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ABSTRACT
Since their introduction by Breiman, Random Forests (RFs) have proven to be useful for both classification
and regression tasks. The RF prediction of a previously unseen observation can be represented as a weighted
sum of all training sample observations. This nearest-neighbor-type representation is useful, among other
things, for constructing forecast distributions (as in Meinshausen’s Quantile Regression Forests). In this
article, we consider simplifying RF-based forecast distributions by sparsifying them. That is, we focus on a
small subset of k nearest neighbors while setting the remaining weights to zero. This simplification, which we
refer to as “Topk”, greatly improves the interpretability of RF predictions. It can be applied to any forecasting
task without re-training existing RF models. In empirical experiments, we document that the simplified
predictions can be similar to or exceed the original ones in terms of forecasting performance. We explore the
statistical sources of this finding via a stylized analytical model of RFs. The model suggests that simplification
is particularly promising if the unknown true forecast distribution contains many small weights that are
estimated imprecisely.
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1. Introduction

Many statisticians agree that forecast distributions are prefer-
able to mere point forecasts. Correspondingly, an active litera-
ture is concerned with making statistical forecast distributions
in meteorology (e.g., Rasp and Lerch 2018), economics (e.g.,
Krüger, Clark, and Ravazzolo 2017), energy (e.g., Taieb, Taylor,
and Hyndman 2021), epidemiology (e.g., Cramer et al. 2022),
and other fields. Nevertheless, point predictions still dominate
in many practical settings in policy, business, and society. As
argued by Raftery (2016), the cognitive load that forecast distri-
butions impose upon their users may be an important bottleneck
impeding their adoption. Motivated by this possibility, we con-
sider simplifying the forecast distributions produced by Random
Forests (RFs; Breiman 2001; Meinshausen 2006), and study how
simplification affects statistical forecasting performance. While
our main focus is on probabilistic forecasting, the method we
propose can also be used to simplify point forecasts for the mean.

More specifically, we approximate an RF forecast distribution
for a continuous scalar outcome by a discrete distribution with
k support points, where k ∈ {1, 2, . . . , n} is a user-determined
parameter and n denotes the number of training samples. The
resulting forecast distribution can be cast as a collection of k
scenarios, each occurring with a specified probability. If k is
sufficiently small, this setup can effectively be communicated to
non-statisticians. For example, Altig et al. (2022) use it to survey
business executives about firm outcomes like future sales growth
and employment. Abbas and Howard (2015, chap. 35) provide a
textbook discussion from a decision analysis perspective.

CONTACT Fabian Krüger fabian.krueger@kit.edu Karlsruhe Institute of Technology, Bluecherstrasse 17, 76185 Karlsruhe, Germany.
1Prediction as in Equations (4) and (5) is unaltered, except for the substitution of wi(x0) by w̃i(x0).
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Our approximation, which we refer to as “Topk” in the fol-
lowing, builds upon the fact that RFs can be cast as a nearest-
neighbor-like method (Lin and Jeon 2006; Meinshausen 2006):
The forecast distribution for a test sample observation with
feature vector x0 is a discrete distribution with support points
given by the training sample outcomes (yi)

n
i=1 and correspond-

ing probability weights (wi(x0))
n
i=1. Meinshausen (2006) called

these forecast distributions Quantile Regression Forests (QRFs).
In the following, we do not distinguish between QRFs and RFs
since the former can be constructed from the latter without any
additional model fitting. As detailed in Section 2.1, the weight
wi(x0) reflects the similarity between x0 and xi, the feature vector
of the ith training sample observation. Consider a given test
case x0 and the set Ik(x0) containing the indices of the k largest
weights for this test case, where k ∈ {1, 2, . . . , n}. We then set

w̃i(x0) =
{ wi(x0)∑

j∈Ik(x0) wj(x0)
if i ∈ Ik(x0)

0 else

That is, we retain only the k << n largest weights, and re-
scale them such that they sum to one. All other weights are
set to zero. Figure 1 provides a schematic description. Setting
k = n recovers the weights of the initial RF’s mean and the
QRF’s distribution forecast, which is described in more detail
in Section 2.1 Larger values of k correspond to a larger number
of scenarios. This increases the complexity of the forecast distri-
bution, but may be beneficial in terms of statistical forecasting
performance.

© 2025 The Author(s). Published with license by Taylor & Francis Group, LLC.
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Figure 1. Summary of proposed Topk method. This schematic description summarizes the method proposed in this article. First, a standard RF is trained. Second, from the
trained RF, we compute a weight vector for each new test case. Collecting the weight vectors for multiple test cases results in a matrix, with rows corresponding to test cases
and columns corresponding to training cases. Next, we select the top k (in this case k = 3) weights for each test case, re-normalize such that the weights again sum up to
one and set the remaining weights to zero. These weights can now be used for prediction, as illustrated here for the first and fourth test cases.

Practical Illustration. We provide a practical illustration of
our method by considering labor market survey data provided
by DIW (2022). The dataset is an openly available subsample of
the German Socioeconomic Panel (SOEP; Goebel et al. 2019).
It is recorded between 2015 and 2019, covering 21.851 observa-
tions corresponding to 5847 distinct persons after preprocess-
ing. Many participants were asked repeatedly over the survey
years, so that the data has a panel structure. Our goal here is
to predict a person’s annual salary in Euros based on socioeco-
nomic regressors such as age, education, family status, and the
industry in which the person is employed. We use data from
2015 to 2018 for training and 2019 for testing, and consider a
Topk model with k = 5 along with a full RF. Compared to the full
RF, the Topk model is about 6% worse in terms of distribution
forecasting performance (as measured by the CRPS, introduced
in Section 2.2), and about 3% better in terms of point forecasting
performance (as measured by the squared error). Section A of
the online supplement provides details on the dataset and RF
forecasting performance.

To illustrate, consider a fully employed 47-year-old male, liv-
ing alone and working in the financial sector. We aim to predict
his salary in 2019. A full RF predicts a mean income of 84.705,
placing nonzero weight on 171 training sample observations.
The simplified Top5 model uses only the five largest of these
171 weights which (before re-normalization) sum up to 0.47.
To re-normalize, we simply multiply the five remaining weights
by 1/0.47. The five support points (the training sample obser-
vations that correspond to the remaining weights) are listed in
Table 1, together with their weights. With those, the Top5 model
predicts a mean income of 84.184.

For communicating these results, the five remaining weights
and support points can be cast as scenarios, spanning an income
range from 51.608 to 100.433 Euros. The most likely scenario,

Table 1. SOEP test prediction.

