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Abstract Land-based mitigation strategies, such as afforestation and avoided deforestation, are critical to
achieving the Paris Agreement's goal of limiting global warming to 1.5°C or 2°C. However, the biophysical
impacts of anthropogenic land use and land cover change (LULCC), particularly deforestation and afforestation,
on extreme weather events in West Africa remain poorly understood at the regional scale. In this study, we
present the first high-resolution LULCC experiments (at 3 km resolution, covering 2012-2022) using the
advanced fully coupled atmosphere-hydrology WRF-Hydro model system to assess the potential impacts of
idealized land use and land management scenarios on extreme events in the West African savannah region. By
analyzing 18 extreme weather indices, we show that deforestation significantly affects temperature extremes (up
to 0.45 £ 0.04°C), with effects on regional rainfall extremes being approximately twice as pronounced as those
on mean rainfall conditions, along with a significant increase in the number of dry days. Conversely,
afforestation generally leads to increases in both mean and extreme precipitation, along with fewer dry days and
shorter drought durations. Notably, afforestation produces contrasting responses in temperature extremes
depending on vegetation type: converting grassland to mixed or evergreen forest reduces extreme heat via
increased transpiration, while conversion to savanna or woody savanna may intensify heat extremes due to
albedo-induced warming effects.

Plain Language Summary West Africa is currently experiencing extensive agricultural
intensification associated with rapid population growth. Those anthropogenic land use and land-cover changes
(LULCC) can have significant impacts on regional climate but also on extreme weather events, posing high
vulnerability to human, natural, and economic systems. However, the effects of LULCC (including
deforestation and afforestation) on extreme events in West Africa remain largely unexplored at the regional
scale, lacking consensus. This study employs high-resolution LULCC simulations (3 km resolution, 2012—
2022) using an advanced coupled atmosphere-hydrology model to evaluate the impacts of land cover transition
scenarios on extreme events in the West African Savanna. The results indicate that deforestation significantly
influences temperature extremes, while it consistently affects regional rainfall extremes—about twice as much
as mean rainfall changes—and substantially increases the number of dry days. Conversely, afforestation
scenarios generally lead to increases in both mean and extreme precipitation, fewer dry days, and shorter
drought durations. Notably, afforestation with mixed or evergreen forests mitigates extreme heat through
enhanced plant transpiration. However, certain forest types, such as woody savanna or savanna, can exacerbate
heat extremes due to albedo-induced warming effects.

1. Introduction

Anthropogenic land use and land cover change (LULCC) can have a significant impact on regional climate, as
well as extreme weather events affecting health, energy, agriculture, and other socio-economic sectors (IPCC-
SRCCL, 2019; IPCC-SREX, 2012; Sillmann et al., 2013; Sy & Quesada, 2020). LULCC influences the climate
system through both biophysical and biogeochemical pathways. Biophysical effects involve changes to surface
properties such as albedo, evapotranspiration, and roughness (Mahmood et al., 2014; Perugini et al., 2017;
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Yahaya Seydou et al., 2025), whereas biogeochemical effects result from alterations to atmospheric concentra-
tions of greenhouse gases (e.g., CO,, CH, and N,0O), which are primarily driven by land use and management
practices (Bonan, 2008; Guug et al., 2025).

Afforestation has been proposed as a land-based solution to mitigate global warming (Cook-Patton et al., 2020;
Doelman et al., 2020; Duveiller et al., 2020; Palmer, 2021). Large-scale afforestation projects like the Great Green
Wall Initiative have been proposed and initiated to mitigate climate change impacts in West Africa (Ingrosso &
Pausata, 2024; Smiatek & Kunstmann, 2023). This initiative seeks to restore nearly 100 million hectares of forest
by 2030 (UNCCD, 2024). However, climate mitigation strategies, such as Reducing Emissions from Defores-
tation and Forest Degradation (REDD+), primarily emphasize some biogeochemical mechanisms but often
overlook their biophysical effects. While biogeochemical effects are evaluated globally and form the basis of
agreements like the Paris Climate Agreement, biophysical effects are usually neglected despite their significant
regional impacts (Duveiller et al., 2020; Mahmood et al., 2014; Perugini et al., 2017; Spracklen et al., 2018; Sy
etal., 2017; Sy & Quesada, 2020). These biophysical effects are particularly relevant for local climate mitigation,
as they can be immediately felt by people living nearby, up to 50 km from the forests (Cohn et al., 2019).

Beyond its ability to reduce atmospheric greenhouse gases (Cook-Patton et al., 2020; Palmer, 2021), afforestation
can moderate temperature extremes, reduce drought lengths (Abiodun et al., 2013; Cao et al., 2023; Ingrosso &
Pausata, 2024; Schwaab et al., 2020), and enhance extreme precipitation (Camara et al., 2022; Diba et al., 2018;
Ingrosso & Pausata, 2024; Saley et al., 2019; Smiatek & Kunstmann, 2023). Although climate models provide a
better understanding of the consequences of afforestation (Bonan, 2008; Perugini et al., 2017), the debates related
to the net effects of afforestation on local/regional climate have been ongoing for several years (Arnault
et al., 2023; Breil et al., 2021; Duveiller et al., 2018a; Ingrosso & Pausata, 2024; Perugini et al., 2017). For
example, the biophysical effects of afforestation can have the potential to either counteract or enhance the cooling
impact associated with its carbon sequestration (Arora & Montenegro, 2011; Bala et al., 2007; Pongratz
etal., 2010; Windisch et al., 2021). In other words, afforestation may also induce surface warming due to its lower
albedo, while cooling effects can also be observed through increased heat dissipation and enhanced evapo-
transpiration efficiency (Bonan, 2008; Duveiller et al., 2018b). These effects also depend on various factors,
including (a) the background climate conditions resulting in contrast temperature responses across different
latitudes (Duveiller et al., 2018b; Perugini et al., 2017); (b) altitudes and/or local orography characteristics (Abera
etal., 2024; Zeng et al., 2021); and (c) seasons (Ingrosso & Pausata, 2024). This climate dependence is evident not
only in the immediate effects but also in the evolving responses of afforestation over time in response to
greenhouse gas-induced warming. However, model responses show large disagreement (Abiodun et al., 2013;
Camara et al., 2022; Ingrosso & Pausata, 2024; Odoulami et al., 2019; Schwaab et al., 2020; Smiatek &
Kunstmann, 2023), and the full benefits and potential tradeoffs of afforestation, particularly its biophysical
impacts on climate extremes, remain largely unexplored. This is especially true in West Africa, where studies are
often based on coarse-resolution simulations (e.g., Smiatek & Kunstmann, 2023) and/or limited to a few extreme
indices (e.g., Camara et al., 2022; Diba et al., 2018; Ingrosso & Pausata, 2024; Odoulami et al., 2019). While
climate models can elucidate the effects of afforestation, the model-based results are still subject to uncertainties
in representing local biophysical processes (Ge et al., 2021; Sy et al., 2017; Sy & Quesada, 2020). One challenge
is that land-atmosphere interactions in climate models are typically simplified, especially at the river basin scale
(Arnault et al., 2021, 2023; Ndiaye et al., 2024). Studies using coupled atmospheric-hydrological models, such as
the WRF-Hydro model, have shown that incorporating surface and subsurface lateral water flow enhances runoff
simulation and modifies the atmospheric water cycle, generally leading to increased evapotranspiration and
precipitation (e.g., Arnault et al., 2021, 2023; Fersch et al., 2020; Furnari et al., 2022; Rummler et al., 2019).
However, this local positive feedback is often neglected in deforestation and afforestation-based modeling studies
(Abiodun et al., 2013; Achugbu et al., 2023; Camara et al., 2022; Diba et al., 2018; Ingrosso & Pausata, 2024;
Smiatek & Kunstmann, 2023; Sy et al., 2017; Sy & Quesada, 2020).

Here, for the first time, high-resolution idealized LULCC (deforestation and afforestation) simulations at 3 km,
covering the period from 2011 to 2022, were conducted using the fully coupled WRF-Hydro model system
(Arnault et al., 2023; Mortey et al., 2024; Ndiaye et al., 2024). This system incorporates surface and subsurface
lateral water flow while dynamically describing vegetation (Arnault et al., 2016, 2023; Gochis et al., 2020).
Notably, the high-resolution experiments under different idealized LULCC scenarios with WRF-Hydro enable
the capture of fine-scale biophysical effects of LULCC on weather extremes, accounting for surface terrestrial
hydrological processes (Mortey et al., 2024; Ndiaye et al., 2024). This study addresses three main scientific
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Figure 1. (a) Topography height (in meters above sea level) is depicted for the outer and inner domains, D1 and D2, respectively, at resolutions of 15 and 3 km. (b) Sub-
domain (D2hydro) at a resolution of 300 m is coupled with D2 for water routing computations (Arnault et al., 2023; Mortey et al., 2024; Ndiaye et al., 2024). The black
rectangle indicates the location of D2, while the red and blue contour lines represent the Sissili River basin location and main rivers, respectively. The topography color
scale provided by the color bar on the bottom side is consistent for both panels. (c) Dominant land cover categories as used in the WRF-Hydro system, based on MODIS-
IGBP 21 category classification for our study area. The land cover categories are represented as follows: 1. Water, 2. Barren or sparsely vegetated, 3. Urban and built-up,
4. Cropland/natural vegetation mosaic, 5. Cropland, 6. Grassland, 7. Savannas, 8. Woody savannas, 9. Open shrublands, 10. Closed shrublands, 11. Mixed Forests, 12.
Deciduous Needle/Broadleaf forests, 13. Evergreen Needle/Broadleaf Forests. (d) The simulated regional distribution of the land use change fraction (%) between the
CTL and NoLCC experiments. The regionally averaged land use change fraction between CTL and NoLCC is shown in the lower-left corner of the panel.

questions: (a) What are the potential benefits and tradeoffs of afforestation on climate extremes in West Africa?
(b) What are the underlying biophysical mechanisms behind the LULCC-induced responses? (¢) To what extent
does the WRF-Hydro system enable the derivation of improved extreme climate characteristics?

