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Abstract
Aminimal perfect hash function (MPHF) maps a set S of n keys to the first n integers
without collisions. There is a lower bound of n log2 e−O(log n) ≈ 1.44n bits needed
to represent anMPHF. This can be reached by a brute-force algorithm that tries en hash
function seeds in expectation and stores the first seed that leads to anMPHF. The most
space-efficient previous algorithms for constructing MPHFs all use such a brute-force
approach as a basic building block. In this paper, we introduce ShockHash – Small,
heavily overloaded cuckoo hash tables for minimal perfect hashing. ShockHash uses
two hash functions h0 and h1, hoping for the existence of a function f : S → {0, 1}
such that x �→ h f (x)(x) is an MPHF on S. It then uses a 1-bit retrieval data structure
to store f using n + o(n) bits. In graph terminology, ShockHash generates n-edge
random graphs until stumbling on a pseudoforest – where each component contains
as many edges as nodes. Using cuckoo hashing, ShockHash then derives an MPHF
from the pseudoforest in linear time. We show that ShockHash needs to try only about
(e/2)n ≈ 1.359n seeds in expectation. This reduces the space for storing the seed by
roughly n bits (maintaining the asymptotically optimal space consumption) and speeds
up construction by almost a factor of 2n compared to brute-force.Bipartite ShockHash
reduces the expected construction time again to about 1.166n by maintaining a pool
of candidate hash functions and checking all possible pairs. Using ShockHash as
a building block within the RecSplit framework we obtain ShockHash-RS, which
can be constructed up to 3 orders of magnitude faster than competing approaches.
ShockHash-RS can build anMPHF for 10million keys with 1.489 bits per key in about
half an hour. When instead using ShockHash after an efficient k-perfect hash function,
it achieves space usage similar to the best competitors, while being significantly faster
to construct and query.
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1 Introduction

A perfect hash function (PHF) maps a set of N keys to the first M integers without
collisions. If M = N , the hash function is called minimal perfect (MPHF) and is a
bijection between the keys and the first N integers [N ]. Minimal perfect hashing has
many applications. For example, it can be used to implement static hash tables with
guaranteed constant access time [28]. Storing only payload data in the hash table cells,
we obtain an updatable retrieval data structure [45], and storing only fingerprints [7,
22], we obtain an approximate membership data structure. The hashes can also be
used as small identifiers of the input keys [10], which are more efficient to deal with
than large and complex keys. Finally, there is a range of applications in bioinformatics
[1, 13–15] and text indexing [3, 5, 59].

Related Work. There is a lower bound of about N log2 e ≈ 1.44N bits needed to
represent an MPHF. There is also a theoretical construction matching this bound that
runs in linear time and allows constant query time [32]. However, this construction
does not work for realistic N < 2150 [11], so that (minimal) perfect hashing remains
an interesting topic for algorithm engineering. A long sequence of previous work has
developed a range of practical approaches with different space-time tradeoffs.

Many approaches first construct an outer hash function g : S → [b] that partitions
the input set S into small subsets S1, S2, . . . , Sb of sizes s1 ≈ s2 ≈ . . . ≈ sb and then
construct a perfect hash function hi : Si → {1, . . . , si } for i ∈ [b]. Given (si )i∈[b], or
better yet the prefix sums pi = s1 + · · · + si for i ∈ [b], an MPHF on S is given as
x �→ pg(x) + hg(x)(x).

On the one hand, there are holistic methods where such a partitioning step is not
essential (though still possibly useful). These are (so far) all a constant factor away
from the space lower bound (e.g. [6, 13, 39, 45]). One of the most space-efficient
approaches among these is SicHash [39] that maps N keys to N (1 + ε) unique table
entries using a generalization of cuckoo hashing [24, 49]. The choice of hash function
for each key is then stored in a retrieval data structure and a small fallback data structure
turns the constructed PHF into anMPHF. SicHash is not space-optimal partly because
the cuckoo table tends to admit many valid placements of its keys, meaning a single
input set is redundantly handled by many distinct states of the PHF data structure.

On the other hand, there are methods that use brute-force trial-and-error of hash
functions on subsets of size n [4, 9, 21, 27, 50], which takes roughly en ≈ 2.718n

trials. Hence, an aggressive partitioning step is required to obtain an acceptable over-
all running time. The previously most space efficient approach, RecSplit [21], is of
this kind and recursively splits the input set into very small (n ≈ 16) leaf subsets.
Surprisingly, when tuned thoroughly, this enables higher construction throughput than
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the best holistic methods even when being fairly far away from the space lower bound
[9].

Contribution. In this paper, we introduce ShockHash – Small, heavily overloaded
cuckoo hash tables, which can be seen as an extreme version of SicHash where we
use two hash functions for each key and retry construction until we can completely
fill the cuckoo hash table. That way, we achieve an MPHF without an intermediate
non-minimal PHF. In graph terminology, ShockHash repeatedly generates an n-edge
random graph where each key corresponds to one edge, connecting the candidate
positions of the key. The table can be filled if and only if the graph is a pseudoforest – a
graphwhere no component containsmore edges than nodes.While the ShockHash idea
is straightforward in principle, we can prove that when using binary cuckoo hashing
with two choices (and thus 1-bit retrieval) there is only an insignificant amount of
redundancy. Therefore, ShockHash approaches the information theoretic lower bound
for large n and has running time (e/2)n · poly(n) ≈ 1.359n (nearly a factor 2n faster
than brute-force).

In bipartite ShockHash, further exponential improvements are possible. Instead of
using a pair of fresh hash functions for each construction attempt, we build a growing
pool of hash functions and consider all pairs that can be formed from this pool. Also,
we let the two hash functions hash to disjoint ranges, meaning we effectively sample
a bipartite graph where each edge has one endpoint in both partitions. In this bipartite
setting, the hash functions of both partitions need to be individually surjective. We
can therefore filter the set of candidate hash functions in each partition individually –
before testing all combinations. This improves the construction time by an additional
exponential factor, to about 1.166n · poly(n).

Evaluation. Still being an exponential time algorithm, we use ShockHash as a
building block after partitioning the input. We obtain ShockHash-RS by using Shock-
Hash instead of brute-force as a base case within the RecSplit framework. Though
there is a small penalty in query time due to the additional access to a retrieval data
structure, ShockHash-RS construction is about two orders of magnitude faster than
tuned RecSplit [9] for space efficient configurations, using the same architecture.
Bipartite ShockHash-RS improves this by a factor of 20 again. An important step in
this harmonization of theory and practice is the observation that only an exponentially
small fraction of the hash functions tried by ShockHash require the construction of
a cuckoo hash table. The other cases can be covered with a simple bit-parallel filter
that checks whether all entries of the cuckoo table are hit by some key. This removes
much of the time overhead which made brute-force seemingly superior [9].

On large instances and for a space consumption of 1.56 bits per key, the most space
efficient competitor, tuned RecSplit [9], requires 137μs per key. In a similar amount
of time, 1.499 bits per key can be achieved by massive parallelization of the approach
using a GPU [9]. Bipartite ShockHash-RS now achieves a new record of just 1.489
bits per key with a similar construction time, while using only a single CPU thread
(and efficient GPU parallelization seems not too difficult in future work).

We also demonstrate that ShockHash is useful outside the RecSplit framework.
When using k-perfect hashing for partitioning the input, we obtain ShockHash-Flat,
which achieves a space usage similar to the most space efficient competitors. At the
same time, it is significantly faster to construct and reduces the query time by about
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30%, which brings it closer to the query performance of way less space efficient
approaches.

Outline. In Section 2, we explain preliminary ingredients needed to understand
ShockHash, and in Section 3, we discuss related work.We then explain the ShockHash
algorithm in Section 4 and a bipartite variant in Section 5. In Section 6, we then analyze
both approaches. To make ShockHash feasible for large input sizes, we show how to
use it as a building block in different partitioning schemes in Section 7. In Section 8,
we give additional variants and refinements that improve the construction in practice.
We conduct detailed experiments in Section 9 and conclude the paper in Section 10.

2 Preliminaries

In this section, we explain basic ingredients of ShockHash. This also includes the two
perfect hash function constructions SicHash [39] and RecSplit [21] that ShockHash-
RS is based on. Finally, we describe pairing functions that we use to encode the seeds
in bipartite ShockHash.

Cuckoo Hashing. Cuckoo Hashing [49] is a well known approach to handle col-
lisions in hash tables. Each object gets two candidate cells via two hash functions.
A query operation looks at the two cells and searches for the object. If an insertion
operation tries to insert an object into a cell that is already full, the object already
stored in the cell is taken out and recursively inserted using its other candidate posi-
tion. Cuckoo hashing can be extended to use more than two hash functions [24], or
cells with more than one object in them [18]. In this paper, we are only interested in
the basic version with two hash functions and one object per cell. The load threshold
of a cuckoo hash table [25, 26, 41] is the percentage of cells that can be filled before
insertion likely fails. For cuckoo hashing with two candidate cells, the load threshold
is c = 0.5. Despite this, in ShockHash we consider cuckoo hash tables that are filled
completely using many retries.

Cuckoo Graph and Pseudoforests. Cuckoo hashing can be modeled as a random
graph G, where each node represents a table cell and each edge represents one object,
connecting its two candidate cells. It is easy to see that a cuckoo hash table can be
constructed successfully if and only if the edges of G can be directed such that the
indegree of each node is ≤ 1. In the following, we call this a 1-orientation. A 1-
orientation exists if and only if G is a pseudoforest, i.e. every connected component of
G is a pseudotree. A pseudotree is either a tree or a cycle with trees branching from it.
A way to check whether a graph is a pseudoforest is to check whether each component
contains at most as many edges as nodes.

Retrieval Data Structures. For a given set S of N keys and an integer r , a retrieval
data structure (or static function data structure) stores a function f : S → {0, 1}r
that maps each key to a specific r -bit value. Because it may return arbitrary values
for keys not in S, it is possible to represent the function without representing S itself.
Representing a retrieval data structure needs at least r N bits of space and there are
practical data structures that need r N + o(r N ) bits allowing linear construction time
and constant query time. In particular, for r = 1, Bumped Ribbon Retrieval (BuRR)
[19] reduces function evaluation to ANDing a hash function value with a segment of a
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precomputed table and reporting the parity of the result. This table can be determined
by solving a nearly diagonal system of linear equations (a “ribbon”). In practice, BuRR
has a space overhead below 1%.

SicHash. Small irregular cuckoo tables for perfectHashing [39] constructs perfect
hash functions through cuckoo hashing. It constructs a cuckoo hash table and then uses
a retrieval data structure to store which of the hash function choices was finally used
for each key. The main innovation of SicHash is using a careful mix of 1–3 bit retrieval
data structures, corresponding to 2, 4, or 8 choices for the keys. It achieves a favorable
space-performance tradeoff when being allowed 2–3 bits of space per key. It cannot go
below this because using only 1-bit retrieval seems to lead far from minimality while
using 2 or more bits for retrieval allows redundant choices that cannot achieve space-
optimality. SicHash achieves a rather limited gain in space efficiency by overloading
the table beyond the load thresholds and trying multiple hash functions. This mainly
exploits the variance in the number of keys that can fit. SicHash leaves the success
probability of constructing overloaded tables as an open question. ShockHash drives
the idea of overloading to its extreme and gives a formal analysis for this case.

RecSplit. RecSplit [21] is a minimal perfect hash function that is mainly focused
on space efficiency. First, all keys are hashed to buckets of constant expected size b.
A bucket’s set of keys is partitioned into different subsets recursively in a tree-like
structure by splitting hash functions that are chosen by brute-force to ensure that all
leaves except the last have size exactly n (in Ref. [21], the leaf size is called �).
Within the leaves, RecSplit then performs brute-force search for a minimal perfect
hash function (also called bijection). The tree structure is based only on the size of
the current bucket. This makes it possible to store only the seed values for the hash
functions without storing structural information. Apart from encoding overheads for
the seeds, this makes RecSplit information theoretically optimal within a bucket. The
number of child nodes (fanout) in the two lowest levels is selected such that the amount
of brute-force work is balanced between splittings and bijections.

There also is a parallel implementation using multi-threading and SIMD instruc-
tions or the GPU [9]. The paper also proposes a new technique for searching for
bijections called rotation fitting. Instead of just applying hash functions on the keys in
a leaf directly, rotation fitting splits up the keys into two sets using a 1-bit hash func-
tion. It then hashes each of the two sets individually, forming two words where the bits
indicate which hash values are occupied. Then it tries to find a way to cyclically rotate
the second word, such that the empty positions left by the first set are filled by the
positions of the second set. The paper shows that each rotation has a similar success
probability as a new hash function seed, so it is a way to quickly evaluate additional
hash function seeds.

Pairing Functions. A pairing function encodes two natural numbers in a single
natural number. More precisely, a pairing function is a bijection between the grid N

2
0

and N0. We are interested in pairing functions that can be inverted efficiently. The
most popular pairing function is the Cantor pairing function, which enumerates the
2D grid diagonally (see Figure 1a). It can be calculated by pairc(x, y) = (x + y)(x +
y + 1)/2+ y. Another pairing function is the one by Szudzik [56], which enumerates
the 2D grid following the edges of a square (see Figure 1b). The pairing function can
be calculated by pairs(x, y) = y2+x if x ≤ y and pairs(x, y) = x2+x+ y otherwise.
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Fig. 1 Illustrations of different pairing functions

In this paper, we require a function that enumerates only those coordinates of the
2D grid with x > y. We will still call it a pairing function in slight abuse of traditional
terminology. Our triangular pairing function (see Figure 1c) can be calculated by
pairt(x, y) = x(x − 1)/2 + y with the intuition stemming from the Little Gauss
formula. The basic idea for inverting our function (x ′, y′) = pair−1

t (z) is to set y = 0
in the definition and solve for x . This gives x ′ = �1/2 + √

1/4 + 2z
 and y′ =
z − pairt(x

′, 0). In our bipartite implementation, we use both our triangular pairing
function and Szudzik’s pairing function, depending on the distribution of the numbers
we want to encode.

