et al. (2024) for an extended discussion regard-
ing the limitations of evidential deep-learning in the supervised setting.

2  Ensemble techniques also benefit (b) and (c) and are easy to implement. Therefore, we also consider an 
ensemble approach of one of our competitors in our experiments as a strong baseline in Sect. 5.
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3 � Problem statement and notations

This section defines the partial-label learning problem, establishes the notations used 
throughout this work, and briefly summarizes subjective logic.

3.1 � Partial‑label learning (PLL)

Given a real-valued feature space X = ℝ
d and a label space Y = [k] ∶= {1,… , k} 

with 3 ≤ k ∈ ℕ class labels, we denote a partially-labeled training dataset with 
D =

{(
xi, Si

)
∣ i ∈ [n]

}
 consisting of n instances with features xi ∈ X  and a non-empty 

set of candidate labels Si ⊆ Y for all i ∈ [n] . The ground-truth label yi ∈ Y of instance 
i is unknown. However, one assumes yi ∈ Si (Jin & Ghahramani, 2002; Liu & Dietter-
ich, 2012; Lv et al., 2020). The goal is to train a classifier g ∶ X → Y that minimizes 
the empirical loss with weak supervision only, that is, the exact ground truth labels yi 
are unavailable during training. We use label weight vectors �i ∈ [0, 1]k with ‖�i‖1 = 1 
to represent the model’s knowledge about the labeling of instance i ∈ [n] . Thereby, 
‖�i‖p = (

∑k

j=1
�� ij�p)1∕p denotes the p-norm. � ij ∈ [0, 1] denotes class j’s weight regard-

ing instance i. We typeset vectors in bold font.

3.2 � Subjective logic (SL)

Inspired by Dempster–Shafer theory (Dempster, 1967; Shafer, 1986), Jøsang 
(2016) proposes a theory of evidence, called subjective logic, that explicitly rep-
resents (epistemic) uncertainty in prediction-making. In subjective logic, the tuple 
�i = (�i,�i,�i) ∈ [0, 1]k × [0, 1]k × [0, 1] denotes a multinomial opinion about instance 
i ∈ [n] with �i representing the belief mass of the class labels, �i representing the prior 
knowledge about the class labels, and �i explicitly represents the uncertainty involved 
in predicting i. �i satisfies ‖�i‖1 = 1 and requires additivity, that is, �i + ‖�i‖1 = 1 
for all i ∈ [n] . The projected probability is defined by p̄i = �i + �i�i ∈ [0, 1]k for 
i ∈ [n] . p̄i induces a probability measure ℙi on the measurable space (Y , 2Y ) with 
ℙi(A) =

∑
j∈A p̄ij for all A ∈ 2Y . Given instance i ∈ [n] , features xi ∈ X  , and a pre-

diction model f ∶ ℝ
d
→ ℝ

k
≥0

 , we set �i = f (xi)∕(k + ‖f (xi)‖1) , �i using prior knowl-
edge, and �i = k∕(k + ‖f (xi)‖1) . The multinomial opinion �i can be expressed in terms 
of a Dirichlet-distributed random variable with parameters �i = f (xi) + 1 , that is, 
�

pi∼Dir (�i)
[pi] ∶= �i∕‖�i‖1 = �i + �i�i = p̄i , with �i and �i as defined above, and uni-

form prior �ij = 1∕k ( i ∈ [n] , j ∈ [k] ). A multinomial opinion �i that is maximally uncer-
tain, that is, �i = 1 , defaults to prior knowledge �i : In this case, p̄i = �i for i ∈ [n] . In the 
following, we provide an example of multinomial opinions in subjective logic.

Example 3.1  Let n = 2 , k = 3 , Y = {1, 2, 3} , �1 = (2∕3, 1∕6, 1∕6) , �2 = (1∕2, 0, 0) , 
�1 = �2 = (1∕3, 1∕3, 1∕3) , �1 = 0 , and �2 = 1∕2 . Then, both multinomial opin-
ions, �1 = (�1,�1,�1) and �2 = (�2,�2,�2) , yield the same projected probabilities 
p̄1 = p̄2 = (2∕3, 1∕6, 1∕6) . While �1 and �2 both induce the same probability measure on 
(Y , 2Y ) , �2 contains more uncertainty than �1 , that is, there is more evidence that supports 
�1 than �2 . Also, both multinomial opinions induce a Dirichlet-distributed random variable 
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with equal mean but different variances indicating different degrees of certainty about the 
labeling, which will be helpful in disambiguating the PLL data.

4 � Our method: RobustPLL

We present a novel PLL method that yields robust predictions in terms of good predictive per-
formance, robustness against out-of-distribution examples, and robustness against adversarial 
examples. Tackling all is especially challenging in PLL as full ground truth is not available.

Given a prediction, one commonly uses softmax normalization, softmax ∶ ℝ
k
→ [0, 1]k , 

to output a discrete probability distribution over possible targets (Bishop, 2007). It has been 
noted, however, that softmax normalization cannot represent the uncertainty involved in pre-
diction-making (Hüllermeier & Waegeman, 2021; Sale et  al., 2023), which is also evident 
from Example 3.1, where different amounts of uncertainty can be associated with the same 
probability measure. In partial-label learning, where candidate labels are iteratively refined, 
it is crucial to accurately reflect the uncertainty involved in the candidate labels to effectively 
propagate labeling information. Our method explicitly represents uncertainty through the SL 
framework by using a neural-network that parameterizes a Dirichlet distribution rather than 
using softmax normalization. By jointly learning the candidate label weights as well as their 
associated uncertainty, our approach builds robust representations, which help in dealing with 
out-of-distribution data and adversarially corrupted features.

Similar to an expectation-maximization procedure, we interleave learning the parameters 
of our prediction model with updating the current labeling information of all instances based 
on the discovered knowledge and prior information.

Algorithm  1 outlines our method: RobustPll. First, we initialize the label weights � ij 
in Line 1. These weights � ij represent the degree to which instance i has the correct label j. 
Section 4.1 discusses their initialization and interpretation. In Line 2, we set up our model 
f ∶ ℝ

d
→ ℝ

k
≥0

 and its parameters � . Our framework is independent of the concrete model 
choice. For example, one may use MLPs (Rumelhart et al., 1986), LeNet (LeCun et al., 1998), 
or ResNet (He et al., 2016). One only needs to modify the last layer, which is required to be a 
ReLU layer to enforce non-negative outputs for the SL framework. Lines 3–7 contain the main 
training loop of our approach. We train for a total of T epochs. Note that, in practice, we make 
use of mini-batches. We set the annealing coefficient �t in Line 4. The coefficient controls the 
influence of the regularization term in R̂ (f ;𝜆t) , which is discussed in Sect. 4.3. In Line 5, we 
then compute the empirical risk R̂ (f ;𝜆t) and update the model parameters � in Line 6. Those 
steps are discussed in Sect. 4.2. Thereafter, we update the label weights � ij in Line 7 as shown 
in Sect. 4.4.

