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A B S T R A C T

In laminar flow chemistry, tubular reactors are often operated in the transition regime were neither the axial 
dispersion model nor the pure convection model are valid. This paper presents for solute transport under 
Poiseuille flow models for the residence time distribution (RTD) in the transition regime missing previously. A 
novel approach uses an assumed outlet concentration field to calculate the RTD fully analytically via the mixing 
cup average concentration and its moments. The proposed mechanistic transition regime model (MTR model) 
depends on the time scale ratio of transversal diffusion and space time as sole parameter, is predictive for straight 
tubes and recovers the pure convection and axial dispersion models in the limits. In addition, a simplified 
compartment model based on a plug flow reactor followed by tanks-in-series is proposed (dTiS model). In 
combination with a correlation for a dispersion reduction factor, both models are predictive for coiled tubes and 
can be used for reaction engineering design. They are also useful to predict or characterize RTDs in other ap
plications, as demonstrated for a pneumatic flotation cell.

1. Introduction

1.1. Continuous flow chemistry

Chemical engineering can contribute in a number of ways to 
achieving the 17 sustainable development goals set by the United Na
tions in 2015 by 2030 (Aristizábal-Marulanda et al., 2024) and beyond 
(Bollini et al., 2023). In production, sustainability essentially requires 
making the best use of educts by maximizing yield while reducing waste 
and energy consumption, a goal which may be achieved for many pro
cesses by applying continuous flow chemistry (Plutschack et al., 2017) 
instead of batch reactors. In continuous flow chemistry (CFC), a chem
ical reaction is run in a continuous stream flowing through channels or 
tubing. While operation in batch mode (e.g. in stirred tanks) has its own 
benefits (Holtze and Boehling, 2022), CFC offers some major advantages 
as compared to batch production. Besides faster and safer reactions in 
drastically reduced reactor sizes, these include improved control over 
temperature and product quality, cleaner and more sustainable prod
ucts, and the integration of typically separate processes such as synthesis 
(Hartman and Jensen, 2009), work-up and analysis. To obtain full 
benefit of CFC in reaction technology, it should be combined with in
tegrated product and process design based on a fundamental under
standing of reactors and reactions (Agar et al., 2023). One problem in 

this context is dispersion, which is the process whereby a locally 
concentrated solute is distributed in a solvent toward the equilibrium 
condition of uniform concentration (Probstein, 1994). In CFC, the pipe 
diameter is usually small resulting in laminar flow. While dispersion in 
laminar flow reactors is largely understood, it is not modelled properly 
in the transition regime (also called intermediate regime) where both, 
transversal diffusion and longitudinal convection determine solute 
transport.

1.2. Dispersion

The effects on solute transport resulting from the combined action of 
molecular diffusion and the non-uniform axial velocity in a shear flow 
are known as Taylor-Aris dispersion (Aris, 1956; Taylor, 1953). This 
type of axial dispersion is a key phenomenon in reactor engineering that 
can affect yield and selectivity when reactions are carried out in empty 
or packed bed tubular reactors. While large dispersion can create con
centration gradients that may be useful for studying biochemical re
actions (Wang et al., 2017), low dispersion is desirable in purification 
and separation applications (Datta and Ghosal, 2009) such as on-chip 
capillary electrophoresis (Bharadwaj et al., 2002) and chromatog
raphy where it contributes to extra-column band broadening (Desmet 
and Broeckhoven, 2019). In flow injection analysis as an automated 
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approach to chemical analysis (Hansen and Miró, 2007), a bolus of a 
chemical sample is injected into the flowing carrier stream; this bolus 
takes on different shape as it disperses downstream depending on the 
parameters of the system.

Beside chemical engineering and chemistry, shear dispersion theory 
has application to a number of other fields including material science 
(continuous production of nano-materials and catalyst), food industry 
(continuous thermal processing of liquid foods (Torres and Oliveira, 
1998), pasteurization of milk in holding tubes (Gutierrez et al., 2010)), 
live sciences (continuous production of pharmaceuticals and bio
pharmaceuticals, continuous virus filtration (Chen et al., 2024)), biology 
(nutrient transport in blood vessels, active swimming micro-organisms 
(Peng and Brady, 2020)) and environmental fluid mechanics 
(spreading of pollutants and contaminants in porous groundwater 
aquifers, rivers (Young and Jones, 1991), estuaries (Chatwin and Allen, 
1985) and constructed wetlands for treating waste-waters from domestic 
and industrial sources (Werner and Kadlec, 2000)). The understanding, 
quantification and proper modeling of the dispersion of dissolved sub
stances in flowing streams is thus of importance for a plethora of 
applications.

Physically, dispersion of soluble matter in a solvent flowing laminar 
with mean linear velocity U through a straight circular pipe (inner 
radius a, inner diameter d = 2a, length L, cross-sectional area A = πa2) 
arises due to the interaction of longitudinal advection and transverse 
molecular diffusion resulting in the exchange of solute between the fast- 
moving fluid near the center and the slow-moving fluid near the wall. 
Accordingly, the degree of dispersion is characterized by the competi
tion of two time scales. The time scale of longitudinal advection is the 
space time τs = L/U, representing the mean (or average) residence time 
of the solvent. The time scale of transversal (radial) diffusion is τd =

a2/D, where D denotes the molecular diffusion coefficient of the solute 
(tracer) which is assumed constant independent of concentration. We 
indicate the ratio between both time scales by α = τd/τs = a2U/LD. The 
models developed in this paper are formulated as a function of α only.

1.3. Residence time distribution

Mixing happens at different scales. The mixing being associated to 
the flow regime and flow patterns within the reactor and occurring over 
the entire reactor volume is characterized by the residence time distri
bution (RTD). The residence time is defined as the time that a material 
element needs to proceed from an inlet of an apparatus or system to its 
outlet. Because different elements follow different paths, there will be a 
spread on the residence time. The distribution of residence time is 
usually determined by an input-response experiment. The differential 
residence time distribution E(t) defines the probability that a fluid ele
ments spends a total time t in the reactor; it is particularly useful to 
quantify the deviation from ideal plug flow. Time integration of E(t)
yields the cumulative residence time distribution F(t) representing the 
fraction of the solute that has spent in the system a time t or less. To 
allow for a better comparison of different residence time distributions, 
each residence time distribution is usually normalized, either by its 
mean value or more common by the space time of the reactor. The 
concept of RTD for the analysis of chemical reactors was first introduced 
by Mac Mullin and Weber (1935) and worked out in more detail for 
continuous flow systems and laminar pipe flow by Danckwerts (1953). 
The main advantage of the RTD is that it allows understanding the flow 
behavior of the system by concentration measurements at the outlet 
without having to account for the complete history of each fluid element 
inside the reactor. While traditionally developed for liquid-based sys
tems, the RTD concept is also applied for gas flows in microreactors 
(Wibel et al., 2013) and for processing of solids (Gao et al., 2012), with 
applications ranging from powders to granular systems like pharma
ceuticals (Bhalode et al., 2021). The status of RTD theory is frequently 
reviewed (Nauman, 1981, 2008; Nechita et al., 2023; Rodrigues, 2021; 

Wen and Fan, 1975).
The development of chemical milli- and microreactors (Hartman and 

Jensen, 2009) in combination with the recent push of CFC e.g. for 
pharmaceutical synthesis (Siguemoto et al., 2020) or polymerization of 
macromolecules (Reis et al., 2019) renewed the interest in character
ization of the flow behavior in such devices through the RTD (Boskovic 
and Loebbecke, 2008; Gobert et al., 2017; Hopley et al., 2019; Huber 
and Santiago, 2007; Vikhansky, 2011). For maximizing process inten
sification via flow chemistry, precise setting of residence time down to 
minutes and seconds is essential (Hessel, 2009). A broad residence time 
distribution generally might have a negative effect on conversions and/ 
or selectivity in syntheses, and can lead to a wide size distribution in 
nanoparticle/cluster syntheses and polymer dispersity. In general, the 
RTD of the reactor should be as narrow as possible to ensure each fluid 
element has the same residence time. This requires the reduction of axial 
dispersion, which will not only yield higher efficiencies but also allow 
integration of the reactor unit with downstream processing (Hereijgers 
et al., 2015).

For realization of larger reaction times, a residence-time providing 
unit is required. Often a helically coiled capillary tube serves for this 
purpose. If centrifugal forces are sufficiently large, a secondary flow 
(Dean vortices) perpendicular to the primary axial flow is induced which 
contributes to a reduction in axial dispersion promoting plug flow 
(Janssen, 1976; Koutsky and Adler, 1964; Savage et al., 2024) and a 
narrowed RTD (Ruthven, 1971). Further narrowing of the RTD can be 
obtained by coiled tubes with flow inversion, where the direction of 
centrifugal forces is regularly reversed (Rossi et al., 2017; Saxena and 
Nigam, 1984; Schmalenberg et al., 2019). For other applications of the 
Taylor-Aris theory, such as the measurement of molecular diffusion 
coefficients (e.g. of large biomolecules (Sadriaj et al., 2022)) by injection 
of narrow sample plug into long coiled tubes, the influence of secondary 
flows on the band broadening should be insignificant. This can be 
ensured by operating below a transitional flow rate (Atwood and 
Goldstein, 1984).

With the increasing interest in flow chemistry (Guidi et al., 2020), 
appropriate modeling of the RTD comes into focus. Physically, the RTD 
is determined by the interplay between convective and diffusive trans
port. In the pure convection (PC) regime, molecular diffusion is negli
gible and each fluid element follows its streamline with no intermixing 
with neighboring elements. Then, the velocity profile causes fluid ele
ments to spend different times within the reactor giving rise to a (usually 
unfavorable) wide RTD. In the PC limit, the RTDs of the solute and the 
solvent are identical and determined by the non-uniform velocity profile 
alone. Closed analytical forms of the diffusion-free RTD in laminar flows 
are known only for certain Newtonian, non-Newtonian or generalized 
velocity profiles (Emami Meibodi, 2022; Levenspiel, 2012; Osborne, 
1975; Wörner, 2015) and few channel shapes (Erdogan and Wörner, 
2013). Typical for the diffusion-free RTD of the PC regime are a sharp 
peak head corresponding to the maximum (centerline) velocity followed 
by long tails leading to infinite variance. The minimum residence time, 
which corresponds to the residence time of the fastest fluid elements, is 
commonly denoted as first-appearance time or breakthrough time. The 
other extreme is the pure diffusion regime which is without relevance 
for CFC. When convection and diffusion are both of importance, the RTD 
can – under certain conditions – be described by the axial dispersion 
(AD) model, either with the Taylor or the more general Taylor-Aris 
expression for dispersion. In this case, flow behavior shows minor de
viations from ideal plug flow and the RTD is a close-to-symmetric bell 
shaped curve which can well be fitted by the AD model.