2. Materials and Methods
2.1. Study Area

The study area is situated in the West African savanna region, as depicted in Figures 1a and 1b. It spans Southwest
Burkina Faso and Northern Ghana, located between 9° and 13°N and 3.5° and 0.5°W. The local climate is
influenced by the West African Monsoon (WAM). It is characterized by distinct periods: a dry phase in winter
(December-January-February), a rainy phase in summer (July-August-September), and two transitional periods.
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The annual precipitation ranges from 900 to 1,200 mm (Nicholson, 2013), primarily from mesoscale convective
systems, leading to highly variable spatiotemporal rainfall patterns, causing significant challenges for rainfed
agricultural activities (Waongo et al., 2024). The region also experiences significant multidecadal precipitation
variability, leading to frequent large-scale droughts, including the severe Sahel droughts of the 1970s and 1980s
(Masih et al., 2014; Nicholson, 2013). Temperatures generally range from 22°C to 34°C, with maximum values
reaching up to 40°C during the dry season in March and April, primarily due to the influence of dry, northeasterly
Harmattan winds (Nyadzi et al., 2022). Daily maximum temperatures typically occur around 15:00 UTC, while
minimum temperatures are usually recorded around 06:00 UTC (Guug et al., 2025) during the cooler months of
December, January, and February, when they can drop to as low as 18°C. The selection of the study area is driven
by several key factors: (a) its location within a tropical West African savanna region; (b) the ongoing agricultural
intensification (Bliefernicht et al., 2018; Potapov et al., 2022), which underscores the potential advantages of
afforestation policies in the context of climate-smart agriculture (Rosenstock et al., 2016); and (c) the presence of
significant watersheds (see Figure 1b), particularly the Sissili River Basin (12,800 km?), which serves as a focal
research site for the West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL)
(Arnault et al., 2016; Bliefernicht et al., 2018; Hingerl et al., 2025; Mortey et al., 2024; Nadolski et al., 2024).

2.2. Coupled WRF-Hydro Model Setup

To simulate the response of climate extremes to LULCC, we used the advanced WRF-Hydro model system
(Arnault et al., 2023; Gochis et al., 2020; Mortey et al., 2024). This system integrates the Weather Research and
Forecasting model (WRF; version 4.4; Skamarock et al., 2019) with the WRF-Hydro hydrological module
(version 5.2; Gochis et al., 2020). The coupled system solves atmospheric motion equations on a three-
dimensional grid and provides parameterization options for subgrid-scale processes, including radiation, turbu-
lence, cumulus convection, cloud microphysics, and terrestrial hydrology (e.g., Arnault et al., 2021, 2023; Fersch
et al., 2020; Rummler et al., 2019). Our WRF-Hydro setup (see Table S1 in Supporting Information S1) is similar
to (Mortey et al., 2024) and has been further optimized based on previous studies in West Africa and neighboring
regions (e.g., Arnault et al., 2023; Ndiaye et al., 2024). These studies evaluated different microphysical, cumulus,
longwave radiation, and planetary boundary layer (PBL) schemes (Arnault et al., 2023; Mortey et al., 2024;
Ndiaye et al., 2024), which allows us to select some adequate scheme configurations for this region. However,
exploring the sensitivity of our analysis to an exhaustive range of WRF-Hydro model system schemes falls
outside the scope of this study.

In this paper, the simulations are conducted on two regional domains (Figure 1). The outer domain (DO1) covers
significant portions of West Africa at a resolution of 15 km with 50 vertical levels up to 10 hPa (Figure 1a). Initial
conditions and lateral boundaries are constrained by ERAS reanalysis data provided by ECMWF (Hersbach
et al., 2020). The inner domain, driven by the outer domain through one-way nesting, covers an area of
450 km X 450 km at a resolution of 3 km, utilizing a scale-aware convective parameterization scheme, Grell &
Freitas, 2014), significantly improving the representation of heavy rainfall events (Park et al., 2022, 2024). Both
domains use 60-s timesteps for numerical stability. The inner domain incorporates lateral terrestrial flow using the
WRF-Hydro hydrological module (Gochis et al., 2020) and the community Noah land surface model with Multi-
Parameterization (Noah-MP), which includes a dynamic vegetation component. This configuration enables the
simulation of vegetation carbon assimilation and soil carbon decomposition processes by activating the dynamic
vegetation options. Soil moisture dynamics are represented within a 2-m soil column, divided into four layers
(Niu et al., 2011). This module is crucial for updating upward energy and water vapor fluxes at the lower
boundary of the simulated atmosphere (Gochis et al., 2020). The WRF-Hydro routing modules are activated
within the inner domain through a coupling mechanism between the 3-km grid and a 300 m subgrid (Figure 1b),
created using the WRF-Hydro Pre-processing Tool and digital elevation data from the HydroSHEDS database
(Lehner et al., 2008). Each timestep, surface water, and soil moisture variables from Noah-MP are disaggregated
on the subgrid, routed, and then aggregated back to the Noah-MP grid (Gochis et al., 2020). The disaggregation
factor is updated at the end of each timestep, ensuring the inner domain reflects the averaged impact of terrestrial
water transport resolved on the fine subgrid (Arnault et al., 2023).

2.3. Validation Data

The model performance was evaluated using observational and reanalysis data sets for precipitation, temper-
ature, and leaf area index (LAI). This evaluation ensures the suitability of the model for LULCC experiments
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Table 1

Description of the Land Cover Categories and Idealized Afforestation Experiments, Labeled as AFFy,, Representing Specific Vegetation Cover Transition Scenarios,
Where X and Y Denote the Baseline and Target Forest Types, Respectively, as Classified Under the MODIS International Geosphere-Biosphere Programme (IGBP)

Scheme
Land cover
transition Idealized
Land-use category Considered forest types and descriptions scenarios experiments
Grassland (GRA) Lands with herbaceous Woody Savannah (WOS): Lands with herbaceous and other understory systems, and GRA — WOS  AFFggawos
types of cover. Tree and shrub cover is less with forest canopy cover between 30% and 60%. The forest cover height
than 10%. Permanent wetlands lands with a exceeds 2 m
permanent mixture of water and
herbaceous or woody vegetation
Grassland (GRA) Lands with herbaceous Savannah (SAV): Lands with herbaceous and other understory systems, with forest ~GRA — SAV  AFFgra/sav
types of cover. Tree and shrub cover is less and canopy cover between 10% and 30%. The forest height cover exceeds 2 m
than 10%. Permanent wetlands lands with a
permanent mixture of water and
herbaceous or woody vegetation
Grassland (GRA) Lands with herbaceous Mixed Forests (MXF): Lands dominated by trees with a percent cover >60% and GRA — MXF AFFqga/mxe
types of cover. Tree and shrub cover is less height exceeding 2 m. Consists of tree communities with interspersed mixtures or
than 10%. Permanent wetlands lands with a mosaics of evergreen and deciduous forests. None of the forest types exceeds 60%
permanent mixture of water and of landscape
herbaceous or woody vegetation
Grassland (GRA) Lands with herbaceous Evergreen Broadleaf Forests (EBF): Lands dominated by broad leaf woody vegetation GRA — EBF  AFFgga/esr

types of cover. Tree and shrub cover is less
than 10%. Permanent wetlands lands with a
permanent mixture of water and
herbaceous or woody vegetation

with a percentage cover >60% and height exceeding 2m. Almost all trees and

shrubs remain green year-round. Canopy is never without foliage

Note. The target forest types include woody savanna (WOS), savanna (SAV), mixed forest (MXF), and evergreen forest (EBF).

(Noblet-Ducoudré et al., 2012; Sy et al., 2017). Precipitation data from CHIRPS-V2 (Funk et al., 2015) combine
satellite infrared and in situ station data, providing daily quasi-global estimates on a 0.05° grid since 1981.
Temperature data were obtained from the ERAS-Land reanalysis (Mufloz-Sabater et al., 2021), which provides
~9 km resolution and hourly land variables. LAI variability was assessed using the Copernicus Land Moni-
toring Service (CLMS) data sets, which provide 300 m global LAI data every 10 days since 2014 (Fuster
et al., 2020). Data gaps due to cloud cover were addressed with a gap-filled LAI version smoothed with a
Savitzky-Golay filter (Savitzky & Golay, 1964). All data sets were resampled to 3 km X 3 km (9 km X 9 km for
temperature) resolution using bilinear interpolation for model comparison.

2.4. Experimental Setup

Simulations were conducted from 1 January 2011 to 1 January 2023, with the first year excluded for model spin-
up. However, following previous studies in West Africa (e.g., Abiodun et al., 2008; Achugbu et al., 2022; Boone
et al., 2016; Diba et al., 2018; Glotfelty et al., 2021; Saley et al., 2019; Wang et al., 2016), the length of our
simulation period (11 years; 2012-2022) is assumed to be sufficient to reduce the influence of model internal
variability (e.g., Lorenz et al., 2016) on the mean differences calculated between the different experiments.
Overall, five idealized experiments, each representing a specific land cover transition scenario in the Sudan
Savanna of Burkina Faso and Ghana (see Table 1), were performed alongside a reference simulation (CTL
experiment). To ensure comparability, all simulations were conducted using the same model configuration, as
detailed in Section 2.2 and Table S1 in Supporting Information S1, under present-day climate forcing conditions.
In the control (CTL) experiment, the default WRF land cover map from the MODIS product MCD12Q1 (version
6.0; Sulla-Menashe et al., 2019) based on the International Geosphere-Biosphere Program (IGBP) 21-category
classification (see Figure 1c) was used, representing present-day conditions with a 2015 land cover map. Ac-
cording to the MODIS land cover classification (Figure 1c), the dominant land cover types in the study area are
savanna—particularly in northwestern Ghana—and grassland, which is mainly found in southern Burkina Faso.
Together, savanna and grassland account for approximately 40% and 38% of the total grid cells, respectively,
making them the most prevalent land cover categories. Woody savanna, open shrubland, and cropland each
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account for 6% of the total land cover pixels. Mixed Forests (MXF), consisting of tree communities with
interspersed mosaics of evergreen and deciduous species, cover 1% of the area. Smaller proportions of our study
area are classified as Evergreen Broadleaf Forests (EBF) (0.5%) and deciduous broadleaf forests (0.7%) (see
Table 1 for the description of land cover categories).