The remainder of Sect. 4 presents further analyses. In Sect. 4.5, we discuss our reinterpre-
tation of the label weight update within SL. Section 4.6 bounds the rate of change of �i and 
Sect. 4.7 demonstrates why the squared error loss is superior to the cross-entropy loss in our 
setting. Section 4.8 discusses our approach’s runtime.



Machine Learning (2025) 114:193	 Page 7 of 26  193

Algorithm 1   RobustPll (Our proposed method)

4.1 � Initializing the label weights

The label weights � ij represent the current knowledge of our method about instance i having 
the correct label j. They must sum to one, that is, ‖�i‖1 = 1 , and must be zero if j is not a can-
didate label of instance i, that is, � ij = 0 if j ∉ Si ( i ∈ [n] ). We initialize the label weights with 
� ij = 1{j∈Si}

∕|Si| , where 1{⋅} denotes the indicator function. � ij satisfies both requirements. 
Also, � ij can be written as a multinomial opinion �i = (�i,�i,�i) in SL with maximal uncer-
tainty, that is, �i = �i + �i�i with zero belief �ij = 0 , uniform prior weights �ij = 1{j∈Si}

∕|Si| , 
and maximal uncertainty �i = 1 ( i ∈ [n] , j ∈ [k] ). Note that �i = �i at initialization: The label 
weights �i are solely determined by prior knowledge about the candidate sets encoded in �i.

4.2 � Training a model

We interleave learning the parameters � of a model f ∶ ℝ
d
→ ℝ

k
≥0

 (Lines 4–6) with updat-
ing the label weights �i based on the discovered knowledge (Line 7). Our model f does not 
directly output discrete probabilities (e.g., via softmax) as a single probability mass function 
cannot reflect the degree of uncertainty involved in prediction-making, which we illustrate in 
Example 4.1. Instead, the model f outputs evidence supporting a particular class label, which 
parameterizes a Dirichlet distribution Dir (�i) with

To fit f to the label weights �i , we use a loss formulation similar to Sensoy et al. (2018). 
The loss regarding a fixed instance i is characterized by the expected value of the squared 
distance of �i and pi ∼ Dir (�i) with �i as in  (1). For an instance i ∈ [n] with features 
xi ∈ X  and label weights �i ∈ [0, 1]k , the squared error using the bias-variance decompo-
sition is

(1)�i = f (xi;�) + 1 ∈ ℝ
k
≥1

for i ∈ [n].

(2)L (f (xi;�),�i) = �
pi∼Dir (�i)

‖�i − pi‖22



	 Machine Learning (2025) 114:193193  Page 8 of 26

with p̄i = �
pi∼Dir (�i)

[pi] = �i∕‖�i‖1 . (i) holds by expansion of the squared term and rear-
rangement and (ii) by the known variance of Dirichlet random variables. Fortunately, one 
does not need to numerically approximate the integral of the expected value in (2). One can 
directly compute L using the outputs of f only. In the following, we give an example high-
lighting the differences to softmax normalization.

Example 4.1  Let n = 2 , k = 3 , Y = {1, 2, 3} , x1, x2 ∈ X  , f (x1) = (4, 1, 1) , and 
f (x2) = (7, 4, 4) . Using softmax normalization, both predictions yield the same discrete 
probabilities, that is, softmax (f (x1)) = softmax (f (x2)) ≈ (0.910, 0.045, 0.045) , although 
x1 and x2 have different activation values. In our setting, �1 = f (x1) + 1 = (5, 2, 2) 
and �2 = f (x2) + 1 = (8, 5, 5) by  (1). The predicted probabilities are 
p̄1 = �

p1∼Dir (�1)
[p1] = (5∕9, 2∕9, 2∕9) and p̄2 = �

p2∼Dir (�2)
[p2] = (4∕9, 5∕18, 5∕18) . 

While both probabilities are still close, similar to the softmax normalization, the differ-
ent variances of the Dirichlet distributions represent different degrees of uncertainty, that 
is, Var

p1∼Dir (�1)
[p1] ≈ (0.025, 0.017, 0.017) and Var

p2∼Dir (�2)
[p2] ≈ (0.013, 0.011, 0.011) . 

Since f (x2) has higher activation values, there is less associated uncertainty across all 
classes. Hence, Dir (�2) has less variance than Dir (�1).

The loss term L in (3) can be separated into an error and variance component, L err
ij

 
and L var

ij
 , respectively. L err

ij
 enforces model fit and L var

ij
 acts as regularization term and 

incentivizes the decrease of the variance of the Dirichlet distribution parameterized by 
f. To prioritize model fit, it is desirable that L err

ij
> L

var
ij

 if � ij and p̄ij deviate too much, 
which we discuss in the following.

Proposition 4.2  Given instance (xi, Si) ∈ D , parameters � , label weights �i , and 
p̄i = �i∕‖�i‖1 , it holds that L err

ij
< L

var
ij

 if and only if p̄ij −
√

L
var
ij

< � ij < p̄ij +
√

L
var
ij

 , 
for all i ∈ [n] and j ∈ [k].

Proposition 4.2 sheds light on the magnitudes of L err
ij

 and L var
ij

 . When � ij is within 
one standard deviation from p̄ij , � ij is close to p̄ij . In this regime, reducing variance 
is more important than improving model fit, that is, L err

ij
< L

var
ij

 . Reducing the vari-
ance of the Dirichlet distribution is equivalent to a reduction of the uncertainty about 
the prediction. When � ij is outside one standard deviation from p̄ij , model fit is more 
important, that is, L err

ij
> L

var
ij

 . This property guarantees that one can jointly learn the 
candidate label weights as well as their associated uncertainty seamlessly, which helps 
in creating robust representations to deal with out-of-distribution data and adversarial 
modifications of the features.