1.4. Dispersion regime map

Ananthakrishnan et al. (1965) developed a map showing a graphical 
summary of the regions with different dispersion regimes in a straight 
circular pipe as function of two non-dimensional parameters, the Peclet 
number Pe = dU/D and the dimensionless time t/τd. Levenspiel (1999, 
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Fig. 15.2) adapted this diagram for selecting an appropriate RTD model 
by replacing the dimensionless time on the horizontal axis by λ = L/d, 
representing the ratio of length and inner diameter of the pipe. A further 
variant of this map for tracer dispersion in a capillary tube is given by 
Probstein (1994, Fig. 4.6.5). While the axes and regime boundaries 
differ, all these maps show the different regions in which the role of 
diffusion, dispersion, and convection vary in importance. In Fig. 1 (a) we 
show an adaptation of the Levenspiel map for the present paper. There 
are four main boundaries in Fig. 1(a), namely pure diffusion, pure 
convection, axial dispersion, and λmin. Axial dispersion is further sub
divided into two regions where dispersion coefficients of Taylor and 
Taylor-Aris are appropriate, respectively. The remaining region of the 
dispersion regime map is denoted differently in literature. Anan
thakrishnan et al. (1965, Fig. 8) indicated that in this region only nu
merical solution is applicable. Probstein (1994, Fig. 4.6.5) named that 
region as transition region, while Levenspiel (1999, Fig. 15.2) denoted 
the region which is shaded in gray in Fig. 1(a) as intermediate regime. 
Here we mainly use the terminology transition regime (TR), but consider 
it synonymous with intermediate regime. While Levenspiel did not 
specify the position of the diagonal lines enclosing the transition regime, 
the respective regime boundaries of Ananthakrishnan et al. (1965) are 
0.012 ≤ t/τd ≤ 0.8. With t ≅ L/U the latter boundaries correspond to 
1.25 ≤ α ≤ 83.3. The boundaries for the transition regime shown in 
Fig. 1(a) and used in this paper are 0.25 < α < 125, as explained below 
(Section 2.3).

Peclet numbers in microfluidics usually vary between 10 and 105 

with molecular diffusivities ranging from 10− 9 to 10− 7 m2/s (Stone 
et al., 2004), the lower value being typical for solute in water at room 

temperature. While the extension of the abscissa to λ = 106 in Fig. 1(a) is 
unrealistic for straight tubes, it is realistic for coiled tubes as for an inner 
diameter of 100 µm and a typical length of 10 m a value λ = 105 results. 
Accordingly, many CFC and microfluidic applications fall in the transi
tion regime. For example, Gobert et al. (2017) characterized the RTD of 
various geometrically complex micro- and milliflow reactors in com
parison to a wide range of classical tubular reactors (with inner diameter 
ranging from 0.4 to 4.8 mm). Most of the coiled tubular reactors made of 
flexible polymer tubes investigated are in the transition regime. Simi
larly, for flow-injection analysis, the most practical region is the tran
sition regime where neither the pure convection model nor the axial 
dispersion model are applicable (Kolev, 1995; Vanderslice et al., 1981). 
Levenspiel (1999) suggests “If your system falls in the no-man’s land 
between regimes, calculate the reactor behavior based on the two 
bounding regimes and then try averaging”. Levenspiel gives, however, 
no advice how to perform this averaging in practice and the author is not 
aware of any paper on the subject how to properly average between the 
PC and AD regimes. Clearly, linear interpolation (Read, 1999) of the 
completely different RTDs is not suitable here. The interpolation method 
proposed by Bursal (1996) requires that the variance of the two PDFs is 
finite. Since the variance of the pure convection RTD is infinite, this 
method cannot be used here. The usual practice for characterization of 
milli- and microflow reactors falling in the transition regime, also 
adopted by Gobert et al. (2017), is therefore to model the measured RTD 
by one of the two classical flow models, the axial dispersion model and 
the pure convective flow model.

Fig. 1. (a) Regime map for dispersion in a straight tube adapted from Levenspiel (1999, Fig. 15.2). Straight lines in this log-log plot separate regions where different 
models apply. Diagonal upward solid red line: Pe = 500λ, diagonal upward solid blue line Pe = λ, horizontal dashed blue line Pe = 100, vertical dashed blue line 
λmin = 10, diagonal downward dotted brown line Pe = 1/10λ. In the grey-shaded transition regime (TR) neither the dispersion model nor the pure convection model 
are ideal. In this paper, a mechanistic model for the RTD in the hatched region is developed based on a regime transition parameter 0 < p < 1 indicated by the black 
arrow. The diagonal upward dashed-dotted green line corresponding to Pe=24λ represents the upper limit for the simplified compartment (dTiS) model. For a given 
Pe value, plug flow behavior results for λ values to the right of the plug flow limit (orange dash-dot-dot line, Eq. (17)). The magenta star symbol corresponds to 
experimental conditions related to the RTD of a coiled pipe (Gobert et al., 2017) to be discussed below (Section 4.2). (b) RTD of pure convection regime. (c) RTD of 
axial dispersion regime for different values of the Bodenstein number. For Bo≥100, dispersion is generally considered to be low. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
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1.5. Goal

The above discussion shows that there is a strong need in chemical 
engineering and other scientific and technical fields for a model that 
correctly describes dispersion in the transitional diffusion-convection 
regime and the associated RTD. However, to the best of the author’s 
knowledge, a suitable mathematical model is still missing that can 
represent the transition from the skewed RTD of the PC regime (Fig. 1
(b)) to the almost symmetric bell-shaped RTD of the AD regime (Fig. 1
(c)) and satisfies the mathematical constraints of an RTD. The goal of the 
present paper is to develop a mathematical model which can describe 
this shape transition of the RTD and which is predictive in the sense that 
it depends on prior known parameters only.

To reach these goals, the transport of a passive tracer in a straight 
tube with circular cross section under fully developed laminar 
isothermal flow of an incompressible Newtonian fluid is studied theo
retically. By assuming a radial concentration profile at the channel 
outlet which agrees with the concentration profiles of the pure con
vection and axial dispersion models in the respective limits, first an 
unclosed mechanistic model for the RTD in the transition regime with a 
single adjustable parameter is derived analytically from first physical 
principles. The mechanistic model is closed by fitting the free parameter 
to a case study of numerical RTD data from the literature, covering a 
very wide range of dispersion conditions (Dantas et al., 2014). The 
proposed mechanistic model is applicable in the hatched area of the 
dispersion regime map in Fig. 1(a). While the regime map is spanned by 
the normalized pipe length λ = L/d and the Peclet number Pe = dU/D, 
the model depends on the sole dimensionless parameter α = a2U/LD =

Pe/4λ, representing the ratio of the characteristic time scales of trans
versal transport by diffusion to longitudinal transport by advection. 
Since the mechanistic RTD model is mathematically rather complex, 
additionally a simpler model based on a compartment approach is 
derived which is, however, applicable only in a sub-region of the tran
sition regime. It is expected that both models will be useful for pre
dicting or characterizing dispersion behavior in flow chemistry and 
other flow systems where operating conditions fall in the transition 
regime.

2. Methodology

In the transition regime, diffusion can neither be neglected as is in 
the pure convection regime nor is diffusion sufficiently dominant to 
establish a uniform concentration distribution across the outlet plane as 
is the case for the axial dispersion regime. To exploit the full potential of 
CFC, mechanistic models for dispersion in the transient regime are 
required for design purposes. In this section, we present the theoretical 
basis for the development of our RTD models for the transition regime, 
which are described in Section 3.

2.1. Determining the RTD in experiment and simulation

The RTD is traditionally measured through a stimulus–response 
experiment by monitoring the change in concentration of a non-reactive 
tracer as it passes through the reactor. The term RTD is therefore usually 
implicitly associated with the solute. In this paper, we strictly distin
guish between the RTD of the solute (tracer) and that of the solvent. The 
mean RT of solvent molecules which collectively create the Poiseuille 
flow is given by the space time. For various reasons, a solute molecule 
may move axially through the tube at a different average velocity (either 
greater or lesser) than the solvent (Brenner, 1990). In general, the mean 
RT of the solute equals that of the solvent only when the tracer is 
injected in flux by a temporal delta pulse and is detected in flux. The 
flow average or “mixing cup” concentration detected in flux is the 
concentration that would be measured if the liquid were collected at a 
certain axial distance (here at the outlet) and thoroughly mixed.

To determine the solute RTD theoretically or by numerical simula
tion, the injection of a passive tracer at the inlet and the detection of its 
mixing cup average concentration at the outlet must be mimicked. In the 
absence of reaction, the instantaneous solute concentration field is 
described by an advection–diffusion equation (Section 2.2.1). In com
bination with suitable initial conditions representing tracer injection 
(Section 2.2.2), analytical or numerical solutions of the solute advec
tion–diffusion equation can be used to determine from the concentration 
distribution in the outlet plane the corresponding mixing cup concen
tration and the differential RTD (Section 2.2.3). Here, we are interested 
in the solute RTD for a pipe segment of length L, corresponding to a 
circular cylindrical reactor with volume Vreactor = πa2L, under Poiseuille 
flow of the solvent with constant solvent volumetric flow rate Q = πa2U. 
The length L is arbitrary and treated as a variable. It enters into the RTD 
models developed below only indirectly via dimensionless parameters, i. 
e., the Bodenstein number Bo and the normalized transversal diffusion 
time α.

2.2. Concentration field and RTD

2.2.1. Solute transport equation
We employ a cylindrical coordinate system with axial coordinate z 

and polar coordinates (r,φ), where the distance from the axis of the tube 
(r) is in the range 0 ≤ r ≤ a. With the infinite pipe assumption, the axial 
coordinate is in the range − ∞ < z < ∞. The formal entrance and outlet 
planes of the tracer are located at z = 0 and z = L, respectively. We 
assume that the distribution of solute is rotationally symmetrical around 
the z axis and denote its molar concentration at time t by c(r, z, t). 
Concerning hydrodynamics of the solvent, we assume a fully developed 
unidirectional steady and axisymmetric laminar flow of an incom
pressible viscous Newtonian fluid (kinematic viscosity ν). We further 
assume Reynolds numbers Re = dU/ν < 2000 so that the velocity profile 
is parabolic (Poiseuille flow). Entrance effects on the RTD, as discussed 
in Ham et al. (2011), are neglected here.

With the latter assumptions, the mass balance for a conserved single- 
component solute in a volume element of the tube yields the microscale 
advection–diffusion equation 

∂c
∂t

+2U
(

1 −
r2

a2

)

⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟
=u(r)

∂c
∂z

= D
[
1
r

∂
∂r

(

r
∂c
∂r

)

+
∂2c
∂z2

]

, (1) 

which describes the transport and temporal evolution of solute con
centration. To transfer Eq. (1) in an appropriate non-dimensional form, 
we define C = c/cref with reference molar concentration cref =

m/Vreactor. Here, m denotes the amount of tracer moles injected during 
the pulse input. For normalization of coordinates and time different 
options exist. Following Kolev and van der Linden (1991), we normalize 
the radial and axial coordinates differently and define R = r/a and Z =

z/L so that 0 ≤ R ≤ 1 and − ∞ ≤ Z ≤ ∞, respectively. Since we include 
in our analysis the case of pure convection (D = 0), a normalization of 
time by the time scale of transverse diffusion τd = a2/D is not mean
ingful. Instead, we normalize time by the space time τs = L/U and 
introduce the reduced time θ = t/τs = tU/L. Then the non-dimensional 
equation for the transport of a solute in cylindrical coordinates is 

∂C
∂θ

+2
(
1 − R2)

⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟
=V(R)

∂C
∂Z

=
4λ
Pe

[
1
R

∂
∂R

(

R
∂C
∂R

)

+
1

4λ2
∂2C
∂Z2

]

, (2) 

where V = u(r)/U = 2
(
1 − R2) denotes the normalized Poiseuille ve

locity profile.
The latter two partial differential equations are linear in concentra

tion and can be solved by Laplace transformation for given initial and 
boundary conditions. However, inverting the solution back often results 
in infinite series with low rate of convergence for large values of the 
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Peclet number (Martin, 2000). Gill and Sankarasubramanian (1970)
solved Eq. (1) analytically using the series expansion method originally 
proposed by Gill (1967) by treating the axial dispersion coefficient as a 
function of time. For references to analytical solutions of Eq. (1) by other 
mathematical methods, such as long-time asymptotic expansion tech
nique, two-scale perturbation approximation and Lyapunov-Schmidt 
technique the interested reader is referred to Jiang and Chen (2018)
and Guan and Chen (2024). In general, the advection–diffusion equation 
for laminar flow through a cylindrical tube is solved numerically 
(Ananthakrishnan et al., 1965; Bailey and Gogarty, 1962; Bate et al., 
1973; Bate et al., 1969; Ekambara and Joshi, 2004; Farrell and Leonard, 
1963; Yu, 1976). In the transition regime, adjustment of any one, or all, 
of the parameters U, a and D can fundamentally alter the shape of the 
dispersion curve resulting from bolus injection (Bate et al., 1973). Nu
merical solutions covering a wide range of the Peclet number 1 ≤ Pe ≤

105 and dimensionless time 10− 8 ≤ tD/a2 ≤ 102 are consistent with all 
previously reported special cases (Ekambara and Joshi, 2004).