While pairing uses only integer operations, all three pairing functions rely on the
square root operation and rounding for inverting. This means that inverting the func-
tions in practice can lead to problems due to floating point inaccuracies. Whether
inverting z succeeded can easily be checked by verifying that pair(x ′, y′) = z. In
our implementation, we check invertibility at construction time, so we do not get a
run-time overhead during queries.

3 More RelatedWork

In addition to RecSplit and ShockHash, which we describe in the preliminaries, there
is a range of other minimal perfect hash functions. We give an overview over the
approaches in the following paragraphs.

Hash-and-Displace. Perfect hashing with Hash-and-Displace [4, 27, 50] allows
fast queries and asymptotically optimal space consumption. Each key x is first hashed
to a small bucket b(x) of keys. For each bucket b, an index i(b) of a hash function
fi(b) is stored such x �→ fi(b(x))(x) is an injective function. For a particular bucket,
this index is searched in a brute-force way. To accelerate the search, buckets are first
sorted by their size. FCH [27] uses an asymmetric bucket assignment: it hashes 60% of
the keys to 30% of the buckets. This is efficient because when placing the largest (and
therefore hardest to place) buckets, most positions are still available. CHD [4] uses
buckets of expected equal size but compresses the stored hash function seeds. PTHash
[50] combines the ideas by using an asymmetric bucket assignment and storing the
seeds in compressed form.
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Fingerprinting. Perfect hashing through fingerprinting [13, 45] hashes the N keys
to γ N positions using an ordinary hash function, where γ is a tuning parameter. The
most space efficient choice γ = 1 leads to a space consumption of e (not log2 e) bits
per key. A bit vector of length γ N indicates positions to which exactly one key was
mapped. Keys that caused collisions are handled recursively in another layer of the
same data structure. At query time, when a key is the only one mapping to its location,
a rank operation on the bit vector gives the MPHF value. Publicly available imple-
mentations include BBHash [42] and the significantly faster FMPH [6]. FMPHGO
[6] combines the idea with a few brute-force tries to select a hash function that causes
fewer collisions.

Table Lookup.A tempting way to replace expensive brute-force search is precom-
putation of solutionswith subsequent table lookup – a standard technique used inmany
compressed data structures. For a rough idea, suppose for a subproblem with n keys,
we first map them injectively to a range of size U ′ ∈ �(n2) using an intermediate
hash function (less would lead to collisions – birthday paradox). Then, using a lookup
table of size 2U

′
, we can find precomputed perfect hash functions in constant time.

However, polynomial running time limits the subproblem size to n ∈ O(
√
log N ),

where N is the size of the overall input set. Computing concrete values for realistic
values of N , one gets subproblem size much smaller than what can be easily handled
even with plain RecSplit. Nevertheless, Hagerup and Tholey [32] develop a similar
idea to a comprehensive theoretical solution of the perfect hashing problem yielding
linear construction time, constant query time, and space 1 + o(1) times the lower
bound. However, this method is not even well-defined for N < 2150 [11]. A variant of
RecSplit with rotation fitting [9] uses lookup tables of size 2n to find feasible rotations
in constant time. Unfortunately, this turns out to be slower than trying all rotations
directly.

4 ShockHash

Wenow introduce themain idea of this paper, ShockHash. The asymptotic load thresh-
old of a binary cuckoo hash table is c = 0.5 (see Section 2), so the success probability
of constructing a table with n cells and more than n/2 keys tends to zero. ShockHash
overloads a cuckoo hash table far beyond its asymptotic load threshold – it inserts
n keys into a binary cuckoo hash table of size n. As we will see in Theorem 8, the
construction succeeds after (e/2)npoly(n) tries in expectation. We then record the
successful seed

s = min{s ∈ N | ∃ f ∈ {0, 1}S : x �→hs, f (x)(x) is MPHF} (hi,0)i∈N, (hi,1)i∈N : S → [n]

and a successful choice f between the two candidate positions of each key. The seed
needs n ·log(e/2)+o(n) ≈ 0.44n+o(n) bits in expectation using Golomb-Rice codes
[30, 51]. The choices are stored in a 1-bit retrieval data structure, requiring n + o(n)

bits (see Section 2). This means that themajority of theMPHF description is not stored
in the seed, like with the brute-force construction, but in the retrieval data structure. A
query for key x retrieves f (x) from the retrieval data structure and returns hs, f (x)(x).
Figure 2 gives an illustration of the ShockHash construction.
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Fig. 2 Illustration of the ShockHash construction. Functions h0 and h1 are randomly sampled hash functions
using a seed s. Here, s is a seed value where the resulting graph is a pseudotree. During construction, many
seeds need to be tried

The beauty of ShockHash is that it can check 2n different possible hash functions
(determined by the 2n different functions representable by the retrieval data structure)
in O(n) time. This enables significantly faster construction than brute-force while
still consuming the same amount of space up to lower order terms. As discussed in
Section 2, a seed leads to a successful cuckoo hash table construction if and only if
the corresponding random (multi)graph with edges {{hs,0(x), hs,1(x)} | x ∈ S} forms
a pseudoforest. Each component of size c is a pseudotree if and only if it contains no
more than c edges. This can be checked in linear time using connected components
algorithms, or in close to linear time using an incremental construction of a cuckoo
hash table. However, compared to the simple bit-parallel perfectness test of brute-
force [21], each individual check is slower by a large constant factor. In the following
paragraph, we discuss a way to address this bottleneck.

Filter by Bit Mask. To reduce the time spent checking if a graph is a pseudoforest,
we use a filter to quickly reject most seeds.More specifically, we reject seeds for which
some table cell is not a candidate position of any of the keys. If there is such a cell,
we already know that cuckoo hashing cannot succeed and we can skip the full test.
Otherwise, cuckoo hashingmight succeed. The filter can be implemented using simple
shift and comparison operations. Also, the filter can use registers, in contrast to the
more complex full construction. It is one of the main ingredients making ShockHash
practical and is easily proven to be very effective:

Lemma 1 The probability for a seed to pass the filter, i.e. for every table cell to be hit
by at least one key, is at most (1 − e−2 + o(1))n ≈ 0.864n.

Proof Let Xi denote the number of times that cell i ∈ [n] is hit. Then (X1, . . . , Xn)

follows amultinomial distribution. The variables X1, . . . , Xn arenegatively associated
in the sense introduced in [35] and satisfy

Pr(∀i ∈ [n] : Xi ≥ 1) ≤
n∏

i=1

Pr(Xi ≥ 1),

the intuition being that since the sum X1+· · ·+ Xn = 2n is fixed, the events {Xi ≥ 1}
for i ∈ [n] are less likely to co-occur compared to corresponding independent events.
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Fig. 3 ShockHash and bipartite ShockHash. The pseudocode illustrates the overall idea but does not lead
to any performance improvements yet

Since Xi ∼ Bin(2n, 1
n ) for all i ∈ [n] we have

Pr(Xi ≥ 1) = 1 − (1 − 1
n )2n = 1 − e−2 + o(1) ≈ 0.864

and the claim follows. ��
A more careful analysis [58] reveals that the probability to pass the filter is around
bn where b = 2eλ/(λe2) ≈ 0.836 and where λ ≈ 1.597 is the solution to
2 = λ/(1 − e−λ).

Enhancements. In Section 8, we explain additional enhancements that improve
the construction performance in practice. This includes applying the idea of rotation
fitting [9] to ShockHash, as well as faster orientability checks.

5 Bipartite ShockHash

Bipartite ShockHash is an extension of the ShockHash idea. It enables significantly
faster construction compared to plain ShockHash. In turn, this enablesmore aggressive
parameter choices, thereby leading to improved space-efficiency. While ShockHash
samples random graphs, bipartite ShockHash now samples bipartite random graphs.
Figure 3 gives an illustration and very simple pseudocode. In plain ShockHash, each
edge is connected to two nodes using two independent hash functions. In bipartite
ShockHash, the hash functions have a range of [n/2], but we shift the hashes of one of
the hash functions by n/2, meaning each edge gets one endpoint in [n/2] and one in
n/2 + [n/2]. This is similar to the original implementation of cuckoo hashing using
two independent hash tables [49]. The idea might sound not very helpful at first, but
opens up several ways of pruning the search space. In the following, we assume that
n is an even number. We give an extension to uneven numbers in Section 8.4.

Filtering Seed Candidates. We show in Section 6 that testing about (e/2)n ≈
1.359n pairs of hash functions is sufficient for plain ShockHash. The idea of bipartite
ShockHash is that it is almost as good to consider roughly

√
(e/2)n = (e/2)n/2

hash functions and all pairs that can be formed from them. This already improves the
practical running time because fewer hash functions need to be evaluated. However,
the asymptotic construction time is not improved much because we still need to test
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Fig. 4 Pseudocode of bipartite ShockHash

all combinations. A key realization is that in the bipartite case, a pair (h0, h1) of hash
functions can only work if both h0 and h1 (both with range [n/2]) are individually
surjective. In the non-bipartite case, in contrast, the check was that h0 and h1 (both
with range [n]) together hit each position in [n] at least once. This means that we can
filter the list of hash functions before pairing them up.

In each of the partitions, we look at n keys mapping to n/2 positions. Similar to
Lemma 1, the probability of passing the filter is 0.836n/2 [58]. This suggests that if
we pair up only the hash functions passing the filter then we will be considering at
most ((e/2)n/2 · 0.836n/2)2 ≈ 1.136n pairs. Refer to Section 6 for details.

The Bipartite ShockHash Algorithm. The following paragraph describes our
new bipartite ShockHash algorithm. We maintain a pool of seed candidates that are
surjective on [n/2]. Tofind a newcandidate,we linearly check hash function seeds until
we find a seed s0 that gives a surjective hash function. Given that new candidate, we try
to combine it with all previous candidates s1 from the pool. More precisely, we check
if the graph defined by the nodes [n] and the edges {{hs0(x), hs1(x) + n/2} | x ∈ S}
is a pseudoforest. If it is a pseudoforest, we have found a perfect hash function. We
only need to store the assignment from keys to their candidate hash function (hs0 or
hs1 ) in a retrieval data structure, as well as the two seeds s0 and s1. If the combination
with none of the previous seed candidates leads to a pseudoforest, we add the new
candidate s0 to the set of surjective candidates and search for the next one. Figure 4
gives a pseudocode for this algorithm and Figure 5 illustrates the idea of filtering hash
functions before putting them in the pool.

Note that it does not matter which of the two hash functions we use for which
partition of the graph. Switching the partitions just gives an isomorphic graph and does
not influence orientability. We therefore always use the newly determined candidate
directly and shift the old candidate by n/2 to be in the second partition. Also, we
neglect the possibility that a hash function combined with itself on both partitions
leads to successful construction. 1 This allows us to store the two seeds s0 and s1,
knowing that s1 < s0. We do so in one integer using our triangular pairing function
that we explain in Section 2. Note that the pairing function enumerates the seed pairs
in exactly the same order that we test them in. Compared to storing two variable-length
integers, pairing reduces constant overheads in the encoding.

1 The function would have to map exactly two keys to each of the n/2 positions, which happens with
probability

( n
2 2 ··· 2

)
( n2 )−n = e−n2n/2poly(n).
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Fig. 5 Illustration of the filtering involved in ShockHash and bipartite ShockHash. The construction is
complete if we find one final seed. ShockHash determines both hash functions from the same seed. Bipartite
ShockHash uses independent seeds for the two hash functions and filters the seeds before combining them

Enhancements. In Section 8, we give additional enhancements that improve the
construction performance significantly in practice. This includes other ways of coming
up with a stream of hash function candidates, bit-parallel filtering, and support for
uneven input sizes.

6 Analysis

In this section, we analyze the space usage and construction time of ShockHash. The
main challenge is to lower bound the probability that a hash function seed enables
successful construction of the heavily overloaded cuckoo hash table. First, in Section
6.1, we give a very simple analysis of the success probability of plain ShockHash.
It is less tight than our more complex proof, but it is significantly shorter. In Section
6.2, we explain tools used in the analysis and prove small building blocks of the full
proof. In Sections 6.3 and 6.4, we then analyze the success probability of plain and
bipartite ShockHash, respectively. We then show in Section 6.5 that a pool containing
about (

√
e/2)n hash function candidates is usually sufficient. Finally, we give the

construction time and space consumption of ShockHash and bipartite ShockHash in
Section 6.6. In the following we assume that a seed is given.We suppress it in notation.

It will be useful to consider the graph

G = ([n], {{h0(x), h1(x)} | x ∈ S}).

While similar to an Erdős-Renyi random graph, G may have self-loops2 and multi-
edges. Our model matches Model A in [29].

2 Graphs with self-loops are easier to analyze here but we avoid them in practice for better performance.
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6.1 A Simple Proof

First, in Theorem 2, we give a simple combinatorial argument showing that the prob-
ability for G to be a pseudotree is at least (e/2)−n√π/(2n). This lower bounds the
probability of G being a pseudoforest consisting of potentially more than one tree.
Section 6.3 then shows that the probability is at least (e/2)−nπ/e. Therefore, the
simple argument is only a factor of O(

√
n) less tight than the much more complex

proof.

Theorem 2 Let G be a multigraph with n nodes and n edges. The probability space
underlying G is that of sampling 2n nodes (with replacement) and creating an edge
from the samples 2i − 1 and 2i for each i ∈ [n]. Then the probability that G is a
pseudotree is at least (e/2)−n√π/(2n).