(3)

=

k�
j=1

�
�
(� ij − pij)

2
� (i)
=

k�
j=1

��
� ij − �

�
pij
��2

+ Var
�
pij
��

(ii)
=

k�
j=1

⎡
⎢⎢⎢⎢⎢⎣

�
� ij − p̄ij

�2
�����������

=∶L err
ij

+
p̄ij
�
1 − p̄ij

�
1 + ‖�i‖1
�����������

=∶L var
ij

⎤
⎥⎥⎥⎥⎥⎦

,
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4.3 � Regularization

Given an instance xi ∈ X  , the correct label yi ∈ Y is hidden within Si ⊆ Y (Sect. 3). 
Therefore, our model f should not allocate any evidence to incorrect labels, that is, 
fj(xi;�) should be zero for i ∈ [n] and j ∉ Si . Similar to Sensoy et  al. (2018), we add 
a regularization term to the risk computation to avoid evidence supporting incorrect 
labels j ∉ Si . Let 𝛼̃ij = 𝛼ij if j ∉ Si , else 𝛼̃ij = 1 , for i ∈ [n] , j ∈ Si . We then achieve maxi-
mal uncertainty about predicting j ∉ Si by considering the KL-divergence between 
Dir (�̃i) and Dir (1) . We compute the empirical risk as

This has a positive effect on classification as f also learns from negative examples, that is, 
f should be maximally uncertain about predicting j ∉ Si . However, to avoid our model f 
from being uncertain about all labels, we gradually increase the regularization coefficient 
�t . This regularization directly benefits the robustness of our method when dealing with 
out-of-distribution and adversarial data. Given two Dirichlet-distributed random variables 
with parameters Dir (�̃i) and Dir (1) respectively, their KL divergence permits a closed-
form expression (Penny, 2001). One updates the parameters � by backpropagation of (4). 
Note that the KL term also depends on the parameters �.

4.4 � Updating the label weights

After updating the parameters � , we extract the learned knowledge about the class labels 
to iteratively disambiguate the candidate sets Si . For a fixed instance (xi, Si) ∈ D and 
model parameters � , we want to find the optimal label weights �i ∈ [0, 1]k that mini-
mize (3), while maintaining all prior information about the candidate set membership, 
that is, � ij = 0 if j ∉ Si . We cannot directly assign p̄i to the label weights �i since f can 
allocate evidence to incorrect labels, that is, fj(xi;�) ≥ 0 for j ∉ Si . In Line 7 of Algo-
rithm 1, we assign �i ∈ [0, 1]k to the solution of

(5) permits a closed-form solution, which is as follows.

Proposition 4.3  Given a fixed instance (xi, Si) ∈ D , model parameters � , and 
p̄i = �i∕‖�i‖1 , the optimization problem (5), with L as in (3), has the solution

The proof of Proposition 4.3 (Appendix A.2) first shows that � ∗
ij
 is a feasible solution 

for the constraints in (5) and then establishes optimality using the Lagrangian multiplier 
method since L is continuous and differentiable. The solution � ∗

ij
 uniformly re-distrib-

utes all weight of labels not in Si to labels, which are in Si . This guarantees a minimal 

(4)R̂ (f ;𝜆t) =
1

n

n�
i=1

�
L
�
f (xi;�),�i

�
+ 𝜆t KL

�
Dir (�̃i)‖Dir (1)

��
.

(5)min
�
�
i
∈[0,1]k

L
�
f (xi;�),�

�
i

�
subject to ‖��

i
‖1 = 1 and �

�
ij
= 0 if j ∉ Si.

�
∗
ij
=

�
p̄ij +

1

�Si�
�
1 −

∑
j�∈Si

p̄ij�

�
if j ∈ Si,

0 else.
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loss. Notably, the update strategy in Proposition 4.3 differs from the heuristic ones pro-
posed in related work (Lv et al., 2020; Tian et al., 2024; Xu et al., 2023).

4.5 � Reinterpreting the label weights

Recall from Sect.  3 that subjective logic allows decomposing the projected probabilities 
p̄i into a multinomial opinion �i with a belief and uncertainty term, that is, p̄i = �i + �i�i . 
This representation directly allows quantifying the uncertainty involved in prediction-mak-
ing. It is desirable that the label weight update �∗

i
 in Sect. 4.4 can also be written as such a 

multinomial opinion to allow for the direct quantification of the involved uncertainty.

Proposition 4.4  Given a fixed instance (xi, Si) ∈ D and parameters � , the solution � ∗
ij
 

of (5), which is given by Proposition 4.3, is equivalent to �∗
i
= �i + �i�i with

Proposition 4.4 allows reinterpreting �∗
i
 (Proposition 4.3) as such a multinomial opin-

ion �i about instance i. Proposition 4.4 establishes that the belief of our prediction model 
in non-candidate labels directly contributes to the uncertainty �i in predicting instance 
i ∈ [n] . The uncertainty term �i arises from unallocated belief mass �ij , that is, 1 −

∑
j∈Si

�ij 
for i ∈ [n] . Also, the prior weights �ij are defined similarly to the initial label weights � ij 
(Sect.  4.1). The prior weights are uniformly distributed among all candidate labels. The 
result in Proposition 4.4 establishes that our proposed update strategy (Proposition 4.3) is 
valid within subjective logic.

4.6 � Bounding the label weights

This section examines how the model’s probability outputs p̄i and the label weights �i 
interact with each other. In the following, we provide an upper bound of the change of �i ’s 
values over time. As the label weights �i are the prediction targets in (3), it is desirable that 
the �i do not oscillate, which we detail in the following.

Proposition 4.5  Let (xi, Si) ∈ D , its label weights �(t)

i
∈ [0, 1]k , and the model’s probabil-

ity outputs p̄(t)
i

 at epoch t ∈ ℕ . Then, 0 ≤ ‖�(t+1)

i
− �

(t)

i
‖2
2
≤ ‖p̄(t+1)

i
− p̄

(t)

i
‖2
2

for i ∈ [n].

This indicates that the label weights �i change at most as fast as the model’s probability 
outputs p̄i between consecutive epochs. An immediate consequence is that the convergence 
of the model training and its probability outputs p̄i , that is, ‖p̄(t+1)

i
− p̄

(t)

i
‖2
2
→ 0 for t → ∞ , 

implies the convergence of the label weight vectors �i , that is, ‖�(t+1)

i
− �

(t)

i
‖2
2
→ 0 , which 

are extracted from the model. This property is desirable as it shows that the label weights 
�i do not oscillate if the model’s probability outputs p̄i , which depend on the model param-
eters � , converge.

�ij = 1{j∈Si}

fj(xi;�)

‖�i‖1 with �i = f (xi;�) + 1, �i = 1 −
�
j∈Si

�ij, and �ij =
1{j∈Si}

�Si� .
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4.7 � Cross‑entropy loss

Although we use the squared error loss (2), it is worth considering the commonly used 
cross-entropy loss. Given an instance xi ∈ X  , a model f with parameters � , and label 
weights �i , a cross-entropy formalization similar to Sensoy et al. (2018) is given by

with Ψij = �(‖�i‖1) − �(�ij) and � denoting the digamma function. (i) holds because of 
the linearity of the expected value and � pij∼Dir j(�i)

log pij = �(�ij) − �(‖�i‖1) . In the fol-
lowing, we establish the optimal choice of �i in our optimization problem  (5) using the 
cross-entropy loss (6).