Except for extremely slow flows and at extremely short length scales, 
longitudinal molecular diffusion is vastly dominated by advection. If one 
follows Taylor (1953) and neglects axial diffusion, then Eq. (2) depends 
on the parameter λ/Pe = LD/d2U only. Steffani and Platzer (2002)
identified the inverse ratio d2U/LD as modified Peclet number (Pe* in 
their nomenclature) and noted that “the parameter Pe* alone is apt to 
characterize unambiguously cases of laminar (tube) flow, which is in 
part a confirmation of earlier works, but has yet not found to be stated in 
this clearness”. Other researchers interpreted the non-dimensional 
group LD/(d2U) as a Fourier number based on the space time and 
either the diameter (Golbig et al., 2005) (Fod = τsD/d2) or radius (Nagy 
et al., 2012) (Foa = τsD/a2) of the tube. Here, we follow Wissler (1969)
and interpret α = τd/τs = a2U/LD = Pe/4λ = 1/Foa as ratio between the 
time scales of transversal diffusion and longitudinal advection (space 
time). The results of the present paper confirm and reinforce the state
ment of Steffani and Platzer (2002) concerning the outstanding impor
tance of parameter d2U/LD, respectively — in present notation — the 
normalized transversal diffusion time α = a2U/LD.

2.2.2. Initial conditions representing tracer injection
Experimental measurement of the RTD is commonly conducted by 

tracer response techniques. Usually, the inert tracer substance is injected 
into the continuous solvent stream at the inlet plane either in the form of 
an instantaneous pulse (mathematically described as Dirac delta func
tion), a step (Heaviside function) or a rectangular pulse (bolus). A pulse 
input of tracer requires injection of a quantity of tracer within a period of 
time much shorter than the average residence time in the reactor; on the 
other hand, a step input requires a stable and constant source of tracer 
(Huang and Seinfeld, 2019). For the pulse input method, the tail of the 
RTD will be strongly affected by noise whereas for the step input method 
the tracer may affect fluid properties of the solvent. At the outlet plane, 
the transient concentration or a proportional signal is measured and 
processed to determine the RTD. The stimulus–response principle can be 
imitated by solving Eq. (2) with appropriate initial and boundary con
ditions. The injections are considered to occur at zero time (θ = 0) at 
axial position Z = 0 while the measurement plane is located at Z = 1. In 
this paper, only flux pulse injections in form of a delta function are 
considered. The step response is then simply the time integral of the 
pulse response.

Mathematically, one can distinguish between delta functions, which 
represent pulse injections in time or in space. For the axial dispersion 
model, only flux delta injection in time and mixing cup measurement at 
the outlet gives a solute RTD with first moment equal to the mean 
residence time of the solvent (Kreft and Zuber, 1978). Flux delta injec
tion in time can hardly be realized experimentally, since it requires a 
finite amount of tracer be injected in zero time (Himmelblau and Bis
choff, 1968, pg. 116). In the present study, we consider delta injection in 

space. The reason is that the application of a similar procedure as pre
sented below for a spatial pulse (Section 3) does not allow the analytical 
calculation of all integrals when a temporal pulse is used. An ideal flux 
pulse injection in space indicated by symbol ↑z can be represented by the 
initial condition 

c↑z(r, z)|t=0 =
m
A

u(r)
U

δ(z) (3) 

The multiplication by the velocity profile u(r) implies that the tracer 
with total injected molar amount m is added in quantities proportional 
to the flow through each point in the injection plane (flux injection).

2.2.3. Analytical calculation of the RTD from the concentration distribution 
in the outlet plane

The residence time distribution can be quantitatively described by 
the time that individual fluid elements spend in the reactor. For the pulse 
tracer method, the differential RTD can be defined as 

E(t) =
ccup(t)∫∞

0 ccup(t)dt
=

Ccup(t)∫∞
0 Ccup(t)dt

, (4) 

where ccup(t) is the mixing cup tracer concentration at the outlet plane as 
a function of time and Ccup = ccup/cref . By definition it is 

∫∞
0 E(t)dt = 1 

independent of the amount of the injected tracer.
The normalized mixing cup average concentration Ccup in Eq. (4) can 

be calculated from the concentration field in the outlet plane Cout(r, t) =
C(r, z = L, t) by a flow-rate weighted area average as 

Ccup(θ) =
1

πa2U

∫ a

0
Cout(r, t)⋅u(r)⋅2πr⋅dr =

1
2

∫ 2

0
Cout(θ|V)⋅V⋅dV, (5) 

where the last expression follows from the substitution V = u(r)/U =

2
(
1 − r2/a2). The moments of the mixing cup concentration about the 

origin can be written as 

μn =

∫ ∞

0
θn⋅Ccup(θ)⋅dθ =

1
2

∫ 2

0

{∫ ∞

0
θn⋅Cout(θ|V)⋅dθ

}

⋅V⋅dV, (6) 

where n is a non-negative integer and the normalized velocity profile V 
has become a dummy variable of integration. For a given outlet con
centration Cout(θ|V), the integrals in Eqs. (5) and (6) are always carried 
out analytically in the present paper using support by Mathematica 
software. For some cases, when Mathematica was unable to calculate the 
single integral over θ in Eq. (6) analytically, the order of integration was 
reversed, resulting in the double integral in Eq. (6). Carrying out 
analytically the integration of the inner integral in the curvy brackets 
first, the outer integral could always be calculated analytically as well.

Multiplying Eq. (4) by the space time yields the non-dimensional 
RTD 

Eθ(θ) = τs⋅E(t) =
Ccup(θ)

μ0
, (7) 

which fulfills the normalization condition 
∫∞

0 Eθdθ = 1. For the 
normalized mean value (θ) and variance (σ2

θ ) we obtain the relations 

θ =
tE

τs
=

∫ ∞

0
θEθ(θ)dθ =

μ1

μ0
, (8) 

σ2
θ =

σ2
E

τ2
s
=

∫ ∞

0
(θ − θ)2Eθ(θ) dθ =

∫ ∞

0
θ2Eθ(θ) dθ − θ2

=
μ2

μ0
−

μ2
1

μ2
0

(9) 

Eq. (8) yields 1 only when the mean residence time tE determined from 
the tracer response technique equals the space time τs. In this case it is 

θ =

∫ ∞

0
θEθ(θ)dθ = 1, σ2

θ =

∫ ∞

0
(θ − 1)2Eθ(θ)dθ (10) 
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We remark, that in experimental RTD studies using tracer technology, 
time is – in contrast to the present paper – sometimes not normalized by 
the space time but by the measured mean residence time tE of the solute. 
Such normalization results in different definitions for reduced time, 
reduced mean RT and reduced variance as used here.

2.3. Limiting cases

Taylor (1953) has presented solutions of Eq. (1) for two limiting 
cases: an early (pre-asymptotic) period where dispersion is determined 
by advection alone and a late asymptotic period. At short times t <
a2/D = τd corresponding to θ < α, dispersion is convection dominated 
leading to a rapid increase in axial length of the solute band and sig
nificant cross-stream diffusion. For asymptotically long times t≫a2/D 
corresponding to θ≫α, a quasi-equilibrium is reached where the longi
tudinal stretching by axial convection is balanced by radial diffusion. 
The resulting cross-stream averaged axial concentration profile is 
Gaussian, resembling that of diffusive transport alone with an increased 
diffusion coefficient, and travels in a plug-like fashion at the average 
flow velocity. The Taylor-Aris dispersion relation is true asymptotically 
only after the tracer has sampled each streamline with equal opportu
nities through the whole cross-section (Guan and Chen, 2024). Below we 
discuss both limiting regimes of the concentration field and the related 
RTD, starting with the long time axial-dispersed plug flow regime fol
lowed by the early-time convection dominated regime. Graphical illus
trations of the concentration fields at early and late times are provided in 
the Supplemental Material (Fig. S.1).

2.3.1. Asymptotic axial dispersion regime and limit αAD

For long times t≫a2/D, the cross-sectional average of the unsteady 
three-dimensional concentration field within a tube evolves as a one- 
dimensional convective diffusion equation (Taylor, 1953). In this 
regime, the axial dispersion model is valid having its origins in the cross- 
sectional averaged advection–diffusion equation developed in the pio
neering work of Taylor (1953, 1954) and the longitudinal concentration 
moment analysis of Aris (1956). We use the hat symbol to denote vari
ables related to the transverse area average over the cross-section 
defined by 

(̂⋅) =
2
a2

∫ a

0
(⋅)rdr (11) 

With the prime denoting the deviation, the concentration field can be 
split into its cross-sectional average and r-dependent part as c(r, z, t) =

ĉ(z, t) + ć (r,z,t), where ĉ́ = 0. By inserting this decomposition into Eq. 
(2), averaging over the channel cross section and introducing some 
simplifying assumptions (Sharp, 1993), the following one-dimensional 
Fokker-Planck type advection–diffusion equation for the mean (cross- 
average) concentration can be derived 

∂ĉ
∂t

+U
∂ĉ
∂z

= Dax
∂2 ĉ
∂z2 (12) 

In Eq. (12), Dax is the effective axial Taylor-Aris dispersion coefficient 
(Aris, 1956; Taylor, 1953), which is the sum of the molecular diffusion 
coefficient (D) and the shear dispersion due to external flow 

Dax = D+
a2U2

48D
(13) 

It should be noted that Eq. (13) predicts Dax→∞ as D→0, but in this limit 
the assumption of small lateral concentration gradients breaks down and 
the result is no longer valid (Sharp, 1993). For D≪a2U2/48D axial 
molecular diffusion may be neglected (Taylor, 1954). In this case, the 
longitudinal dispersion coefficient in Eq. (13) reduces to the Taylor 
dispersion coefficient a2U2/48D which is inversely proportional to the 
molecular diffusion coefficient of the solute. Numerical results of 

Ananthakrishnan et al. (1965) indicate that neglecting D in Eq. (13)
against the Taylor dispersion coefficient is applicable provided 
Pe ≥ 100. Following Levenspiel (1999, Fig. 15.2), we adopted this limit 
in Fig. 1(a) (horizontal dashed blue line).

Among the different variants of dispersion models, the partial dif
ferential Eq. (12) is known as the axially dispersed plug flow model 
(Kolev, 1995). Since the pre-factor u(r) of the convective term in Eq. (1), 
representing the parabolic radial velocity profile, is in Eq. (12) replaced 
by the constant plug flow velocity U, the radial variable is eliminated 
completely and an ideal plug flow is superimposed by axial dispersion 
while the degree of backmixing during flow is uniquely characterized by 
Dax. The solution of Eq. (12) depends on the initial conditions and on the 
boundary conditions at the inlet and outlet of the control domain 
(Brenner, 1962; Colli and Bisang, 2015; Kreft and Zuber, 1978; Trinidad 
et al., 2006). For closed-to-diffusion boundary conditions, no analytical 
solutions exist but Eq. (12) can be resolved by the use of Laplace 
transforms. For the pulse initial condition, the solution depends on 
whether the delta function is formulated in space or time. Both initial 
conditions of the AD model have different physical meanings, which 
result in different analytical solutions (Hsu and Dranoff, 1986).