To explore the potential regional biophysical impacts of deforestation on climate extremes - in particular, changes
in land surface properties such as surface albedo and evapotranspiration efficiency - this study compares the
climate of a maximally forested region (referred to as the “NoLCC” experiment) with that of a present-day
simulation (referred to as control “CTL” experiment) representing a predominantly deforested landscape (see
Figure 1c). The vegetation map for the idealized maximally forested scenario was developed by modifying the
CTL land cover map (see Figure 1¢). Grid cells with at least 80% coverage by urban, built-up, or agricultural land
(cropland and grassland) were reclassified as tropical broadleaf evergreen forest, which represents the potential
natural vegetation for tropical regions (Davin & Noblet-Ducoudré, 2010; Findell et al., 2017; Glotfelty
et al., 2021; Odoulami et al., 2019). For areas that did not meet this criterion, the dominant forest type from the
nearest neighboring grid cells was assigned. While this extreme scenario is not intended to reflect a realistic
LULCC, it serves as a conceptual framework to explore the biophysical effects of deforestation caused by changes
in the physical properties of the land surface (Davin et al., 2020; Davin & Noblet-Ducoudré, 2010) and their
influence on climate extremes in the West African savanna region. Furthermore, this study builds on previous
studies that have investigated climate model responses to deforestation (e.g., converting forest to grassland) using
idealized LCC scenarios (e.g., Boysen et al., 2020; Davin et al., 2020; Davin & Noblet-Ducoudré, 2010; Findell
et al., 2017; X. Luo et al., 2022; Winckler et al., 2017). Moreover, as shown in Figure 1d, the simulated spatial
pattern of the extent of land use change fraction between the CTL and NoLCC experiments (averaging about 17%)
is consistent with the observed expansion of agricultural land (about 19%; see Potapov et al., 2022) in the Sudan
savannah belt of Burkina Faso and Ghana, despite uncertainties and limitations in identifying actual LULCC.
Discrepancies in LULCC maps are often due to errors in satellite data acquisition, processing limitations,
extraction methods, and unsuitable legend classes. Current satellite-derived vegetation maps struggle to represent
LULCC accurately, particularly in West Africa, where agricultural areas are often misclassified (Boone
et al., 2016; Rahimi et al., 2021). Distinguishing between crop and pasture fractions is challenging, especially
when livestock graze on crop fields after harvest (Bliefernicht et al., 2018; Rahimi et al., 2021).

Beyond the CTL and NoLCC experiments, four idealized afforestation experiments were conducted to investigate
the potential biophysical effects of afforestation scenarios, which are much less studied in the literature (Jia
et al., 2019). Each experiment involves a specific vegetation transition, that is, from grassland (GRA) to a forest
type as defined by the IGBP classification scheme: woody savanna (WOS), savanna (SAV), mixed forest (MXF)
and evergreen broadleaf forests (EBF). In other words, in these afforestation experiments, the total grid cell
previously occupied by grassland (which accounts for 38% of the total grid points; see Figure 1c) is converted to a
forest type (i.e., either WOS, SAV, MXF, or EBF) (see Table 1 for more details). In the following, the four
afforestation experiments are referred to as AFFy,y (i.e., AFFGra/wov, AFFGrasav, AFFGrAmMxE> and AFFGR g,
esp)s Where the subscripts X/Y indicate a given vegetation cover transition scenario from grassland (X) to a forest
type (). Consequently, the difference between AFFy,, and CTL experiments (i.e., AFFy,, minus CTL) reflects
the pure biophysical effects of an idealized afforestation scenario. In our afforestation experiments, the percentage
of grid points previously classified as water, urban, built-up, desert, barren, and cropland remained unchanged due
to the challenges associated with predicting the future changes of these land cover categories. This approach has
also been used to prevent vegetation expansion into areas unsuitable for tree growth.

It is worth noting that although numerous studies have demonstrated increasing annual precipitation and more
frequent rainy days in West Africa over the past two decades, leading to a partial recovery in precipitation levels
(Salack et al., 2018; Sanogo et al., 2015; Sylla et al., 2016) and future projections suggesting higher rainfall in the
central and eastern Sahel - particularly in Burkina Faso, Ghana, and southern Niger by the late 21st century (Deme
et al., 2017; Sylla et al., 2016), this study does not assess the feasibility of an afforestation experiment in this
region. Challenges include local climatic conditions, such as the ability of the environment to sustain a newly
“transformed” ecosystem in terms of water availability and soil fertility constraints. In addition, planting tree
species in dry environments remains a challenge, even when local species, such as savanna, are used (Elagib
et al., 2021). Nonetheless, the vegetation types used in our afforestation experiments are coherent with the region
and consistent with those analyzed in previous studies conducted in West Africa. These include deciduous and/or
EBF (e.g., Abiodun et al., 2013; Bamba et al., 2019; Glotfelty et al., 2021; Ingrosso & Pausata, 2024; Odoulami
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et al., 2019), woody savannas (e.g., Smiatek & Kunstmann, 2023) and savannas (e.g., Odoulami et al., 2019;
Smiatek & Kunstmann, 2023). Additionally, recent observations of increasing seasonal greenness across large
areas of the Sahel (e.g., Herrmann et al., 2005; Jury, 2018) suggest significant shifts in vegetation dynamics,
which may be related to the partial recovery of rainfall. While these ongoing greening trends and the associated
changes in surface moisture dynamics may influence land—atmosphere interactions, investigating the causes of
these changes and their wider impact on regional climate extremes is beyond the scope of this study.

To enhance the robustness of the results and address model uncertainties, two additional simulations—analogous
to CTL and NoLCC experiments—were performed using only the WRF model (i.e., excluding the WRF-Hydro
hydrological module) while maintaining the same physical parameterizations (see Table S1 in Supporting In-
formation S1). The results showed similar overall patterns, although the WRF-Hydro system produced slightly
more pronounced signals, particularly for specific indices (not shown). In addition, to account for inter-annual
variability in the model, particularly for precipitation responses to LULCC - which are subject to greater un-
certainty due to a lower signal-to-noise ratio (Laux et al., 2017; Spracklen et al., 2018) - all simulations were also
run in ensemble mode. This approach involved five ensemble members (i.e., n = 5 realizations per experiment)
with perturbed initial atmospheric boundary conditions (Laux et al., 2017), with the ensemble mean representing
the model response.

2.5. Detection of Robust LULCC Signals

Area-weighted means for each temperature and precipitation index were calculated regionally to assess the
contributions of LULCC scenarios to extreme weather indices. Detecting signals from small perturbations, such
as the effects of LULCC, poses the challenge of distinguishing true forcing signals from noise arising from in-
ternal climate variability (Winckler et al., 2017). To address this, we adopted the methodology proposed by
(Lorenz et al., 2016) to assess the statistical significance of simulated changes in climate modeling experiments.
The significance of each simulated change was assessed using the Mann-Whitney-Wilcoxon (MWW) rank test
(Lorenz et al., 2016; Wu et al., 2014) on two sets of 11-year simulations (2012-2022) comparing CTL with
NoLCC or AFFy,y experiments. Results were considered significant if the MWW test yields a p-value < 0.05
(95% confidence level). The MWW test was chosen for its robustness and suitability for non-normally distributed
data, as opposed to the Student's ¢-test (Sy et al., 2021). Additionally, the non-parametric Kendall rank correlation
test (Croux & Dehon, 2010) was applied to estimate correlations, as it is less sensitive to outliers than Pearson and
Spearman tests (Diouf et al., 2022).

2.6. Weather Extremes Indices

This study specifically focuses on mean temperature and precipitation (Tmean and Pmean), along with a
comprehensive set of 18 extreme temperature and precipitation indices from the total of 27 indices defined by the
World Meteorological Organization Expert Team on Climate Change Detection and Indices (ETCCDI; https://
www.wcrp-climate.org/etcedi). These indices were included to comprehensively represent extreme temperature
and precipitation across the region. They were computed based on daily rainfall and minimum and maximum
temperatures and applied to all CTL, NoLCC, and AFFy,y simulations. The selection of these 18 extreme weather
indices (see Table S2 in Supporting Information S1) was based on their significance in social decision-making
processes.

2.7. Surface Energy Balance Decomposition

To explore the mechanisms driving the regional biophysical effects of LULCC on surface temperature, we use an
energy balance decomposition approach. Following (Ge et al., 2021; Luyssaert et al., 2014; Winckler et al., 2017),
this approach separates the surface temperature response to LULCC into contributions from individual terms of
the surface energy balance (SEB) as follows:

DSR (1 —a)+ DLR —LWup = SH+ LH+ G (1)

DSR represents downward shortwave radiation, DLR and LWup are downward and upward longwave radiations,
SH and LH denote sensible and latent heat fluxes, and G is the ground heat flux (mainly soil heat storage), all in
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Wm?. Surface albedo («) is the upward-to-downward shortwave radiation ratio. Using the Stefan—Boltzmann law,
LWup can be rewritten as follows:

LWup = EO'T? 2)

where o is the Stefan—Boltzmann constant (5.67 x 10~ Wm™2K™*), e is surface emissivity, and T is the surface
temperature (K). By taking the first-order derivative and rearranging Equation 1, the surface temperature response
to LULCC is represented as follows:

1

AT, = 3
4eoT,

s

(ADSR — aADSR — DSRAa + ADLR — ASH — ALH — AG) 3)

where A represents the change induced by LULCC. Since different forest types interact with the atmosphere
differently, indirect effects on DSR, DLR, and G are not neglected. To explore LULCC-induced changes in plant
transpiration, soil evaporation, and canopy evaporation, the latent heat flux (LH), proportional to total evapo-
transpiration, is decomposed into the individual contributions from the terms in Equation 4 below:

ALH = Hvap(AEt + AEs + AEc) 4)

where Hvap is the latent heat of vapourization (2.260 kJ/kg), and Et, Es, and Ec represent plant transpiration, soil
evaporation, and canopy evaporation (all in mm). Applying Equation 4 to Equation 3, the surface temperature
response to LULCC can be rewritten as follows:

AT, [ K] ((1 —a )ADSR — DSRAa + ADLR — ASH — AEt — AEs — AEc — AG) ©))

- 4e0T,?

While the energy balance decomposition approach does not directly attribute changes to all surface properties,
such as aerodynamic roughness (Davin & Noblet-Ducoudré, 2010; Li et al., 2016), it helps to understand the
relative contributions of each individual component within the SEB (Equation 5). This provides insights into
LULCC-induced changes in surface temperature and their influence on extreme temperatures determined by
surface upward long-wave radiation (Luyssaert et al., 2014).

3. Results
3.1. Model Performance Evaluation

WRF-Hydro system has shown good performance in simulating regional climate characteristics, including
temperature, precipitation, radiation, heat fluxes, and runoff within our model domain (see Mortey et al., 2024).
However, this study extends the validation framework by incorporating LAI assessments in addition to precip-
itation and temperature. Figure 2a shows that precipitation is generally well represented, with the model showing
good agreement for the regional daily mean, achieving a correlation coefficient of 0.7, a percentage bias (PBIAS)
of —9.9%, and a root mean square error (RMSE) of 2.5 mm/day. The model performs particularly well in the
western region, closely matching observed spatial patterns. However, it underestimates the rainfall pattern in
eastern Burkina Faso and Ghana and slightly overestimates it in northwestern Burkina Faso. For temperature, the
model captures overall daily temperature variations and shows a good performance with a correlation coefficient
of 0.8, a spatial daily mean bias of 0.02°C, and an RMSE of 1.3°C (Figure 2b). Spatially, the model shows a cold
bias of about —1.5°C in the northern regions of Burkina Faso and a warm bias of about 1.5°C in the southern parts
of Ghana. Regarding the LAI, Figures 2c—2e compare the simulated LAI with the interpolated CGLS LAI time
series for the period 2014-2022. The analysis examines three randomly selected representative pixels, each
corresponding to a distinct land cover category: grassland (Figure 2c), evergreen forest (Figure 2d), and mixed
forest (Figure 2e). Overall, the model generally captures the annual vegetation dynamics for all land cover
categories. The best model performance is observed for the evergreen forests, with a correlation coefficient of up
to 0.86, followed by mixed forest (r = 0.84) and grassland (r = 0.71). The simulated LAI's root mean squared
error (RMSE) varies between 0.33 and 0.67 depending on the land cover category. However, there are some
discrepancies in specific years, particularly in the magnitude of the maximum LAI values and the rate of decline

SY ET AL.