Proposition 4.6  Given a fixed instance (xi, Si) ∈ D and parameters � , optimization prob-
lem (5), using the cross-entropy loss (6), has the closed-form solution

This suggests that the cross-entropy loss  (6) enforces an aggressive label-weight 
update strategy setting all mass on one class label. Also, the label weights given by 
Proposition  4.6 cannot be reinterpreted in SL as discussed in Sect.  4.5. The squared 
error loss also performs better than the cross-entropy loss empirically. For these rea-
sons, all experiments are conducted using the update strategy in Proposition 4.3.

4.8 � Runtime analysis

Recall from Sect.  4.2 that one does not need to numerically approximate the integral 
within the expectation value in  (2). Given label weights �i , one can directly compute 
L using the outputs of f only. The computation of the KL divergence between two Dir-
ichlet-distributed random variables with parameters Dir (�̃i) and Dir (1) , respectively, 
admits a closed-form expression (Penny, 2001), leading to an overall linear runtime in 
n to compute R̂ (f ;𝜆t) (Algorithm 1, Line 5). In Line 7 of Algorithm 1, Proposition 4.3 
also permits updating � ij in linear time regarding n. Therefore, our method’s runtime is 
dominated solely by the forward and backward pass of the employed model f.

5 � Experiments

Section 5.1 summarizes all methods that we compare against and Sect. 5.2 outlines the 
experimental setup. Thereafter, Sect. 5.3 analyzes the methods’ robustness against PLL 
noise, Sect.  5.4 against out-of-distribution samples, and Sect.  5.5 against adversarial 
perturbations.

(6)L CE(f (xi;�),�i) = �

[
−

k∑
j=1

𝓁 ij log pij

]
(i)
= �i ⋅�i,

�
∗
ij
=

{
1 if j = argminj�∈Si Ψij� ,

0 else.



	 Machine Learning (2025) 114:193193  Page 12 of 26

5.1 � Algorithms for comparison

There are many PLL algorithms from which we pick the best-performing and commonly 
used ones for comparison. We cover classic algorithms and deep-learning techniques and 
complement these methods with strong baselines.

We consider 13 methods: PlKnn (Hüllermeier & Beringer, 2005), PlSvm (Nguyen & 
Caruana, 2008), Ipal (Zhang & Yu, 2015), PlEcoc (Zhang et al., 2017), Proden (Lv et al., 
2020), Rc (Feng et al., 2020), Cc (Feng et al., 2020), Valen (Xu et al., 2021), Cavl (Zhang 
et al., 2022), Pop (Xu et al., 2023), CroSel (Tian et al., 2024), DstPll (Fuchs et al., 2025), 
and RobustPll (our method).

Additionally, we benchmark various extensions known to obtain robust results in the 
supervised domain: Proden with L2-regularization (Proden+L2), Proden with dropout3 
(Proden+Dropout; Srivastava et  al., 2014), Proden for disambiguating the partial labels 
and then training an evidential-deep-learning classifier (Sensoy et  al., 2018) in a super-
vised manner (Proden+Edl), an ensemble of 5 Proden classifiers (Proden+Ens; Lakshmi-
narayanan et al., 2017), an ensemble of 5 Proden classifiers trained on adversarial exam-
ples (Proden+AdvEns; Lakshminarayanan et  al. 2017), and an ensemble of our method 
(RobustPll+Ens).

For a fair comparison, we use the same base model, that is, a d−300-300-300-k MLP 
(Werbos, 1974), which is a common choice in the literature  (Feng et al., 2020; Lv et al., 
2020; Xu et al., 2023), for all neural-network-based approaches. Appendix B.1 discusses 
the specific hyperparameter choices, including the neural network architectures, of all 
approaches in more detail. We publicly provide all code and data for reproducibility.1

5.2 � Experimental setup

As is common in the literature (Zhang et al., 2017; Xu et al., 2023), we conduct experi-
ments on supervised datasets with added noise as well as on real-world partially-labeled 
datasets. We use four supervised MNIST-like datasets with added noise and six real-world 
PLL datasets and refer to Appendix B.2 for an overview of the dataset characteristics. For 
the supervised datasets, we use MNIST (LeCun et al., 1999), KMNIST (Clanuwat et al., 
2018), FMNIST (Xiao et  al., 2018), and NotMNIST (Bulatov, 2011). For the real-world 
datasets, we use bird-song (Briggs et al., 2012), lost (Cour et al., 2011), mir-flickr (Huiskes 
& Lew, 2008), msrc-v2 (Liu & Dietterich, 2012), soccer (Zeng et al., 2013), and yahoo-
news (Guillaumin et al., 2010).

We use instance-dependent noise to introduce partial labels into the supervised data-
sets (Zhang et al., 2021). This strategy first trains a supervised classifier g ∶ ℝ

d
→ [0, 1]k , 

which outputs probabilities gj(xi) for instance i ∈ [n] and class labels j ∈ [k] . Given 
an instance’s features xi ∈ X  with correct label yi ∈ Y , a flipping probability of 
�j(xi) = gj(xi)∕maxj�∈Y ⧵{yi}

gj� (xi) determines whether to add the incorrect label j ≠ yi to 
the candidate set Si . Additionally, one divides �j(xi) by the mean probability 1

k−1

∑
j�≠yi

�j� (xi) 
of incorrect labels (Xu et al., 2021, 2023), which makes all labels more likely to appear. 
While all MNIST-like datasets have ten class labels, the averages (± std.) of the candidate 
set cardinalities are 6.30 (± 0.06) for MNIST, 5.95 (± 0.05) for FMNIST, 6.34 (± 0.04) 
for KMNIST, and 6.34 (± 0.09) for NotMNIST. We remark that five out of the ten datasets 

3  Dropout is also applied in testing to form an explicit ensemble.
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do not contain a single instance with a candidate set that only consists of the ground truth 
label. This prohibits the application of algorithms from related fields, for example, semi-
supervised learning. We publicly provide all code and data for reproducibility.1

5.3 � Robustness under PLL noise

Robust PLL algorithms should exhibit good predictive performance when confronted 
with PLL noise from ambiguous candidate sets. Table 1 shows the accuracies of all meth-
ods on the MNIST-like and real-world datasets. All supervised datasets have added noise 
(Sect. 5.2). We repeat all experiments five times to report averages and standard deviations. 
The best algorithm per dataset, as well as algorithms with non-significant differences, are 
emphasized. Thereby, we consider non-ensemble methods (top) and ensemble methods 
(bottom) separately for fairness. We use a paired student t-test with level � = 0.05 to test 
for significance.