Proof ForG to be a pseudotree it is sufficient (though not necessary) that the first n−1
created edges forma tree. There are nn−2 labeled n-node trees (Cayley’s Formula [12]).
Since the ordering of the edges and the order of the two samples forming an edge does
not matter, each of the trees can be generated in 2n−1(n − 1)! ways. The last two
samples can be anything, giving us n2 choices. By applying Stirling’s approximation,
namely

n! ∈
[( n

e

)n√2πn · e1/(12n+1),
( n
e

)n√2πn · e1/(12n)
]
,

we can show that the total probability to draw a pseudotree is at least

nn−22n−1(n − 1)!n2
n2n

≥
( e
2

)−n √
π/(2n).

��

6.2 Tools

In this section, we explain tools that are needed later in the analysis, such as the
configuration model and graph peeling. We start with proving two small lemmas that
we use in the remaining analysis but are very generic in nature.

Lemma 3 Let X ∈ N0 be a random variable. Then the probability that X is at least 1
is

Pr(X > 0) = E(X)

E(X | X > 0).

Proof For any non-negative random variable X we can apply the law of total expecta-
tion to get E(X) = Pr(X = 0)·E(X | X = 0)+Pr(X > 0)·E(X | X > 0) = Pr(X >

0)· E(X | X > 0). Rearranging this for Pr(X > 0) yields the desired result. ��
Lemma 4 For n, c ∈ N, it holds that

(cn
n

) ≤ (ec)n
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Proof We first upper bound all factors (cn−k) by cn and then apply Stirling’s approx-
imation.
(
cn

n

)
= (cn)(cn − 1)(cn − 2) . . . (cn − n + 1)

n! ≤ (cn)n

n! ≤ (cn)n√
2πn (n/e)n

≤ (ec)n

��
Configuration Model. The configuration model [46] is a way to describe distri-

butions of random graphs. In the model, we can fix the exact degree of every node in
the graph by giving each node a number of stubs (half-edges). The graph is obtained
by repeatedly sampling, uniformly at random, two unconnected stubs and connecting
them. In other words, if we take one stub and look at its partner, all other stubs are
equally likely.

Graph Peeling. In several sections of this paper, we are interested in peeling [33,
44, 57] graphs. For this, we iteratively take any node of degree 1 and remove it together
with its corresponding edge. The process continues until all nodes have degree > 1.
A graph is 1-orientable or a pseudoforest, if all nodes in the remaining graph have
degree 2, meaning that the graph consists of only cycles.

Graph Peeling in the Configuration Model. To analyze the peeling process, it
will be useful to reveal G in two steps. First the degree of each node is revealed by
randomly distributing 2n stubs among the n nodes. This yields a configuration model
fromwhich the edges are then obtained by randomlymatching the stubs. The following
lemma should clarify what exactly we need.

Lemma 5 Let x1, . . . , x2n ∈ [n] be independent and uniformly random. The graphs
G1,G2,G3 defined in the following have the same distribution as G.

1. G1 = ([n], {{x2i−1, x2i } | i ∈ [n]}).
2. G2 = ([n], {{xi , x j }|{i, j} ∈ M})where M is a uniformly randomperfectmatching

of [2n], i.e. a partition of [2n] into n sets of size 2.
3. G3 is defined like G2, except that M is obtained in a sequence of n rounds. In

each round an unmatched number i ∈ [2n] is chosen arbitrarily and matched to
a distinct unmatched number j , chosen uniformly at random. The choice of i may
depend on x1, . . . , x2n and on the set of numbers matched previously.

The reason for considering these alternative probability spaces forG is that they permit
conditioning on partial information about G (such as its degree sequence implicit in
x1, . . . , x2n) but retaining a clean probability space for the remaining randomness.

Proof Compared toG, the definition ofG1 simply collects the 2n relevant hash values
in a single list. 3 Concerning G2, imagine that M is revealed first. Conditioned on
M , G2 is composed of n uniformly random edges like G1. Concerning G3, the key
observation is that M is a uniformly random matching even if the number to be
randomly matched in every round is chosen by an adversary. A formal proof could
consider any arbitrary adversarial strategy and use induction. ��
3 Here, we assume that h0 and h1 are fully random hash functions and given for free, which is common in
previous papers (Simple Uniform Hashing Assumption) [16, 17, 47, 48].
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Therefore, when peeling in the configuration model, we can interleave the peeling
process and the process of uncovering the sampled graph. To peel, we take a node
with degree 1 and look at the other endpoint of its adjacent edge, which is uniformly
distributed between all other stubs. If the node connected to it has degree 2, removing
the edge gives a new degree-1 node that we can directly continue peeling. Otherwise,
we have to start with a new node of degree 1 in a next iteration.

6.3 Success Probability in Plain ShockHash

In this section, we give the tighter analysis of the success probability of ShockHash.
Given two hash functions h0, h1 : S → [n] and a function f : S → {0, 1},

let ori( f ) be the event that x �→ h f (x)(x) is bijective. We are now interested in
the probability that there exists such a function f that leads to a bijective function,
namely Pr(∃ f : ori( f )). There is a one-to-one correspondence between functions f
with ori( f ) and 1-orientations of G, i.e. ways of directing G such that each node has
indegree at most 1. 4

We write PF(G) for the event that G is a pseudoforest. As pointed out in Section
2:

PF(G) ⇔ ∃ f : ori( f ). (1)

In our case with n nodes and n edges, PF(G) implies thatG is amaximal pseudoforest,
where every component is a pseudotree and not a tree. Note that a pseudotree that is
not a tree admits precisely two 1-orientations because the unique cycle can be directed
in two ways and all other edges must be directed away from the cycle. A useful
observation is therefore

PF(G) ⇒ #{ f : ori( f )} = 2c(G) (2)

where c(G) is the number of connected components of G.
The basic idea of our proof is as follows. The probability that a random function

is minimal perfect is e−npoly(n) (see Lemma 7). Each of the 2n functions f : S →
{0, 1} has that chance of satisfying ori( f ) and yielding an MPHF. However, simply
multiplying e−npoly(n) by 2n does not necessarily yield an approximation for the
probability that such an f exists. The key point here is that the 2n functions (x �→
h f (x)(x)) f ∈{0,1}S determined by the 2n different options for f are correlated. If there
are some graphs that permit many different 1-orientations, we may find many MPHFs
at once and the probability that there is at least one 1-orientation is reduced. This
intuition is stated more formally in Lemma 3 using X = #{ f : ori( f )}:

Pr(∃ f : ori( f )) = E(#{ f : ori( f )})
E(#{ f : ori( f )} | ∃ f : ori( f )).

As discussed above, a key step in the analysis is to show that we usually find only
a few MPHFs at once. This amounts to analyzing the distribution of the number of

4 Note that in our model, there are two ways of directing a self-loop.
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Fig. 6 Number of components in the configuration model

components in random maximal pseudoforests, which we do in Lemma 6. The main
proof in Theorem 8 then formally bounds the probability that a random graph is a
pseudoforest, juggling different probability spaces.

Lemma 6 Let Gn be the random graph sampled from the configuration model with n
nodes of degree 2, i.e. the 2-regular graph obtained by randomly joining 2n stubs that
are evenly distributed among n nodes. Then the number c(Gn) of components of G
satisfies E(2c(Gn)) ≤ e · √

2n.

We remark that a similar proof shows that E(c(Gn)) ∈ O(log n). Note also the simi-
larity to the locker puzzle, which analyzes the length of the largest cycle in a random
permutation [54].

Proof We will find a recurrence for dn := E(2c(Gn)). Consider an arbitrary node v of
Gn and one of the stubs at v. This stub forms an edge with some other stub. We have
n − 1 other nodes, each with 2 stubs, and we have the second stub at v. Each of these
2n − 1 stubs is matched with v with equal probability. Therefore, the probability that
v has a self-loop is 1

2n−1 .
(1) Conditioned on v having a self-loop, we have found an isolated node. The

distribution of the remaining graph is that of Gn−1 and the conditional expectation of
2c(G) is therefore E(21+c(Gn−1)) = 2dn−1.

(2) Now condition on the formed edge connecting v to w �= v. We can now merge
the nodes to a single one without affecting the number of components. The merged
node inherits two unused stubs, one from v and one from w. The distribution of the
remaining graph is that of Gn−1. Therefore, in this case, the conditional expectation
of 2c(G) is simply dn−1.

These two cases are illustrated in Figure 6 and lead us to the following recurrence:

dn = 1
2n−12dn−1 + (

1 − 1
2n−1

)
dn−1 = (

1 + 1
2n−1

)
dn−1.
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With the base case d0 = 1, we can solve the recurrence and bound its value as follows,
using that ln(1 + x) ≤ x for x ≥ 0 as well as Hn := ∑n

i=1
1
i ≤ 1 + ln n:

dn =
n∏

i=1

(
1 + 1

2i − 1

)
= exp

(
n∑

i=1

ln

(
1 + 1

2i − 1

))
≤ exp

(
n∑

i=1

1

2i − 1

)

= exp

(
1 +

n∑

i=2

1

2i − 1

)
= exp

(
1 + 1

2

n∑

i=2

(
1

2i − 1
+ 1

2i − 1

))

≤ exp

(
1 + 1

2

n∑

i=2

(
1

2i − 1
+ 1

2i − 2

))
= exp

(
1 + 1

2

2n−1∑

i=2

1

i

)

= exp ((1 + H2n−1)/2) ≤ exp (1 + ln(2n)/2) ≤ e · √
2n.

��
Let us now re-state the known result proven in RecSplit [21], which bounds the

probability that a random function is minimal perfect. We will use this later when
proving Theorem 8.

Lemma 7 [see [21]] A random function h : S → [n] on a set S of n keys, is minimal
perfect (i.e. is a bijection) with probability e−n

√
2πn · (1 + o(1)).

Proof Given S, there are nn possible functions from S to [n] and n! of them are
bijective. Therefore, the probability that a randomly selected function is minimal
perfect is n!/nn . The claim is obtained by applying Stirling’s approximation. ��

Finally, we can derive the success probability of the ShockHash search as follows.

Theorem 8 Let h0, h1 : S → [n] be uniformly random functions. The probability
that there exists f : S → {0, 1} such that x �→ h f (x)(x) is bijective is at least
(e/2)−ne−1√π .

Proof Recall our shorthand ori( f ) for the event that x �→ h f (x)(x) is bijective. As
given in Lemma 3, we can calculate the success probability as follows.

Pr(∃ f : ori( f )) = E(#{ f : ori( f )})
E(#{ f : ori( f )} | ∃ f : ori( f )).

We will consider the numerator and denominator in turn.
Numerator: Expectation. Linearity of expectation (holding even for dependent

variables) yields

E(#{ f : ori( f )}) =
∑

f

Pr(ori( f )) =
∑

f

Pr(x �→ h f (x)(x) is bijective on S).

For any fixed f , the function x �→ h f (x)(x) assigns independent random numbers to
each x ∈ S, i.e. is a random function as considered in Lemma 7 and hence bijective
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with probability e−n
√
2πn · (1 + o(1)). We therefore get

E (#{ f : ori( f )}) ≥ 2n · e−n
√
2πn. (3)

Denominator: Conditional Expectation. Using observations (1) and (2) we can
shift our attention to the graph G:

E(#{ f : ori( f )} | ∃ f : ori( f )) = E(2c(G) | PF(G)).

By virtue of Lemma 5 we can moreover move to a configuration model à la G3. We
first reveal the locations x1, . . . , x2n of the 2n stubs (hence the degree sequence ofG3)
and then consider the following peeling process (see Section 6.2) that reveals edges
of G3 and simplifies G3 in a step-by-step fashion.

As long as there exists a node v with only one stub, firstly, match it to a random
stub to form a corresponding edge {v,w} (consuming the two stubs) and, secondly,
remove the node v and the newly formed edge {v,w}. These removals do not affect
the number of components of the resulting graph (since v was connected to w), nor
whether the resulting graph is a pseudoforest (since the component of w lost one node
and one edge).

Let n′ be the number of nodes that remain after peeling and let G ′ be the graph
obtained by matching the remaining stubs. As discussed we have PF(G3) ⇔ PF(G ′)
and c(G ′) = c(G3). Since the average degree of G3 is 2 and since we removed one
node and one edge in every round, the average degree of G ′ is also 2. There are two
cases.

(1) Some node of G ′ has degree 0. Then ¬PF(G ′) because some component of G ′
must have average degree > 2.

(2) No node of G ′ has degree 0. Since we ran the peeling process, there is also
no node of G ′ with degree 1. Hence, every node of G ′ has degree 2. This makes G ′
a collection of cycles. In particular PF(G ′) holds. Moreover, the generation of G ′ is
precisely the situation discussed in Lemma 6.

Because the two cases imply opposite results on G ′ being a pseudoforest, we know
that PF(G ′) holds if and only if we arrive in Case 2. While we have no understanding
of the distribution of n′, we can nevertheless compute:

E(2c(G) | PF(G)) = E(2c(G3) | PF(G3)) = E(2c(G
′) | PF(G ′)) = E(2c(G

′) | Case 2)
≤ max

1≤i≤n
E(2c(G

′) | Case 2 with n′ = i) ≤ max
1≤i≤n

e
√
2i = e

√
2n. (4)

Putting the Observations Together.Combining our bounds on the numerator (3) and
the denominator (4) gives the final result

Pr(∃ f : ori( f )) ≥ 2ne−n
√
2πn/(e

√
2n) = (e/2)−ne−1√π.

��
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6.4 Success Probability in Bipartite ShockHash

In the bipartite case, we can basically perform the same steps as in the non-bipartite
version. For simplicity, we restrict ourselves to even n in the analysis. While our
implementation does support uneven n (see Section 8.4), this complicates the analysis
and can be largely avoidedwhenShockHash is integrated into a partitioning framework
like RecSplit (see Section 7). In this section, we again suppress the seed of the hash
functions. Let h0, h1 : S → [n/2] be hash functions and f : S → {0, 1} be a function
that selects between the two hash functions.