8 of 28

85U8D1 SUOWILIOD BAReaID) 3|qedl|dde 3y Aq pausenob e sajone YO ‘@SN JO Sajni 10} A%eiqI 8UIIUO /8|1 UO (SUORIPUOD-PUR-SLLBILIOD A8 I AReIq U JUO//SURY) SUORIPUOD pue S L U3 885 *[5202/2T/8T] Uo Ariqi8uljuo A8|Im @iBojouyos L and Imisul eunsie Aq #60900435202/620T OT/10p/wod" M| imAxeiqiutjuo'sgndnfe//sdny woiy pepeojumod ‘TT ‘5202 ‘LL2v8ZET



~u |
A\Jv Earth's Future 10.1029/2025EF006094
a Pbias (WRFHydro — CHIRP) (%) 100 ) (°C)
Pbias = -9.93 (%)
Bias=0.5 mm/day
Cor=0.7 5o

12Nl RMSE=2.5 (mm/day)

11°N

3.5°W 2.5°W 1.5°W 0.5°W 3.5°W 2.5°W 1.5°W 0.5°W
C
41" — Modelled LAI 3km MAE: 0.12 Cor: 0.71 RMSE: 0.33
—— CGLS LAl interp. 3km
_ 3
E
E2
z
I |
1
0
2014 2015 2016 2017 2018 2019 2020 2021 2022
d Time
4

MAE: 0.1 Cor: 0.86 RMSE: 0.48

2014 2015 2016 2017 2018 2019 2020 2021 2022
Time

MAE: 0.39 Cor: 0.84 RMSE: 0.67

2014 2015 2016 2017 2018 2019 2020 2021 2022
Time

Figure 2. (a) Spatial patterns of the percentage bias (PBIAS, %) between simulated and observed daily mean precipitation for the period 2012-2022. (b) Spatial
patterns of daily mean temperature bias (°C) between the simulated and observed daily mean temperature for the same period. (c), (d), and (e) compare the
simulated leaf area index (LAI) with the interpolated Copernicus Land Monitoring Service LAI time series for 2014-2022. From January 2014 to June 2020, LAI
data were derived from PROBA-V satellite observations (Smets et al., 2018), and from July 2020 onwards, Sentinel-3 Ocean and Land Color Instrument imagery
was used (Fuster et al., 2020; Wolfs et al., 2022). The analysis focuses on three randomly representative selected pixels corresponding to different land cover
categories: grassland (c), evergreen broadleaf forest (d), and mixed forest (e). The skill metrics, including regional mean PBIAS (%), spatial mean biases, Kendall
rank correlations, and root mean square error (RMSE) values, are summarized in the upper left panel.
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Figure 3. The model's ability to reproduce temperature and precipitation extremes over the period 2012-2022 is evaluated against ERA5-Land for temperature indices
and CHIRPV?2 for precipitation indices. (a) Spatial distribution of bias (°C), root mean square error (RMSE, °C), and Kendall's rank correlation coefficient (r) for TNx
(monthly maximum of daily minimum temperatures); (b) the same set of metrics for TXn (monthly minimum of daily maximum temperatures); (c) spatial distribution of
percentage bias (PBIAS, %), RMSE (mm), and correlation coefficient (r) for R20mm, representing the frequency of very heavy rainfall days (>20 mm); and (d) spatial
distribution of PBIAS (%), mean bias (mm), RMSE (mm), and correlation coefficient (r) for Rx5day, representing the maximum 5-day cumulative precipitation. Further
performance metrics for the remaining extreme temperature and precipitation indices are provided in Tables S3 and S4 in Supporting Information S1.

after the seasonal peak during the growing season (July—October). Compared to satellite-derived LAI, the model
tends to simulate a slower decline in LAI for grassland (Figure 2¢) and mixed forest (Figure 2e). In addition, the
model produces a secondary smaller peak in LAI across all land use categories for certain years, a feature not
present in the CGLS data sets.

The performance of the model was also investigated, particularly in terms of extreme temperature and rainfall
indices. Figure 3 shows that the model closely matches the observed spatial distribution of cold and hot tem-
perature extremes, particularly in northern Ghana. However, performance varies between minimum and
maximum temperature indices. For cold extremes (TNn and TNx; see Figure 3a and Table S3 in Supporting
Information S1), the model exhibits a systematic cold bias, with a mean deviation of approximately —1.05°C
relative to the observations, with the most pronounced bias observed in southern Burkina Faso. Despite this bias,
the model captures the temporal variability of minimum temperatures well, achieving a high correlation
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coefficient of r = 0.83. The associated root mean square error (RMSE) of 2.13°C indicates moderate deviation
from the observed values. In contrast, for hot extremes (TXx and TXn; Figure 3b; Table S3 in Supporting In-
formation S1), the model shows a positive mean bias of +1.10°C, suggesting a consistent overestimation of
maximum daytime temperatures, particularly in southern Burkina Faso. Nevertheless, in this case, model per-
formance improves, with a higher correlation coefficient (r = 0.94) and a lower RMSE of 1.75°C, indicating
improved temporal agreement relative to the minimum temperature indices. Overall, these results highlight the
model's ability to capture the spatial patterns and temporal dynamics of temperature extremes. However, it
systematically underestimates cold extremes and overestimates hot extremes.

With regard to rainfall extremes, Figures 3¢ and 3d show that the model also closely matches the spatial dis-
tribution of precipitation indices, with particularly good agreement in southwestern Burkina Faso and northern
Ghana. However, its performance differs notably between daily and multi-day rainfall indices (R20mm vs.
Rx5day, see also Table S4 in Supporting Information S1). For R20mm, representing the number of days with very
heavy rainfall (>20 mm), the model shows a positive percentage bias (PBIAS) of 13.40% and a mean bias of
+2.46 days. This suggests an overestimation of the frequency of intense daily rainfall events. Although the
correlation coefficient is positive (r = 0.38), it is relatively low, suggesting that the model only partially captures
the observed spatiotemporal variability of such events. The root mean square error (RMSE) of 3.68 days reflects
moderate discrepancies, which are likely linked to the difficulty of accurately representing sub-daily convective
processes that drive short-duration extreme rainfall. In contrast, the model performs considerably better for
Rx5day, which captures the maximum cumulative precipitation over five consecutive days. Here, the model
shows a smaller positive bias (PBIAS = 10.10%, mean bias = +3.03 mm), which is consistent with the R20mm
results. However, it exhibits much stronger temporal agreement, with a high correlation coefficient (r = 0.94).
The higher RMSE of 10.65 mm is expected due to the larger magnitude of the cumulative values. This better
performance in simulating Rx5day indicates that the model more accurately captures the dynamics of longer-
duration rainfall events (e.g., those associated with synoptic-scale systems or prolonged convection) than it
does short-lived, high-intensity precipitation events.

While the model exhibits systematic biases—such as the underestimation of minimum temperatures, over-
estimation of maximum temperatures, and varying degrees of error in simulating precipitation extremes—these
biases are not expected to affect the core conclusions of this study. This is because the analysis primarily em-
phasizes relative changes between land-use scenarios (e.g., deforestation vs. afforestation) rather than the ab-
solute accuracy of the simulated climate variables.

3.2. Regional Contribution of Deforestation to Extreme Weather

The spatial patterns of changes in weather extremes, corresponding to a selection of the most significantly
impacted temperature and precipitation extreme indices (six indices each) in response to deforestation, are shown
in Figure 4 (see Table S2 in Supporting Information S1 for a full description of the extreme weather indices).
Panel (a) displays the changes in mean and extreme temperature indices, while panel (b) depicts changes in mean
and extreme precipitation indices. Deforestation induces a biophysical warming response across most tempera-
ture extreme indices. This warming is particularly pronounced—up to 2.0°C for Tmean—in the highly deforested
areas of the south of Burkina Faso. However, an exception is observed for the daily maximum temperature indices
(TXn and TXx), which show a slight cooling effect in parts of southeastern Burkina Faso. Despite this localized
cooling, these indices still exhibit a warming response over the most heavily deforested zones (see Figure S6 in
Supporting Information S1 for TXXx patterns). Overall, the spatial patterns of extreme temperature indices closely
resemble those of mean air temperature (Tmean) as well as those of surface (skin) temperature (hereinafter Tsurf;
not shown), with significant spatial correlations (p-value < 0.05) observed for most of the temperature indices
(Corr (Tmean; Textreme indices) > 0.82; Corr (Tsurf; Textreme indices) >0.62; see Table 2), except for the cold
extreme indices (TXn, CSDI) and warm spell dry index (WSDI). At the seasonal scale, the deforestation-induced
warming effect is more pronounced in winter (DJF) and autumn (SON), resulting in a significant increase in the
minimum temperature of winter days and nights by up to 3.4 £ 0.27°C (refer to Figures S1-S4 in Supporting
Information S1). Concerning rainfall extremes, the spatial patterns of extreme indices also closely resemble those
of Pmean, exhibiting significant spatial correlations (p-value < 0.05) (Corr (Pmean; Pextreme indices) >0.86; see
Table 2). The impacts of deforestation are also relatively pronounced, leading to a reduction in annual total
precipitation on wet days (PRCPTOT, in mm), with average decreases of —23.89 + 0.70 mm, and a more
substantial decline in the number of wet days (R1mm, in days), averaging —3.0 = 0.04 days. This drying trend is
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Figure 4. Spatial patterns of changes in temperature (a) and precipitation (b) indices in response to the deforestation experiment (CTL-NoLCC), averaged over the period
2012-2022, are shown. Mean and extreme weather indices are indicated in the top right of each panel (refer to the Methods section for details on extreme weather
indices). Only grid points where changes are statistically significant at the 0.05 level using the Mann—Whitney—Wilcoxon (MWW) rank test are displayed (white/blank
otherwise). The annual regionally averaged values and associated standard errors, calculated using Student's #-test at the 95% confidence level, are shown in the bottom-
left corner of each panel. Only a sample of the most impacted temperature and precipitation extreme indices (six indices each) is shown. Figure S6 in Supporting
Information S1 corresponds to spatial patterns of changes of the less impacted extreme temperature (TXx, CSDI, WSDI) and precipitation (R20mm, R95p, R99p, CWD,
Rx1day) indices.