Survey Female Age No. No. Years Empl. Sector wi(x0) [%] Income
Year Per. Child. Educ. ID

x0 2019 False 47 1 0 14.5 F 64 – 83.279
xs1 2017 False 45 1 0 14.5 F 64 30.6 94.903
xs2 2018 False 45 1 0 18 F 64 24.6 79.206
xs3 2017 False 44 1 0 15 F 64 17.3 100.433
xs4 2016 False 44 1 0 14.5 F 64 16.0 51.608
xs5 2015 False 43 1 0 14.5 F 64 11.6 87.173

NOTE: The table shows the five support points xs1 to xs5 for a test point (first row,
x0) in the Top5 model. “Empl.”abbreviates the variable “employed”, “F”abbreviates
“full employment”. Sector ID 64 corresponds to “Provision of financial services”.
The corresponding (rounded) weight of each support point is depicted in the
penultimate column, while we report the respective income in the last column.

occurring with a probability of 30.6%, involves an income of
94.903 Euros. Due to the structure of RF forecast distributions,
the selected scenarios are directly associated with five actual
observations occurring in our training sample. In particular,
three of the five scenarios (number 1, 4, and 5) listed in Table 1
involve responses of the same individual in previous years. This
situation is natural since some of the regressors are nearly con-
stant over time, so that the test point x0 is likely to be sim-
ilar to training data xi corresponding to the same individual.
Using the same individual’s past incomes also seems plausible
from a practical perspective.2 Table 1 also yields relevant (albeit
implicit) substantive information: For example, the fact that all
five scenarios involve individuals of the same gender, family
status and industry sector indicate that the RF model considers
these regressors highly relevant for prediction. Conversely, the
five scenarios cover all survey years present in the training data

2If one wanted to avoid the use of data from the same individual, one could
reduce the dataset to a single observation per individual, and otherwise use
the same methodology.
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(2015–2018), indicating that time variation in incomes is less
important.

Related Literature. We approach the interpretability of a RF
from a different angle compared to most other existing literature
on the topic: In Breiman’s original work on RFs, feature per-
mutation was introduced, effectively quantifying the influence
of each feature on the overall performance of the model. This
method is still widely used and implemented in standard soft-
ware packages (Pedregosa et al. 2011). Biau and Scornet (2016,
sec. 5) provide further discussion. This perspective on inter-
pretation is also commonly used for other forecasting models,
such as neural networks, see for example Lundberg and Lee
(2017). Visualizations of RFs have also been proposed (Zhao
et al. 2019; Haddouchi and Berrado 2019). In addition, alter-
native notions of sparsity have been considered in the context
of tree-type models. For example, Nan, Wang, and Saligrama
(2016) use the notion of sparsity in terms of feature usage in
order to speed up predictions. Several other studies consider
combinations of simple prediction rules, building upon ideas
in Friedman and Popescu (2008). The “node harvest” method
by Meinshausen (2010) is particularly interesting since it can
be cast as a weighted empirical distribution, and can thus be
used for probabilistic prediction. Node harvest first generates a
large number of “nodes”, each of which defines a simple subspace
of the predictor space. It then uses a constrained optimization
problem to select the nodes that are most useful for prediction.
Although sparsity is not enforced, Meinshausen finds that the
optimal solution often involves a small number of nodes only.
However, this type of sparsity (with respect to nodes) is different
from the type of sparsity we consider, which is with respect to
the number of training sample observations being considered
for prediction. Indeed, these two notions of sparsity seem highly
complementary: A forecast distribution constructed via node
harvest may involve a large number of training sample obser-
vations, that is be far from sparse in our sense. Conversely, a
forecast distribution constructed using our proposed method-
ology implicitly involves many regression trees, thus being far
from sparse in Meinshausen’s sense.

Finally, many extensions and modifications of Breiman’s
original RF have been proposed in the literature, typically with
the aim of improving statistical performance (either empirically,
or in terms of theoretical properties). See Biau and Scornet
(2016) for a survey, and for example Beck, Kozbur, and Wolf
(2023) for a forecast combination perspective, Cevid et al.
(2022) for a multivariate model that links RFs to kernel-based
methods, and Wager and Athey (2018) for an adaption to
causal inference. By contrast, we focus on a standard, univariate
RF implementation, and post-process its forecast distribution
in a way that makes it easier to interpret. The procedure we
propose can easily be applied to other RF variants (or even to
prediction methods other than RFs), provided that they can
be represented as discrete distributions of the type described
above.

Roadmap of the Article. The remainder of this article is
organized as follows: Section 2 introduces our methodological
setup, including RFs and methods for evaluating forecast distri-

butions. In Section 3, we study the performance of our ‘Topk’
simplification in a series of empirical experiments based on 18
datasets for which RFs have been found to perform well, as
compared to deep neural network models (Grinsztajn, Oyallon,
and Varoquaux 2022). Our findings indicate that already for
k = {5, 10}, the simplified RFs can perform on a similar level
compared to the full counterpart for both probabilistic and point
forecasts, depending on the dataset. Considering probabilistic
forecasts, for k = 20, the median performance across all datasets
is equivalent to the full RFs and considering k = 50 even
increases the median performance slightly. For point (mean)
forecasts, k = 20 even increases performance slightly. Even
though very sparse choices like k ∈ {3, 5} may come with a
significant performance decrease, we argue that they may be
worthwhile if ease of communication is a main concern. We
further show that our results are qualitatively robust to different
hyperparameter choices. In order to rationalize the empirical
results, Section 4 then considers a detailed analytical example
that models the weights estimated by RFs as a random draw
from a Dirichlet-type distribution. The example also features a
true vector of weights that may be either similar to, or different
from, the estimated weights. This setup is useful to study how
a simplifying approximation similar to Topk affects statistical
forecasting performance. In a nutshell, the amount of noise in
the estimated weights determines whether or not the simplifi-
cation comes at a high cost in terms of performance. Perhaps
surprisingly, one can construct examples in which simplifica-
tion improves performance: this result arises when the largest
weights are estimated precisely, whereas smaller weights are
more noisy. Focusing on the largest weights then constitutes
a beneficial form of shrinkage. When the small weights are
estimated precisely, however, simplification is harmful in terms
of performance. The online supplement contains further empir-
ical results and detailed derivations for Section 4. Replication
materials are available at https://github.com/kosnil/simplify_rf_
dist.

2. Methodological Setup

In this section, we describe RF based forecasting as well as the
forecast evaluation methods we consider.

2.1. Forecasting Methods

Here we describe Random Forests and their probabilistic
cousins, Quantile Regression Forests. We follow Lin and Jeon
(2006) and Meinshausen (2006) who emphasize the perspective
of RF predictions as a weighted sum over training observations.
We refer to Hastie, Tibshirani, and Friedman (2009) for a
textbook presentation of RFs.