We now look at the effect of testing all correlated choices of the function f . As
argued in Section 6.3, we start with peeling the corresponding graph until there are
no nodes with degree 1 left. Conditioned on the graph being a pseudoforest, this
leaves us with a graph where each node has degree 2. The distribution of this graph
is captured again by a configuration model (see Section 6.2), namely giving a random
bipartite matching between the stubs. Additionally, remember that we started with a
bipartite graph, so both partitions have the same size. Similar to Lemma 6, we can
now show in Lemma 9 that the number of components c in the remaining graph
satisfies E(2c) ≤ e · √

n. Because the peeling process does not change the number
of components, the same applies also to the original bipartite graph. This gives us
a bound for the expected number of orientations of the graph, e.g., the number of
different functions f that all make the hash function pair (h0, h1) minimal perfect.

Lemma 9 Let n be an even number, and let Gn be a random bipartite graph with n/2
nodes in eachpartition,where all nodes havedegree2, sampled from the corresponding
bipartite configuration model. Hence, the stubs from one partition are matched to the
stubs of the other partition uniformly at random.Then the number c(Gn)of components
of Gn satisfies E(2c(Gn)) ≤ e · √n.

Proof We will find a recurrence for dn := E(2c(Gn)). Consider an arbitrary node v

from the first partition of Gn and one of the stubs at v. Because the graph is bipartite,
this stub forms an edge to a node r from the other partition of the graph. The node r
has a second stub that is connected back to the first partition. We now have n/2 − 1
other nodes in the first partition, each with 2 stubs, and we have the second stub at v.
Each of these n−1 stubs is matched with equal probability. Therefore, the probability
that this edge closes a cycle is 1

n−1 .
(1) Conditioned on closing the cycle, the distribution of the remaining graph is that

ofGn−2 and the conditional expectation of 2c(Gn) is thereforeE(21+c(Gn−2)) = 2dn−2.
(2) Now condition on the edge not closing a cycle. We can now merge the three

considered nodes to a single one without affecting the number of components. The
merged node inherits two unused stubs, and the graph is now bipartite with n/2 − 1
nodes in each partition. The distribution of the remaining graph therefore is that of
Gn−2. Therefore, the conditional expectation of 2c(G) is simply dn−2.

These two cases are similar to the non-bipartite case illustrated in Figure 6 and lead
us to the following recurrence:

dn = 1
n−12dn−2 + (

1 − 1
n−1

)
dn−2 = (

1 + 1
n−1

)
dn−2.
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With the base case d0 = 1, we can solve the recurrence and bound its value as follows,
using that ln(1 + x) ≤ x for x ≥ 0 as well as Hn := ∑n

i=1
1
i ≤ 1 + ln n:

dn =
n/2∏

i=1

(
1 + 1

2i − 1

)
= exp

⎛

⎝
n/2∑

i=1

ln

(
1 + 1

2i − 1

)⎞

⎠ ≤ exp

⎛

⎝
n/2∑

i=1

1

2i − 1

⎞

⎠

= exp

⎛

⎝1 +
n/2∑

i=2

1

2i − 1

⎞

⎠ = exp

⎛

⎝1 + 1

2

n/2∑

i=2

(
1

2i − 1
+ 1

2i − 1

)⎞

⎠

≤ exp

⎛

⎝1 + 1

2

n/2∑

i=2

(
1

2i − 1
+ 1

2i − 2

)⎞

⎠ = exp

(
1 + 1

2

n−1∑

i=2

1

i

)

= exp ((1 + Hn−1)/2) ≤ exp (1 + ln(n)/2) ≤ e · √
n.

��
We can lower bound the success probability by applying Lemma 3 similarly as in

Theorem 8. In contrast to Theorem 8, we now use ori( f ) adapted for the bipartite
case. Given two hash functions h0, h1 : S → [n/2] and a function f : S → {0, 1}, let
ori( f ) be the event that x �→ h f (x)(x)+ f (x) · n2 is bijective. We write PF(h0, h1) for
the event that the graph defined by the two hash functions h0 and h1 is a pseudoforest,
and again get PF(h0, h1) ⇔ ∃ f : ori( f ).
Theorem 10 Let h0, h1 : S → [n/2] be uniformly random functions. The probability
that there exists f : S → {0, 1} such that x �→ h f (x)(x) + f (x) · n

2 is bijective is at
least (e/2)−n√n/e.

Proof All bipartite ShockHash functions have the form (x �→ h f (x)(x)+ f (x)·(n/2)).
While it is clear that the results of different x are independent, let us first justify why
the function is uniform. For this, let c ∈ [n] be a constant, x an input value, and
g : S → {0, 1} a uniform random function. Then we get

Pr(hg(x)(x) + g(x) · n
2 = c) =

{
Pr(h0(x) = c ∧ g(x) = 0), c < n

2
Pr(h1(x) = c − n

2 ∧ g(x) = 1) c ≥ n
2

}
= 1

n/2
· 1
2

= 1

n
.

For uniform random functions g it holds that E(#{ f : ori( f )}) = 2n · Pr(ori(g)).
Because we now also know that bipartite ShockHash with random g gives a uniform
random function, we know that Pr(ori(g))matches the probability that a random func-
tion is a bijection. Applying Lemma 7, this gives E(#{ f : ori( f )}) ≥ 2n · e−n

√
2πn.

To determine the overall success probability, we can now continue similar to The-
orem 8. Therefore, a random pair of hash functions h0, h1 permits at least one valid
placement f with at least the following probability.

Pr(∃ f : ori( f )) Lem. 3= E(#{ f : ori( f )})
E(#{ f : ori( f )} | ∃ f : ori( f )) ≥ 2n · e−n√

2πn

E(#{ f : ori( f )} | ∃ f : ori( f ))
Lem. 9≥ e−n√

2πn · 2n/(e · √
n) = (e/2)−n√

n/e

��
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Our bound is a factor of
√
2 better than with plain ShockHash, which reduces our

bound on the expected space consumption by log2(
√
2) = 0.5 bits. Itmight be possible

to save a few additional bits in the retrieval data structure because f is known to map
exactly half of the keys to 1, i.e., only a 1/�(

√
n) fraction of all functions can occur

as f . However, we do not consider this in more detail here.

6.5 Hash Function Pools

An important ingredient for making bipartite ShockHash so much more efficient than
the plain version is the fact that we can combine hash functions from a pool of can-
didates. This makes it possible to filter the candidates before combining them. In the
following section, we show why testing all combinations of two hash functions from a
pool of candidates has a similar success probability as always sampling two fresh func-
tions. For this analysis, let us form two pools of hash functions of size k = (e/2)n/2.
Note that this is slightly different to the construction explained before, which uses a
single, growing pool. However, this does not influence the asymptotic construction
time. 5 The first pool (li )i∈[k] contains uniformly drawn hash functions l1, . . . , lk and
the second pool (ri )i∈[k] contains uniformly drawn hash functions r1, . . . , rk . Our algo-
rithm tests all combinations between two hash functions li and r j (i, j ∈ [k]) from the
pools. We are therefore interested in the probability that the pools contain two hash
functions that are compatible, meaning that their combined graph is a pseudoforest. For
easier presentation, we suppress polynomial factors in this section and assume large n.

6.5.1 Notation and Overview

Let H := [n/2]S be the set of all (hash) functions from S to [n/2]. Sampling two
hash functions l, r ∼ U(H) uniformly at random gives Pr(PF(l, r)) = (e/2)−n , as
shown in Theorem 10 (ignoring polynomial factors). In the following, it will be useful
to also consider Hpromisc containing promiscuous functions. The intuition is that a
promiscuous function has a very large number of compatible partners, which is very
unlikely. For reasons we will discuss later, we define Hpromisc as the set of functions
that hit more than 90% of the hash values exactly two times:

Hpromisc :=
{
f ∈ H

∣∣∣
∣∣∣
{
i ∈ [n/2] ∣∣ | f −1(i)| = 2

}∣∣∣ ≥ 0.9n/2
}
.

For a specific function l, we define the set C(l) as all hash functions that are com-
patible with l. We also define C∗(l) as only those compatible functions that are not
promiscuous:

C(l) := {r ∈ H | PF(l, r)}, C∗(l) := C(l) \ Hpromisc.

5 One could view the two pools as one single pool of twice the size, where we only test a subset of
the combinations. The time for testing more seed combinations would then be a constant factor larger. In
practice, however, we test all combinations within the single pool, so it does not actually need to be twice
as large.
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For a set X ⊆ H of hash functions, let ‖X‖ := |X |/|H|. This is the probability that
a randomly sampled hash function is one of the hash functions in X . Then ‖C(l)‖ is the
probability that a randomly sampled hash function is compatible with l. If l is a random
variable, this probability is a random variable as well. The expected value of this
variable for uniform random l isEl∼U(H)(‖C(l)‖) = Prl,r∼U(H)(PF(l, r)) = (e/2)−n

(ignoring polynomial factors).
The main random variable we are interested in is Z := ‖⋃

i∈[k] C(li )‖. It depends
on the hash functions that we sampled for the pool. Z is the probability that a randomly
sampled hash function is compatible with at least one function from our pool (li )i∈[k].

If Z was small, it wouldmean that the hash functions in our pool need a very specific
set of partners. Therefore, in this case, it would be unlikely that one of the compatible
partners was drawn for the pool (ri )i∈[k]. However, wewill show that Z is large enough
that (ri )i∈[k] likely contains a compatible partner. More specifically, we will show that
Z is closely concentrated around (e/2)−n/2. Since we have k = (e/2)n/2 hash func-
tions in eachpool,weget a constant probability that a compatible function is in (ri )i∈[k].

We start our proof in Section 6.5.2, showing that it is unlikely that a hash function is
promiscuous. We then show in Section 6.5.3 that functions /∈ Hpromisc do not have too
many compatible partners. This is a key ingredient for providing concentration bounds
on Z in Section 6.5.4. Finally, we combine this with the pool (ri )i∈[k] in Section 6.5.5.
Figure 7 gives an overview over the proof structure.

6.5.2 Promiscuous Hash Functions

Before being able to give concentration bounds, we have to rule out a special case
of hash functions with too many compatible partners. As stated before, we call these
promiscuous. In this section, we show that these functions are very rare. To show this,
we interpret the output values of our hash functions as a balls-into-bins process. In the
following, we show a general property of balls-into-bins processes that we then later
apply to our hash functions.

Lemma 11 When throwing 2n balls into n bins independently and uniformly at ran-
dom, the probability that each bin receives exactly two balls is pn ≤ 5

√
n(2e−2)n.

Proof To assign the balls to the bins such that each bin receives exactly two balls, we
choose n subsets of size 2 from the set of 2n balls. The number ofwayswe can do this is
given by the multinomial coefficient

( 2n
2,2,...,2

)
. Each of these combinations has a prob-

ability of n−2n . Using Stirling’s approximation in the step annotated with ∗, this gives

pn =
(

2n

2, 2, . . . , 2︸ ︷︷ ︸
n times

)
· n−2n = (2n)!

2 · 2 · . . . · 2︸ ︷︷ ︸
n times

n−2n ∗≤ √
2π2n

(
2n

e

)2n

e
1

24n · 2−n · n−2n

= √
4πn · (2e−2)n · e 1

24n ≤ 5
√
n(2e−2)n .

��
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Fig. 7 Illustration of the proof structure showing the success probability of sampling from hash function
pools instead of independent hash functions. Variables Ẑ , D and Z∗ are defined in Section 6.5.4. Functions
p and q are defined in Section 6.5.3

Lemma 12 When throwing n balls into n/2 bins independently and uniformly at ran-
dom, the probability p90% that more than 90% of the bins receive exactly 2 balls is
p90% ≤ 0.66n.

Proof Let us consider a set A of 0.9 · n/2 bins that will each receive exactly 2 balls
each.We do not carewhich bins receive exactly 2 balls, so there are

( n/2
0.9·n/2

) = ( n/2
0.1·n/2

)

ways of selecting the set A. The probability that exactly 2|A| balls land in a bin in
A is

( n
0.1n

)
0.10.1n0.90.9n . Conditioned on this, the probability that these 2|A| balls are

evenly distributed among the |A| bins is p|A| ≤ 5
√
0.9 · n/2

(
2e−2

)0.9·n/2
by Lemma

11. Bringing this together we can bound p90% as follows, applying Lemma 4.

p90% ≤
(

n

0.1n

)
0.10.1n0.90.9n ·

(
n/2

0.1 · n/2

)
·
(
2e−2

)0.9·n/2
5
√
0.9 · n/2

≤ (10e)0.1n · 0.10.1n0.90.9n · (10e)0.1·n/2 ·
(
2e−2

)0.9·n/2
5
√
0.45n

=
(

(10e)0.1 · 0.10.10.90.9 · (10e)0.05 ·
(
2e−2

)0.45)n

5
√
0.45n
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< 0.66n for n large enough.

��
Lemma 13 With a probability of 1 − 0.77n, none of the hash functions in the pool
(li )i∈[k] is promiscuous.

Proof Each of our hash functions maps the n keys to n/2 nodes in the graph. Because
the hash functions are sampled at random, this can be modeled as a balls-into-bins
process. We can apply Lemma 12, telling us that the probability that a function is
promiscuous is p90% ≤ 0.66n . We sample a pool of k = (e/2)n/2 hash functions.
Therefore, the probability that at least one of our hash functions is promiscuous can
be upper bounded as follows using a union bound.