further accompanied by a significant increase in the number of consecutive dry days (CDD), reaching up to
+7.52 + 0.13 days. In analogy to extreme temperature, the spatial patterns of rainfall extremes are not uniform,
especially for the heavy and extremely heavy rainfall day indices (R10mm and R20mm), demonstrating slightly
different patterns from Pmean in the eastern part of Burkina Faso. However, they mimic the Pmean pattern above
the highly deforested area in the southwest of Burkina Faso and the northeast of Ghana.
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Table 2
Annual Kendall Rank Spatial Correlation Between Changes in Mean Air Temperature (Tmean), Surface Skin Temperature
(Tsurf), and Pmean, and Their Respective Extreme Temperature and Precipitation Indices Under the Deforestation Scenario

Temperature indices Precipitation indices
Index  Corr (Tmean; Textreme indices) Corr (Tsurf; Textreme indices) Index Corr (Pmean; Pextreme indices)
TXx —0.38%* —0.17 Rx1day 0.46%**
TNx 0.80%*** 0.62%** Rx5day 0.62%**
TXn —0.12* 0.03 R95p 0.36%*
TNn 0.827%:#* 0.55%** R99p 0.16*
DTR —0.79%%* —0.507%%* Rlmm 0.50%%*
ETR —0.75%%* —0.48%k* R10mm 0.51%%**
WSDI 0.06 0.04 R20mm 0.56%**
CSDI —0.04 —0.14 CWD 0.11
Tmean 0.58%*** PRCPTOT 0.86%**
CDD —0.32%%*

Note. Star symbols are added to indicate significance: *** for p-value < 0.01, ** for p-value < 0.05, and * for p-value < 0.1.
Refer to the Methods section for details on extreme weather indices.

The regional averaged contribution of deforestation to changes in mean and extreme weather indices is also
presented in Figure 5. Accounting for the deforestation effect, we find a significant impact on both mean and
extreme temperature indices, with the exception of WSDI and CSDI (expressed in days), where changes remain
statistically insignificant. Notably, deforestation has a more pronounced impact on Tmean than on extreme
temperatures. On average, deforestation results in a significant increase in mean temperature, reaching up to
0.55 £ 0.01°C. Additionally, it leads to an increase in the minimum temperature of winter days and nights, with
TNn rising by 0.40 = 0.01°C and TNx by 0.38 £ 0.01°C. Simultaneously, deforestation contributes to a reduction
in DTR, with the difference between the climatological hottest day in spring and the coldest day in summer
decreasing by —0.38 + 0.04°C. Similarly, the extreme temperature range also declines by —0.4 + 0.04°C. This
reduction is primarily driven by a more rapid increase in daily minimum temperatures compared to daily
maximum temperatures, as observed in the differential response of TXx and TXn versus TNn and TNx (see
Figure 5, upper panel).

Conversely, deforestation has a more pronounced effect on some precipitation extremes compared to the mean
precipitation condition (see Figure 5, bottom panel). Specifically, deforestation significantly reduces the regional
mean precipitation (Pmean) by approximately —4.0% (0.09 + 0.00 mm/day), the number of wet days (daily
precipitation >1 mm; R1mm in days) by 7.0% (—3.0 = 0.04 days), the frequency of rainy days (Rx1day in mm) by
3.0% (—0.8 £ 0.17 mm), the heavy precipitation days (R10mm in days) by 5.0% (—0.86 + 0.02 days), and the total
precipitation amount on wet days (PRCPTOT in mm) by 4.5% (—23.86 £+ 0.7 mm) (see Figure 4 and Figure S14 in
Supporting Information S1 for absolute contributions). Moreover, deforestation also contributes to reducing the
very heavy precipitation days (R20mm in days) by 3.0% (—0.5 £ 0.11 days) and decreases the annual maximum
consecutive 5-day precipitation (Rx5day in days) by 4.2% (—1.5 £ 0.25 days) leading to significant increase in
consecutive dry days (CDD in days) by 5.5% (4+7.52 £ 0.13 days). Overall, our results suggest that deforestation
may impact some regional rainfall extremes (e.g., Rlmm, R10mm, and PRCPTOT) more than the mean condition
(Pmean) (see Figure 5).

3.3. Regional Contribution of Afforestation to Extreme Weather

Figure 6 shows the spatial patterns of changes in temperature and precipitation indices in response to the ever-
green broadleaf forest-based afforestation scenario. For extreme temperature indices, a biophysical cooling effect
is evident across the aforested regions. This cooling is particularly pronounced in southeastern Burkina Faso,
where afforestation leads to substantial reductions in both mean and extreme temperature events. On average,
afforestation results in a significant decrease in mean surface air temperature (Tmean) of up to —0.43 + 0.01°C.
Likewise, reductions are observed in cold and hot temperature extremes, with TNn and TNx decreasing by
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Figure 5. Regional averaged contribution of deforestation to mean and extreme weather indices (averaged over 2012-2022).
The bars (y-axis) represent the absolute contribution of deforestation, calculated as (CTL-NoLCC), to the eight most
affected temperature indices (°C) (top panel, x-axis). In the lower panel, the bars indicate the relative percentage contribution
of deforestation (%) compared to the CTL simulation, calculated as (CTL-NoLCC)/CTL, for the eight most affected
precipitation indices (x-axis). Green bars denote statistically significant changes based on the Mann—Whitney—Wilcoxon
(MWW) test at the 0.05 level (p < 0.05), while blue bars represent indices where changes are not statistically significant
(p > 0.05). All temperature extreme indices are expressed in °C, except for the Warm Spell Duration Index (WSDI) and Cold
Spell Duration Index, which are expressed in days.

—0.32 £ 0.01°C and —0.27 £ 0.00°C, respectively, and TXn decreasing by —0.08 = 0.00°C (Figure 6a). In terms
of rainfall extremes (see Figure 6b), afforestation produces a clear hydrological response, with increases in both
mean and extreme precipitation over the afforested zones. Notably, mean precipitation (Pmean) increases by
0.09 = 0.00 mm/day, accompanied by a significant reduction in CDD by —6.67 = 0.13 days, indicating a
mitigation of drought conditions. Spatial patterns for the savanna, woody savanna, and mixed forest-based
afforestation scenarios are provided in Figures S7-S9 in Supporting Information S1.

Figure 7 illustrates the regional averaged annual contributions of afforestation experiments to changes in a se-
lection of the most negatively impacted temperature and precipitation indices (y-axis; seven indices each, as
referenced in Figure 5) across different vegetation transition scenarios (x-axis). Regarding temperature extremes
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Figure 6. Similar to Figure 4, but for the spatial patterns of changes in temperature (a) and precipitation (b) indices in response to the mixed forest-based afforestation
scenario (AFFgg o/nirx—NOLCC). Mean and extreme weather indices are indicated in the top right corner of each panel. Only grid points with statistically significant
changes (p < 0.05), based on the Mann—Whitney—Wilcoxon (MWW) rank test, are displayed; all others are left blank. The annual regionally averaged values and
associated standard errors, calculated using Student's #-test at the 95% confidence level, are shown in the bottom-left corner of each panel. The black dashed contour in
each panel outlines the Sissili River basin (Arnault et al., 2016). For clarity, only a subset of the most impacted temperature and precipitation extreme indices (six each)
is presented. Figure S7-S9 in Supporting Information S1 corresponds to spatial patterns of changes in temperature (a) and precipitation (b) indices in response to
evergreen/savannah/woody savannah-based forest-based afforestation scenarios.

(see Figure 7a), with the exception of the annual hottest days (TXx and TXn), afforestation scenarios involving
the conversion of grassland to mixed forest (AFFgg a/nxp) OF evergreen forest (AFFgg /ppr) tend to mitigate the
biophysical warming effect and reduce extreme temperature events. Specifically, these afforestation scenarios
result in temperature reductions of up to —0.48 = 0.02°C for Tmean, —0.35 £ 0.03°C for the annual coldest night
(TNn in °C) and —0.3 £ 0.05°C for the annual coldest day (TNx in °C) (see also Figure S5 and S14 in Supporting
Information S1 for the regional contribution of afforestation to mean and extreme weather indices). In other
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Figure 7. Regional contribution of deforestation and afforestation (x-axis) to changes in mean and extreme weather indices,
averaged over 2012-2022. (a) The upper and lower mosaics depict the absolute contributions (°C) of deforestation and
afforestation to the six most significantly affected temperature indices (top panel, x-axis). These contributions are computed
as the difference between CTL and NoLCC for deforestation (Def) and between AFF,,,, and CTL for afforestation scenarios.
(b) The upper and lower mosaics illustrate the relative percentage contributions (%) of deforestation and afforestation to the
six most significantly affected precipitation extreme indices. The relative contribution of deforestation is assessed against the
CTL simulation as (CTL-NoLCC)/CTL, whereas for afforestation, it is computed as (AFFy,,~CTL)/CTL. Here, AFF,,,
represents afforestation scenarios in which grassland (GRA) is converted into different forest types, including woody
savanna (WOS), savanna (SAV), mixed forest (MXF), and evergreen forest (EBF). Positive (negative) values indicate
warming (cooling) effects for temperature indices, while for precipitation, positive (negative) values correspond to wetter
(drier) conditions. Statistically significant changes, determined by the Mann—Whitney—Wilcoxon (MW W) test, are indicated
by black dots: one dot for p < 0.1, two dots for p < 0.05, and three dots for p < 0.01.
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words, the cooling effects associated with the AFFqgamnmxr and AFFgra/epr €Xperiments tend to offset the
warming induced by deforestation, albeit to a lesser extent (see Figures S7 to S9 in Supporting Information S1 for
the spatial patterns of changes in extreme temperature indices in response to all afforestation experiments).
Conversely, the AFFggawos and AFFGrasav €Xperiments (i.e., conversion of grassland to woody savanna or
savanna) show an opposite trend, contributing to an increase in all extreme temperature indices. In particular,
AFFgrawos and AFFgrassay could lead to warming effects and increase hot temperature extremes (Figure 7a,
Figure S7 in Supporting Information S1, and Table 3). This warming is attributed to the significant reduction of
the surface albedo, which leads to increased absorption of solar radiation by the surface after afforestation (with
values up to 1.09 =+ 0.09°C for AFFggawos and up to 0.39 + 0.03°C for AFFgga/5av) (see Table 3). The most
pronounced effects occur during the dry and hot season (from December to April), with values reaching up to
1.30 + 0.10°C for AFFggrawos in winter (see Table 3). Moreover, in the AFFggamxr, AFFGra/wos, and
AFFgra/sav scenarios, there is a notable increase in TXx and TXn, which aligns with the expanded vegetated
area from afforestation. In other terms, the increase in maximum temperature extremes (TXx and TXn) from
afforestation is typically mainly attributed to the reduction in surface albedo and the increase in relative humidity,
which absorbs more solar radiation during the day (low albedo) while releasing less heat during the night (high
humidity). Regarding precipitation extremes, the afforestation scenarios show a more uniform and consistent
effect compared to the effect on temperature extremes (see Figure 7b). In other words, all afforestation experi-
ments showed similar trends, leading to significant increases in both mean and extreme precipitation indices. In
particular, the AFFga/esr and AFFGra,wos Scenarios resulted in increases of up to 10% in the number of wet
days (R1mm) and heavy rainfall days (R10mm). In contrast, the effects of AFFggamxr and AFFgRa/sav Were
relatively small for most extreme precipitation indices (see Figure 7b and Figure S5 in Supporting Informa-
tion S1). In terms of CDDs, all afforestation scenarios correspond to a shortening of droughts between 2.5% and
5% in the AFFgga/sav. AFFGrAMxE> AFFGRA/ERF SCENarios, and up to 7% in the AFFgga/wos €Xperiment.