Our goal is to fit a univariate forecasting model. That is, we
have some dataset D = (xi, yi)

n
i=1 of training set size n, where

xi is a p-dimensional vector of features, and yi ∈ R is a real-
valued outcome. We use this dataset to train our model f̂ , such
that some choice of loss function Ln is minimized:

min
f̂

Ln(f̂ ) = 1
n

n∑
i
L(f̂ (xi), yi).

https://github.com/kosnil/simplify_rf_dist
https://github.com/kosnil/simplify_rf_dist
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In a typical regression context, the function f̂ : Rp → R maps xi
to the real line in order to estimate the conditional expectation
functional. A popular loss function is given by squared error,
with L(z, y) = (y − z)2. Let further B ⊆ R

p denote the feature
space, that is, the space in which the individual input samples xi
exist.

Random Forests. An RF is an ensemble of individual regres-
sion trees, each denoted by T (ξ), where ξ describes the config-
uration of the tree. At each node, a single tree greedily splits B
and rectangular subspaces thereof into two further rectangular
subspaces, such that the loss Ln is minimized. Each resulting
subspace corresponds to a leaf Rl ⊆ B, l = 1, . . . , L where L
is the total number of leaves. Each sample xi can only occur in
one leaf or, put differently, when dropping a sample xi down the
tree, it can only fall into one leaf. This leaf is denoted �(xi, ξ) ∈
{1, . . . , L} for tree T (ξ). For a single tree T (ξ), a prediction
μ̂T (x0) for a new sample x0 is obtained by taking the mean of
all training samples within leaf �(x0, ξ). This can be expressed
as

μ̂T (x0) =
n∑

i=1
wi(x0, ξ)yi, (1)

where the weight wi(x0, ξ) is equal to zero for all training sam-
ples i that fall into leaves other than �(x0, ξ), and is equal to one
over the leaf size for all training samples that fall into �(x0, ξ):

wi(x0, ξ) = 1{xi ∈ R�(x0,ξ)}∑n
j=1 1{xj ∈ R�(x0,ξ)} . (2)

Motivated by the lack of stability and tendency to overfit of indi-
vidual trees, RFs build B trees (T (ξb))

B
b=1, based on B bootstrap

samples of D, and consider their average prediction. Moreover,
in each split within each tree, it is common to consider only a
random subsample of p̃ out of p regressors. This step aims to
diversify the ensemble of trees by avoiding excessive use of the
same regressors for splitting. Common choices for p̃ are �√p�
or � p

3� (Probst, Wright, and Boulesteix 2019), where �z� floors
the real number z to the nearest integer. The RF mean prediction
can thus be expressed as

μ̂RF(x0) = 1
B

B∑
b=1

n∑
i=1

wi(x0, ξb)yi

=
n∑

i=1
wi(x0)yi, (3)

where

wi(x0) = 1
B

B∑
b=1

wi(x0, ξb) (4)

is the weight for training sample i, averaged across all B trees.
By construction, the weights (wi(x0))

n
i=1 are nonnegative and

sum to one. Thus, wi(x0) can be interpreted as the empirically
estimated probability that the new test sample observation is
equal to yi.

Quantile Regression Forest. Conceptually, μ̂RF(x0) is an esti-
mate of the conditional mean E[Y|X = x0]. As described above,
it is obtained as a weighted sum over all training observations.
Meinshausen (2006) extends this framework to estimating the
cumulative distribution function (CDF) of Y , which is given by
E[1(Y ≤ t)|X = x0] = P(Y ≤ t|X = x0), where t ∈ R is a
threshold value. The similarity to RFs becomes apparent in the
last expression. Using the weights from (4), one can approximate
the CDF by the weighted mean over the binary observations
1(yi ≤ t):

P̂(Y ≤ t|X = x0) =
n∑

i=1
wi(x0)1(yi ≤ t). (5)

That is, QRFs estimate the CDF of Y via the weighted empir-
ical CDF of the training sample outcomes (yi)

n
i=1, using the

weights (wi(x0))
n
i=1 produced by RFs. This estimator is practi-

cally appealing as it arises as a byproduct of standard RF software
implementation. Furthermore, its representation in terms of a
weighted empirical CDF enables a theoretical understanding of
its properties by leveraging tools from nonparametric statistics
(Lin and Jeon 2006; Meinshausen 2006). In this article, we con-
sider the standard variant of QRFs which uses squared error as a
criterion for finding splits (and thus growing the forest’s individ-
ual trees). Various other splitting criteria have been analyzed in
the literature. In particular, Cevid et al. (2022) propose to use a
splitting criterion based on distributional similarity. Since their
RF variant retains the weighted empirical CDF representation
(see their Section 2.2), our Topk method can be applied to it as
well.

2.2. Forecast Evaluation

Since we generate probabilistic forecasts, we need a tool to
evaluate them. For this, we use the Continuous Ranked Proba-
bility Score (CRPS), a strictly proper scoring rule. Scoring rules
are loss functions for probabilistic forecasts. We use them in
negative orientation, so that smaller scores indicate better fore-
casts. When evaluated using a proper scoring rule, a forecaster
minimizes their expected score by stating what they think is the
true forecast distribution. Under a strictly proper scoring rule,
this minimum is unique within a suitable class of forecast distri-
butions. Conceptually, strictly proper scoring rules incentivize
careful and honest forecasting. See Gneiting and Raftery (2007)
for a comprehensive technical treatment, and Winkler (1996)
and Gneiting and Katzfuss (2014) for further discussion and
illustration. The CRPS (Matheson and Winkler 1976) is defined
as

CRPS(F̂, y) =
∫ ∞

−∞

(
F̂(z) − 1{z ≥ y}

)2
dz (6)

where F̂ denotes the CDF implied by the forecast distribution
and y denotes the true outcome. Gneiting and Raftery (2007,
sec. 4.2) discuss connections to the concept of statistical energy
(e.g., Székely and Rizzo 2017) and note that the CRPS can
equivalently be expressed via its kernel representation given by
CRPS(F̂, y) = EF̂

[|Z − y|] − 1
2EF̂

[|Z − Z′|] , where Z and
Z′ are two independent draws from F̂. For various forms of
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F̂, efficient computation methods for the CRPS are available,
either via analytical expressions (if F̂ is parametric) or via a
representation due to Laio and Tamea (2007) (if F̂ is a discrete
empirical distribution). See Jordan, Krüger, and Lerch (2019) for
an overview, and Jordan (2016) for details.