Pr

⎛

⎝
∨

i∈[k]
li ∈ Hpromisc

⎞

⎠ ≤ k · p90% = ((e/2)1/2 · 0.66)n < 0.77n

��

6.5.3 Peeling Bipartite Graphs

For plain ShockHash, we have looked at the event PF(G) that the resulting graph G is
a pseudoforest, and have given bounds for Pr(PF(G)). In Section 6.2, we have shown
that we can uncover the graph in two steps: we first reveal the degree of each node and
then match these stubs at random. Staying with plain ShockHash for the moment, we
now condition on the degrees of the nodes. For this, let (d1, . . . , dn) be the degrees of
each node, and let p(d1, . . . , dn) := Pr(PF(G) | nodes of G have degrees d1, . . . , dn)
be the conditioned success probability. Note that the order of the function arguments
does not matter to the success probability because the stubs are matched randomly.
Let Bn be the distribution of balls in the balls-into-bins process with n balls and n/2
bins. Before we give additional properties of p(d1, . . . , dn) in the following lemmas,
let us look at a simple observation about the function:

E(d1,...,dn)∼B2n (p(d1, . . . , dn)) = Pr(PF(G))
Thm. 8= (e/2)−n . (5)

The graphG is a pseudoforest if we can repeatedly peel away nodes of degree 1 and
end up with a graph that consists of only nodes of degree 2 (forming cycles). When
peeling, we repeatedly take a node of degree 1 and follow its edge to a random stub.
There are now three possible outcomes.

(1) The edge leads to a node with degree 1. Then we have found a component with
more nodes than edges, meaning that the remaining graph cannot be a pseudoforest.

(2) The edge leads to a node with degree ≥ 3. Then we have peeled away a subtree
of a component that is potentially still a pseudotree. We now have one less node of
degree 1 in our graph. In that case, we continue the peeling process with another node
of degree 1.
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(3) The edge leads to a node with degree 2. Then it generates a new node with
degree 1, and we can continue the peeling process with that same node.

Lemma 14 Nodes of degree 2 do not influence the success probability. More formally,
p(d1, . . . , di , 2) = p(d1, . . . , di ).

Proof If the peeling process arrives in case (3) where it connects to a node of degree 2,
we can immediately continue peeling with that node. This always succeeds and does
not cause an abort of the peeling process. Afterwards, we have one less node but did
not influence the degrees of all other nodes. Therefore, the probabilities to arrive in
the more interesting cases (1) and (2) stay the same, relative to each other. ��
Lemma 15 If the graph corresponding to our hash function has b nodes of degree 1,
p is exponentially small in b. More formally, p(1, . . . , 1︸ ︷︷ ︸

b

, db+1, . . . , dn) ≤ (7/8)b−1.

Proof During the peeling process, we can ignore all nodes of degree 2 because they
do not influence the success probability (see Lemma 14). Let us therefore now look
at the remaining nodes. If we connect to one of the nodes of degree 1, we have found
a tree. This means that the construction fails because we need each component to be a
pseudotree and not a tree. Because the average degree is 2, we have at most 3b stubs at
nodes with degree ≥ 3. Therefore, the probability that we connect to a node of degree
1 (possibly indirectly through nodes of degree 2) is at most (b − 1)/(4b). We can
now apply this iteratively until all nodes of degree 1 are peeled away. This gives the
following probability that we never connect to a node of degree 1 (and therefore fail):

p(1, . . . , 1︸ ︷︷ ︸
b

, db+1, . . . , dn) ≤
b∏

j=1

(
1 − j − 1

4 j

)
=

b∏

j=1

(
3

4
+ 1

4 j

)

=
b∏

j=2

(
3

4
+ 1

4 j

)
≤

b∏

j=2

(
7

8

)
=

(
7

8

)b−1

.

��
We call a hash function promiscuous if more than 90% of the nodes in its corre-

sponding (stub) graph have degree 2. This means that it cannot have too many nodes
of degree 1. Promiscuous hash functions are rare, as we have seen in Section 6.5.2. In
the following, we bound the number of compatible hash functions when our function
is not promiscuous.

Lemma 16 Let l be a hash function from H \ Hpromisc and (d1, . . . , dn/2) be the cor-
responding degree sequence. Then p(d1, . . . , dn/2) ≤ (c1)n/2 where c1 is a constant
∈ (0, 1) and n large enough.

Proof Let X �=2 be the set of nodes with degree �= 2. Because the functions considered
here are not promiscuous, we have |X �=2| ≥ 0.1 · n/2. Because there are two times
more stubs than nodes, the nodes in X �=2 receive 2 stubs on average. If one of the
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nodes receives 0 stubs, the success probability is 0. Otherwise, at least half of the
nodes in X �=2 have to receive exactly 1 stub to satisfy the average. Therefore, l has
at least b = 0.05n/2 nodes with degree 1. Applying Lemma 15 and selecting c1 >

(7/8)0.05 ∈ (0, 1) then concludes the proof. ��
Now let us turn back to bipartite ShockHash. Here we have two random hash

functions l and r that give us a bipartite graphG. Let (d1, . . . , dn/2) and (d ′
1, . . . , d

′
n/2)

be the degrees of the nodes in the twopartitions and remember thatBn is the distribution
of balls in the balls-into-bins process with n balls and n/2 bins. Then we can define q
as the following probability conditioned on the degree sequence of G:

q((d1, . . . , dn/2), (d
′
1, . . . , d

′
n/2))

:= Pr
(
PF(G)

∣∣ G has degree sequence (d1, . . . , dn/2), (d
′
1, . . . , d

′
n/2)

)

= Pr
(
PF(l, r)

∣∣ l, r give degree sequence (d1, . . . , dn/2), (d
′
1, . . . , d

′
n/2)

)

Lemma 17 For any d1, . . . , dn/2, d ′
1, . . . , d

′
n/2 we have q((d1, . . . , dn/2),

(d ′
1, . . . , d

′
n/2)) ≤ p(d1, . . . , dn/2) · p(d ′

1, . . . , d
′
n/2).

Proof Recall that the peeling process in the configuration model iteratively matches
stubs that are the only remaining stub of their node. It can therefore be understood
as the process of alternately removing a lonely stub and a random stub (and emit-
ting a corresponding edge). Failure means that a randomly removed stub was lonely.
If in the bipartite case we alternate between picking the lonely stubs on the left
and on the right, then within each of the two partitions we are alternating between
removing a lonely stub and a random stub. Therefore, we are basically running the
peeling process within the two partitions separately. This suggests that the probability
q((d1, . . . , dn/2), (d ′

1, . . . , d
′
n/2)) that a bipartite graph is a pseudoforestwhen sampled

from the configuration model with degree sequence ((d1, . . . , dn/2), (d ′
1, . . . , d

′
n/2))

is equal to the product of the probabilities p(d1, . . . , dn/2) and p(d ′
1, . . . , d

′
n/2) that

two graphs are pseudoforests, namely those sampled from the configuration model
with degree sequences (d1, . . . , dn/2) and (d ′

1, . . . , d
′
n/2), respectively.

However, there is no strict equality due to a slight asymmetry: In the first partition
we begin with removing a lonely stub while in the second partition we begin with
removing a random stub. This slightly increases the failure probability for the second
partition because there is always one lonely stub more when selecting a random stub
than there would otherwise be. Note also that the first partition may run out of lonely
stubs while the second partition has at least one lonely stub remaining. In that case we
would remove a lonely stub from the second partition twice in a row, putting things
back on track for the second partition.

Overall, the increase in failure probability for the second partition during (parts of)
the process is accounted for by the “≤” in our statement. ��

Both p(d1, . . . , dn/2) and ‖C(l)‖ provide away to rate the quality of a hash function
candidate. However, there is a subtle but important difference between the two. While
‖C(l)‖ looks at the compatible partners in the bipartite case, p(d1, . . . , dn/2) looks at
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the graph when connected to itself. For example, a hash function candidate that leads
to only nodes of degree 2 has p(2, . . . , 2) = 1. However, we get ‖C(l)‖ < 1 because
l is not compatible with partners that do not hit all output values.

We now formally connect the two probabilities p(d1, . . . , dn/2) and ‖C(l)‖. This
gives a bound for the probability of drawing a compatible partner for a function in
H \ Hpromisc.

Lemma 18 Each l ∈ H \ Hpromisc satisfies ‖C(l)‖ < (e/2)−n/2 · (c1)n/2 where c1 is
a constant ∈ (0, 1) and n large enough.

Proof Take any hash function l ∈ H\Hpromisc and its corresponding degree sequence
(d1, . . . , dn/2). As a reminder, Bn is the distribution of balls in the balls-into-bins
process with n balls and n/2 bins. Then

‖C(l)‖ = Pr(PF(l, r))

= E(d ′
1,...,d

′
n/2)∼Bn

(
Pr

(
PF(l, r)

∣∣ r has degree sequence (d ′
1, . . . , d

′
n/2)

))

= E(d ′
1,...,d

′
n/2)∼Bn

(
q((d1, . . . , dn/2), (d

′
1, . . . , d

′
n/2))

)

Lem. 17≤ E(d ′
1,...,d

′
n/2)∼Bn

(
p(d1, . . . , dn/2) · p(d ′

1, . . . , d
′
n/2)

)

= p(d1, . . . , dn/2) · E(d ′
1,...,d

′
n/2)∼Bn

(
p(d ′

1, . . . , d
′
n/2)

)

(5)= p(d1, . . . , dn/2) · (e/2)−n/2 Lem. 16≤ cn/2
1 · (e/2)−n/2.

��

6.5.4 Concentration Bounds

Remember variable Z = ‖⋃
i∈[k] C(li )‖, which is the probability that a randomly

selected function is compatible with a function in our pool. Also remember C∗(l) =
C(l)\Hpromisc. Unfortunately, we cannot directly give concentration bounds on Z or
even calculate E(Z) because we do not know how using a pool of hash functions
influences the probabilities. We therefore look at three additional random variables,
defined as follows:

Z∗ := ‖
⋃

i∈[k]
C∗(li )‖, Ẑ :=

∑

i∈[k]
‖C∗(li )‖, D :=

∑

1≤i< j≤k

‖C∗(li ) ∩ C∗(l j )‖

Z∗ considers only partners inH \Hpromisc. Ẑ is easier to calculate because it looks
at each set separately. In the remainder of this section, we then determine bounds on
Z∗, Ẑ , and D, which we can later use to bound Z .

Lemma 19 Let Z∗, Ẑ and D be as defined above. Then E(Ẑ) > 4/5 · (e/2)−n/2.
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Proof

E(Ẑ) =
∑

i∈[k]
E(‖C∗(li )‖) ≥

∑

i∈[k]

(
E(‖C(li )‖) − ‖Hpromisc‖

)

= k · ((e/2)−n − ‖Hpromisc‖
) Lem. 12≥ k ·

(
(e/2)−n − 0.66n · |H|

|H|
)

= (e/2)−n/2 − 0.66n(e/2)n/2 = (
1 − (0.66 · e/2)n) · (e/2)−n/2

≥ (1 − 0.9n) · (e/2)−n/2 ≥ 4/5 · (e/2)−n/2 for n large enough.

��
Observation 20 For Ẑ , D and Z∗ defined as above, it holds that Ẑ − D ≤ Z∗ ≤ Ẑ .

Proof To show the bounds, we use the inclusion-exclusion principle, namely that for
sets A and B, |A ∪ B| = |A| + |B| − |A ∩ B| ≤ |A| + |B|. We can give an upper
bound for the variable Z∗ by applying the inequality repeatedly using associativity of
the union operation.

Ifwe take Ẑ and subtract the sizes of all pairwise intersections,weget a lower bound.
If all partners were compatible with at most two hash functions in our pool, subtracting
the pairwise intersections would give Z∗. However, if a partner is compatible with
more than two functions, this subtracts too much, therefore giving the lower bound
Ẑ − D ≤ Z∗. ��

We can now show that E(D) is exponentially smaller than E(Ẑ). Intuitively, this
means that E(Ẑ) ≈ E(Z∗) by Observation 20. Our proof idea is to bound the inter-
sections using the bound on ‖C(li )‖ shown in Lemma 18.

Lemma 21 Let D and Ẑ be as defined above. Then E(D) ≤ (c2)n/2 · E(Ẑ).

Proof

E(D) = E

⎛

⎝
∑

1≤i< j≤k

‖C∗(li ) ∩ C∗(l j )‖
⎞

⎠ =
(
k

2

)
El1,l2∼U(H)(‖C∗(l1) ∩ C∗(l2)‖)

=
(
k

2

)
1

|H|El1,l2∼U(H)

(|C∗(l1) ∩ C∗(l2)|
)

=
(
k

2

)
1

|H|El1∼U(H)

(
El2∼U(H)(|C∗(l1) ∩ C∗(l2)|)

)

=
(
k

2

)
1

|H|El1∼U(H)

⎛

⎝
∑

r∈C∗(l1)
Pr

l2∼U(H)

(
r ∈ C∗(l2)

)
⎞

⎠

≤
(
k

2

)
1

|H|El1∼U(H)

⎛

⎝
∑

r∈C∗(l1)
Pr

l2∼U(H)
(l2 ∈ C(r))

⎞

⎠
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=
(
k

2

)
1

|H|El1∼U(H)

⎛

⎝
∑

r∈C∗(l1)
‖C(r)‖

⎞

⎠

Lem. 18≤
(
k

2

)
1

|H|El1∼U(H)

(
|C∗(l1)| · (e/2)−n/2 · (c1)

n/2
)

≤ (e/2)nEl1∼U(H)(‖C(l1)‖) · (e/2)−n/2 · (c1)
n/2 = (c1)

n/2 · (e/2)−n/2

Lem. 19≤ (c2)
n/2 · E(Ẑ) for some c2 ∈ (0, 1) and n large enough.

��
Let us now show that Ẑ does not get much smaller than its expected value.

Lemma 22 Let Z∗, Ẑ and D be as defined above. Then Pr(Ẑ ≥ E(Ẑ)/2) > 1− (c3)n

where c3 is a constant ∈ (0, 1) and n large enough.