3.4. Potential Mechanisms Driving the Contrasting Responses to Temperature Extremes

To further investigate the underlying physical mechanisms driving the contrasting extreme temperature responses
to different vegetation transition scenarios, Figure 8 illustrates the changes in surface temperature attributed to
different components of the SEB (see Equation 5). These include changes in downward shortwave radiation
(ADSR), downward longwave radiation (ADLR), surface albedo (Aa), sensible heat flux (ASH), plant transpi-
ration (AEt), canopy evaporation (AEc), soil evaporation (AEs) and ground heat flux (AG), as described in
Equation 5 (see Methods section for details). Regarding deforestation (Figure 8a), surface temperature responses
are influenced by various compensating phenomena (see also Table 4). These include local physical mechanisms
such as changes driven by albedo-induced cooling effects (up to —0.87 £ 0.06°C; see Table 4 and Figure 8a)
versus total evapotranspiration-induced warming effects (up to 1.22 + 0.18°C; refer to Figures 8a, Figure S10 in
Supporting Information S1, and Table 4). Although evapotranspiration contributes significantly to warming
throughout the year, the impact of albedo-induced cooling is more evident during the dry winter months (DJF),
when evaporative fluxes are limited. Under these conditions, the temperature response associated with albedo can
locally reach —1.15 = 0.08°C (see Table 4), which partially offsets the warming effect. Conversely, the tem-
perature response driven by evapotranspiration, primarily influenced by the reduction in plant transpiration,
dominates during the post-monsoon (SON) season (with values up to 3.4 + 0.27°C; see Table 4). Consequently,
winter days and nights, corresponding to the minimum values of daily maximum temperature (TXn; see
Figure 8a), tend to experience cooling due to deforestation-induced increases in surface albedo (see Figure S10 in
Supporting Information S1). This seasonal dynamic explains why minimum daily maximum temperatures (TXn;
Figure 8a), typically occurring in winter, tend to cool due to albedo-driven effects, while the highest temperature
extremes (TXx and TNx; Figures S7 and S9 in Supporting Information S1), which occur in spring and fall, show a
pronounced warming signal linked to reduced evapotranspiration (see Figure 9 and Figure S10 in Supporting
Information S1). On average, this trend coincides with the simulated signals for extreme annual temperature
indices (Figures 4 and 5, upper panels) and at seasonal scales (see Figures S1 and S4 in Supporting
Information S1).

Regarding afforestation, AFFgga/nmxp and AFFgra/epr (see Figures 8d and 8e) demonstrate significant bio-
physical cooling effects for almost throughout the year, with a more pronounced signal (up to —0.47 + 0.02°C and
—0.26 = 0.01°C, on average, respectively, see Figures S5 and S14 in Supporting Information S1) during the dry
and hot periods (i.e., from October to May, corresponding to the pre- or post-monsoonal periods) primarily driven
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Table 3

Annual and Seasonal Mean Values of Biophysical Effects of all Afforestation Experiments (AFF gra/ppr, AFF gramixr, AFF grawos and AFF ggasay) on Surface
Temperature (°C) Attributed to Changes in Downward Shortwave Radiation (ADSR), Downward Longwave Radiation (ADLR), Surface Albedo (Aa), Sensible Heat
Flux (ASH), Plant Transpiration (AEt), Canopy Evaporation (AEc), Soil Evaporation (AEs), and Ground Heat Flux (AG), as Outlined in Equation 5 (Refer to the
Methods Section for Details)

Annual DIF MAM

SEB (°C) EBF MXF WOS SAV EBF MXF WOS SAV EBF MXF WOS SAV
ATs —0.87 £ 0.08 —0.60 + 0.06 0.04 £ 0.03 0.05+0.01 —0.93+0.09 —0.40 + 0.05 0.45 + 0.03 0.24 + 0.01 —0.82 + 0.06 —0.63 + 0.05 0.09 + 0.03 0.00 £ 0.01
ADSR —0.43 £0.02 —-030+0.02 —-0.51+0.03 —-0.19+0.01 —0.14+0.003 -0.07+0.00 —0.10+0.00 —0.02+0.00 —0.51+0.02 —0.410.01 —0.42 + 0.01 —0.15 + 0.01
ADLR 0.57 £ 0.03 0.36 + 0.01 0.79 + 0.02 0.21 + 0.00 0.79 £ 0.02 0.48 + 0.00 0.85 + 0.01 0.22 + 0.003 0.85 + 0.03 0.50 + 0.02 0.42 + 0.02 0.20 + 0.00
Aa 0.75 = 0.06 0.48 + 0.04 1.09 = 0.09 0.39 + 0.03 0.98 + 0.08 0.57 = 0.04 1.30 + 0.10 0.42 + 0.03 0.90 = 0.06 0.45 + 0.03 0.80 = 0.05 0.25 £ 0.01
ASH —0.32 £0.07 -0.50+£0.06 -0.56=+0.09 —0.25+0.04 —0.23+0.04 —0.77+0.06 —0.46+0.03 —025+0.02 —0.44+0.08 —0.49 + 0.07 —0.08 + 0.05 —0.04 £ 0.03
AG 0.01 £ 0.00 0.01 £0.00 -0.01+0.00 -0.00=+0.00 -0.08+ 0.00 —0.03 £0.00 —0.09 +0.00 —0.02 + 0.001 0.05 £ 0.006 0.02 £ 0.00 0.03 £ 0.004 0.01 £ 0.003
AEt —-2.05+020 —-0.82+0.09 -0.81+0.08 —0.10+0.02 -1.87+0.16 —044+0.04 —0.60+0.04 —0.06+0.007 —0.75 + 0.06 —0.20 + 0.02 —0.20 + 0.01 —0.01 £ 0.00
AEs 1.00 + 0.19 0.37 + .09 0.51 + 0.14 0.06 £ 0.05 —0.12 £ 0.01 —0.01 £0.00 -0.14+0.02 —0.02+0.005 —0.43 + 0.06 —0.32 + 0.04 —0.45 + 0.04 —0.25 + 0.04
AEc —0.11 £0.01 -0.04 £0.00 -0.08+0.01 —0.02 = 0.00 0.00 £ 0.00 —0.00 £ 0.00 0.00 = 0.00 0.00 = 0.00 —0.07 £ 0.007 —0.02 £ 0.00 —0.03 = 0.00 0.00 £ 0.00
R -0.01 £0.00 —0.01+0.00 -0.03+0.00 —0.01 +0.00 0.00 £ 0.00 —0.00 £ 0.00 —0.00 £ 0.00 0.00 £ 0.00 —-0.02 £+ 0.00 —0.01 £0.00 -0.02 £ 0.003 0.00 £ 0.00

Note. ATs denotes the calculated net change in surface temperature (derived from the radiation budget) induced by afforestation, which is approximately the sum of the terms on the right-hand side of Equation 5. R accounts for the
residual term (calculated as the difference between the terms on the left-hand and right-hand sides of Equation 5), illustrating the closure of the surface energy balance (SEB). Changes that are statistically significant at the 95%
confidence interval (CI) - as determined by the Wilcoxon-Mann-Whitney test at the 0.05 significance level - are highlighted in bold. Positive values (in red) indicate warming effects, while negative values (in blue) indicate cooling

effects. Uncertainty estimates are expressed as standard errors, calculated using the Student's #-test at the 95% confidence level.

by increased plant transpiration. In other words, in AFF g avxr and AFF g a/epE, c0ld temperature extremes are
influenced by various afforestation-induced compensating physical phenomena. These include: (a) the local
forest transpiration, which remains highly predominant throughout the year due to the substantial increase in
foliar density, and (b) the decrease in soil evaporation during the monsoon period (JJAS), reducing the cooling
effects driven by plant transpiration. This means that a significant reduction in soil evaporation is only partially
offset by a lesser increase in plant transpiration, thereby reducing the latent heat flux during the monsoon period
(see Table 3). These dynamics can be interpreted by various physical mechanisms at play: during the pre- or post-
monsoonal periods, more incoming radiation (in line with less cloud cover) is transferred to the atmosphere by an
increase in turbulent heat flux, particularly in latent heat flux (as a result of increased plant transpiration due to the
enhanced canopy foliage), leading to a significant decrease in heat extreme events (Figures 8d and 8e).
Conversely, during the monsoon period, the warmer and wetter climate conditions, along with increased solar
radiation, tend to promote tree/vegetation growth, resulting in a reduction in soil evaporation due to the increased
canopy foliage, which reduces soil exposure to the incoming shortwave radiation and surface wind speed.

By contrast, AFFggawos and AFFgga/sav €xperiments (refer to Figures 8d and 8e) demonstrate a warming
effect for almost the entire year (up to 0.07 £+ 0.00°C and 0.08 + 0.01°C, on average, respectively, see Figures S5
and S14 in Supporting Information S1), with a greater magnitude observed during the pre- or post-monsoonal
periods. In other words, in AFFggrawos and AFFgrasav €Xperiments, hot temperature extremes are influ-
enced by various afforestation-induced compensating factors across different seasons (see Figures 8d and 8e).
During the pre- or post-monsoonal periods, the hot temperature extremes are primarily influenced by the albedo-
induced warming effect (values reaching up to 1.55 + 0.12°C for AFFgra,wos and 0.67 £ 0.05°C for AFFgra,
sav in SON; see Figures 8d and 8e and Table 3), which results in increased absorption of shortwave radiation at
the surface. During the monsoon period, the albedo-driven temperature response is amplified by reduced soil
evaporation, albeit slightly countered by a minor increase in forest transpiration and sensible heat flux associated
with the increase in canopy foliage.