The CRPS allows for very general types of forecast distri-
butions F̂. In particular, the forecast distribution may be dis-
crete, that is, it need not possess a density. This allows for
evaluating forecast distributions based on (weighted) empirical
CDFs, which arise in the case of QRFs. In the special case that
the forecast distribution is deterministic, that is, it places point
mass on a single outcome, the CRPS reduces to the Absolute
Error (AE). Thus, numerical values of the AE and CRPS can
meaningfully be compared to each other.

Jordan, Krüger, and Lerch (2019) provide an efficient imple-
mentation of the CRPS for weighted empirical distributions
in their R-package scoringRules. Let (yi)

n
i=1 denote the

response values from the training data, and denote by y(i) their
ith ordered value, with y(1) ≤ y(2) ≤ · · · ≤ y(n). Furthermore,
let w(i) denote the weight corresponding to y(i). Then the CRPS
for a realization y ∈ R is given by

CRPS(F̂, y) = 2
n∑

i=1
w(i)(y(i) − y)

×
⎛⎝1{y < y(i)} −

⎛⎝ i∑
j=1

w(j)

⎞⎠ + w(i)
2

⎞⎠ , (7)

where we dropped the dependence of w(i) on a vector x0
of covariates at this point for ease of notation. Equation (7)
extends Jordan, Krüger, and Lerch’s eq. (3) to the case of non-
equal weights, based on their implementation in the function
crps_sample. In the case of sparse weights, one may omit
the indices i with w(i) = 0 from the sum at (7) in order to speed
up the computation.

Additionally to the CRPS, we also report results for the
squared error (SE). In the present context, the SE is given by

SE(F̂, y) = (y −
n∑

i=1
wiyi)

2. (8)

Hence, the SE depends on the forecast distribution F̂ via its mean∑n
i=1 wiyi only.

3. Experimental Results

In order to assess the statistical performance of the simplified
forecast distributions, we conduct experiments on 18 datasets
considered by Grinsztajn, Oyallon, and Varoquaux (2022) in the
context of numerical regression. The authors demonstrate that
tree-based methods compare favorably to neural networks for
these datasets. Their selection of datasets aims to represent real-
world, “clean” datasets with medium size as well as heteroge-
neous data types and fields of applications. If deemed necessary,
some basic preprocessing was applied by Grinsztajn, Oyallon,
and Varoquaux (2022). Details can be found in Section 3.5 and
Appendix A.1 in their paper, and in Table S3 of our online sup-
plement. The dataset delays_zurich_transport con-
tains about 5.6 million data points in its original form. For com-
putational reasons, we reduced the size of this dataset through

Table 2. Results for forecast distributions.

Absolute CRPS CRPS relative to full
Dataset Full Top3 Top5 Top10 Top20 Top50

cpu_act 1.2508 1.21 1.08 1.00 0.96 0.95
pol 1.4203 1.50 1.28 1.10 1.01 0.96
elevators 0.0014 1.22 1.10 1.01 0.96 0.95
wine_quality 0.2565 1.35 1.20 1.09 1.02 0.99
Ailerons 0.0001 1.23 1.11 1.01 0.97 0.96
houses 0.1229 1.19 1.08 0.99 0.96 0.95
house_16H 0.1984 1.32 1.17 1.06 1.01 0.98
diamonds 0.1320 1.34 1.21 1.11 1.05 1.01
Brazilian_houses 0.0256 0.88 0.82 0.78 0.79 0.85
Bike_Sharing_Demand 46.0292 1.26 1.15 1.06 1.02 1.00
nyc-taxi-green-dec-2016 0.1505 1.39 1.24 1.12 1.06 1.02
house_sales 0.0995 1.25 1.14 1.04 0.99 0.97
sulfur 0.0123 1.05 0.97 0.94 0.95 0.97
medical_charges 0.0376 1.35 1.21 1.11 1.05 1.01
MiamiHousing2016 0.0778 1.20 1.10 1.02 0.98 0.97
superconduct 3.6341 1.14 1.08 1.02 1.00 0.99
yprop_4_1 0.0140 1.38 1.25 1.14 1.08 1.03
delays_zurich_transport 1.6174 1.33 1.19 1.10 1.05 1.02
Median – 1.25 1.14 1.05 1.00 0.98

NOTE: The table reports the CRPS of the full RF as well as the CRPS for
Top{3, 5, 10, 20, 50} relative to the full RF, that is, CRPSTop k/CRPSFull. A value smaller
than 1 means that Topk outperforms the full RF. The last row lists the median
relative CRPS across datasets.

random subsampling, to approximately 1.1 million data points
(20% of the original observations). We did not apply further
preprocessing of any of the datasets in order to retain com-
parability. We allocate 70% of each dataset for training our
models and reserve the remaining 30% for testing. For each
dataset, we train a RF, and then evaluate its performance by
computing the average CRPS and SE, as introduced in (7) and
(8) over the test dataset. Our main interest is in studying the
impact of the parameter k which governs the number of support
points of the sparsified forecast distribution. We consider a
grid of choices k = 1, . . . , 50 and denote these sparse RFs
as “Topk”. Our standard choice of RF hyperparameters is a
combination of default values of the machine learning software
packagesscikit-learn (Pedregosa et al. 2011) andranger
(Wright and Ziegler 2017) which are popular choices in the
Python (van Rossum et al. 2011) and R (R Core Team 2022)
programming languages, respectively. In summary, we consider
a random selection of √p out of p possible features at each split
point, do not impose any form of regularization in terms of tree
growth restriction, and set the number of trees to 1000 in order
to obtain a large and stable ensemble. These choices, which are
also listed in the first row (entitled “standard”) of Table S5 in
the online supplement, are used for the analysis in Sections 3.1
and 3.2. In Section 3.3, we further consider the effects of tuning
hyperparameters.

3.1. Probabilistic Forecasts

Table 2 presents the CRPS for the full RF and the relative CRPS
of Topk, for k ∈ {3, 5, 10, 20, 50}, compared to the full RF. For
example, a relative CRPS of 1.5 indicates a 50% larger CRPS for
the Topk version compared to the full RF. The three smallest
values for k seem especially attractive in terms of simplicity
and ease of communication. While the two larger choices k ∈
{20, 50} are less attractive in terms of simplicity, we also consider
them in order to assess the tradeoff between simplicity and
performance.
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Using only k = 3 support points performs worse than the
full RF, with a median performance cost of 25% across datasets.
While this result is unsurprising from a qualitative perspective,
its magnitude is interesting, and gives a first indication of the
performance cost of using a rather drastic simplification of the
original forecast distribution. For each single dataset, we find
that the performance of Topk improves monotonically when
increasing k from 3 to 5, from 5 to 10, and for all datasets but one
when increasing k from 10 to 20. This pattern is plausible, given
that we move from a drastic simplification (k = 3) to less drastic
versions. Compared to the full RF, Top5 implies a median loss
increase of 14%, whereas Top10 yields a median loss increase of
5%. Top20 performs equally well as the full RF in the median. For
most datasets, Top50 slightly enhances predictive performance
compared to the full RF. Whether k = 50 support points remain
worth interpreting depends on the application at hand. Only for
a few datasets, Top50 is not sufficient to reach the performance
of the full RF, but performance costs are small even for these
datasets.