Our method (RobustPll) performs best on the four MNIST-like datasets and compa-
rably on the real-world datasets. We observe a similar behavior regarding our ensemble 

Table 1   Average test-set accuracies (± std.) on the MNIST-like and real-world datasets

All experiments are repeated five times with different seeds to report mean and standard deviations. The 
MNIST-like datasets have added instance-dependent noise as discussed in Sect.  5.2. The column for the 
real-world datasets contains averages across all six real-world datasets; the corresponding non-aggregated 
results are collected in Table  5. We emphasize the best algorithm per dataset, as well as non-significant 
differences, using a student t-test with level � = 0.05 . We consider non-ensemble and ensemble methods 
separately. The triangles indicate our proposed methods

All methods MNIST-like datasets with inst.-dep. noise  Real-world datasets

MNIST FMNIST KMNIST NotMNIST

PlKnn (2005) 46.6 (± 0.5) 41.9 (± 0.4) 52.2 (± 0.4) 31.3 (± 0.9) 50.3 (± 8.8)
PlSvm (2008) 32.4 (± 5.0) 37.3 (± 1.9) 31.6 (± 4.2) 39.2 (± 3.9) 40.7 (± 10.1)
Ipal (2015) 96.0 (± 0.4) 75.1 (± 0.7) 80.8 (± 0.9) 61.5 (± 1.6) 57.8 (± 7.1)
PlEcoc (2017) 61.6 (± 2.9) 49.6 (± 4.5) 40.6 (± 2.7) 39.8 (± 6.1) 42.7 (± 19.8)
Proden (2020) 93.2 (± 0.5) 77.8 (± 2.5) 76.6 (± 0.5) 84.6 (± 1.3) 64.1 (± 7.4)
Proden+L2 93.3 (± 0.4) 78.1 (± 1.7) 76.4 (± 0.6) 84.6 (± 1.2) 64.1 (± 7.5)
Proden+Edl 92.0 (± 0.5) 74.9 (± 2.4) 74.5 (± 0.7) 80.8 (± 0.5) 49.6 (± 21.0)
Rc (2020) 93.0 (± 0.4) 78.0 (± 2.3) 76.5 (± 0.7) 84.1 (± 1.6) 62.1 (± 8.9)
Cc (2020) 93.1 (± 0.2) 78.9 (± 0.9) 77.5 (± 0.8) 83.5 (± 0.9) 43.8 (± 31.2)
Valen (2021) 50.3 (± 5.3) 59.6 (± 1.9) 37.3 (± 1.3) 50.3 (± 2.4) 53.8 (± 9.0)
Cavl (2022) 79.5 (± 6.4) 72.9 (± 2.4) 64.6 (± 6.5) 61.5 (± 6.8) 61.4 (± 6.7)
Pop (2023) 92.5 (± 0.6) 79.0 (± 1.6) 77.6 (± 0.2) 84.5 (± 1.8) 64.1 (± 7.5)
CroSel (2024) 95.3 (± 0.1) 79.6 (± 0.9) 79.6 (± 0.6) 86.6 (± 0.7) 41.9 (± 30.1)
DstPll (2024) 62.2 (± 0.9) 50.3 (± 1.0) 68.4 (± 1.0) 38.2 (± 0.7) 48.5 (± 9.6)
▸ RobustPll 96.0 (± 0.1) 79.6 (± 3.0) 81.7 (± 0.3) 83.7 (± 1.9) 59.5 (± 6.8)
Proden+Dropout 92.5 (± 0.6) 72.7 (± 2.8) 72.1 (± 1.1) 78.0 (± 2.5) 65.0 (± 8.1)
Proden+Ens 93.7 (± 0.2) 78.0 (± 2.3) 77.3 (± 0.5) 85.6 (± 0.7) 65.8 (± 8.3)
Proden+AdvEns 95.3 (± 0.6) 77.9 (± 2.3) 77.7 (± 0.9) 84.3 (± 1.5) 66.7 (± 9.0)
▸ RPll+Ens 96.3 (± 0.1) 80.4 (± 2.3) 82.9 (± 0.5) 85.9 (± 1.6) 63.6 (± 7.8)
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method (RobustPll+Ens). Our non-ensemble method even achieves comparable perfor-
mance to the ensemble methods on the MNIST-like datasets. Summing up, we perform 
most consistently well under high PLL noise levels.

5.4 � Out‑of‑distribution robustness

Out-of-distribution examples (OOD) are instances that are not represented within the data-
set. Since all methods output a discrete probability distribution over known class labels, we 
evaluate the entropy of the predicted probability outputs. Test-set instances should receive 
minimal predictive entropy, that is, the model is confident about one label, while the OOD 
examples should receive maximal predictive entropy, that is, no known class label matches 
the features. Robust algorithms should maximize the distance between the predictive entro-
pies on the test and OOD sets. This is especially challenging in PLL as no exact ground 
truth is available.

Table 2   The difference in the 
predictive entropies on the test 
and OOD sets

The models have been trained on the MNIST train dataset with added 
noise as discussed in Sect. 5.2. We report the area between the empiri-
cal CDFs, the KS statistic, and the maximum-mean discrepancy using 
the RBF kernel. A value of one is optimal. Also compare Fig. 1 for a 
graphical representation. Negative values indicate that the predictions 
on the out-of-distribution set are taken more confidently than the pre-
dictions on the test set

All methods Difference in entropy on MNIST and 
NotMNIST

CDF Area KS stat. MMD

PlKnn (2005) 0.0172 0.1587 0.0429
PlSvm (2008) 0.0114 0.2944 0.0296
Ipal (2015) 0.0896 0.3665 0.1285
PlEcoc (2017) −0.0216 −0.3674 −0.0544
Proden (2020) 0.1769 0.6550 0.4240
Proden+L2 0.1853 0.6844 0.4410
Proden+Edl 0.4379 0.7171 0.6714
Rc (2020) 0.1402 0.5560 0.3495
Cc (2020) 0.0607 0.5587 0.1378
Valen (2021) −0.7668 −0.9434 −1.2137
Cavl (2022) 0.0087 0.1555 0.0205
Pop (2023) 0.1345 0.5570 0.3361
CroSel (2024) 0.2278 0.8360 0.5202
DstPll (2024) 0.1723 0.5097 0.3243
▸ RobustPll 0.3855 0.7345 0.6707
Proden+Dropout 0.2541 0.7662 0.5700
Proden+Ens 0.2741 0.8559 0.6144
Proden+AdvEns 0.2017 0.6435 0.4506
▸ RobustPll+Ens 0.5560 0.8866 0.9996
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Table 2 shows the differences in the normalized entropies (range 0–1) on the test and 
OOD samples for all methods. All methods are trained on the MNIST train set, evaluated 
on the MNIST test set, and evaluated on the NotMNIST test set. Samples from the Not-
MNIST test set contain letters instead of digits and are hence OOD examples. We meas-
ure the differences between the entropies on the test and OOD set using the area between 
the empirical CDFs, the value of the Kolmogorov-Smirnov statistic, and the maximum-
mean discrepancy with RBF kernel using the median distance heuristic to set the kernel’s 
parameter. We highlight the best (and close-to-best) values and consider non-ensemble and 
ensemble methods separately for fairness. Positive values indicate that test predictions are 
taken more confidently and negative values indicate that OOD predictions are taken more 
confidently.