Proof The Bernstein inequality [8] states that for independent and zero-mean random
variables Vi with |Vi | ≤ M , it holds that:

Pr

(
n∑

i=1

Vi ≥ t

)
≤ exp

(
−

1
2 t

2

∑n
i=1 E

(
V 2
i

) + 1
3Mt

)

To apply the inequality, we now center our variables ‖C∗(li )‖ and mirror them
around the value 0, giving us Vi = E(‖C∗(li )‖) − ‖C∗(li )‖. Centering only makes
the maximum smaller. Through Lemma 13, we can assume that none of our functions
li is promiscuous. This can be formalized by increasing c3 accordingly. Therefore,
we get maxi∈[k](Vi ) ≤ max(‖C∗(li )‖) ≤ max(‖C(li )‖) ≤ (c1)n/2 · (e/2)−n/2 =: M
through Lemma 18. Before we can get to the Bernstein inequality, we need another
ingredient. Let us upper bound the value of E

(
(Vi )2

)
as follows:

E

(
(Vi )

2
)

= E

((‖C∗(li )‖ − E
(‖C∗(li )‖

))2) = E

(
‖C∗(li )‖2

)
− E

(‖C∗(li )‖
)2

≤ E

(
‖C∗(li )‖2

)
≤ E

(
max
j∈[k] ‖C

∗(l j )‖ · ‖C∗(li )‖
)

= max
j∈[k] ‖C

∗(l j )‖ · E (‖C∗(li )‖
)

Lem. 18≤ cn/2
1 · (e/2)−n/2 · (e/2)−n = cn/2

1 · (e/2)−n/2−n

Setting t = 4/10·(e/2)−n/2 and applying theBernstein inequality in the step annotated
with ∗, we get:

Pr
(
Ẑ ≤ E(Ẑ)/2

)
= Pr

⎛

⎝
∑

i∈[k]
‖C∗(li )‖ ≤ E(Ẑ)/2

⎞

⎠

= Pr

⎛

⎝
∑

i∈[k]
E(‖C∗(li )‖) −

∑

i∈[k]
Vi ≤ E(Ẑ)/2

⎞

⎠
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= Pr

⎛

⎝E(Ẑ) −
∑

i∈[k]
Vi ≤ E(Ẑ)/2

⎞

⎠ = Pr

(
k∑

i=1

Vi ≥ E(Ẑ)/2

)

Lem. 19≤ Pr

(
k∑

i=1

Vi ≥ 4/10 · (e/2)−n/2

)

∗≤ exp

(
−

1
2

(
4/10 · (e/2)−n/2

)2

k · cn/2
1 · (e/2)−n/2−n + 1

3 · (cn/2
1 · (e/2)−n/2) · ((e/2)−n/2/2)

)

= exp

(
−

2
25 (e/2)−n

cn/2
1 · (e/2)−n + 1

6 · cn/2
1 · (e/2)−n

)

= exp
(
−12/175 · c−n/2

1

)
=

(
e−12/175

)((
c−1/2
1

)n)

≤ (c3)
n

for some c3 ∈ (0, 1) and n large enough. ��
Lemma 21 gives a bound on E(D) and Lemma 22 gives a concentration bound on

Ẑ . With these insights, we now give a bound on Z∗ in terms of E(Ẑ).

Lemma 23 Let Z∗, Ẑ and D be as defined above. Then Pr
(
Z∗ < E(Ẑ)/4

)
≤ (c4)n

where c4 is a constant ∈ (0, 1) and n large enough.

Proof Wecanbound the probability that Z∗ deviates toomuch fromE(Ẑ)/4 as follows.
In the step annotated with ∗, we use the Markov inequality (Pr(D ≥ a) ≤ E(D)/a).

Pr
(
Z∗ < E(Ẑ)/4

) Obs. 20≤ Pr
(
Ẑ − D < E(Ẑ)/4

)

≤ Pr
(
Ẑ < E(Ẑ)/2 ∨ D ≥ E(Ẑ)/4

)

≤ Pr
(
Ẑ < E(Ẑ)/2

)
+ Pr

(
D ≥ E(Ẑ)/4

)

Lem. 22≤ (c3)
n + Pr

(
D ≥ E(Ẑ)/4

) ∗≤ (c3)
n + E(D)

E(Ẑ)/4
Lem. 21≤ (c3)

n + (c2)
n/2/4 ≤ (c4)

n for some c4 ∈ (0, 1) and n large enough.

��

6.5.5 Combining with Pool (ri)i∈[k]

We can now plug together the previous results, giving us the success probability of
bipartite ShockHash when using a pool of size k. With Pr (success), we denote the
probability that there is a pair of compatible hash functions li and r j , i, j ∈ [n/2] in
our pools.
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Lemma 24 Let Z be defined as above. Then Pr
(
success

∣∣ Z = z
) = 1 − (1 − z)k .

Proof

Pr
(
success

∣∣ Z = z
) = Pr

⎛

⎝∃i ∈ [k] : ri ∈
⋃

j∈[k]
C(l j )

∣∣∣∣‖
⋃

j∈[k]
C(l j )‖ = z

⎞

⎠

= Pr
p1,...,pk∼Ber(z)

(∃i ∈ [k] : pi = 1) = 1 − (1 − z)k .

��
We already have most of the proof done. We just need to factor in the probability

that the precondition of the previous lemma holds.

Theorem 25 Let us take two pools (li )i∈[k] and (ri )i∈[k] of size k = (e/2)n/2 contain-
ing randomly sampled hash functions. Then the probability that there are two hash
functions li and r j (i, j ∈ [k]) in the pools such that PF(li , r j ) is > 0.17 for n large
enough.

Proof

Pr(success) ≥ Pr
(
success ∧ Z ≥ E(Ẑ)/4

)

= Pr
(
success

∣∣ Z ≥ E(Ẑ)/4
)

· Pr(Z ≥ E(Ẑ)/4)

≥ Pr
(
success

∣∣ Z ≥ E(Ẑ)/4
)

· Pr(Z∗ ≥ E(Ẑ)/4)

=
∞∑

z=E(Ẑ)/4

(
Pr

(
success

∣∣ Z = z
) · Pr(Z = z | Z ≥ E(Ẑ)/4)

)
· Pr(Z∗ ≥ E(Ẑ)/4)

Lem. 24=
∞∑

z=E(Ẑ)/4
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· Pr(Z∗ ≥ E(Ẑ)/4)

Lem. 23,19
>
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⎝1 −
(
1 − (e/2)−n/2

5

)k
⎞

⎠ · (
1 − (c4)

n) =
(
1 −

(
1 − 1

5k

)k
)

· (
1 − (c4)

n)

≥
(
1 − e−1/5

)
· (
1 − (c4)

n)
> 0.18 for n large enough.

��
This concludes the proof of combining hash functions from a pool of candidates.

We have seen that taking the pools of size k = (e/2)n/2 gives us a constant proba-
bility that there are two compatible functions in the pools. Note again that our actual
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implementation uses one single, growing pool, not two fixed size pools. Therefore,
we do not need to retry the construction if the initial pool size is not enough, but can
just continue adding more functions to the pool.

6.6 ShockHash Construction

ShockHash tries different hash function seeds, which is equivalent to generating ran-
dom graphs. Given the probability that a random graph is a pseudoforest, it is easy to
determine the expected number of graphs ShockHash needs to try in order to find an
MPHF. This leads directly to the space usage and construction time of ShockHash,
which we state in the following Theorem.

Theorem 26 A ShockHash minimal perfect hash function mapping n keys to [n] needs
log2(e)n + O(log n) bits of space in expectation and can be constructed in expected
time O((e/2)n · n).

Proof FromTheorem8,we know that the probability of the graph being a pseudoforest
is≥ (e/2)−ne−1√π . We construct these graphs uniformly at random, so the expected
number of seeds to try is ≤ (e/2)ne/

√
π . The space usage is given by the n + o(n)

bits for the retrieval data structure, plus the bits to store the hash function index:

E(log2(seed value))
∗≤ log2(E(seed value)) ≤ log2

(
(e/2)ne/

√
π

) = log2(e)n − n + O(1).

In the step annotated with ∗, we use Jensen’s inequality [34] and the fact that log2 is
concave.

For determining if at least one of the 2n functions corresponding to such a seed
is valid, we can use an algorithm for finding connected components, as described
in Section 4. This takes linear time for each of the seeds, resulting in an overall
construction time of O((e/2)n · n). Constructing the retrieval data structure is then
possible in linear time [19] and happens only once, so it is irrelevant for the asymptotic
time here. ��

Looking back at the simple brute-force approach, each of its en/
√
2πn expected tri-

als needs n hash function evaluations, leading to a construction time ofO(en
√
n). Now,

as shown in Theorem 26, ShockHash needs time O((e/2)n · n). This makes Shock-
Hash almost 2n times faster than the previous state of the art. Given the observations
in Ref. [9], we conjecture that ShockHash with rotation fitting reduces the number of
hash function evaluations by an additional factor of n, while the space overhead tends
to zero. In the following Theorem, we now give the resulting construction time and
space consumption of the bipartite version.

Theorem 27 A bipartite ShockHash minimal perfect hash function needs log2(e)n +
O(log n) bits of space in expectation and can be constructed in expected time
O(1.166n).

Proof We know that we need to test (e/2)ne/
√
n candidate pairs (h0, h1) in expec-

tation before we find a perfect hash function. As described in Section 5, instead of
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sampling two hash functions independently, we use a pool of hash functions and
test all combinations of them. Theorem 25 shows that if we use a pool size of
k = (e/2)n/2 ≈ 1.166n , we get a constant success probability. Until here, this does
not improve the construction time asymptotically because all k2 combinations need
to be tested. However, instead of combining all of the candidates, we can filter them
directly while building the candidate pool. The filter, as with plain ShockHash, is
very effective: The probability that the n hash values in a partition of size n/2 hit all
output positions is �(0.836n/2) [58]. This means that we are only considering about
((e/2)n/2 · 0.836n/2)2 = (e/2 · 0.836)n ≈ 1.136n pairs of hash functions in expecta-
tion. The construction time is therefore bounded by max{1.166n, 1.136n}. Note that
both of these values were rounded up anyway, so polynomial factors are dominated.

Looking at the space consumption of bipartite ShockHash, we need to encode two
seeds of expected value ≤ k each. Using Jensen’s inequality and the retrieval data
structure just like in Theorem 26, we get the resulting space usage. The fact that we
suppressed polynomial factors in the analysis disappears in the O(log n) term. ��

7 Partitioning

Even though ShockHash demonstrates significant speedups, by itself, it still needs
exponential running time. As mentioned in the introduction, real world MPHF con-
structions usually do not search for a function for the entire input set directly. Instead,
they partition the input of size N and then search on smaller subproblems of size n.
In this section, we now give details on how to partition the input set efficiently before
then using ShockHash as a building block.

7.1 ShockHash-RS = ShockHash + RecSplit

A first option is to integrate ShockHash as a base case into the highly space efficient
RecSplit framework (see Section 2) and obtain ShockHash-RS. We keep the general
structure of RecSplit intact. Only in the leaves, we use ShockHash instead of brute-
force. We store the mapping from its keys to their hash function indices in one large
retrieval data structure. Finally, after all leaves are processed, we construct the 1-bit
retrieval data structure with all the N entries together.

Fanouts. RecSplit tries to balance the difficulty between the splittings and the
bijections. ShockHash improves the performance of the bijections significantly but
does notmodify theway that the splittings are calculated. In this paper,we focus onlyon
the bijections. To balance the amount of work done between splittings and bijections,
we need to adapt the splitting parameters using the same techniques as the RecSplit
paper. The RecSplit paper proves and uses optimal fanouts �0.35n+0.5� and �0.21n+
0.9� for the two last splitting levels (see [21, Section 5.4]). For ShockHash-RS, we can
adapt their formulas accordingly and get fanouts of �0.10n+0.5
 and �0.073n+0.9
.
However, preliminary experiments show that this is not optimal in practice. ShockHash
is somuch faster that the additional time invested into the splittings does not pay off.We
find experimentally that setting the lowest splitting level to 4 and the second lowest to
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Fig. 8 Illustration for our bumped k-perfect hash function

3 achieves much better results in practice. To also provide faster and space-inefficient
configurations, we set all fanouts to 2 when selecting leaf size n ≤ 24.

7.2 ShockHash-Flat = ShockHash + k-Perfect Hashing

An additional way to partition the input keys is to use k-perfect hashing. A minimal
k-perfect hash function maps N keys to N/k output values, where each output value is
hit exactly k times (assuming N divides k). This has applications in external memory
data structures [36, 37] and there are existing constructions [4]. The idea how to
integrate ShockHash with k-perfect hashing is straightforward and similar to what
we do in ShockHash-RS (see Section 7.1). We simply run a two-step process of first
determining a k-perfect hash function, and then we construct small ShockHash data
structures for the k keys hitting each output value. In contrast to ShockHash-RS (see
Section 7.1), where some base cases could be smaller than n, here all of them have
the same size.

Bumped k-Perfect Hashing. We now briefly describe a new k-perfect hash func-
tion. This function is focused on fast queries while still having rather small space
consumption. Let us take N keys and hash them uniformly at random to a set of γ N/k
buckets, γ ∈ (0, 1]. By choosing γ < 1, we can overload the buckets to ensure that
most buckets receive at least k keys. In the experiments, we use γ = 0.9. We handle
overflowing buckets by determining a fingerprint of each key. Each bucket then stores
a threshold value using log2(k) bits that indicates which of the keys to bump from the
bucket. This idea of bumping keys based on a threshold is inspired by bumped ribbon
retrieval (BuRR) [19]. Separator hashing [31] uses a similar idea, however, without
bumping keys completely and only supporting non-minimal perfect hash functions.
We use a second level of the same data structure for the bumped keys, mapping them to
the remaining (1− γ )N/k buckets. Finally, we have a small number of keys that still
get bumped in the second level. We first enumerate them by constructing a minimal
perfect hash function. In our implementation, we use ShockHash-RS. With this, we
then index an Elias-Fano coded sequence [20, 23] storing all empty slots in the output
range. Figure 8 gives an illustration of the idea [55].
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The advantage of this technique is that the majority of queries need a single access
to the array of thresholds and a comparison with the key’s threshold. Few need two
accesses to evaluate the second level, and only a tiny fraction of the queries needs to
evaluate the explicit re-mapping.