In order to contextualize the magnitude of our presented
results (such as Top3’s median CRPS increase of 25% compared
to the full RF), we next present results on two simple bench-
mark methods.3 First, we consider a deterministic point forecast
which assumes that the full RF’s median forecast materializes
with probability one.4

This is a very optimistic point (rather than probabilistic)
forecast, containing no uncertainty. As noted earlier, its CRPS
is the same as its AE. We consider this benchmark in order
to quantify the costs of ignoring uncertainty altogether. We
clearly expect these costs to be positive, that is, we expect the
point forecast to perform worse than the full RF. Second, we
use the CRPS of the unconditional empirical distribution of the
response variable in the training sample. This distribution places
a uniform weight of 1/n on each training sample observation, in
contrast to the QRF weights w(x0) that depend on the feature
vector x0. The unconditional distribution is a very conservative
forecast, as no information about the features is used whatsoever.
Qualitatively, we clearly expect this forecast to perform worse
than the full RF. Quantitatively, the difference in performance
of the unconditional versus conditional forecast distributions
captures the predictive content of the features (see e.g., Gneiting
and Resin 2023, sec. 2.5). Both benchmarks are visualized jointly
with Top3 results in Figure 2.

As expected, the relative CRPS of the point forecast (shown
in blue) exceeds one for most datasets, indicating that it is
generally inferior to the full RF model. Notably, an exception is
observed for Brazilian_houses, where the point forecast’s
relative CRPS is smaller than one. This result appears to be due
to prediction uncertainty being very small for this dataset; see
Figure 13 in the online supplement for Grinsztajn, Oyallon, and

3We refer to Grinsztajn, Oyallon, and Varoquaux (2022) for detailed compar-
isons of RF point forecasts to other tree-based models and neural networks.

4Formally, this forecast is characterized by the CDF F̂δ(z) = 1(z ≥
med(F̂Full(z)), where med(F̂full) denotes the median implied by the CDF
of the full RF’s forecast distribution. That is, the CDF F̂δ is a step function
with a single jump point at the median forecast of the full RF. We choose
the median functional here because the latter is the optimal point forecast
under absolute error loss, to which the CRPS reduces in the case of a
deterministic forecast.

Figure 2. Benchmarking performance. Blue bars: Relative CRPS of a determinis-
tic point forecast (median) as a benchmark that ignores uncertainty. Ochre bars:
Relative CRPS of the unconditional forecast distribution, yielding a conservative
benchmark that ignores features. Green bars: Relative CRPS of Top3, as listed in
Table 2. In each case, relative CRPS results are compared to the full RF. That is,
a relative CRPS smaller than 1 (represented by horizontal line) indicates that the
method performs better than the full RF.

Varoquaux (2022). Indeed, for this dataset, the response variable
seems to mostly be a linear combination of a subset of the
features. Furthermore, Top3 (shown in green) performs similar
to or better than the point forecast for all datasets, demonstrating
the usefulness of incorporating additional uncertainty in the
forecast. Note that the point forecast has access to the full RF
forecast distribution, using the median of this distribution as
a point forecast. By contrast, Top3 only has access to the three
most important support points of the RF forecast distribution.

The relative CRPS of the unconditional forecast distribution
(displayed in ochre in Figure 2) exceeds two for most datasets,
indicating that the features are generally very useful for predic-
tion. An exception occurs for the last two datasets (yprop_4_1
and delays_zurich_transport). In these cases, the RF
appears unable to learn meaningful connections between the
features and the target variable. Figure 13 in the online supple-
ment of Grinsztajn, Oyallon, and Varoquaux (2022) supports
this interpretation, reporting low predictability (in terms of low
out-of-sample R2) for these datasets. In this situation, we cannot
expect a Topk-model to perform well compared to the full RF.
To see this, consider the stylized case of the features being
entirely uninformative. Subsequently, the unconditional distri-
bution (placing a weight of 1/n on all training sample responses)
is the best possible forecast, which is in sharp contrast to Topk
(for which k weights are nonzero and large by construction,
whereas the remaining n − k weights are forced to zero).

In order to further study the properties of Topk forecast
distributions, Table 3 reports the average weight sums across test
cases, for different values of k. The weight sums are computed
before our normalization step (see Section 1) which re-scales all
weight sums to one. For a given choice of k, the unnormalized
weight sums can vary in magnitude, both across datasets and
from test case to test case. By construction, the weight sums
increase with k. Interestingly, many datasets yield a large weight
sum for Top3, exceeding 10% for all but four datasets. For Top50,
the average weight sum exceeds 50% for most datasets. These
numbers are remarkable, given that the datasets include thou-
sands of training samples (n, see rightmost column of Table 3)
that could potentially be used as support points for the RF



THE AMERICAN STATISTICIAN 7

Table 3. Topk weight sums.

Average sum
Dataset Top3 Top5 Top10 Top20 Top50 n

cpu_act 0.094 0.135 0.212 0.318 0.504 5734
pol 0.073 0.104 0.159 0.233 0.359 10.500
elevators 0.119 0.166 0.252 0.366 0.555 11.619
wine_quality 0.150 0.189 0.258 0.350 0.513 4547
Ailerons 0.119 0.168 0.257 0.374 0.566 9625
houses 0.143 0.201 0.304 0.435 0.634 14.447
house_16H 0.071 0.102 0.162 0.247 0.402 15.948
diamonds 0.257 0.348 0.494 0.656 0.851 37.758
Brazilian_houses 0.202 0.278 0.406 0.558 0.763 7484
Bike_Sharing_Demand 0.248 0.334 0.473 0.628 0.821 12.165
nyc-taxi-green-dec-2016 0.172 0.234 0.337 0.461 0.642 407.284
house_sales 0.116 0.160 0.240 0.345 0.522 15.129
sulfur 0.212 0.296 0.438 0.602 0.811 7056
medical_charges 0.223 0.304 0.438 0.590 0.789 114.145
MiamiHousing2016 0.196 0.267 0.385 0.520 0.704 9752
superconduct 0.390 0.497 0.617 0.708 0.805 14.884
yprop_4_1 0.111 0.149 0.216 0.304 0.456 6219
delays_zurich_transport 0.015 0.024 0.048 0.095 0.230 765.180

NOTE: Average sum of un-normalized Top{3,5,10,20,50} weights. The last column
reports the number of observations in the training set.