The solution of Eq. (12) subject to the macroscale initial condition 
ĉ(z, t = 0) = m⋅δ(z)/A representing a spatial delta pulse in the longitu
dinal direction is (Levenspiel and Smith, 1957) 

ĉAD
↑z (z, t) =

m
A

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4πDaxt

√ ⋅exp
[

−
(z − U⋅t)2

4Daxt

]

(14) 

The non-dimensional form of Eq. (14) becomes 

Ĉ
AD
↑z (θ, Z|Bo) =

̅̅̅̅̅̅̅̅
Bo
4πθ

√

⋅exp
[

−
Bo
4

(Z − θ)2

θ

]

(15) 

The characteristic dimensionless number in Eq. (15) is the Bodenstein 
number 

Bo =
LU
Dax

=
λPe

1 + Pe2/192
=

1
4α

Pe2

1 + Pe2/192
, (16) 

which represents the time scale ratio between longitudinal dispersion 
(L2/Dax) and longitudinal advection (L/U). It can also be interpreted as a 
Peclet number based on the pipe length and the axial dispersion coef
ficient (Bremer and Turek, 2024). The inverse Dax/LU is sometime 
denoted as vessel dispersion number (Levenspiel, 1999). Higher Bo 
numbers indicate reduced axial mixing, while lower Bo numbers indi
cate higher mixing degrees. The limit Bo→0 corresponds to full back
mixing, which is the ideal state to be reached in a continuous stirred tank 
reactor (CSTR). In this case, each portion of the material has the same 
chance to be discharged at the outlet, regardless how long it has already 
been inside the CSTR. For Bo > 100 axial dispersion is considered low. 
Ideal plug flow with no backmixing is theoretically obtained in the limit 
Bo→∞. Taking Bo = 1000 as practical value instead (Nagy et al., 2012), 
the plug flow limit following from Eq. (16) as displayed in Fig. 1(a) is 

λPF ≥
1000

Pe

(

1 +
Pe2

192

)

(17) 

For Pe ≥ 100 as considered here (hatched region in Fig. 1(a)) it is 
Pe2/192 ≥ 52.08≫1 so that the Bodenstein number can be approxi
mated as Bo ≈ 48/α.

If one sets in Eq. (15) Z = 1 and calculates the integrals in Eqs. (5)–
(7) for this outlet concentration, one obtains with μAD↑z

0 = 1 the non- 
dimensional differential RTD 

EAD↑z
θ (θ|Bo) = CAD↑z

cup (θ) =
̅̅̅̅̅̅̅̅
Bo
4πθ

√

exp
[

−
Bo
4

(1 − θ)2

θ

]

, (18) 

first derived by Levenspiel and Smith (1957) and shown in Fig. 1(c). 
Notably, the non-dimensional differential RTD and the normalized 
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outlet mixing cup concentration are identical for this case. The reduced 
mean and reduced variance of this RTD are θAD↑z = 1+2/Bo and 
σ2

θ,AD↑z = 2/Bo + 8/Bo2, respectively. To fit an experimental RTD of a 
reactor by the AD model, Bo is therefore often determined from the 
measured variance of the RTD, which is as the second central moment a 
measure for the degree of dispersion around the mean.

We remark, that the solution ĉ↑t(z, t) of Eq. (12) subject to the con
dition ̂c(z = 0, t) = m⋅δ(t)/Q representing a delta pulse in time is related 
to Eq. (14) by ĉ↑t(z, t) = zĉ↑z/tU (Hsu and Dranoff, 1986; Hubert, 1970; 
Kreft and Zuber, 1979). Similarly, the corresponding RTDs are related by 
EAD↑t

θ = EAD↑z
θ /θ. With first and second moments about the origin equal 

to unity, EAD↑t
θ agrees with the non-dimensional differential RTD derived 

by Gibilaro (1978), where the mean RT of the solute agrees with the 
mean RT of the solvent. The reduced variance of this RTD is σ2

θ,AD↑t =

2/Bo.
The axial dispersion model can be used to model laminar flow if the 

reactor is sufficiently long so that radial diffusion effectively removes 
radial concentration gradients. For measuring the molecular diffusion 
coefficient by dispersion theory in a circular tube, Taylor (1954) sug
gested the criterion L≫a2U/4D corresponding to α≪4. Synonymously, 
the validity of the AD model requires that the time scale of transversal 
diffusion τd is very low compared to the time scale of longitudinal 
convection τs. The boundary for the axial dispersion region can thus be 
written as α = τd/τs = Pe/4λ ≤ αAD where αAD is a constant. If a 10:1 
ratio is permitted between the terms of the inequality τd≪τs, one obtains 
αAD = 0.1 corresponding to Pe ≤ 0.4λ; this value is used in the book of 
Probstein (1994, Fig. 4.6.5) (note that there the Peclet number is based 
on the pipe radius instead on the diameter as here). A much larger value 
of αAD ≈ 1 corresponding to Pe ≤ 4λ is used in the book of Levenspiel 
(1999, Fig. 15.2). In this work we apply a criterion that lies between the 
two latter values and use αAD = 0.25 corresponding to Pe ≤ λ.

2.3.2. Pure convection regime and limit αPC
The short time convective dispersion regime (θ < α) is also known as 

kinematic or “ballistic” dispersion regime (Ajdari et al., 2006; Huber and 
Santiago, 2008). In this regime time is too short, or interpreted differ
ently, the pipe is not long enough to achieve radial uniformity of the 
solute at the outlet. The influence of the velocity profile is thus very 
important. In the limit of complete absence of molecular diffusion (D =

0), this regime remains, so to speak, forever and is known as pure 
convection regime. For the pure convection regime, the right-hand sides 
of Eq. (1) and Eq. (2) vanish and the solute RTD is determined exclu
sively by the velocity field of the solvent. The RTD of the PC regime for 
the parabolic velocity profile of pressure driven Poiseuille tube flow is 
(Bosworth, 1948) 

EPC
θ = H

(
θ − θf

)
⋅
θf

θ3 (19) 

Here, θf = U/Umax = 0.5 denotes the normalized first-appearance time 
of Poiseuille flow and H the Heaviside function, H(θ − θf) = 1 if θ ≥ θf 
and H(θ − θf) = 0 otherwise. The mean value of the pure convection 
RTD in Eq. (19) is 1 and the variance is infinite. An illustration of the 
RTD EPC

θ (θ) in the pure convection regime is shown in Fig. 1(b).
The pure convection model is valid when the diffusion term on the 

right side of Eq. (2) is small as compared to the convection term on the 
left side (Probstein, 1994). The criterion to neglect radial diffusion may 
be written as Pe≫λ while that for neglecting longitudinal diffusion is 
Pe≫1/λ. Here we assume λ ≥ λmin = 10 so that for Pe≫λ the condition 
Pe≫1/λ is automatically satisfied. The boundary in Fig. 1(a) for the 
validity of the PC model can thus be written as α = τd/τs = Pe/4λ ≥ αPC, 
where αPC is a constant. If a 10:1 ratio is permitted between the terms of 
the inequality τd≫τs, this yields αPC = 10 corresponding to Pe ≥ 40λ. A 
value corresponding to αPC = 10 is used in the regime map of Probstein 
(1994, Fig. 4.6.5). In this paper, we permit for the validity of the pure 

convection regime a 125:1 ratio so that αPC = 125 corresponding to 
Pe ≥ 500λ, which also represents the border between the PC and tran
sition regime in the regime map of Levenspiel (1999, Fig. 15.2).

3. Model development

In this section we present two novel models for the RTD in the 
transition regime, a mechanistic first principle one derived from the 
governing equation for solute transport and a descriptive one based on a 
compartment approach. Both models are first developed with one free 
adjustable parameter. To close the models and make them predictive, 
the free parameter of each model is then related to the normalized 
transversal diffusion time α.

3.1. Mechanistic transition regime model (MTR model)

The starting point for the development of the mechanistic model is 
the dimensional advection–diffusion equation describing solute trans
port under Poiseuille flow of the solvent, Eq. (1). The normalized version 
of this partial differential equation given by Eq. (2) shows that solutions 
depend on the two parameters Pe and λ spanning the dispersion regime 
map (Fig. 1 a). In Section 2.2.3 we have demonstrated how solutions of 
Eq. (2) under fundamental initial conditions and appropriate boundary 
conditions can be used to calculate the RTD from the time dependent 
concentration field in the outlet plane. If the time-dependent concen
tration distribution in the outlet plane would be known for the transition 
regime, the RTD could thus be computed. However, there exists no 
analytical solution of Eq. (2) valid in the transition regime that would 
allow for analytical calculation of the integrals in Eq. (5) and Eq. (6). The 
present strategy outlined below is therefore to assume a heuristic 
approximation of this outlet concentration field instead.

3.1.1. Strategy of model development
Following Taylor (1953) and neglecting longitudinal molecular 

diffusion simplifies the normalized solute transport equation, Eq. (2), to 
the form 

∂C
∂θ

+2
(
1 − R2) ∂C

∂Z
=

1
α

1
R

∂
∂R

(

R
∂C
∂R

)

(20) 

Commonly used boundary conditions in radial direction are ∂C/∂R = 0 
at both, R = 0 (symmetry axis) and R = 1 (the tube wall is impenetrable 
to solute). Boundary conditions in axial direction are classified as “open” 
if tracer transport across the boundary is allowed and are denoted as 
“closed” otherwise. Here we assume that the pipe extends to infinity in 
both axial directions and employ the far-field axial boundary conditions 
C→0 as |Z|→∞. These correspond to co-called “open-open” boundaries 
enabling tracer flux through the inlet (Z = 0) and outlet (Z = 1) planes 
of the control domain. Solutions of Eq. (20) depend only on the single 
parameter α = Pe/4λ.

If we perform cross-sectional averaging on Eq. (20) and apply Tay
lor’s assumptions, we obtain 

∂Ĉ
∂θ

+
∂Ĉ
∂Z

=
α
48

∂2 Ĉ
∂Z2 (21) 

The solution of Eq. (21) for an initial delta pulse in space is 

Ĉ
AD
↑z (θ, Z|α) =

̅̅̅̅̅̅̅̅
12
παθ

√

⋅exp
[

−
12
α

(Z − θ)2

θ

]

(22) 

The corresponding RTD is 

EAD
θ (θ|α) = CAD

out(θ|α) = Ĉ
AD
↑z (θ,Z|α) =

̅̅̅̅̅̅̅̅
12
παθ

√

⋅exp
[

−
12
α

(1 − θ)2

θ

]

(23) 

The non-dimensional mean and variance are θAD = 1+α/24 and σ2
θ,AD =
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α/24 + α2/288, respectively. For small extends of dispersion (i.e., if 
Dax/LU = 1/Bo ≈ α/48 is below 0.01) the spreading tracer curve does 
not significantly change in shape as it passes the measuring point during 
the time it is being measured (Levenspiel, 1999). Under these conditions 
the solution of Eq. (21) gives the symmetrical (AD→ADS) curves 

EADS
θ (θ|α) = ĈADS(θ, Z = 1|α) =

̅̅̅̅̅̅
12
πα

√

⋅exp
[

−
12
α (1 − θ)2

]

(24) 

The non-dimensional mean RT is unity and the RTD in Eq. (24) corre
sponds to a normal (Gaussian) distribution with standard deviation 

̅̅̅̅̅̅̅̅̅̅̅
α/24

√
and amplitude 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
12/πα

√
.