ShockHash-Flat. From the bumped k-perfect hash function, we derive an MPHF
that has a significantly more flat structure than ShockHash-RS. Instead of traversing a
tree structure, it can perform a simple comparison with the threshold value for a major-
ity of the input keys. Because we need to access both the threshold and then (usually)
the seed of that same bucket, ShockHash-Flat stores thresholds and ShockHash seeds
in an interleaved way.

8 Variants and Refinements

In the following section, we describe variants and implementation details of Shock-
Hash. In Section 8.1, we first explain how to achieve significant improvements in
practice by using a bit-parallel filter. We then describe two techniques to come up
with hash function candidates more efficiently, rotation fitting [9] and quad split, in
Sections 8.3 and 8.2. To use bipartite ShockHash with uneven input sizes n, only small
tweaks are necessary, which we describe in Section 8.4. We then continue with practi-
cal implementation tricks in Section 8.5. Finally, we describe ideas for parallelization
in Section 8.6.

8.1 Isolated Keys Filter

In Section 5, we have already described how making the graph bipartite enables effi-
cient filtering of hash function candidates. In the following section, we describe an
additional way of filtering seeds. Bipartite ShockHash generates a set of surjective
hash function candidates and then tests all combinations for orientability. By using an
additional filter, we can speed up this test for orientability. The idea is to look at the
case that a key is the only one mapping to a position. We refer to this key as isolated
for that hash function seed. More formally, a key x is isolated using a hash function
candidate h, if {y ∈ S | h(x) = h(y)} = {x}. If a key is isolated in both of the
candidate hash functions, then in graph terminology this corresponds to a connected
component with two nodes and one edge. Since each connected component of the
final graph must have the same number of nodes and edges, there is then no need to
perform the full test for orientability. We can determine bit patterns for each seed,
indicating which of the keys are isolated. Then seed combinations can be ruled out
using simple bit-parallel operations checking if the bit patterns are orthogonal. Note
that the bit patterns used here refer not to the output positions but to the input keys
(and therefore have size n). Figure 9 illustrates the process.

A key is isolated in a partition if none of the other keys hash to its position, which
happens with probability (1 − 1/(n/2))n−1 → e−2. A seed combination passes the
filter if it has no key that is isolated in both partitions. This is approximately (1 −
e−4)n ≈ 0.98n , so the filter makes it possible to avoid the full check for a vast
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Fig. 9 Filtering for isolated keys. Each seed in the pool stores a bit vector of isolated keys, here annotated
with Isi . A seed combination can only work if no key is isolated in both partitions, which can be efficiently
checked using bit operations. Only if the filter is passed, we need to do the full orientability check

majority of seed combinations. Note that we apply the filter conditioned on the case
that both functions are surjective, which should only make the filter more effective.

What makes this method interesting from a theoretical point of view is that we can
be even smarter about filtering here. As stated before, if one of the hash functions
has an isolated key at a position, we can skip testing it with all other hash functions
that have an isolated key at the same position. We can organize all candidate hash
functions in a binary trie data structure based on the isolated keys. Testing a new
candidate hash function now boils down to traversing the trie. In theory, this gives
additional exponential improvements in the construction time. However, preliminary
experiments show that it is not helpful for the values of n we use in practice.

8.2 Rotation Fitting

A technique to speed up brute-force search for perfect hash functions is rotation fitting
[9] (see Section 2). The same idea can be used in ShockHash to accelerate the search.
We distribute the keys to two sets using an unseeded 1-bit hash function. We then
determine the bit mask of output values that are hit in both of the sets. Like in the bit
mask filter, which we use before checking for orientability (see Section 4), only if the
logical OR of both masks has all bits set, it is worth testing the seed more closely. If we
now cyclically rotate one of the bit masks and try again, we basically get a new chance
of all output values being hit, without having to hash each key again. We then consider
the distance to rotate the keys as part of the hash function seed. This corresponds to
an addition modulo n to all hash values of the second set. We conjecture that – as in
Ref. [9] – this reduces the number of hash function evaluations by a factor of n, while
the space overhead tends to zero.

For bipartite ShockHash, rotation fitting can be applied as well, though in a slightly
different way. Rotating one of the partitions of the bipartite graph within itself is not
useful because it generates isomorphic graphs. Rotating the two partitions into each
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Fig. 10 Additional filtering opportunities in quad split. We create a pool of all seeds without filtering but
annotate each seed a bit vector containing hash function output values. Then we combine two seeds to form
a seed for one partition. Surjectivity can be checked efficiently using bit operations. Therefore, the resulting
seed is a tuple of four seeds – one for each half of the keys and each partition. In our implementation, we
also add the filter for isolated keys on top (see Section 8.1 and Figure 9)

other would violate the bipartite condition, thus preventing to use the hash function
pools. Instead, we can use rotation fitting to find seed candidates within each partition.
More specifically, when looking for seed candidates for one partition, we distribute the
keys to two subsets using an unseeded 1-bit hash function. We can then rotate one of
the sets (modulo n/2) to get additional hash function candidates. Each rotation can be
tested for surjectivity using simple bit shifts that can happen in registers. In practice,
this significantly improves the construction time because fewer hash functions need
to be evaluated. However, the quad split technique described in the following section
even enables exponential speedups.

8.3 Quad Split

The construction is dominated by the time spent evaluating hash function candidates
(see Theorem 27), so it is natural to look at this step for improvements. For bipartite
ShockHash, the quad split technique reduces the amount of time spent on finding
surjective seed candidates. It basically applies the idea of bipartite ShockHash on
another level of the same data structure. Like in rotation fitting, we split the input
set into two sets SA and SB using a constant 1-bit hash function. Now we can hash
each of the two sets using independent hash functions. In particular, we can test all
combinations of assigning some hash function to each of the two sets. This reduces
the number of hash function evaluations significantly.
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Fig. 11 Supporting uneven n

For a seed i , let hi (SA) and hi (SB) indicate the sets of hash function output values
of the two subsets SA and SB . A seed i for SA can be used together with a seed j for
SB if hi (SA)∪hi (SB) = [n/2]. By storing hi (SA) and hi (SB) as bit vectors indicating
the output values, this compatibility check is a simple and efficient OR operation. In
the quad split technique, we therefore annotate each hash function seed with this bit
vector to enable fast search for a possible combination of seeds that is surjective. This
process is illustrated in Figure 10.

Like with the isolated keys filter described in Section 8.1, we can again use a trie
structure to avoid testing all combinations. We believe that this enables exponential
improvements in the construction time, which could be implemented in future work.
Quad split is orthogonal to the isolated keys filter, so we can actually combine both
optimizations.

To encode the combined seed, we use a pairing function again. In contrast to the
bipartite tries in ShockHash, the hash functions cannot be exchanged, so we cannot
assume that one seed is larger than the other. We therefore need a more general pairing
function. The most fitting pairing function here is Szudzik’s pairing function (see
Section 2), which enumerates, for all k ∈ N, all pairs in [k] × [k] before moving on to
pairs involving numbers bigger than k. This means that we can test all combinations of
previous hash functions before having to evaluate the next one. In our implementation,
we make sure to try hash function combinations in linear order in the value of the
pairing function.

8.4 Supporting Uneven n

To support unevennumbersn of input keys,we can relax the bipartite property. The idea
is that the output value �n/2� can be hit by both hash functions, but each with half the
probability. When combining the two halves, the value then gets the same probability
as all other output values. For filtering candidate hash functions for surjectivity, the
corresponding bit needs to be ignored – a seed candidate can be valid both if the bit is
set or not set. Now, in order to use hash functions from a single pool for both the left
and the right part, we have to mirror the functions used for the right part. 6 Refer for
Figure 11 for an illustration.

6 For simplicity, our current implementation uses plain shifting, accepting a doubled probability for the
middle bit. Supporting uneven n then just boils down to rounding compile time constants to the right
direction. When integrated into RecSplit, we expect uneven n to happen only once in every two buckets, so
it has a negligible overhead of about 1/2b bits per key.
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8.5 Engineering

In the following section, we explain implementation tricks that we add to make our
construction even faster in practice.

Orientability Check. Determining whether a given graph is a pseudoforest can
be achieved in linear time using a connected components algorithm. However, this
incurs significant overheads for building a graph data structure. To avoid this, our
implementation therefore uses incremental cuckoo hash table construction with near
linear time. For this, we keep an array representing the graph nodes. In order to avoid
re-calculating a hash every time we evict a key, and to avoid case distinctions between
first and second candidate cell, we use the known XOR trick. We annotate each key
with the XOR of both its candidate cells. When evicting a key, we can calculate its
other candidate cell efficiently by XORing the current cell with the stored value. This
uses that XOR is commutative. We abort the insertion as soon as we detect a cycle.

Partial Hash Calculation. As described in Section 8.2, we can use rotation fitting
in plain ShockHash. There we make the observation that hashing the first set of keys
almost always yields a graph that, by itself, is a pseudoforest. This is not surprising
because the load factor is usually close to the load threshold c = 0.5 and n is small
(which enables higher load [39]). We make use of this fact and reduce the number
of hash function evaluations by keeping the hashes for the first set the same and just
retrying hash functions for the second set. More precisely, if x is the hash function
seed, we hash each key in the first set with seed x − (x mod k), where k is a tuning
parameter, and the keys of the second set with seed x . Therefore, the hash values of the
first set can be cached over multiple iterations. In preliminary experiments, we find a
value of k = 8 to be a good fit – values much larger than that have diminishing returns
in performance improvement and start to influence the space consumption. At k = 8,
however, the influence on the space consumption is negligible when n is large. Given
that hashing the keys is a bottleneck during construction, this reduces the number of
keys that need to be hashed by a factor of close to 2. We only apply this optimization
for large n > 32.

Hash Cache. In bipartite ShockHash, we regularly combine two hash function
candidates from our pool to see if the resulting graph is a pseudoforest. While we skip
that test for many of the candidates using the simple bit parallel filter described in
Section 8.1, there is still a large number of candidates to compare. Re-evaluating the
hash functions for these candidates can be a bottleneck depending on the input size
n. An obvious idea is to cache the hash function output values of the seed candidates.
Because the input sets and therefore the hash values are very small, we can store each
hash value in a single byte. This makes the amount of space needed for each seed
candidate relatively small.

Sentinels. For large n, the quad split technique spends most of its construction
time calculating the logical OR of bit patterns looking for a result that has all bits set.
This inner loop consists of only a very small number of assembly instructions. We
can achieve considerable speedups here by adding a sentinel element to the end of the
array that already has all bits set. Then we no longer need the repeated bounds check
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for the array. When using SIMD parallelization (see Section 8.6), we use multiple
sentinels depending on the number of SIMD lanes.

8.6 Parallelization

The main computational load behind ShockHash looks for seeds yielding pseudo-
forests and can be parallelized on multiple levels: Over buckets when using RecSplit
for partitioning, ShockHash building blocks, seeds, hash-function evaluations, and
bit-parallel filters. The remaining operations are also well parallelizable: Hashing of
keys to buckets can be split between processors. Parallel construction of the retrieval
data structure can be done in a similar way [19]. In the following we explain one
possible parallelization with respect to SIMD instructions and multi-threading. We
also outline a hybrid CPU/GPU implementation.

SIMD. In plain ShockHash, we use SIMD parallelism in two locations. First, we
use SIMD to determine the two candidate positions of all keys and to determine the bit
mask for filtering.A key point here is to collect the bitwiseOR of individual lanes and to
only add the lanes together after all keys are done. Second,we use SIMD to evaluate the
bit mask filter (see Section 4) with different rotations in parallel. Our implementation
uses AVX-512 (8 64-bit values) if available and AVX2 (4 64-bit values) otherwise.

Bipartite ShockHash can also be parallelized using SIMD instructions.When using
the quad split technique, we parallelize the test for candidate functions, which involves
iterating over long lists of bit patterns, calculating the logicalORwith each, and looking
for a result that has all bits set. However, the other more involved data structures are
harder to parallelize using SIMD because of more complex control flows. Therefore,
we use SIMD only for checking lists of bit patterns, which is the main bottleneck for
large n.

Multi-Threading.Because ShockHash is intended to be integrated into a partition-
ing framework, we can naively parallelize over the different ShockHash base cases. A
simple coarse-grained source of parallelism are the RecSplit buckets. We can use any
kind of load balancing to split them between threads. Even static load balancing may
work because variances in construction time will average out. However, some kind
of dynamic load balancing is likely to be more efficient and also works with cores of
different speed that are now becoming standard in many multi-core processors. The
retrieval data structure we use, BuRR [19], can be parallelized as well.

GPUs. A full GPU parallelization might be difficult and inefficient for cuckoo
hashing as it has irregular control flow and memory access. Since filtering asymptot-
ically dominates the computations for highly space-efficient variants, one might look
at a hybrid implementation where a GPU produces a stream of seeds defining random
graphs that cover all nodes and where a multicore CPU performs further stages of
computation. For bipartite ShockHash with quad split, for example, the majority of
the construction time is spent on comparing bit patterns to check if two hash function
candidates are compatible. Here we can use the massive parallelism of GPUs to com-
pare many patterns in parallel. Then the CPU can perform the less frequent and more
complex checks for orientability.
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Fig. 12 Hash function evaluations and space overhead of ShockHash compared with more simple brute-
force techniques

9 Experiments

We run our experiments on an Intel i7 11700 processor with 8 cores and a base
clock speed of 2.5 GHz. The machine runs Ubuntu 22.04 with Linux 5.15.0 and
supports AVX-512 instructions. We use the GNU C++ compiler version 11.2.0 with
optimization flags -O3 -march=native. For the competitors written in Rust, we
compile in release mode with target-cpu=native.