Our methods (RobustPll and RobustPll+Ens) are among the best in almost all the 
three settings in Table 2. Some other methods even give negative values, which means that 
they are more sure about predicting the OOD than the test samples. Appendix B also con-
tains further results. OOD examples mislead most of the state-of-the-art PLL methods into 
confidently predicting an incorrect label. In contrast, RobustPll+Ens achieves almost per-
fect differences indicating small predictive entropies on the test set (one class label receives 
most of the probability mass) and high predictive entropies on the OOD set (class prob-
abilities are almost uniformly distributed).

5.5 � Performance on adversarial examples

Table 3   Average test-set accuracies (± std.) on the real-world datasets

The instance features, which are min-max-normalized to the range [0, 1], are corrupted using the projected 
gradient descent method (Madry et al., 2018). As this attack applies to neural networks, we report only the 
performances of the deep learning PLL methods. Note that the column with � = 0.0 is identical to the last 
column of Table 1. The triangles indicate our proposed methods

Deep-learning methods Corrupted real-world datasets with adversarial parameter �

� = 0.0 � = 0.1 � = 0.2 � = 0.3 � = 0.4

Proden (2020) 64.1 (± 7.4) 28.9 (± 7.1) 22.6 (± 5.7) 18.8 (± 5.2) 17.2 (± 5.9)
Proden+L2 64.1 (± 7.5) 28.4 (± 7.6) 22.5 (± 6.1) 19.2 (± 5.3) 17.2 (± 5.3)
Proden+Edl 49.6 (± 21.0) 36.2 (± 14.8) 32.0 (± 14.0) 29.0 (± 13.8) 27.1 (± 13.0)
Rc (2020) 62.1 (± 8.9) 29.0 (± 6.5) 21.3 (± 6.4) 17.9 (± 6.0) 14.7 (± 5.3)
Cc (2020) 43.8 (± 31.2) 20.2 (± 14.9) 14.6 (± 11.2) 11.8 (± 9.1) 9.8 (± 7.7)
Valen (2021) 53.8 (± 9.0) 25.4 (± 7.8) 19.6 (± 6.9) 17.2 (± 6.5) 15.4 (± 6.5)
Cavl (2022) 61.4 (± 6.7) 25.8 (± 7.2) 19.3 (± 5.7) 16.4 (± 5.2) 13.9 (± 4.8)
Pop (2023) 64.1 (± 7.5) 28.6 (± 7.1) 22.3 (± 6.3) 18.8 (± 5.0) 16.7 (± 4.9)
CroSel (2024) 41.9 (± 30.1) 22.6 (± 16.8) 16.3 (± 12.6) 13.4 (± 10.3) 11.5 (± 8.6)
▸ RobustPll 59.5 (± 6.8) 40.3 (± 12.0) 31.8 (± 10.3) 27.4 (± 9.3) 23.8 (± 8.4)
Prod.+Dropout 65.0 (± 8.1) 30.7 (± 6.1) 23.4 (± 4.8) 19.8 (± 5.0) 17.9 (± 5.4)
Prod.+Ens 65.8 (± 8.3) 42.8 (± 6.9) 33.1 (± 8.4) 27.4 (± 8.7) 24.7 (± 10.3)
Prod.+AdvEns 66.7 (± 9.0) 48.7 (± 7.0) 37.1 (± 7.6) 30.5 (± 8.7) 26.6 (± 9.9)
▸ RPll+Ens 63.6 (± 7.8) 51.0 (± 10.3) 42.0 (± 10.2) 37.0 (± 9.4) 33.3 (± 9.1)
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In recent years, many attacks on neural networks have been discussed in the literature (Good-
fellow et al., 2015; Moosavi-Dezfooli et al., 2016; Madry et al., 2018; Szegedy et al., 2014). 
Using the projected gradient descent (PGD; Madry et al., 2018), we modify all test set exam-
ples, which are min-max-normalized to the range [0,  1], by iteratively adding � ∶= �∕10 
times sign∇xf (x;�) to an instance’s features x ∈ X  and then projecting the newly obtained 
features back to an �-ball around the original feature values x. We repeat those steps T = 10 
times. The perturbed instances remain similar but moving against the gradient with respect to 
an instance’s features decreases prediction performance rapidly.

Table 3 shows how all neural-network-based methods perform for varying values of the 
adversarial parameter � ∈ {0.0, 0.1, 0.2, 0.3, 0.4} on the real-world datasets. A value of 
� = 0.0 indicates no added adversarial noise. The first column in Table 3 therefore matches 
the last column of Table  1. For values of � ≥ 0.1 , RobustPll and Proden+Edl perform 
best among all non-ensemble techniques. Among the ensemble techniques, our method 
(RobustPll+Ens) performs best. In general, all ensembling techniques make Proden more 
robust against the corrupted features. Note that Proden+AdvEns has an unfair advantage in 
the analysis in Table 3 as it is trained on adversarial examples, that is, it has access to the cor-
rupted features during training. Nevertheless, our ensemble method RobustPll+Ens is signifi-
cantly better for � ≥ 0.1 . RobustPll and RobustPll+Ens consistently perform among the best 
for � ≥ 0.1.

In summary, our non-ensemble and ensemble methods consistently perform the best across 
almost all settings considered. Our methods are robust against high PLL noise, out-of-distribu-
tion examples, and adversarial perturbations.

6 � Conclusions

In this work, we presented a novel PLL method that leverages class activation values within 
the subjective logic framework. We formally analyzed our method showing our update rule’s 
optimality with respect to the mean-squared error and its reinterpretation in subjective logic. 
We empirically showed that our approach yields more robust predictions than other state-of-
the-art approaches in terms of prediction quality under high PLL noise, dealing with out-of-
distribution examples, as well as handling instance features corrupted by adversarial noise. To 
the best of our knowledge, we are the first to address these aspects in the PLL setting.

Appendix A. Proofs

This section collects all proofs of the propositions in the main text. The proof of Proposi-
tion 4.2 is in Appendix A.1, that of Proposition 4.3 is in Appendix A.2, that of Proposition 4.4 
is in Appendix A.3, and that of Proposition 4.5 is in Appendix A.4.

A.1 Proof of Proposition 4.2

Solving L err
ij

= L
var
ij

 for the label weights � ij yields
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Since L err
ij

= (� ij − p̄ij)
2 reaches its minimum when � ij = p̄ij , we have shown the state-

ment to be demonstrated.

A.2 Proof of Proposition 4.3

The proof first shows that �∗
i
 is a feasible solution for the constraints in (5) and then estab-

lishes that �∗
i
 is indeed optimal using the Lagrangian multiplier method.