The present strategy for determining a mechanistic model for the 
RTD in the transition regime is to replace the unknown transient con
centration distribution in the outlet plane fulfilling Eq. (20) by a heu
ristic approximation. This postulated outlet concentration 
CMTR

out (θ,R,Z = 1|α) is utilized to compute EMTR
θ by evaluating the in

tegrals in Section 2.2.3 while keeping the entire procedure analytical. In 
order to be physically meaningful, the postulated outlet concentration 
should obey features of the axial dispersion regime and the pure con
vection regime while the RTD of the transition regime reduces to both 
cases in the limits. For the AD regime with spatial delta pulse as initial 
condition, the RTD equals the radially uniform outlet concentration and 
is given by Eq. (23). The RTD of the PC regime for pressure driven 
Poiseuille tube flow is given by Eq. (19). This RTD is a scale-invariant 
power law distribution (Pareto distribution).

3.1.2. Scale-variant approximation of pure convection RTD
The present procedure for developing a model for the RTD in the 

transition regime requires a scale-variant approximation of Eq. (19). To 
that end we consider the effects of a small amount of diffusion on the 
pure convection RTD. Bosworth (1948) presented a theoretical analysis 
of the effects of small amounts of radial and of small amounts of lon
gitudinal diffusion on the RTD in laminar pipe flow and noted two 
modifications as compared to Eq. (19), where diffusion is absent. In the 
first place, the sharp cut-off at the head of the RTD is replaced by one 
which is more gradual the lower the value of 

̅̅̅̅̅̅̅̅̅̅̅̅̅
λPe/2

√
= λ

̅̅̅̅̅̅
2α

√
. This is 

because of diffusion some molecules have a residence time less than θf . 
In the second place, the operation of diffusion replaces the inverse cube 
law distribution curve in Eq. (19) by one in which values at high resi
dence times are somewhat larger. This flattening of the distribution 
curve at high values of θ is the more pronounced the lower the value of 
̅̅̅
α

√
.
In the present paper, we take into account the effect of a small 

amount of diffusion by considering the advection equation 

∂c
∂t

+ u(r)
∂c
∂z

= 0 (25) 

in combination with a modification of the initial condition. To allow for 
a fully analytical treatment, we replace the spatial delta function δ(z) in 
Eq. (3) by a regularized version. There exists several options for doing 
so. To establish the required connection with the concentration field in 
Eq. (14) resulting in the AD model, we choose the exponential 
relationship 

δz,ε(z|ε) =
1

ε
̅̅̅
π

√ exp
(

−
z2

ε2

)

(26) 

Here, ε is a small positive parameter with the dimension of a length scale 
which will be related to the diffusion coefficient. The initial condition in 
Eq. (3) then becomes 

c↑z,ε(r, z)
⃒
⃒
t=0 =

m
A

u(r)
U

1
ε

̅̅̅
π

√ exp
(

−
z2

ε2

)

(27) 

We choose the length scale as ε = 4λ2D/U where we assume 0 < D≪ 

a2U/L corresponding to α≫1. With L/ε = α, Eq. (27) can be expressed as 

c↑z,ε(r, z)
cref

⃒
⃒
⃒
⃒
t=0

= C↑z,ε(V, Z)
⃒
⃒

θ=0 =
α̅
̅̅
π

√ ⋅V(R)⋅exp
(
− α2Z2) (28) 

The solution of Eq. (25) subject to the axial boundary conditions C =

0 at Z = ±∞ and the initial condition in Eq. (28) is 

CCDP(R, Z, θ|α) = α̅
̅̅
π

√ ⋅2
(
1 − R2)⋅exp

[
− α2( Z − 2θ

(
1 − R2))2

]

=
α̅
̅̅
π

√ ⋅V⋅exp
[
− α2(Z − Vθ)2]

, (29) 

where the acronym CDP stands for “convection dominated preliminary”. 
Inserting Eq. (29) with Z = 1 into Eq. (6) yields for the zero moment 
about the origin the result 

μCDP
0 =

1
2

∫ 2

0

{∫ ∞

0

α̅
̅̅
π

√ ⋅V⋅exp
[
− α2(1 − Vθ)2]⋅dθ

}

⋅V⋅dV

=
1
2
[1 + erf (α)] (30) 

In the limit α→∞ corresponding to D = 0 it is μCDP
0 = 1. For finite values 

of α corresponding to D > 0 it is erf(α) < 1 and Eq. (30) yields μCDP
0 < 1. 

The concentration field in Eq. (29) does thus not assure that the entire 
injected tracer amount has traversed through the outlet plane at infinite 
time. For the case D > 0, the advection equation of Eq. (25) should be 
replaced by the advection–diffusion equation of Eq. (1) which requires a 
boundary condition for ∂c/∂r at r = a. To ensure that the entire injected 
tracer amount leaves the outlet plane, a no-penetration boundary con
dition at the wall corresponding to (∂C/∂R)|R=1 = 0 is appropriate. For 
the concentration field in Eq. (29) it is (∂CCDP/∂R)|R=1 < 0 for finite α. 
This corresponds for α < ∞ to a permeable wall so that not all tracer 
amount injected at the inlet reaches the outlet plane. It should be noted 
that the concentration profile in Eq. (29) is for α < ∞ no solution of the 
advection–diffusion equation of Eq. (20) in combination with the no- 
penetration boundary condition at the tube wall.

The mean value of the outlet concentration distribution in Eq. (29)
less than 1 for finite α is undesirable. To increase the mean value, we 
need to add skewness in the sense that the relative contribution to the 
distribution is decreased for θ < 1 while it is increased for θ > 1. For this 
purpose, we heuristically replace α in Eq. (29) by α/

̅̅̅
θ

√
to obtain the 

convection dominated (CD) concentration field as 

CCD
↑z (V,Z, θ|α) = α̅̅

̅̅̅
πθ

√ ⋅V⋅exp
[

− α2(Z − Vθ)2

θ

]

(31) 

Inserting Eq. (31) with Z = 1 into Eq. (6) and calculating the double 
integral yields μCD

0 = 1. In contrast to Eq. (29), the heuristic concen
tration field in Eq. (31) thus ensures that for D > 0 all the injected tracer 
formally leaves the outlet plane though (∂CCD/∂R)|R=1 < 0. Inserting Eq. 
(31) with Z = 1 into Eq. (5) yields the mixing cup concentration corre
sponding to the RTD of the CD regime as given in Eq. (34). It should be 
noted that for obtaining this result, weighting of the delta function in Eq. 
(3) by the velocity profile u(r) is essential (Levenspiel et al., 1970; 
Levenspiel and Turner, 1970). Inserting Eq. (31) with Z = 1 into Eq. (6)
yields 

μCD
1 (α, b) = lim

b→0

1
2

∫ 2

b

{∫ ∞

0

̅̅̅
θ
π

√

⋅αV⋅exp
[

− α2(1 − Vθ)2

θ

]

⋅dθ

}

⋅V⋅dV

= 1+ lim
b→0

[
1

4α2 ln
(

2
b

)]

(32) 

and μCD
2 = ∞. These results imply that the reduced mean RT becomes 1 

in the limit α→∞ while the reduced variance is infinite.
By replacing the spatial delta function by a regularized version with 
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exponential term, we thus have derived the following outlet concen
tration of the convection dominated (CD) regime 

CCD
out(θ|α,V) =

α̅̅
̅̅̅

πθ
√ ⋅V⋅exp

[

− α2(1 − Vθ)2

θ

]

, (33) 

where V = 2
(
1 − R2) represents the normalized Poiseuille velocity pro

file. The resulting RTD of the convection dominated regime is obtained 
as 

ECD
θ (θ|α) = 1

2θ3

{ ̅̅̅
θ

√

2
̅̅̅
π

√
α

[

exp
(

−
α2

θ

)

− (1 + 2θ)⋅exp
(

− α2(1 − 2θ)2

θ

)]

,

+
2α2 + θ

4α2

[

erf
(

α̅
̅̅
θ

√

)

− erf
(

α 1 − 2θ
̅̅̅
θ

√

)]}

(34) 

where erf(x) = 2π− 1/2 ∫ x
0 e− t2 dt denotes the error function. In the limit 

α→∞, Eq. (34) reduces to the correct pure convection RTD for laminar 
pipe flow of a Newtonian fluid according to Eq. (19).

In Fig. 2 we compare the RTD from Eq. (34) for three different values 
of α. For α = 125, Eq. (34) is visually identical to the exact pure con
vection RTD in Eq. (19). With decrease of α corresponding to an increase 
of D the first effect reported by Bosworth (1948) is observed. Namely, 
the sharp cut-off of at θf = 0.5 is replaced by a more gradual one while 
some molecules have a residence time less than θf . The second effect of 
diffusion reported by Bosworth (1948), i.e. the flattening of the RTD 
curve at high values of θ, becomes visible only for the smallest value of α.

3.1.3. Postulated outlet concentration field
To combine the outlet concentration field of the AD regime, Eq. (23), 

with that of the CD regime, Eq. (33), we postulate the following outlet 
concentration field for the transition regime 

CMTR
out (θ|V, p, S) =

1 − p + pV
̅̅̅̅̅̅̅̅̅̅̅
2πSθ

√ ⋅exp

{

−
[1 − θ(1 − p + pV)]2

2Sθ

}

(35) 

This particular outlet concentration field is chosen because it allows to 
carry out all integrations in the various equations in Section 2.2.3
analytically. In Eq. (35), p = p(α) is a regime transition parameter in the 
range 0 ≤ p(α) ≤ 1 (cf. black arrow in Fig. 1 a) while S = S(α) > 0 is a 
parameter related to the variance of the RTD. Eq. (35) reduces for p = 0 

and S = α/24 to the transversal uniform outlet concentration of the axial 
dispersion model with spatial delta pulse, Eq. (23). For p = 1 and S =

1/2α2, Eq. (35) reduces to the outlet concentration field of the con
vection dominated regime based on a regularized spatial delta pulse, Eq. 
(33). While the outlet concentration field in Eq. (35) satisfies the con
dition of vanishing radial gradient at the pipe axis, the boundary con
dition of an impermeable tube wall is not fulfilled. In the following it 
will be necessary to restrict the transition parameter to the range 
0 < p < 1. The parameter p enables a smooth transition of the skewed 
PC RTD (p→1) towards the symmetric Gaussian RTD of the AD regime in 
the limit p→0.

Inserting the assumed outlet concentration profile from Eq. (35) into 
Eq. (6), taking n = 0 and evaluating the integral yields for the zero 
moment the result μMTR

0 = 1, see Supplemental Material Section 3.1. All 
tracer injected at the inlet plane thus leaves the outlet plane, indepen
dent on the values of p and S. This results in the relationships EMTR

θ =

CMTR
cup , θMTR = μMTR

1 and σ2
θ,MTR = μMTR

2 − θ2
MTR, cf. Eqs. (7)–(9).