Table 4. Results for conditional mean forecasts.

Absolute SE SE relative to Full
Dataset Full Top3 Top5 Top10 Top20 Top50

cpu_act 6.5359 1.11 0.99 0.93 0.91 0.91
pol 38.5033 1.61 1.37 1.16 1.03 0.95
elevators 9.22×10−6 1.09 0.98 0.89 0.85 0.86
wine_quality 0.3485 1.42 1.24 1.11 1.03 1.00
Ailerons 3.22×10−8 1.15 1.02 0.94 0.91 0.91
houses 0.0590 1.16 1.03 0.94 0.91 0.92
house_16H 0.3011 1.49 1.31 1.15 1.06 1.00
diamonds 0.0563 1.37 1.24 1.12 1.06 1.02
Brazilian_houses 0.0072 1.05 1.12 0.99 0.94 0.94
Bike_Sharing_Demand 10126.7983 1.22 1.11 1.03 0.99 0.99
nyc-taxi-green-dec-2016 0.1528 1.38 1.23 1.12 1.05 1.02
house_sales 0.0382 1.22 1.11 1.02 0.96 0.94
sulfur 0.0015 0.69 0.69 0.73 0.81 0.90
medical_charges 0.0073 1.36 1.22 1.11 1.05 1.01
MiamiHousing2016 0.0243 1.15 1.05 0.97 0.94 0.94
superconduct 87.2592 1.05 1.02 0.97 0.95 0.95
yprop_4_1 0.0010 1.26 1.16 1.10 1.05 1.02
delays_zurich_transport 9.3282 1.33 1.19 1.10 1.05 1.02
Median – 1.22 1.12 1.02 0.98 0.95

NOTE: The table reports the SE of the full RF as well as the SE for Top{3,5,10,20,50}
relative to the full RF, that is, SETop k/SEFull . The last row lists the median relative SE
for each choice of k across datasets.

forecast distributions. If the weights were uniform, we would
hence observe Topk weight sums of k/n. This is in sharp contrast
to our empirical finding that a few large weights dominate for
most datasets. Lin and Jeon (2006) find similar results in their
work, where they consider RFs as adaptive nearest-neighbor
methods and investigate the influence of the minimum number
of samples per leaf. Figures 1(c), (d), and 5 show few large
weights for synthetic datasets. The presence of a small number
of important weights explains why the simplification pursued
by Topk often results in modest (if any) performance costs as
compared to the full RF.

3.2. Mean Forecasts

Let us turn our attention towards conditional mean forecasts,
for which results in terms of squared error are shown in Table 4.
We notice a similar pattern as in the probabilistic scenario: apart

from Top3 outperforming the full RF for one dataset (sulfur),
Top3 performs worse than the full RF for the remaining datasets,
with a maximum performance cost of 61% for pol.

This results in a median SE increase of 22% for Top3.
Top5 still shows a 12% median increase and for Top10, the
median performance almost matches the full RF’s performance.
Top20 and Top50 even outperform the full RF, yielding median
improvements of 2% and 5%, respectively. Compared to
the results for forecast distributions (Table 2), the results in
Table 4 indicate that the performance costs of simplicity are
comparatively lower in the case of mean forecasts, with median
relative losses being somewhat smaller for a given value of k.

3.3. Varying Hyperparameters

Compared to other modeling algorithms, RFs have relatively
few hyperparameters. Nevertheless, tuning its hyperparameters
can improve the performance of RFs (Probst, Wright, and
Boulesteix 2019). The most important hyperparameters control
the depth of each individual tree, as well as the number of
randomly selected regressors considered for splitting. The
depth of a tree can be restricted directly (“maximum depth”)
or indirectly by restricting leaf and split sizes (“minimum leaf
size” and “minimum split size,” respectively). The number of
regressors considered for splitting is often denoted as “max
features” or “mtry” (the latter term is used, for example in
the R packages randomForest (Liaw and Wiener 2002)
and ranger (Wright and Ziegler 2017)). In what follows, we
study how different hyperparameter sets influence the Topk
prediction and whether a hyperparameter set that optimizes the
full RF is also beneficial for Topk. We therefore investigate the
influence of “max features” and one of the depth-regularizing
hyperparameters, “minimum leaf size”, on the Topk approach.
To do so, we consider a grid search for both, the full RF and
Top3, with 5-fold cross-validation on the training set of each
dataset. Due to the size of medical_charges, nyc-taxi-
green-dec-2016 and delays_zurich_transport,
we use a validation set which contains 25% of the training
set instead. Further, the latter two are down-sampled to 30%
and 15% of their original training set size, respectively. For
brevity, our analysis of hyperparameter tuning focusses on
the case k = 3, which is the most drastic simplification we
consider.

Figure 3 visualizes the CRPS of Top3 relative to the full RF’s
CRPS for three different hyperparameter sets. In each case, we
consider the same hyperparameter set for Top3 and the full RF.
The green bars show the results with standard hyperparameters,
as listed in Table 2. The red bars indicate the relative perfor-
mance with the respective hyperparameter set that optimizes the
full RF, while the blue bars visualize the relative performance
with the hyperparameters that optimize the CRPS of Top3.
When hyperparameters are tuned on the full RF, Top3 perfor-
mance tends to slightly decrease overall. Across the datasets,
the median relative CRPS is 1.31, compared to 1.25 for the
standard setting. Conversely, if hyperparameters are tuned on
Top3, the relative performance of Top3 is mostly better than in
the standard version, reaching a median relative CRPS of 1.20.

Figure 4 presents results for point forecasting performance,
which are similar to the probabilistic case. Tuning on the full RF
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Figure 3. Hyperparameter tuning performance (probabilistic forecasts). The figure
shows the relative CRPS of Top3 compared to the full RF, for different hyperparam-
eter settings. Green bars: standard hyperparameters, as listed in Table 2. Red bars:
hyperparameters that optimize the full RF. Blue bars: hyperparameters that optimize
Top3. Hyperparameter tuning is based on CRPS.