(Primal) Feasibility. To prove our solution’s feasibility, we need to show that (i) ‖�∗
i
‖1 = 1 

and (ii) � ∗
ij
= 0 for all j ∉ Si . Constraint (i) holds as

Constraint (ii) follows directly from the definition of � ∗
ij
 in Proposition 4.3.

Optimality. Since the loss L is differentiable, continuous, and convex in �i , we incorporate 
the constraints (i) and (ii) using the Lagrangian multiplier method as follows:

for instance i ∈ [n] . Constraint (ii) directly determines the value of � ij for all j ∉ Si . We 
then need to check the following Lagrange conditions:

for i ∈ [n] and j ∈ Si . For j ∉ Si , � ij = 0 . Inserting (7) into constraint (i) yields

L
err
ij

= L
var
ij

⇔

�
� ij − p̄ij

�2
=

p̄ij
�
1 − p̄ij

�
1 + ‖�i‖1
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Putting (8) back into (7) gives us

which is the optimal solution to (5). Note that we do not need to show dual feasibility and 
complementary slackness as there are no inequality constraints.

A.3 Proof of Proposition 4.4

We prove the statement by distinguishing two cases. (a) If i ∈ [n] and j ∉ Si , �
∗
i
= �i + �i�i 

is true as both sides are zero. (b) If i ∈ [n] and j ∈ Si , it follows

where (i) holds by Proposition 4.3, (ii) by p̄i = �i∕‖�i‖1 , (iii) by �i = f (xi;�) + 1 , (iv) by 
separating summands, (v) by simplifying, and (vi) by the definitions in Proposition  4.4. 
Note that we add the factor 1{j∈Si}

 to �ij and �ij to combine both cases, that is, (a) j ∉ Si and 
(b) j ∈ Si , into a single formula.

A.4 Proof of Proposition 4.5

The proof of Proposition 4.5 proceeds as follows:
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where (i) holds by Proposition 4.3, (ii) by reordering, (iii) by the binomial theorem, (iv) by

and (v) by

(vi) holds as |Si| ≥ 1 and 
∑k

j=1

�
p̄
(t+1)

ij
− p̄

(t)

ij

�2
≥ 0 and (vii) holds by including further non-

negative summands within the summation.

A.5 Proof of Proposition 4.6

The proof first shows that � ∗
ij
 is a feasible solution for the constraints in  (5) and then 

establishes that � ∗
ij
 is optimal.

Feasibility. As � ∗
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Optimality. As the cross-entropy loss L CE in Sect. 4.7 is a linear combination of � ij 
with coefficients Ψij = �(‖�i‖1) − �(�ij) for fixed i ∈ [n] and � ij ∈ [0, 1] , we minimize 
L CE by assigning all label weight to the minimal coefficient Ψij , that is, argminj∈Si Ψij.

Appendix B. Experiments

This section augments Sect. 5 by presenting more details of our experimental setup and 
results. This includes the hyperparameter values of all methods (Section B.1), an overview 
of the datasets used (Section B.2), as well as further results (Section B.3 and B.4).

B.1. Hyperparameters

This section lists all methods, which are benchmarked in the main text, together with 
their respective hyperparameter choices. We set all hyperparameters as recommended by 
the respective authors. There are 14 non-ensemble and four ensemble methods. The non-
ensemble methods and their hyperparameters are:

•	 PlKnn (Hüllermeier & Beringer, 2005): We use k = 10 nearest neighbors.
•	 PlSvm (Nguyen & Caruana, 2008): We use the Pegasos optimizer (Shalev-Shwartz 

et al., 2007) and � = 1.
•	 Ipal (Zhang & Yu, 2015): We use k = 10 neighbors, � = 0.95 , and 100 iterations.
•	 PlEcoc (Zhang et al., 2017): We use L = ⌈10 log2(l)⌉ and � = 0.1.
•	 Proden (Lv et al., 2020): For a fair comparison, we use the same base model for all 

neural-network-based approaches. We use a standard d-300-300-300-l MLP (Werbos, 
1974) with ReLU activations, batch normalizations, and softmax output. We choose the 
Adam optimizer for training and train for a total of 200 epochs.

•	 Proden+L2 (Lv et al., 2020; Hoerl & Kennard, 1970): We use the same base model 
and settings as Proden with additional L2 weight regularization.

•	 Proden+Edl (Sensoy et al., 2018; Lv et al., 2020): We use the Proden model to disam-
biguate the candidate labels with the same settings as above. Then, we use the eviden-
tial-learning algorithm by Sensoy et al. (2018) in a supervised manner.

•	 Rc (Feng et al., 2020): We use the same base model and settings as Proden.
•	 Cc (Feng et al., 2020): We use the same base model and settings as Proden.
•	 Valen (Xu et al., 2021): We use the same base model and settings as Proden.
•	 Cavl (Zhang et al., 2022): We use the same base model and settings as Proden.
•	 Pop (Xu et al., 2023): We use the same base model and settings as Proden. Also, we set 

e0 = 0.001 , eend = 0.04 , and es = 0.001.
•	 CroSel (Tian et al., 2024): We use the same base model and settings as Proden. We 

use 10 warm-up epochs using Cc and �cr = 2 . We abstain from using the data augmen-
tations discussed in the paper for a fair comparison of the base approach.

•	 DstPll (Fuchs et al., 2025): We use k = 20 neighbors and a variational auto-encoder to 
reduce the feature dimensionality as recommended by the authors.

•	 RobustPll (our method): We use the same base model and settings as Proden. The 
parameter �t is set to min(2t∕T , 1) with T = 200 epochs.
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The four ensemble methods and their hyperparameters are:

•	 Proden+Dropout (Lv et al., 2020; Srivastava et al., 2014): We use the Proden model 
with additional Monte-Carlo dropout. The dropout layer is also active during inference. 
We repeat the predictions 1000 times to estimate the uncertainty involved across all 
dropout networks.

•	 Proden+Ens (Lakshminarayanan et al., 2017; Lv et al., 2020): We use an ensemble of 
5 Proden models.

•	 Proden+AdvEns (Lv et al., 2020; Lakshminarayanan et al., 2017): We use an ensemble 
of 5 Proden models that are trained on adversarially corrupted instance features.

•	 RobustPll+Ens (our method): We use an ensemble of 5 RobustPll models.

B.2. Datasets

Table 4 shows an overview of all used datasets, including the number of instances, fea-
tures, and classes. Also, we report the average candidate set sizes as well as the fraction 
of candidate sets with only one candidate label, which is the ground truth label. We note 
that five out of ten datasets do not contain a single instance with available ground truth. 
We recall that this prohibits the application of algorithms from related fields, for example, 
semi-supervised learning.