3.5. Potential Mechanisms Driving the Changes in Extreme Precipitation

Figure 9 shows the spatial patterns of changes in precipitation and evapotranspiration during the West African
Monsoon (WAM) season (June—September, JJAS). This provides further insight into the physical mechanisms
that cause changes in extreme precipitation in response to different LCC scenarios. Evapotranspiration plays a
fundamental role in modulating WAM dynamics through land—atmosphere interactions. However, it is important
to acknowledge that this study does not analyze total vertically integrated moisture flux convergence, an essential
process that influences mid-tropospheric convection, due to the lack of vertical atmospheric data in the WRF-
Hydro model outputs. In the deforestation scenario, as shown in Figure 9a, close spatial coherence is observed
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EBF MXF WOS SAV EBF MXF WOS SAV

—0.54 + 0.05 —0.54 + 0.05 —0.11 £ 0.02 0.07 £ 0.01 —1.20 = 0.09 —0.83 + 0.06 —0.29 + 0.04 —-0.10 £ 0.02
—0.69 + 0.03 —0.44 + 0.03 —0.76 + 0.03 —0.26 + 0.02 —0.38 + 0.02 —0.30 + 0.01 —0.75 + 0.02 —0.33 £ 0.01

0.42 + 003 0.22 + 0.02 0.24 + 0.02 0.09 + 0.00 0.24 + 0.01 0.25 + 0.01 0.57 £ 0.02 0.31 + 0.01

0.32 + 0.02 0.23 + 0.02 0.72 £ 0.06 0.23 + 0.02 0.8 + 0.06 0.66 + 0.05 1.55 + 0.12 0.67 £ 0.05
—0.66 + 0.09 —0.34 + 0.05 —0.57 = 0.10 —0.19 + 0.04 0.01 + 0.06 —0.40 + 0.05 -1.11 = 0.14 —0.52 + 0.07
—0.03 £ 0.00 0.00 £ 0.00 —0.04 £ 0.005 —0.02 £ 0.00 0.12 £ 0.012 0.06 + 0.01 0.04 £ 0.009 0.01 £ 0.00
—2.39 £ 0.22 —1.43 + 0.14 —1.31 + 0.12 —0.11 + 0.02 =3.17 £ 0.27 —1.20 + 0.10 —1.11 + 0.09 —0.24 + 0.03

3.17 £ 0.28 1.58 + 0.14 1.98 + 0.21 0.42 + 0.05 1.41 +0.19 0.24 + 0.06 0.65 + 0.16 0.09 + 0.06
—0.27 £ 0.02 —0.11 £ 0.01 —0.17 £ 0.01 —-0.02 £ 0.00 —0.10 = 0.01 —-0.04 £ 0.00 —0.12 £ 0.01 —0.05 £ 0.00
—0.02 £ 0.00 —0.01 £ 0.00 —0.04 £ 0.004 —0.01 £ 0.00 —0.02 = 0.002 —-0.01 £ 0.00 —0.04 = 0.00 —0.01 £ 0.00

between reductions in precipitation and evapotranspiration, particularly in heavily deforested regions such as
southern Burkina Faso. This pattern suggests that local land—atmosphere feedback, mainly driven by reduced
evapotranspiration, substantially modulates precipitation responses, exhibiting significant spatial correlations
(r = 0.4; p-value < 0.05, not shown), indicating strong coupling. In other terms, deforestation leads to surface
drying, with average reductions in evapotranspiration reaching 0.01 mm/day. This decline in moisture recycling
likely reduces latent heat fluxes and near-surface humidity, thereby potentially inhibiting boundary layer
development and constraining the northward progression of the monsoon front. Consequently, regional precip-
itation is significantly altered, with observed decreases in both mean and extreme rainfall (see Figure 3). By
contrast, the afforestation experiments (Figures 9b and 9c) consistently exhibit increases in both evapotranspi-
ration and precipitation, underscoring the critical role of vegetation density in modulating land—atmosphere in-
teractions. Close spatial patterns between enhanced evapotranspiration and increased precipitation are evident
across forested areas in the southern Burkina Faso. The strongest hydrological responses are observed in the
AFFra/EE SCeNario, where evapotranspiration increases by up to approximately 0.009 mm/day, compared to
about 0.005 mm/day in the AFFgr/wos scenario. These increases are likely driven by enhanced latent heat
fluxes, which support deeper and more organized convection. As a result, afforestation contributes to greater
mean and extreme precipitation, fewer dry days, and reduced drought durations (see Figures 6 and 7).

4. Discussion

This study offers a novel perspective on the biophysical impacts of deforestation and afforestation scenarios on
regional climate extremes in the West African savanna region. It achieves this through two primary approaches:
firstly, by conducting high-resolution LULCC experiments at a 3 km resolution, thereby capturing the fine-scale
effects associated with various ecosystem transition scenarios; and secondly, by employing an advanced fully
coupled atmosphere-hydrology model system (i.e., WRF-Hydro; see Arnault et al., 2023; Mortey et al., 2024;
Ndiaye et al., 2024). This study is the first to use the advanced WRF-Hydro system over West Africa to assess
regional climate extremes in response to vegetation perturbations, incorporating both dynamic vegetation feed-
back and terrestrial hydrological processes—features often omitted in earlier studies (e.g., Camara et al., 2022;
Diba et al., 2018; Ingrosso & Pausata, 2024). While previous work has focused mainly on the drier Sahel using
single regional or global climate models (e.g., Abiodun et al., 2013; Diba et al., 2018; Ingrosso & Pausata, 2024;
Odoulami et al., 2019), our approach provides a more integrated assessment. Furthermore, as afforestation is one
of the main land-based mitigation strategies proposed in scenarios consistent with the Paris Agreement goals
(Grassi et al., 2017; Griscom et al., 2017; Harper et al., 2018), it is important to evaluate its broader impacts
beyond CO, mitigation.
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Figure 8. Surface energy balance decomposition of monthly mean surface temperature changes (K) in response to deforestation and afforestation experiments. The
stacked bars represent surface temperature changes (K) due to contributions from changes in downward shortwave radiation (ADSR in dark gray), downward longwave
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radiation (ADLR in red), surface albedo (Aa in light gray), sensible heat flux (ASH in yellow), plant transpiration (AEt in blue), canopy evaporation (AEc in dark

green), soil evaporation (AEs in light blue), and ground heat flux (AG in black), as outlined in Equation 5 (refer to Methods section for details). The black lines depict the
net change in surface air temperature (Tmean), while the black dots and the values shown at the top of each bar represent the calculated net change in surface temperature
(derived from the radiation budget) caused by deforestation (a) and by afforestation scenarios (b, c, d, €), which approximately corresponds to the sum of the bars in the

respective month. The green lines represent changes in the leaf area index (ALAI), illustrating changes in canopy leaf density.

Our study shows that deforestation leads to a simulated biophysical warming response (up to 0.55 £+ 0.01°C, on
average), with the most pronounced signals over the highly deforested area in southwestern Burkina Faso and
northeastern Ghana. These results are consistent with previous studies based on observational data (Duveiller
et al., 2018b, 2020) and modeling experiments (e.g., Butt et al., 2023; Cohn et al., 2019; Davin & Noblet-
Ducoudré, 2010; Jia et al., 2019; Mahmood et al., 2014; Perugini et al., 2017; Sy & Quesada, 2020), which have
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Table 4

Similar to Table 3 for the Annual and Seasonal Mean Values of the Regional Biophysical Effects of Deforestation on Surface
Temperature (°C) Attributed to Changes in Downward Shortwave Radiation (ADSR), Downward Longwave Radiation
(ADLR), Surface Albedo (Aa), Sensible Heat Flux (ASH), Plant Transpiration (AEt), Canopy Evaporation (AEc), Soil
Evaporation (AEs), and Ground Heat Flux (AG), as Outlined in Equation 5 (Refer to the Methods Section for Details)

SEB component contributions (°C) Annual DJF MAM JJA SON

ATs 0.97 + 0.08 1.12 £ 0.09 0.91 = 0.06 0.54 + 0.05 1.30 = 0.10
ADSR 0.55 = 0.03 0.15 = 0.01 0.57 = 0.01 1.00 = 0.04 0.45 = 0.02
ADLR -0.62+0.03 -083+002 —-090+0.03 —-048=+0.03 -0.27+0.01
A -0.87£0.06 -1.15+0.08 —-1.01+£006 —036=+0.02 -0.95=+0.07
ASH 0.41 £ 0.08 0.26 £ 0.05 0.53 £0.08 0.74 £ 0.10 0.12 £ 0.08
AG —0.02 + 0.01 0.09 £ 0.00 —0.06 + 0.00 0.01 £0.00 —0.14 = 0.01
AEt 2.20 £ 0.20 2.16 £0.17 0.84 £ 0.06 2.41 £0.21 3.40 £ 0.27
AEs —1.10 £ 0.19 0.15 = 0.01 0.45+0.06 —347+0.27 —1.55=+0.20
AEc 0.12 + 0.01 0.00 %+ 0.00 0.07 = 0.00 0.31 + 0.02 0.12 + 0.01
R -0.02+0.00 -0.01 +£0.00 —0.03+£0.00 —0.03+0.00 -0.03=+0.00

Note. Changes that are statistically significant at the 95% confidence interval (CI) - as determined by the Wilcox-
on-Mann-Whitney test at the 0.05 significance level - are highlighted in bold.