3.1.4. Unclosed MTR model
Inserting the assumed outlet concentration profile from Eq. (35) into 

Eq. (5) and evaluation of the integral by assuming p > 0 yields EMTR
θ (θ|p,

S) = CMTR
cup (θ|p, S) as given by Eq. (S.3) in Supplemental Material. With 

the abbreviation f± = (1 − θ ± pθ)/
̅̅̅̅̅̅̅̅
2Sθ

√
one can express the unclosed 

RTD as 

EMTR
θ (θ|p, S) =

1
2θ3

{ ̅̅̅̅̅̅̅
Sθ
2π

√
exp ( − f2

+) − (1 + 2pθ)exp ( − f2
− )

p2 + [1 − θ(1

− p − S)]
erf (f+) − erf (f− )

2p2

}

(36) 

The pre-factor 1/2θ3 in Eq. (36) also occurs in the RTD of the pure 
convection regime, Eq. (19). The deviation of the terms in the curly 
brackets from the Heaviside function in Eq. (19) thus represents the 
deviation of the RTD in the transition regime from that of the PC regime. 
Profiles of the four terms in Eq. (36) for different values of p in combi
nation with Eq. (42) for S as derived below are shown in the Supple
mental Material (Fig. S.2). The mathematical structure of Eq. (36) is 
similar to the analytical RTD obtained by neglecting radial diffusion in 
Eq. (2) while retaining axial diffusion, see Platzer et al. (1999, Eq. (36)) 
and Fazli-Abukheyli & Darvishi (2019, Eq. (13)).

Inserting the assumed outlet concentration profile from Eq. (35) into 
Eq. (6), taking n = 1 and calculation of the integral yields for the mean 
value of the RTD the result 

θMTR(p, S) = μMTR
1 (p, S) =

1 + p − S
p + p2 −

1 − p − S
p2 Arctanh(p), (37) 

see Supplemental Material Section 3.2. The definition range of the in
verse hyperbolic function requires the restriction p < 1. Repeated 
application of L’Hôspital’s rule to Eq. (37) yields the limits 

lim
p→0

μMTR
1 (p, S) = 1+ S, lim

p→1
μMTR

1 (p, S) = 1+ lim
p→1

(S⋅Arctanh(p)) (38) 

The condition μMTR
1 ≥ 1 thus requires S(p) ≥ 0.

Inserting the assumed outlet concentration profile from Eq. (35) into 
Eq. (6), taking n=2 and calculation of the integral yields for the second 
moment about the origin the result 

μMTR
2 (p, S) =

Arctanh(p)
p2 −

1
1 + p

{
1
p
−

S
1 − p2

(

3 +
3 − p
1 − p2 S

)}

, (39) 

see Supplemental Material Section 3.3. The reduced variance is obtained 
by inserting Eq. (37) and Eq. (39) into σ2

θ,MTR = μMTR
2 − θ2

MTR, see Sup
plemental Material Eq. (S.16). The cumulative RTD of the unclosed MTR 

Fig. 2. Log-log plot of normalized RTD curves for the convection dominated 
model as given by Eq. (34) for three different values of α.
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model is derived in Supplemental Material Section 3.4.
To close the MTR model, we need to express p and S as functions of 

the normalized transversal diffusion time α. To that end we first deter
mine the relation S = S(p) and thereafter the relation p = p(α). To 
determine parameter S, we resort to the result for the mean value of the 
unclosed RTD in Eq. (37). For an ideal delta pulse in time the mean value 
of the solute RTD equals the mean value of the solvent RTD, i.e., the 
space time. For an open-open system, the mean value of the RTD of the 
solute is typically slightly larger than that of the solvent (Spalding, 
1958). We thus require at this stage of model development θMTR ≥ 1.

Setting θMTR in Eq. (37) to 1 yields the relation 

Smean = 1(p) =
(1 − p2)[Arctanh (p) − p]
(1 + p)Arctanh (p) − p

, (40) 

which is plotted in Fig. 3. The curve Smean=1(p) has a maximum value 
0.1173 at p = 0.5826 and the analytical limits 

lim
p→0

Smean = 1(p) = lim
p→1

Smean = 1(p) = 0 (41) 

To meet the limits S(p→0) = αAD/24 and S(p→1) = 1/2α2
CD of the AD 

and CD regimes, we set 

S(p, k) =
αAD

24
(1 − p)+

p
2α2

CD
+ k⋅

(1 − p2)[Arctanh (p) − p]
(1 + p)Arctanh (p) − p

, (42) 

where 0 ≤ k ≤ 1 so that S(p) > 0 for 0 < p < 1. The parameter k is 
introduced to allow the choice between two models for the RTD in the 
transition regime. Each of the two models has its own limitations, which 
are explained below.

At this stage it is necessary to select specific values for αAD and αPC to 
proceed. However, the development of the present analytical model is 
such that both parameters can be easily changed if necessary. Taking the 
diagonal lines of the hatched transition regime in Fig. 1(a) as limits it is 
αAD = 0.25 and αPC = 125 so that S(p = 0) = 1/96 and S(p = 1) =

1/31250. The resulting relation S(p) is plotted in Fig. 3 for two different 
values of k. For k = 1, the maximum value Smax = 0.1217 is obtained for 
p = 0.5716; for k = 1 − p the maximum value Smax = 0.0684 is lower 
and obtained for p = 0.3683.

By inserting S = S(p, k) from Eq. (42) into Eq. (36), we can now plot 
for either value of k continuous families of curves EMTR

θ (θ|p, k) with sole 
parameter p. Fig. 4 shows the corresponding set of curves for nine 

different values of p in the range 0.001 − 0.999. With increase of p, the 
differential RTD curves change from the symmetric Gaussian bell shape 
of the AD regime to the skewed RTD of the PC regime, with the position 
of the RTD maximum shifting from θ = 1 to θ = 0.5. The set of RTD 
curves EMTR

θ (θ|p, k = 1) in Fig. 4(a) exhibits two weaknesses. First, even 
for p = 0.999 the maximum value 3.44 of the RTD is notably below the 
maximum value 4 of the PC regime. Second, the RTD curves for p > 0.1 
have non-zero (positive) values for θ < θf = 0.5 which means that some 
tracer reaches the outlet plane faster than the fastest solvent molecules. 
Since longitudinal molecular diffusion is neglected in the derivation as it 
is insignificant in the considered parameter range of Pe and λ, such 
behavior is inconsistent with model assumptions and essentially 
unphysical.

Both of the latter weaknesses can be mitigated by setting k = 1 − p, as 
shown in Fig. 4(b). The maximum value of the RTD for p = 0.999 is now 
increased to 3.84. Furthermore, the relative fraction of tracer with 
residence time below θf = 0.5 is significantly reduced. For values p <

0.1 the differences in the RTD curves in Fig. 4(a) and (b) are very small. 
The choice k = 1 − p makes the RTD curves for p > 0.25 physically more 
plausible, but goes along with a drawback regarding the mean RT as 
discussed next.

Inserting Eq. (42) into Eq. (37) yields for the mean RT of the MTR 
model the result 

θMTR(p, k) =
1 − k(1 − p)

p
−
(1 − p)(1 − k)

p2 Arctanh(p) −
(

αAD

24
(1 − p)

+
p

2α2
CD

)

⋅
p − (1 + p)Arctanh(p)

p2(1 + p)
(43) 

Eq. (43) is plotted in Fig. 5 for the two different values of k. For k = 1, 
the mean solute RT decreases monotonically with increase of p, but is 
always larger than 1. For k = 1 − p, however, the mean RT of the solute is 
not monotonic and takes values less than 1 for p > 0.167. The minimum 
value of the mean RT of 0.927 is obtained for p = 0.7885.

In reality, the mean RT measured by inert tracer experiments may be 
smaller than the space time of the reactor due to the existence of stag
nation or recirculation zones. In the present theoretical approach, such 
zones are excluded because the parabolic velocity profile is assumed. In 
practice, measured tracer data for times longer than 2–3 space times are 
seldom accurately enough to be used for RTD calculations (Bischoff and 
McCracken, 1966). For calculating the mean RT and the variance, the 
integrals in Eq. (8) and Eq. (9) are therefore often truncated by replacing 
the upper limit of integration of infinity by θ = 2 or 3. Accordingly the 
truncated mean RT from tracer measurements can be lower than the 
space time, see e.g. Gobert et al. (2017, Table 4), where the measured 
mean RT is up to 10 % smaller than the expected mean RT. For non-inert 
matter it is known that irreversibly absorbing analytes move faster than 
inert analytes in pressure-driven flow. This is because the slow-moving 
analyte molecules near the wall are preferentially removed from the 
channel (Datta and Ghosal, 2009; Sankarasubramanian and Gill, 1973). 
Correspondingly, the mean RT of the solute is lower than the mean RT of 
the solvent.

Inserting Eq. (37) and Eq. (39) in combination with Eq. (42) into 
σ2

θ,MTR = μMTR
2 − θ2

MTR yields the reduced variance of the MTR model 
which is for k = 1 and k = 1 − p plotted in the inset of Fig. 6. For both 
values of k, the minimum value of the variance is obtained in the limit 
p→0. The minimum value 49/4608 ≈ 0.01063 is in agreement with the 
variance of the AD model for α = αAD = 0.25. By Eq. (42), the variance- 
related parameter S(p, k) decreases with decrease of k. Choosing 
k = 1 − p therefore reduces the variance as compared to the case k = 1, 
see inset of Fig. 6. For both choices of k, the variance increases mono
tonically with increasing p and becomes infinite in the limit p→1. 
Although other choices for k besides k = 1 and k = 1 − p are possible and 
have been tested, these have not proven to be useful.

Fig. 3. Plots of Smean=1(p) and of S(p, k) for k = 1 and k = 1 − p as given by Eq. 
(40) and Eq. (42), respectively, in combination with αAD = 0.25 and αPC =

125.
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3.2. Compartment model (dTiS model)

While the MTR model given by Eq. (36) and Eq. (42) has the 
advantage of being derived from first principles, its complexity may 
appear as a disadvantage. Furthermore, the computational evaluation 
can cause numerical underflows for very small values of the arguments 
of the exponential function. We therefore present a phenomenological 
compartment model as simpler alternative. Compartment models are 
based on the combination of ideal CSTR and PFR arranged in different 
configurations (Levenspiel, 1999). In the present case the compartment 
model consists of one PF unit followed by a cascade of ideally mixed 
CSTR’s with equal volumes and identical flow rates, a model that is 
already used in the context of hot melt extrusion (Grimard et al., 2016), 
powder blending (Escotet-Espinoza et al., 2019) and constructed wet
lands (Zhang et al., 2024).

The dimensional RTD of a cascade of n = 1, 2,3,⋯ equal-volume 
CSTRs in series with mean residence time tTiS is (MacMullin and 
Weber, 1935) 

ETiS(t|n) =
nn

(n − 1)!
tn− 1

tn
TiS

exp
(

−
nt
tTiS

)

(44) 

This tank-in-series (TiS) model can be generalized to the extended tank- 
in-series (eTiS) model (Martin, 2000) with non-dimensional RTD 

EeTiS
θ (θ|q) =

qq

Γ(q)
θq− 1exp( − qθ) (45) 

Here, Γ(q) denotes the (complete) Gamma function, with q being a 
positive real number that removes the problem of quantization (Buffham 
and Gibilaro, 1968) which occurs as n tends to 1 in Eq. (44).

Here, we consider a compartment model where a PFR is in series 
with an eTiS. Due to the PFR, material reaches the eTiS with a delay time 
tD so that the RTD from Eq. (44) becomes 

EdTiS(t|q) =

⎧
⎪⎨

⎪⎩

0 t < tD
qq

Γ(q)
(t − tD)q− 1

tq
eTiS

exp
(

− q
t − tD
teTiS

)

t ≥ tD
(46) 

Fig. 4. Families of RTD curves of the MTR model under variation of the regime transition parameter p for k = 1 (a) and k = 1 − p (b). Regime boundaries are αAD =

0.25 and αPC = 125.