B.3. Predictive performance

Table 5 augments Table 1 and shows the detailed test-set accuracies across all real-world 
datasets. All experiments are repeated five times with different seeds to report mean and 
standard deviations. We emphasize the best algorithm per dataset, as well as non-signifi-
cant differences, using a student t-test with level � = 0.05 . We consider non-ensemble and 

Table 4   Overview of dataset characteristics grouped into real-world partially labeled datasets (top) and 
supervised datasets with added candidate labels (bottom)

Dataset #Inst. n #Features d #Classes k Avg. candidate set 
sizes

Fraction with 
ground truth

bird-song 4 998 38 13 2.167 0.33
lost 1 122 108 16 2.228 0.06
mir-flickr 2 780 1 536 14 2.764 0.00
msrc-v2 1 758 48 23 3.154 0.08
soccer 17 472 279 171 2.095 0.30
yahoo-news 22 991 163 219 1.907 0.29
MNIST 70 000 784 10 6.304 0.00
FMNIST 70 000 784 10 5.953 0.00
KMNIST 70 000 784 10 6.342 0.00
NotMNIST 70 000 784 10 6.342 0.00
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Table 5   Average test-set accuracies (± std.) on the real-world datasets

All methods bird-song lost mir-flickr msrc-v2 soccer yahoo-news

PlKnn (2005) 67.8 (± 1.2) 41.6 (± 2.2) 52.6 (± 2.0) 43.6 (± 1.9) 50.0 (± 0.4) 46.1 (± 0.5)
PlSvm (2008) 32.3 (± 1.2) 53.5 (± 1.7) 45.4 (± 7.2) 26.5 (± 0.9) 49.3 (± 0.5) 37.2 (± 2.7)
Ipal (2015) 72.1 (± 0.9) 59.4 (± 4.1) 54.3 (± 1.0) 51.8 (± 2.1) 54.1 (± 0.5) 55.3 (± 0.7)
PlEcoc (2017) 58.3 (± 2.5) 64.1 (± 2.3) 49.2 (± 2.7) 30.6 (± 6.0) 5.6 (± 0.4) 48.1 (± 0.7)
Proden (2020) 72.0 (± 0.8) 71.5 (± 2.9) 68.4 (± 1.8) 54.7 (± 1.2) 54.4 (± 0.5) 63.7 (± 1.0)
Proden+L2 72.2 (± 0.9) 71.5 (± 2.0) 67.8 (± 2.0) 54.4 (± 1.2) 54.4 (± 0.2) 64.1 (± 0.8)
Proden+Edl 69.1 (± 0.4) 66.6 (± 2.8) 66.4 (± 2.6) 53.4 (± 1.7) 25.7 (± 1.2) 16.6 (± 0.9)
Rc (2020) 73.7 (± 1.1) 69.8 (± 0.7) 67.3 (± 2.0) 52.9 (± 1.5) 49.9 (± 0.5) 59.1 (± 0.5)
Cc (2020) 71.8 (± 0.7) 71.1 (± 3.1) 65.1 (± 2.0) 53.8 (± 1.3) 0.6 (± 0.2) 0.5 (± 0.2)
Valen (2021) 66.5 (± 2.2) 45.9 (± 5.3) 60.0 (± 2.6) 41.9 (± 1.1) 49.6 (± 0.4) 59.0 (± 1.4)
Cavl (2022) 69.4 (± 1.5) 64.7 (± 2.4) 63.8 (± 3.6) 50.9 (± 0.7) 54.7 (± 0.7) 65.1 (± 0.6)
Pop (2023) 72.5 (± 0.8) 71.6 (± 2.0) 67.7 (± 1.6) 53.9 (± 1.8) 55.3 (± 0.7) 63.5 (± 0.7)
CroSel (2024) 69.5 (± 0.9) 67.8 (± 4.5) 64.0 (± 2.0) 49.4 (± 1.5) 0.6 (± 0.2) 0.3 (± 0.2)
DstPll (2024) 67.2 (± 0.9) 37.9 (± 3.2) 50.6 (± 1.4) 41.0 (± 1.8) 49.9 (± 0.5) 44.5 (± 0.4)
▶ RobustPll 67.9 (± 2.5) 65.4 (± 1.5) 63.9 (± 2.0) 52.0 (± 1.0) 50.6 (± 0.6) 57.2 (± 1.0)
Proden+Dropout 72.5 (± 0.8) 73.2 (± 2.1) 69.2 (± 2.0) 54.2 (± 1.4) 54.0 (± 0.5) 66.7 (± 1.0)
Proden+Ens 73.5 (± 0.8) 75.5 (± 1.9) 68.2 (± 2.0) 54.9 (± 2.2) 54.9 (± 0.7) 68.2 (± 0.5)
Proden+AdvEns 74.7 (± 0.6) 77.4 (± 3.4) 67.0 (± 1.4) 53.9 (± 2.1) 56.2 (± 0.5) 71.0 (± 0.5)
▶ RobustPll+Ens 71.8 (± 1.0) 71.9 (± 3.2) 66.8 (± 2.2) 53.6 (± 0.8) 53.7 (± 0.5) 63.7 (± 0.3)
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Fig. 1   Empirical CDF of the normalized entropy (range 0–1) of predictions on MNIST (darker color) and 
NotMNIST (lighter color) for models trained on MNIST. The left plot shows the four best non-ensemble 
approaches according to Table  2 (highest metrics). We exclude methods that are too similar, for exam-
ple, Proden-L2 and Rc behave similarly to Proden, which is shown. All methods’ performances can be 
observed in Table  2. The right plot shows the predictive entropy of all four ensemble approaches. Our 
ensemble approach is most certain about predictions on the test set (top-left corner) while being one of the 
approaches that is the most uncertain about out-of-distribution examples (bottom-right corner)



Machine Learning (2025) 114:193	 Page 23 of 26  193

ensemble methods separately. Our proposed algorithms, which are indicated by the trian-
gles, perform comparably on all considered datasets.

B.4. Adversarial perturbations

To complement Table 2 in the main text, Fig. 1 provides the empirical cumulative distribu-
tion functions on the test and OOD set of the four best non-ensemble methods (regarding 
Table 2) on the left and of the four ensemble approaches on the right. The empirical CDFs 
of the entropies are normalized to a range between zero and one. The dark-colored lines 
represent the entropy CDFs of the predictions on the MNIST test set. The light-colored 
lines represent the entropy CDFs of the predictions on the NotMNIST test set (OOD). The 
left plot shows the four best non-ensemble approaches according to Table 2 (highest met-
rics). We exclude methods that are too similar, for example, Proden-L2 and Rc behave 
similarly to Proden, which is shown. All methods’ performances can be observed in 
Table 2. The right plot shows the predictive entropy of all four ensemble approaches. Our 
ensemble approach is most certain about predictions on the test set (top-left corner) while 
being one of the approaches that is the most uncertain about out-of-distribution examples 
(bottom-right corner).
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