consistently shown that deforestation in tropical regions induces significant biophysical warming effects. Peru-
gini et al. (2017), incorporating a broader range of tropical subregional studies, identified a comparable and
significant biophysical warming effect of 0.60 £ 0.74°C across tropical zones (based on n = 34 simulations from
12 studies). Despite using coarse-resolution simulations, Boone et al. (2016) reported similar warming effects in
West Africa, although the magnitude of warming varied considerably between different climate models. Our
study demonstrates that the most pronounced warming effects observed during the pre- and post-monsoon sea-
sons are also evident in changes in temperature extremes, with a more significant impact on winter days and night
minimum temperatures (TNn, TNx) (see Figure 4a). These results are consistent with previous research that has
identified a particularly significant response of temperature extremes to deforestation (e.g., Abera et al., 2024;
Findell et al., 2017; Hirsch et al., 2018; Lejeune et al., 2018; Sy & Quesada, 2020). However, extreme temperature
responses (both cold and hot extremes) are influenced by various compensating phenomena induced by defor-
estation (see Figure 8a). These include (a) local physical mechanisms such as changes driven by albedo-induced
cooling effects versus evapotranspiration-induced warming effects (refer to Figures 8a, Figure S10 in Supporting
Information S1, and Table 4), (b) regional responses (e.g., local deforestation compared to LULCC in other
regions), and (c) local effects confined to deforested grid cells versus non-local effects which may occur in both
deforested and non-deforested areas (e.g., Chen et al., 2022; Winckler et al., 2017). On the other hand, our study
also demonstrates that, on average, deforestation can significantly reduce regional extreme rainfall by 7%
(—3.2 + 0.24 days) for the number of wet days (daily precipitation>1 mm; R1mm) and by 5% (—1.2 + 0.15 days)
for heavy rainfall days (daily precipitation>10 mm; R10mm) more than the mean rainfall conditions (Pmean) (see
Figures 4 and 5), also leading to an intensification of the number of dry days (precipitation <1 mm) and increase
drought lengths by (47.52 =+ 0.13 days). Such findings are also consistent with some previous research indicating
that deforestation can affect rainfall extremes more profoundly than mean rainfall conditions (e.g., Sy &
Quesada, 2020), and particularly in monsoonal regions like West Africa (Quesada et al., 2017). The responses of
extreme rainfall to deforestation are also predominantly driven by changes in evapotranspiration (see Figure 9 and
Figure S10 in Supporting Information S1), which lead to a reduction in local moisture supply to the WAM
monsoon system. This can be interpreted by various mechanisms at play: on average, deforestation reduces
shallower vegetation and foliar density, leading to a large decrease in evapotranspiration during the monsoon
season (Figure 9a and Figure S10 in Supporting Information S1), which results in less interception of surface
water and reduced soil moisture, ultimately leading to lower mean and extreme precipitation. This pattern is
consistent with findings from numerous studies (Mahmood et al., 2014; Perugini et al., 2017; Sy & Ques-
ada, 2020). Soil moisture depletion can intensify temperature extremes due to its non-linear interaction with the
temperature distribution, which extends beyond the mean response (Pall et al., 2007; Seneviratne et al., 2010).
While changes in mean precipitation under warming are primarily driven by energy availability, extreme
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Figure 9. Spatial patterns of changes in precipitation (mm/day) and evapotranspiration (mm/day) in response to (a) deforestation and afforestation scenarios based on
evergreen broadleaf forest (b) and woody savanna (c). Only grid points with statistically significant changes (p < 0.05), determined using the Mann—Whitney—Wilcoxon
(MWW) rank test, are shown; non-significant areas are left blank. The regionally averaged values and associated standard errors, calculated using Student's z-test at the
95% confidence level, are shown in the bottom-left corner of each panel. For clarity, only a subset of the most impacted afforestation scenarios is displayed (see
Figure 7). Figure S11 in Supporting Information S1 corresponds to the changes in precipitation (mm/day) and evapotranspiration (mm/day) in response to afforestation
scenarios based on mixed forest and savanna.

precipitation is more strongly influenced by near-surface moisture levels, exhibiting approximately three times
greater sensitivity to temperature changes (Pall et al., 2007). Deforestation can amplify these effects by (a)
reducing atmospheric moisture through decreased leaf density and transpiration and (b) increasing surface albedo,
which causes surface cooling and weakens precipitation processes, aligning with the Clausius-Clapeyron rela-
tionship IPCC-SRCCL, 2019). As a result, deforestation is expected to suppress extreme precipitation events to a
greater extent than mean precipitation levels.
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Regarding afforestation, our results highlight contrasting biophysical responses of temperature extremes to
different afforestation scenarios. Conversion of grassland to evergreen or mixed forest mitigates the biophysical
warming effect and reduces extreme heat events, with the strongest cooling observed under the evergreen-based
afforestation scenario (see Figures 6a, 8d, and 8e, and Figure S5 in Supporting Information S1). This cooling
effect is likely driven by increased canopy foliage following afforestation, which enhances evapotranspiration
(see Figure 9) and likely atmospheric moisture availability. The resulting rise in humidity can promote cloud
formation (Abera et al., 2024; Teuling et al., 2017), thereby reducing incoming solar radiation and heat extremes.
Conversely, afforestation with a transition from grassland to woody savanna or savanna is associated with more
frequent extreme heat events, especially during the pre- and post-monsoon periods, mainly due to an albedo-
induced warming effect (Figures 8b and 8c; Figures S7, S8, S12, and S14 in Supporting Information S1). This
warming persists throughout the year and may be exacerbated by reduced soil evaporation during the monsoon
season (Figures 8b and 8c; Table 3). In addition, all afforestation scenarios generally lead to an increase in mean
and extreme precipitation, a decrease in dry days, and, consequently, a reduction in drought lengths (see Figure 7).
These changes are primarily governed by local land—atmosphere feedbacks, particularly those linked to increased
evapotranspiration and moisture availability (see Figure 9), which likely contribute to the northward expansion of
the monsoon (Ingrosso & Pausata, 2024; Pausata et al., 2020). These results are also consistent with recent
findings by Ingrosso and Pausata (2024) those who examined different afforestation scenarios with different
forest densities and types under global warming projections in the Sahel. Their study revealed that, despite
considerable increases in total moisture flux convergence under afforestation scenarios, changes in evapotrans-
piration remained the dominant driver of increased extreme rainfall, closely associated with forest type and
density. They also concluded that while afforestation generally increases precipitation, it can also induce an
albedo-driven warming effect, leading to more frequent extreme heat events during the pre-monsoon season.

Overall, our results highlight the importance of carefully considering multiple land cover transitions for affor-
estation, as biophysical variables show contrasting responses depending on vegetation type. For example, pre-
vious studies have shown that afforestation in West Africa often leads to cooling effects, especially during the
monsoon season (Bamba et al., 2019; Camara et al., 2022; Diba et al., 2018). Our results are consistent with these
findings, particularly for afforestation with evergreen or MXF, where increased plant transpiration contributes to
reduced surface temperatures. However, when analyzing specific forest types, such as woody savanna and
savanna, different responses emerge. Specifically, we also observe a greater increase in plant transpiration during
transitions from grassland to evergreen forest compared to conversion from grassland to woody savanna. In other
words, while woody savannas can have lower transpiration rates than evergreen forests due to reduced vegetation
density, soil evaporation can compensate for this difference and may even dominate total evapotranspiration,
especially during the monsoon season. Therefore, to fully understand the net impact of forest cover change -
including afforestation and reforestation initiatives such as the GGW West Africa - it is essential to consider the
specific nature of the transition and the associated biophysical effects. Overall, these afforestation experiments
should be seen as idealized land use and land management change scenarios for the West African savanna region.
By integrating forest and cropland ecosystems, they provide valuable insights into the multiple climate impacts of
various afforestation-based land management strategies. Actions such as climate-smart agriculture can not only
mitigate the effects of climate change but also promote the sustainable development of agriculture, forestry, and
related industries (FOA-IPCC, 2017).

5. Limitations and Future Perspectives

While the idealized simulations conducted in this study, employing an advanced fully coupled atmosphere-
hydrology modeling system (WRF-Hydro; Arnault et al., 2023; Mortey et al., 2024; Ndiaye et al., 2024), offer
insights into the potential biophysical impacts of various LCC transition scenarios on weather extremes, it is
important to note that these findings are derived from a single climate model and configuration. Although the
WRF-Hydro model demonstrates strong performance in capturing vegetation dynamic, temperature, and pre-
cipitation patterns across our study area, future studies should employ additional models, particularly convection-
permitting models (Yahaya Seydou et al., 2025). In other words, although our simulations are conducted using a
scale-aware convective parameterization scheme (Grell & Freitas, 2014), which has shown significant
improvement in the representation of heavy rainfall events (Park et al., 2022, 2024), some studies suggest that
parameterized convection models may exhibit a response to the soil moisture-precipitation feedback that is
different from, or even opposite to, that of convection-permitting models (Hohenegger et al., 2009; Taylor
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et al., 2013). However, a recent study by Jungandreas et al. (2023) demonstrated that the monsoon circulation's
response to enhanced vegetation cover over West Africa in a convection-permitting model is qualitatively similar
to that in simulations with parameterized convection, though more pronounced. This amplified response is mainly
driven by changes in soil moisture, which are significantly influenced by runoff dynamics and precipitation
patterns. Further research utilizing both convection-permitting models and those with parameterized convection
is necessary to quantify and constrain this response more accurately. This is critical because LULCC can also
affect atmospheric dynamics such as cloud cover, cloud base height, diabatic processes within the PBL, and large-
scale circulations, which in turn can indirectly affect climate extremes through atmospheric feedback mechanisms
(e.g., Cao et al., 2023; Chen et al., 2022). These atmospheric effects can extend beyond the afforested/deforested
areas, affecting neighboring regions (Abiodun et al., 2013; Ingrosso & Pausata, 2024) and even remote areas up to
100 km from the forest location (Butt et al., 2023; Cohn et al., 2019). Furthermore, our results depend on the
model's ability to represent the complex structure of forest types, such as savannas, which may have a more
complicated three-dimensional structure compared to evergreen or deciduous forests. This may oversimplify
certain cooling mechanisms, such as increased surface roughness, which increases air mixing and contributes to
cooling. It is important to note that while the transformation of grasslands into evergreen or MXF can contribute to
the mitigation of global warming and extreme heat, this process may also result in groundwater depletion,
particularly if the trees do not significantly change rainfall patterns. Addressing these complexities in future work
could improve our understanding of the wider impacts of afforestation on regional climate extremes.

Finally, while recent observations indicate an increasing trend in vegetation greenness across large areas of the
Sahel, likely driven by partial rainfall recovery (e.g., Herrmann et al., 2005; Jury, 2018), these potential changes
were not considered in this study. Future research should consider the potential influence of ongoing greening, as
this could either amplify or offset the future biophysical impacts of LCC on climate extremes.

6. Conclusions and Implications

At the regional level, our findings have crucial implications for climate and policy assessments and highlight the
importance of considering the biophysical effects of afforestation and their impact on regional climate extremes in
the West African Savannas region, consistent with prior research (Abiodun et al., 2013; Camara et al., 2022; Diba
etal., 2018; Doelman et al., 2020; Ingrosso & Pausata, 2024; Odoulami et al., 2019). They contribute to enhancing
the WAM (Ingrosso & Pausata, 2024) and may lead to increased extreme precipitation, contingent upon the types
of forests planted, while also influencing temperature extremes differently. In summary, the international policy
process under the United Nations Framework Convention on Climate Change exclusively addresses the
biogeochemical impacts of afforestation on global radiative forcing (Mahmood et al., 2014; Perugini et al., 2017),
which raises concerns about accurately communicating information regarding land-based climate mitigation.
Consequently, we anticipate that this study will inspire further investigation into the comprehensive effects of the
potential benefits and trade-offs associated with afforestation. This, in turn, will enhance the dissemination of
robust and reliable messages regarding land management strategies within the context of climate-smart agri-
culture in the West African Savannas region.
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