Fig. 5. Mean normalized solute residence time θMTR(p, k) of the MTR model as 
function of regime transition parameter p for k = 1 and k = 1 − p. Regime 
boundaries are αAD = 0.25 and αPC = 125.

Fig. 6. Non-dimensional reduced variance of the MTR and dTiS models as 
function of α (main graph), and of regime transition parameter p (inset, MTR 
model only). Regime boundaries are αAD = 0.25 and αPC = 125.
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The mean value of this RTD is tdTiS = tD +teTiS so that the non- 
dimensional RTD becomes 

EdTiS
θ (θ|q, θD) =

⎧
⎪⎨

⎪⎩

0 θ < θD

1
1 − θD

q
Γ(q)

(

q
θ − θD

1 − θD

)q− 1

exp
(

− q
θ − θD

1 − θD

)

θ ≥ θD

(47) 

The delay time associated with PF behavior is considered equal to the 
first appearance time θf = 0.5 of Poiseuille flow. Assuming tD = teTiS =

τs/2 so that θD = tD/tdTiS = 0.5 yields the delayed-tank-in-series (dTiS) 
model with differential and cumulative RTD given by 

EdTiS
θ (θ|q) = H(θ − 0.5)⋅

2qq

Γ(q)
(2θ − 1)q− 1exp[ − q(2θ − 1)], (48) 

FdTiS(θ|q) = H(θ − 0.5)⋅
(

1 −
Γ(q, q(2θ − 1))

Γ(q)

)

(49) 

Here Γ(q, x) =
∫∞

x tq− 1e− tdt denotes the upper incomplete Gamma 
function so that Γ(q,0) = Γ(q). Since Eq. (48) becomes infinite in the 

Fig. 7. In the eleven subfigures (a-k), open circle symbols represent the numerical RTD data of Dantas et al. (2014) for eleven different values of α. Lines represent 
least-squares fits of parameter p of the MTR model, Eq. (36), and of parameter q of the dTiS model, Eq. (48), to the numerical RTD data. Parameter S of the MTR 
model is given by Eq. (42) and fits are performed for k = 1 and k = 1 − p. Obtained fit values for p and q for each value of α are given in the legend of each subfigure.
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limit θ→+0.5 for q < 1 we restrict the number of hypothetical tanks in 
series to q ≥ 1. The mean value of EdTiS

θ (θ|q) is 1 and the variance is 1/4q. 
The inset in Fig. 9 shows RTD curves for six different values of q. In the 
limit q→∞ plug flow is approached. The one-parameter RTD curves 
EdTiS

θ (θ|q) can be considered as a special case of the general three- 
parameter gamma distribution model (Johnson et al., 1971; Wen and 
Fan, 1975) in absence of bypass flow and in combination with a 
dimensionless delay time 0.5 of the plug flow section.

3.3. Model closure

To close the MTR and dTiS models, the regime transition parameters 
p and q have to be related to the normalized transversal diffusion time 
α = Pe/4λ. For this purpose, we resort to numerical solutions of the non- 
dimensional advection–diffusion equation in the absence of axial 
diffusion, Eq. (20) with present normalization. While there are early 
numerical solutions obtained with different normalizations (Shankar 
and Lenhoff, 1989, 1991), we use here more recent numerical results of 
Dantas et al. (2014) which are based on the present normalization.

3.3.1. Fit of one-parameter models to numerical RTD data
Eq. (20) is a special case (Newtonian fluid) of a more general equa

tion in Dantas et al. (2014, Eq. (13)) for non-Newtonian power-law 
fluids, where α is denoted as modified Peclet number (Pé ). The authors 
solved Eq. (20) for different values of α numerically by a finite difference 
method in combination with a step input (Dantas et al., 2014). From the 
numerical results for the mixing cup average tracer concentration at the 
outlet plane, sampled values of the cumulative distribution function 
Fi(θi) were evaluated in intervals Δθ = 0.02. The discrete differential 
RTD is obtained as central difference Eθ,i = (Fi+1 − Fi− 1)/2Δθ. The nu
merical E-curves of laminar flow with radial diffusion in a straight tube 
obtained in this way were used for characterizing measured RTD curves 
in a holding tube with U-bend. The total of 17 considered values for α 
span the range from log(α) = − 1.5 to log(α) = 2.5 where steps of 
log(α) = 0.25 are employed, corresponding to the range 
0.0316 ≤ α ≤ 316. Since the four smallest values of α are lower than 
αAD = 0.25 while the two highest values are larger than αPC = 125, we 
use here numerical data for eleven different values of α in the range 
− 0.5 ≤ log(α) ≤ 2 only, corresponding to 0.0316 ≤ α ≤ 100. Fig. 7
shows for these eleven values of α least-square fits of the MTR model to 
the numerical results of Dantas et al. (2014), both for k = 1 and k =

1 − p. For the dTiS model, only fits to numerical data for α ≤ 5.62 are 
displayed in Fig. 7 because larger α values lead to values q < 1, which 
we do not allow here.

The fitting of the numerical RTD data of Dantas et al. (2014) for the 
MTR model in Fig. 7(a-k) is done with Mathematica Software (version 
12) using FindFit[data,(expr,cons),pars,vars]. This built-in Mathematica 
symbol function finds numerical values of the parameters pars that make 
expr under the constraints cons give a best least-squares fit to data as a 
function of vars. Here, the range of data is restricted so that only RTD 
values satisfying Eθ,i(θi) > 5⋅10− 7 are considered for the fit. For expr, the 
mathematical relationship defining the MTR model either with k = 1 or 
k = 1 − p is used in combination with the constraint 0 < p < 1. The two 
remaining arguments pars and vars are given by p and θ, respectively. 
For the fitting of the numerical RTD data of Dantas et al. (2014) in Fig. 7
(a-f) to the dTiS model, the software OriginPro 2019 (Version 9.6.0.172) 
is used in combination with a user defined function representing Eq. (48)
and the Levenberg-Marquardt algorithm. With increase of α from 0.316 
to 4.62, the coefficient of determination R2 decreases from 0.996 to 
0.95. We also fitted the MTR model to the entire range of the cumulative 
RTD Fi(θi), which lead to different results as compared to the fit using 
the range-restricted differential RTD. However, the values of p obtained 
by fit of the cumulative RTD did not yield a good agreement between the 
respective curve of the MTR model and the corresponding numerical 
differential RTD.

3.3.2. Predictive models for the RTD in the transition regime
By the described procedure, eleven discrete data pairs for pi(αi) and 

six discrete data pairs for qi(αi) are obtained, which are shown in Fig. 8
and Fig. 9, respectively. Fig. 8 shows that for both, α < 6 and α > 6 the 
relationship p = p(α) in the MTR model is close to linear. However, since 
the slope in both regions is very different, the overall relation is strongly 
non-linear. A suitable model for data that follow two different linear 
relationships but allow for a smooth transition from one linear regime to 
the other is the “bent-hyperbola” regression model (Griffiths and Miller, 
1973). To fit the data pi(αi) in Fig. 8, we resort to a parametrization of 
the bent-hyperbola model (Ratkowsky, 1990, Eq. (4.5.6)). This five- 
parameter model, made up of two intersecting straight lines as a 
limiting case, is given by the equation 

p(α|c1, c2, c3, c4, c5) = c1 + c2(α − c4) − c3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α − c4)
2
+ c2

5

√

(50) 

By the condition p(0.25) = 0 the parameter c1 is determined as 

c1 = c2(c4 − 0.25)+ c3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(c4 − 0.25)2
+ c2

5

√

(51) 

while the condition p(125) = 1 yields 

c2 =
1 + c3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(125 − c4)
2
+ c2

5

√

− c3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(c4 − 0.25)2
+ c2

5

√

125 − 0.25
, (52) 

resulting in the three-parameter model 

p(α|c3, c4, c5)

=
α − 0.25

125 − 0.25

[

1 + c3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(125 − c4)
2
+ c2

5

√

− c3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(c4 − 0.25)2
+ c2

5

√ ]

− c3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α − c4)
2
+ c2

5

√

+ c3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(c4 − 0.25)2
+ c2

5

√

(53) 

Since the differences in the data points for k = 1 and k = 1 − p in Fig. 8
are rather small, the relation p = p(α) in the MTR model is here 
approximated independent on both alternatives for k by a common fit. 
Furthermore, to keep the relation p(α) relatively simple, the remaining 
parameters are not obtained by a regression. Instead, they are arbitrarily 
set to rounded values c3 = 1/12, c4 = 6 and c5 = 1 to obtain 

Fig. 8. Relationship p(α) for the MTR model in linear (main graph) and log- 
linear (inset) representation. The symbols correspond to the least-squares fit 
values given in the legends of Fig. 7(a-k).
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p(α) = 125
̅̅̅̅̅̅̅̅̅
545

√
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
14162

√
− 12

5988⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
≈0.4655

+
48 + 4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
14162

√
−

̅̅̅̅̅̅̅̅̅
545

√

5988⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
≈0.0836

⋅α

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (α − 6)2
√

12
,

(54) 

where 0.25 < α < 125.
The latter relationship completes the present mechanistic transition 

regime (MTR) model, which is given by Eqs. (36), (42) and (54). The 
value of k should be chosen as a compromise depending which model 
weakness is more acceptable. If the violation of the breakthrough time 
0.5 is acceptable, then the value k = 1 is recommended as it ensures that 
the mean solute RT given by Eq. (43) is slightly larger than the space 
time. On the other hand, if a violation of the breakthrough time 0.5 is not 
acceptable while a mean solute RT lower than the space time is toler
able, then it is recommended to use the value k = 1 − p in Eq. (42) for 
S = S(p,k).

For the dTiS model, the symbols in Fig. 9 can well be fitted by the 
simple relationship q(α) = 6/α. The final differential and cumulative 
RTDs of the dTiS model with mean value 1 and variance α/24 then 
become 

EdTiS
θ (θ|α) = H(θ − 0.5)

Γ(6/α) ⋅
12
α ⋅

[
6(2θ − 1)

α

]
6− α

α ⋅exp
[

−
6(2θ − 1)

α

]

(55) 

and 

FdTiS(θ|α) = H(θ − 0.5)⋅
[

1 −
Γ(6/α, 6(2θ − 1)/α)

Γ(6/α)

]

, (56) 

respectively, where 0.25 ≤ α ≤ 6.

4. Discussion

4.1. Straight tubes

To the author’s knowledge, the MTR and dTiS models developed in 
Section 3 represent the first models for the RTD in the transition regime. 
The MTR model is valid in the entire hatched region in Fig. 1(a) and 
covers with the range 0.25 < α < 125 almost three orders of magnitude 
in α. The dTiS model is only applicable in a subset of the hatched area of 

Fig. 1 (a), as its validity range 0.25 ≤ α ≤ 6 is much smaller. Since the 
normalized transversal diffusion time α = a2U/LD = Pe/4λ is usually 
known in advance, both RTD models are predictive for straight tubes 
with operating conditions falling in the transition regime.