Figure 4. Hyperparameter tuning performance (point forecasts). The figure shows
the relative SE of Top3 compared to the full RF, for different hyperparameter settings.
Green bars: standard hyperparameters, as listed in Table 2. Red bars: hyperparam-
eters that optimize the full RF. Blue bars: hyperparameters that optimize Top3.
Hyperparameter tuning is based on SE.

hurts Top3, with a median relative SE of 1.32, compared to 1.22
in the standard case. By contrast, tuning on Top3 benefits Top3,
with a median relative SE of 1.13. In a small minority of cases,
tuning is not beneficial in terms of the relative loss.

Hence, despite its simplicity, Top3 can perform similar to
the full RF given suitable hyperparameter choices. Overall, the
relative performance of Top3 obtained under the standard set-
ting is between the performance obtained under the two other
hyperparameter settings. Furthermore, the full RF and Top3
require different sets of hyperparameters in order to perform
well. Ideally, users of the Topk method should thus choose
hyperparameters based on the performance of Topk itself, rather
than the performance of the full RF.

4. Stylized Analytical Model

In this section, we construct a stylized analytical framework
which helps explain our experimental findings presented in
Section 3: For many datasets, simplified RFs perform similar
to full RFs even for relatively small choices of k. This find-
ing, and especially the possibility that simplified RFs may even
outperform full RFs, deserves further investigation. Motivated
by the structure of RF forecast distributions (see Section 2),

we consider a model in which the true forecast distribution is
discrete with support points u = (ui)

n
i=1 and corresponding

(true) probabilities ω∗ = (ω∗
i )n

i=1 that are positive and sum to
one. Specifically, we let

ω∗
i =

{
θ∗/k if i ∈ I
(1 − θ∗)/(n − k) if i /∈ I ,

(9)

where I ⊆ {1, 2, . . . , n} is a subset of “important” indexes
with |I| = k. The corresponding “important” probabilities
(ω∗

i )i∈I sum to θ∗ ∈ [0, 1], whereas the other, “unimportant”,
probabilities sum to 1 − θ∗. To justify the notion of “important”
probabilities, we will focus on choices of θ∗ and k that satisfy
θ∗/k > (1 − θ∗)/(n − k).

In addition to the true forecast distribution just described, we
consider an estimated forecast distribution that uses the same
support points u, together with possibly incorrectly estimated
probabilities ω = (ωi)

n
i=1. We assume that the estimated proba-

bilities can be described by the following model:

ωi =
{

θ Z1,i if i ∈ I
(1 − θ) Z2,i if i /∈ I ,

(10)

where θ ∈ [0, 1], Z1 is a draw from a Dirichlet distribution with
k-dimensional parameter vector (d1, . . . , d1), with d1 > 0, such
that each element of Z1 has expected value 1/k and variance
(k − 1)/(k2(kd1 + 1)). Similarly, Z2 is a draw from another,
independent Dirichlet distribution with (n − k)-dimensional
parameter vector (d2, . . . , d2), where d2 > 0. This means that
the expected probabilities are given by

E[ωi] =
{

θ/k if i ∈ I
(1 − θ)/(n − k) if i /∈ I .

(11)

In the following, we assume that 2 ≤ k ≤ n − 2, which ensures
that there are at least two “important” and “unimportant” sup-
port points, respectively. This restriction ensures that weight
estimation within both sets is a nontrivial problem.5

Thus, if θ 
= θ∗, the forecast model’s expected probabil-
ities differ from the true ones in (9). The parameters d1 and
d2 represent the precision of the forecast model’s probabilities
around their expected values. Small values for d1, d2 indicate
noisy probabilities, whereas large values for d1, d2 correspond to
probabilities close to their expected values. This is a property of
the variance of Dirichlet-distributed random variables as noted
above for the case of Z1. Conceptually, the above model provides
a stylized probabilistic description of the estimated probabilities
ω produced by a forecasting method like RFs. Thereby, the
model does not aim to specify the mechanism by which the
forecasting method generates these probabilities.

Figure 5 illustrates this setup, with n = 20 and the important
indexes given by I = {1, 2, 3, 4, 5}. The left panel shows a
situation in which the estimated probabilities are quite noisy
(d1 = d2 = 1) but are correct in expectation (θ = θ∗). In the
right panel, the estimated probabilities are less noisy (d1 = d2 =
10) but are false in expectation (θ = 0.4 
= 0.8 = θ∗).

5If there was only one important support point, for example, the probability
of this support point would necessarily be equal to θ , rendering weight
estimation trivial.
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Figure 5. Simulated probability estimates. In both panels, we set n = 20, k = 5, and θ∗ = 0.8. The other parameters (θ , d1 and d2) are as indicated in the header.
Horizontal segments represent true probabilities, dots represent estimated probabilities.

In the special case that θ = θ∗, d1 → ∞, d2 → ∞, the
forecast model coincides with the true model. Furthermore, in
the case θ = 1, the forecast model is very similar to the “Topk”
strategy (retaining the k most important probabilities, rescaling
them to sum to one, and setting all other probabilities to zero).
The somewhat subtle difference between the analytical model
and our practical implementation of Topk is that the indexes of
the important weights are fixed in the analytical model (given
by the set I), whereas they are chosen as the k largest empirical
weights in practice. Exact modeling of our practical procedure
would seem to complicate the analysis substantially without
necessarily yielding further insights. While stylized, the ana-
lytical model described above is flexible enough to cover var-
ious situations of applied interest. For example, the relation
between “important” versus “unimportant” values of the true
probabilities can be governed flexibly via the parameters n, k,
and θ∗. While we assume that the set I of important indexes is
known to the forecast model, the possibility of a poor forecasting
model can be represented by a value θ that differs substantially
from θ∗, and/or small values of d1, d2 that correspond to noisy
estimates. Thus, the forecast model could even yield estimates
of the “unimportant” probabilities that greatly exceed those of
the “important” ones.6 For given support points u and estimated
probabilities ω, the expected squared error and expected CRPS
implied by the analytical framework are given by

E[SE(ω, u)] =
n∑

i=1
ω∗

i (ui −
n∑

j=1
ωjuj)

2, (12)

E[CRPS(ω, u)] =
n∑

i=1

n∑
j=1

ωi(ω
∗
j − ωj/2) |ui − uj|; (13)

the expression for the CRPS follows from adapting the repre-
sentation in eq. 2 of Jordan, Krüger, and Lerch (2019). In both
cases, the expected value is computed with respect to the discrete
distribution with support points u and associated true proba-
bilities ω∗. As noted in (10), we cast the predicted probabilities
ω as scaled draws from two Dirichlet distributions. We further
assume that the support points u are n draws from a standard
normal distribution; these are mutually independent and inde-
pendent of ω. Using these assumptions, we obtain the following