Our implementation of ShockHash uses the BuRR retrieval data structure [19]
with 128-bit ribbon width and 2-bit bumping information. For ShockHash-RS, we use
partitioning based on RecSplit [21], in particular the SIMD-parallel implementation
[9]. For partitioning keys in ShockHash-Flat, we sort them using IPS2Ra [2].

As input data, we use short strings of uniform random length ∈ [10, 50] containing
random characters except for the zero byte. The reason for this is that all competitors
natively support strings,while someonly support integer keyswhen using their internal
structs, which could give them an unfair advantage. Note that, as a first step, almost
all compared codes generate amaster hash code of each key using a high quality hash
function. Any possible additional hash function can then be evaluated on the master
hash code in constant time, independent of the input distribution. All experiments use a
single thread.While almost all compared codes have amulti-threaded implementation,
and perfect hashing can be parallelized trivially by partitioning, this is not the focus
here. The code and scripts needed to reproduce our experiments are available on
GitHub under the GNU General Public License [43, 53].
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Fig. 13 Construction throughput using different methods to come up with seed candidates. For comparison,
the plot also includesBrute-Force search.Variants annotatedwithRF use rotationfitting.Thefilteredvariants
of bipartite ShockHash use the filter for isolated keys

9.1 Number of Trials in Theory and Practice

In Figure 12, we compare the average number of hash function trials for each bijection
search technique. From the different slopes of the curves, it is clearly visible that
rotation fitting [9] saves a polynomial factor compared to plain brute-force, while
ShockHash saves an exponential factor. Additionally, we plot the shown upper bounds
for the number of trials of brute-force and ShockHash. For the rotation fitting variants,
we plot the base variants divided by n, which is not formally shown to be a theoretical
bound, but is an obvious conjecture. The plot shows that brute-force and rotation fitting
are close to the given functions. For plain ShockHash, themeasurements are even better
than the theory, which suggests that our proof in Theorem 8 is not tight. Surprisingly,
ShockHash seems to match the function we get when dividing our analysis by

√
n.

We conjecture that the expected number of 1-orientations of a random pseudoforest
might actually not be e · √

2n, but close to constant. This makes ShockHash an even
better replacement for the brute-force technique. Bipartite ShockHash matches the
slope of our analysis as well, but note that our analysis only shows an upper bound of
O(1.166n), not an exact value.

Figure 12 also gives the difference between the idealized space consumption and
the space lower bound log2(n

n/n!). It indicates that ShockHash loses space close
to constant, which becomes negligible for larger n. This explains why we need to
select larger n in ShockHash-RS compared to RecSplit with brute-force to achieve the
same space consumption per key. Even with these larger n, ShockHash construction
is significantly faster than brute-force. Bipartite ShockHash appears to have a small
constant space overhead over plain ShockHash.

9.2 Seed Candidate Generation

Figure 13 shows different methods to generate seed candidates. For comparison, the
plot also includes brute-force search. It is clearly visible that ShockHash is significantly
faster than brute-force. Also, the bipartite version shows clear speedups compared
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Fig. 14 Space usage, construction performance and query performance for different partitioning schemes.
The total number of input keys is N = 100 million, which are then partitioned to small base cases of size
n. Within the base cases we use bipartite ShockHash with quad split

to the plain version. Filtering based on isolated keys (see Section 8.1) makes the
construction about two times faster. While rotation fitting already gives impressive
speedups, our quad split technique (see Section 8.3) is even faster for large n. Starting
with about n = 60, the quad split technique is up to one order of magnitude faster
than the basic bipartite ShockHash implementation. Note that the comparison here
needs to be taken with a grain of salt because different methods have different space
overheads based on n. However, for larger n, the methods have almost the same space
usage. For a plot that takes space consumption into account, refer to Figure 15.

9.3 Partitioning

In Figure 14, we give the construction time, query time, and space consumption for
the two different partitioning schemes, ShockHash-RS and ShockHash-Flat. For small
n, the ShockHash-RS construction time is dominated by the splittings, which can be
seen by the gap between ShockHash-RS and ShockHash-Flat. For large n, the base
case dominates and both techniques have a similar throughput. Looking at the query
performance, ShockHash-Flat is faster for n > 48, which is the most interesting range
for good space consumption. The query throughput increases for larger base cases
because we need to spend less time in the partitioning step. The jumps in the query
throughput in ShockHash-Flat are caused by the fixed-width coding of ShockHash
seeds, which needs a fallback data structure when a seed does not fit. For the same
base case size, the space consumption of the flat partitioning scheme is higher thanwith
RecSplit. Compared to ShockHash-RS, ShockHash-Flat trades space consumption for
faster queries.

9.4 Comparison with Competitors

We now compare ShockHash-RS and ShockHash-Flat with competitors from the lit-
erature. Competitors include CHD [4], SicHash [39], PTHash [50], FMPHGO [6],
RecSplit [21], and SIMDRecSplit [9]. We do not plot BBHash [42] because it is sig-
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Fig. 15 Pareto fronts of the space usage of different competitors. N = 10 million keys. Note that both axes
are logarithmic. For ShockHash-RS, we use ShockHash with SIMD and rotation fitting inside RecSplit.
For ShockHash-RS, SicHash and PTHash, we plot all Pareto optimal data points but only show markers for
every fourth point to increase readability. Therefore, the lines might bend on positions without markers

nificantly outperformed by FMPH [6], another implementation of the same technique.
While SIMDRecSplit also includes a fast GPU implementation, we leave it out from
most plots, as it would be unfair because of the different hardware architecture. While
we measure ShockHash itself with N = 100 million keys (see Figure 14), we perform
the comparisonwith competitors with only N = 10million keys. This is because com-
petitor configurations that achieve space usage close to ShockHash would otherwise
need unreasonably long to compute.

Construction.Figure 15 gives Pareto fronts comparing the construction throughput
of different competitors. EachPareto front only gives data points that are not dominated
by another configuration of the same method regarding both space and construction
time. Note that we are mainly interested in configurations close to the space lower
bound. Therefore, the figure uses an x-axis that is logarithmic to the space lower bound
log2(e). Only theRecSplit based competitors and ShockHash-Flat achieve space usage
below 1.9 bits per key. At configurations with less than 1.65 bits per key, ShockHash-
RS can significantly outperform SIMDRecSplit. ShockHash-RS is focused even more
on the space efficient configurations than SIMDRecSplit. For the less space efficient
configurations, it does not achieve the same throughput as SIMDRecSplit. This is
not surprising because with these configurations, searching for bijections is fast, so
constructing the retrieval data structure has a significant performance penalty.

Table 1 gives a selection of typical configurations. For SicHash [39], PTHash [50]
and FMPHGO [6], we use the configurations given in the original papers, where
FMPHGO is configured to use the hash cache. For RecSplit-based techniques, we
mainly use space-efficient configurations with b = 2000 and select the leaf size n
such that a similar space consumption is achieved.

Comparing the configurations with a space consumption of 1.56 bit per key, Shock-
Hash-RS is about 76 times faster than SIMDRecSplit, which the next competitor
not based on ShockHash. For space consumptions below 1.53 bits per key, bipartite
ShockHash-RS is more space efficient and simultaneously three orders of magnitude
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Table 1 Query and construction performance of typical configurations of ShockHash and competitors. The
table also shows GPURecSplit on an Nvidia RTX 3090

Method Space Construction Query
bits/key ns/key ns/query

FMPH, γ=2.15 3.529 51 54

FMPH, γ=1.0 2.804 89 69

FMPHGO, γ=2.65, s=4, b=16 3.547 86 51

FMPHGO, γ=1.0, s=4, b=16 2.212 135 69

PTHash, c=7.0, α=0.99, C-C 3.524 198 20

PTHash, c=6.0, α=0.99, EF 2.345 247 34

SicHash, α=0.9, p1=21, p2=78 2.412 116 40

SicHash, α=0.97, p1=45, p2=31 2.082 169 41

RecSplit, n=8, b=100 1.792 713 74

RecSplit, n=14, b=2000 1.585 125 521 97

SIMDRecSplit, n=8, b=100 1.808 117 80

SIMDRecSplit, n=14, b=2000 1.585 11 749 108

SIMDRecSplit, n=16, b=2000 1.560 137 902 100

SIMDRecSplit, n=18, b=2000 1.547 271 524 99

SIMDRecSplit, n=20, b=2000 1.535 5 569 394 97

(GPURecSplit, n=20, b=2000) 1.536 55 988 100

(GPURecSplit, n=24, b=2000) 1.496 508 768 94

Bipartite ShockHash-RS, n = 64, b = 2000 1.524 5 724 131

Bipartite ShockHash-RS, n = 104, b = 2000 1.496 24 406 121

Bipartite ShockHash-RS, n = 128, b = 2000 1.489 188 041 113

Bipartite ShockHash-Flat, n = 100 1.547 9 620 62

Bipartite ShockHash-Flat, n = 128 1.537 174 366 58

ShockHash-RS, n = 30, b = 2000 1.582 797 121

ShockHash-RS, n = 39, b = 2000 1.556 1 813 123

ShockHash-RS, n = 58, b = 2000 1.523 112 072 121

N = 10 million keys. We use SIMD instructions where available. For the bipartite versions, we use the
quad split technique.

faster than SIMDRecSplit. Comparing different methods where each is given about
half an hour of construction time, RecSplit is able to produce a perfect hash function
with 1.58 bits per key. During the course of three years, SIMDRecSplit started a chain
of work, first improving the space consumption to 1.56 bits per key. ShockHash-RS
is then able to achieve 1.52 bits per key, reducing the gap to the lower space bound
of ≈ 1.442 bits per key by about 30%. Finally, bipartite ShockHash-RS then reduces
the space usage to just 1.489 bits per key, which is within 3.3% of the lower bound
with practically feasible construction time. Looking at the absolute space consumption
instead of the distance to the lower bound, bipartite ShockHash-RS achieves about
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5% smaller perfect hash functions in the same construction time [9]. To construct an
MPHF with 1.53 bits per key, SIMDRecSplit takes more than 15 hours, while bipar-
tite ShockHash-RS achieves a better space consumption in just 57 seconds. Bipartite
ShockHash-Flat trades space usage for better query speed. However, at a configuration
achieving the same space usage as SIMDRecSplit, it is still about 32 times faster to
construct.

Queries. Table 1 also shows the query throughput of typical configurations.
RecSplit-based techniques have slower queries than the other techniques as they
have to traverse several levels of a tree, decoding variable-bitlength data in each step.
ShockHash-RS additionally needs to access a retrieval data structure. However, when
comparing configurations that achieve a similar space efficiency, the query perfor-
mance of ShockHash-RS is similar to competitors. This shows that the overhead of
the retrieval operation is small compared to the work for traversing the heavily com-
pressed tree.

Compared to plain ShockHash-RS, our bipartite implementation loses about 10%
of the query performance at the same space usage. This is due to un-pairing seeds
and having to do case distinctions based on the partitions and on the subset during
quad split. However, the larger leaves in bipartite ShockHash-RS can reduce the time
spent on traversing RecSplit’s splitting tree data structure, which is a major bottleneck
for the queries. Bipartite ShockHash-Flat can be constructed about 32 times faster
than the previously most space-efficient competitor SIMDRecSplit for the same space
requirement. Simultaneously, it achieves 30% faster queries, which brings the query
performance of very space efficient MPHFs much closer to competitors that are not
focused on space consumption.

When query performance is the main concern, PTHash [50] trades much higher
space usage for much faster queries. SicHash takes the middle-ground between
PTHash and bipartite ShockHash-Flat both with respect to query time and space con-
sumption while allowing faster construction than both approaches.

10 Conclusion and FutureWork

ShockHash is a new way to compute minimal perfect hash functions on small sets.
By combining trial-and-error search with cuckoo hashing and retrieval data struc-
tures, ShockHash achieves an exponential speedup over plain brute-force (almost a
factor 2n). While the plain brute-force technique samples functions and hopes for one
to be an MPHF, ShockHash samples graphs and hopes for one to be a pseudofor-
est. With bipartite ShockHash, we present an extension that samples bipartite graphs
and performs aggressive filtering to achieve additional exponential speedups. These
improvements enable the currently fastest way to achieve near space-optimal minimal
perfect hash functions and breaks the dominance of the previous best methods that
relied on pure brute-force for their base-case subproblems.

We integrate ShockHash as a base case into different partitioning frameworks.When
using ShockHash inside RecSplit, we get ShockHash-RS, which can be constructed up
to three orders of magnitude faster than the previous state of the art when comparing
sequential codes. Constructing with a single thread, ShockHash-RS is even faster
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than a tuned GPU implementation of the brute-force technique. Using ShockHash
inside a newly developed k-perfect hash function, we get ShockHash-Flat, which
can be constructed about 32 times faster than the previous state of the art, while
simultaneously having 30% faster queries. This starts to close the gap to constructions
that are way less space efficient and brings space efficient perfect hash functions closer
to practical applications.

Future Work. In the future, additional filtering techniques would be interesting
that could give additional speedups. We already describe one such filter, using a trie to
skip incompatible hash function seeds before trying to combine them. To support even
larger building blocks, a hybrid parallelization of the technique using a GPU would
be an interesting future direction. Since the submission of this paper, MorphisHash
was able to reduce the space overhead by introducing a retrieval data structure specifi-
cally optimized for ShockHash. The newConsensus-RecSplit technique achieves even
smaller space consumption, although with slower queries.
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