6In practice, where the set of important indexesI is not known, this situation
corresponds to one in which the largest empirical weights are not helpful
for predicting new test sample cases.

expressions for the (unconditionally) expected squared error
and CRPS:

E[SE] =
∫ ∫

E[SE(ω, u)]dFω(ω)dFu(u)

= 1 − 2
{

θ∗θ
k

+ (1 − θ∗)(1 − θ)

n − k

}
+ θ2

k
+ (1 − θ)2

n − k
+ θ2(k − 1)

k(d1k + 1)

+ (1 − θ)2(n − k − 1)

(n − k)(d2(n − k) + 1)
, (14)

E[CRPS] =
∫ ∫

E[CRPS(ω, u)]dFω(ω)dFu(u)

= 1√
π
E[SE], (15)

where Fω is the distribution of the estimated probabilities that
is implied by our model setup, and Fu is the joint distribution
of n independent standard normal variables. The proof can be
found in Section C of the online supplement. The result that the
expressions forE[SE] andE[CRPS] are identical up to a factor of√

π is a somewhat idiosyncratic implication of our model setup.
In order to interpret the implications of these formulas, we

compare a forecasting method with θ < 1 (representing stan-
dard RFs) to a method with θ = 1 (representing Topk) in the
following.

For given values of n, k, and θ∗, both E[SE] and E[CRPS]
attain their theoretical minimum at θ = θ∗, d1 → ∞ and d2 →
∞.7 This result is unsurprising: Under the stated conditions, the
forecast model coincides with the true model, that is, ω = ω∗
with probability one. Since the squared error is strictly consistent
for the mean (and, similarly, the CRPS is a strictly proper scoring
rule), the true model must yield the smallest possible expected
score.8 As both expected score functions are continuous in θ , d1
and d2, this implies that if θ is sufficiently close to θ∗, and

7Proof: ∂E[SE]
∂di

< 0 for i = 1, 2; this holds for all values of θ , θ∗, n, k, d1, and
d2. It is hence optimal to let d1, d2 go to infinity. Next consider the limiting
expression ofE[SE] as d1, d2 → ∞. Minimizing this expression with respect
to θ yields the solution θ = θ∗.

8While the possibility of exactly matching the true model is unrealistic in
practice, the requirement that the true model perform best is conceptually
plausible, and is the main idea behind forecast evaluation via proper scoring
rules and related tools.
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Figure 6. Expected CRPS as a function of θ . The left panel refers to d2 = 1000 (i.e., precise estimates of “unimportant” probabilities), whereas the right panel assumes
d2 = 0.01 (i.e., noisy estimates). The other parameters are set as follows: n = 100, k = 5, θ∗ = 0.8, d1 = 1000. Solid vertical line marks θ∗, dashed vertical line marks best
value for θ . Shaded area marks range of values for θ that perform worse than θ = 1 (corresponding to the Topk method).

d1, d2 are sufficiently large, then the standard approach will
outperform the Topk method.

Conversely, the following conditions favor the Topk method
over the standard approach:

• |θ − θ∗| > |1 − θ∗|, that is the standard method’s implicit
assumption that θ∗ = θ is worse than Topk’s implicit assump-
tion that θ∗ = 1

• d1 is large, that is important probabilities are estimated pre-
cisely

• d2 is small, that is estimates of unimportant probabilities are
noisy

If these conditions, or an appropriate combination thereof, hold,
then the Topk approach can be expected to perform well.

Figure 6 illustrates the above discussion. In the left panel
(with d2 = 1000), the “unimportant” probabilities are estimated
very precisely. Here the Topk method is superior only to val-
ues θ ≤ 0.6 that are clearly smaller than the true parameter
θ∗ = 0.8. In the right panel (d2 = 0.01), the estimates of the
unimportant probabilities are very noisy. Hence it is beneficial
to focus on the important probabilities which are estimated
precisely (since d1 = 1000). Accordingly, the Topk method—
which focuses on the important probabilities exclusively—is
superior to a wide range of values for θ . Interestingly, this range
includes the true parameter θ = θ∗, that is, the Topk method
can be beneficial even if the probability estimates are correct in
expectation.

5. Discussion

This article has considered simplified RF forecast distributions
that consist of a small number k of support points, in contrast
to thousands of support points (possibly equal to n, the size of
the training set) of the original forecast distribution. The Topk
forecast distribution can be viewed as a collection of k scenarios
with attached probabilities. It hence simplifies communication
and improves interpretability of the probabilistic forecast. Our
empirical results in Tables 2 and 4 imply that simplified dis-
tributions using 5 or 10 support points often attain similar
performance as the original forecast distribution, while larger
choices of k, for example, 20 or 50, even increase performance
slightly in many cases. Our analytical framework in Section 4
offers a theoretical rationale for these results. In particular, if

small weights are estimated imprecisely by the full RF, using only
the k largest weights can improve performance. Our empirical
analysis further shows that when tuning hyperparameters to the
target value for k, even k = 3 can yield very good results.

A limitation of our proposed method is that focusing on a
small number of weights is not promising if the original RF
weights are close to equal. This occurs, in particular, if the
regressors are entirely uninformative so that the predictive dis-
tribution for a new test point X = x0 is given by the equally
weighted unconditional distribution of the training responses
(yi)

n
i=1, independently of x0. The latter distribution is consistent

for the true forecast distribution as n → ∞, while focusing on
a finite number of k weights prevents consistency. In terms of
predictability, two of the 18 datasets we study are reminiscient
of this situation (see Section 3.1).

While we have focused on the tradeoff between simplicity (as
measured by k) and statistical forecasting performance, the opti-
mal choice of k depends on the preferences of the forecaster and
the forecast users. These preferences are necessarily subjective
and likely application specific. For choosing k in practice, we
recommend to first assess the statistical performance of various
choices of k for the application or dataset of interest, similar to
our empirical analysis in Section 3. If ease of communication
is not a concern, forecasters can simply pick the value of k
that optimizes (estimated) performance. Conversely, if ease of
communication matters, smaller values for k may be prefer-
able even at the price of reduced statistical performance. To
navigate this tradeoff in practice, forecasters might interview
potential users about their perceived cognitive costs of various
choices of k. For example, Altig et al. (2022) argue that k = 5
resonates well with participants of an online survey on firm
performance.

Finally, the idea of simplifying predictions by sparsifying
observation weights can possibly be extended to methods other
than RFs. For example, the predictions of linear regression,
ridge regression, and kernel representations of certain neural
network models can be represented as weighted sums of training
sample outcomes (see e.g., Jacot, Gabriel, and Hongler 2018;
Goulet Coulombe, Göbel, and Klieber 2024).
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