For the MTR model, it should be emphasized that the postulated 
outlet concentration distribution in Eq. (35) is only a heuristic approx
imation. Since the radial gradient of the assumed concentration distri
bution in the outlet plane at the pipe wall is non-zero, it is not 
compatible with the advection–diffusion equation given by Eq. (20) in 
combination with a zero mass-flux condition at the tube wall. In the limit 
α→αAD = 0.25 this model deficiency is not of great relevance as the wall 
concentration gradient in Eq. (35) becomes very small in accordance to 
the transversally uniform concentration field of the underlying limit of 
the AD regime. In the limit α→αPC = 125, the model deficiency is 
probably of no great practical relevance as well, as the area of the thin 
annular region where the concentration gradient at the wall vanishes 
should be very small as compared to the pipe cross-section. It is therefore 
expected that disregarding the no-mass flux boundary condition may in 
the limit α→αPC mainly affect the tail of the RTD. Fig. 7(a) and Fig. 7(k) 
confirm that the RTDs predicted by the MTR model on basis of the 
postulated outlet concentration distribution in Eq. (35) agree in the 
limits α→αAD = 0.25 and α→αPC = 125 indeed very well with the RTDs 
obtained by numerical solution of Eq. (20) by Dantas et al. (2014) in 
combination with a zero mass-flux condition at the tube wall. Con
cerning the tail of skew RTDs it is also interesting to mention findings of 
a recent study on pharmaceutical manufacturing, which showed that the 
tails of experimental RTDs can be truncated with no loss of accuracy 
from quality assurance perspective (Bhalode et al., 2023).

The error made by disregarding the non-penetration condition at the 
wall seems to be largest for 2 < α < 8. In this range of the time scale 
ratio τd/τs, the numerical RTDs exhibit a right-skewed “platform” or 
plateau as shown in Fig. 7(e) and Fig. 7(f). The origin of the plateau in 
the RTD lies in plateaus or double-humped peaks that occur in 
concentration-over-time curves under certain conditions, where radially 
inward diffusion of solute from low velocity regions near the pipe wall 
towards the axis coexists with radially outward diffusion from the high 
velocity region at the pipe axis (Gill and Ananthakrishnan, 1967; Golay 
and Atwood, 1979; Guan and Chen, 2024; Korenaga et al., 1989a; 
Korenaga et al., 1989b; Mayock et al., 1980; Shankar and Lenhoff, 
1991). Such a plateau region of the RTD, which occurs in a certain range 
of θ only, where both diffusion regions have not fully interacted, cannot 
be predicted by either the MTR model or the dTiS model, cf. the set of 
RTD curves of both models in Fig. 4 and the inset of Fig. 9, respectively. 
The lacking of this plateau region in the family of RTD curves of the MTR 
model may be related to the violation of non-penetration boundary 
condition at the pipe wall. However, despite of several attempts, the 
author did not find a heuristic outlet concentration distribution that 
fulfills the non-penetration boundary condition at the tube wall while 
allowing for analytical calculation of all relevant integrals required for 
determining the RTD by the novel procedure outlined in this paper.

The dispersion regime map of Levenspiel (1999, Fig. 15.2) suggests 
to model the RTD in the region of the pure convection regime by Eq. 
(19). This equation is independent on Pe and λ. An alternative may be to 
use for α > 125, corresponding to the pure convection regime in Fig. 1
(a), Eq. (34) instead, which approaches Eq. (19) in the limit α→∞. 
However, already for α ≥ 50 the difference between Eq. (34) and Eq. 
(19) is very small (Fig. 2).

The presented original approach for deriving an RTD model for the 
transition regime from an assumed outlet concentration field can be 
extended to other laminar velocity profiles representing e.g., the flow of 
non-Newtonian liquids. For this purpose, the RTD of the pure convection 
model for Poiseuille flow in Eq. (19) should be replaced by the RTD of 
the generalized convection model with breakthrough time θf as a further 
parameter (Gutierrez et al., 2010; Wörner, 2010).

Fig. 9. Relationship q(α) for the dTiS model with the inset showing typical 
Eθ-curves for different values of q. The symbols in the main graph correspond to 
the least-squares fit values given in the legends of Fig. 7(a-f).
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4.2. Coiled tubes

The dispersion regime map in Fig. 1(a) and the MTR and dTiS models 
developed in this paper are valid for straight tubes so far. Coiling of a 
length of tubing saves not only space but also reduces axial dispersion 
and narrows the RTD as compared to straight tubes (Koutsky and Adler, 
1964). For these reasons and due to their lower costs as compared to 
chip-based reactors, coil-based reactors are the most used continuous 
flow reactors. We now show that the MTR and dTiS models can be used 
to predict the RTD in coiled tubes as well.

The reduction of axial dispersion by coiling due to increased trans
versal mixing by centrifugal Dean vortices can be quantified by a 
dispersion reduction factor κ = Dax,coiled/Dax,straight, where 0 < κ ≤ 1. 
The idea to extend the applicability of the present model from straight 
tubes with normalized transversal diffusion time αstraight = a2U/LD to 
coiled tubes is to compute a reduced normalized transversal diffusion 
time αcoiled = κ⋅αstraight that is representative for a coiled tube of identical 
diameter and length. The RTD of the coiled tube predicted by the present 
models is then given by 

Ecoiled
θ = EMTR/dTiS

θ

(
θ
⃒
⃒αcoiled = κ⋅αstraigth

)
(57) 

To test the validity and accuracy of this approach, we use experi
mental RTD data of Gobert et al. (2017). Symbols in Fig. 10 show the 
measured RTD in a coiled tube with 2.4 mm inner diameter where λ =

829 and Pe = 41511. The value of the normalized transversal diffusion 
time for the corresponding straight pipe is αstraight = 12.516. A large 
discrepancy can be noted between the skewed RTD predicted by the 
MTR model using that value (dashed orange line) in combination with 
variance parameter k = 1 − p and the measured RTD in a coiled tube of 
same diameter and length. This is to be expected as the conditions for a 
straight pipe fall in the middle of the transition regime as indicated by 
the magenta star in Fig. 1(a). To estimate the dispersion reduction factor 
κ for this case, we use a correlation of Florit et al. (2021) that was 
recently derived using CFD simulations. The authors distinguish be
tween tight-coils and loose-coils and model κ as function of the Germano 
number (Ge) and the Schmidt number (Sc = ν/D). For tight coils, as 
relevant here, it is Ge ≈ De where De = Re

̅̅̅̅̅̅̅̅̅̅̅̅̅
d/2Rc

√
is the Dean number 

based on coil radius Rc. In the experiments of Gobert et al. (2017) it is 

Sc ≈ 520. The tight-coils correlation of Florit et al. (2021) for the inverse 
dispersion reduction then factor becomes 

κ− 1 = 1+0.9415
[
log10

(
520De2) − 2

]1.983 (58) 

The value of the Dean number in the selected experiment of Gobert et al. 
(2017) is 11.2 resulting in κ = 0.1195 and αcoiled = 1.496. Fig. 10 shows 
that the RTDs of the MTR and dTiS models using that value are very 
similar to each other and agree quite well with the measured RTD. Given 
that this good agreement is obtained without any adjustment, the pre
dictive capabilities of the MTR and dTiS models for coils are highlighted.

4.3. General reactors

Beside coil-based reactors, chip or plate-based reactors and packed 
bed reactors are widely used in continuous flow chemistry. Chip based 
reactors offer advantages in the wide range of geometries that can be 
manufactured including complex mixing sections while packed bed re
actors are appropriate if heterogeneous catalysts or reagents are 
required. Traditional RTD analysis for characterization of these and 
other reactor types fits observed data from a pulse input or differentiated 
data from a step input to a model, such as AD or TiS. In this context, the 
variance is especially useful for matching experimental RTD curves to 
one of a family of theoretical curves. The long tails, however, often 
associated with the RTD measurements, distort variance values and 
yield fitting-parameter values of little accuracy. A Bodenstein number or 
other parameter computed in this way may be very much in error. This is 
because the later concentrations values of the recorded distributions 
normally cannot be determined with great accuracy but contribute 
heavily to the second moment (Ostergaard and Michelsen, 1969). 
Alternatively, RTD data can be fitted to theoretically calculated profiles 
and the “best fit” can be determined from the sum of squares of the 
differences between experimental and calculated values, an approach 
where one is not bothered by any long tail. Here, we demonstrate both 
concepts for the MTR and dTiS models using experimental RTD data for 
a flotation cell.

Guner et al. (2023) recently conducted a series of laboratory resi
dence time measurements on the gas–liquid two-phase flow in a pneu
matic flotation cell (RefluxTM RFC-100, cell volume 16 L). The authors 
studied six cases with different operating conditions, each case being 

Fig. 10. Comparison of measured RTD data (Gobert et al., 2017) in a 2.4 mm 
coiled tube (symbols) with model predictions (lines). Predictions include the 
MTR and dTiS models for coiled tubes employing a dispersion reduction factor 
and the MTR model for a straight tube for comparison. The results of the MTR 
model are obtained in combination with k = 1 − p.

Fig. 11. Comparison of measured RTD in a pneumatic flotation cell (Guner 
et al., 2023) (symbols and error bars) with predictions by the MTR and dTiS 
models (lines) for reduced variance 0.2 and with least-squares fit of the dTiS 
model resulting in reduced variance 0.146.

M. Wörner                                                                                                                                                                                                                                        Chemical Engineering Science 318 (2025) 122116 

15 



repeated. Fig. 11 shows the RTD data of Guner et al. (2023, case C4) by 
symbols (open circles) and error bars. The authors did not report values 
for the RTD variance. However, their supplemental material provides all 
necessary information for calculation. For case C4, the reduced variance 
is estimated as σ2

θ = 0.20 (see Supplemental Material, Section 4). The 
reduced variance of the dTiS model is α/24 so that the effective time 
scale ratio is estimated as α = 4.8. For the MTR model, the effective 
values of the time scale ratio are determined iteratively as 3.13 for k = 1 
and as 4.63 for k = 1 − p = 0.29. Fig. 11 shows that the MTR model with 
k = 1 underestimates the maximum of the experimental RTD, while the 
MTR model with k = 1 − p overestimates it. A better agreement is ob
tained with the dTiS model, though the position of the RTD maximum is 
shifted to lower values of θ. Despite the same value of the variance of 
0.2, the three RTD curves differ notably. This illustrates the problem of 
determining the fitting parameter of models that have different tail 
behaviour from the measured variance when the tails of the RTD are 
truncated or affected by noise. A better agreement is obtained by a least- 
squares fit of the dTiS model to the experimental RTD as shown in 
Fig. 11, which yields α = 3.5 and a reduced variance of 0.146. These 
results demonstrate that general reactors can be characterized by 
correlating the measured RTD by means of a weighted least-squares 
method applied to the MTR and dTiS models using α as fitting 
parameter.

5. Conclusions

Solute dispersion in a solvent flowing laminar through a pipe is of 
interest for continuous flow chemistry (CFC) and other fields. CFC is 
nowadays well established and widely used in a variety of industries and 
applications due to its efficiency, safety, and scalability. Solute disper
sion arises by two competing processes. The axial transport of solutes by 
the non-uniform velocity field of the solvent creates radial concentration 
gradients, which tend to be eliminated by transverse diffusion. If the 
time scale of transversal diffusion is large as compared to the space time 
of the solvent streaming in Poiseuille flow, the dispersion and the 
associated RTD is described by the pure convection regime. If the time 
scale is small in contrast, the Taylor-Aris axial dispersion regime applies. 
Operation conditions in laminar tubular reactors as used in CFC often 
fall in the transition regime where neither longitudinal convection nor 
transversal diffusion are dominant and both, convection and diffusion 
determine dispersion and the RTD. In the transition regime, neither the 
pure convection nor the axial dispersion models are valid.

This paper uses a novel analytical approach to develop for solute 
transport in Poiseuille flow models for the RTD in the transition regime 
missing previously. Both proposed models yield continuous families of 
RTD curves that depend on a sole dimensionless parameter (α = Pe/4λ), 
namely the ratio of transversal diffusion time to space time denoted as 
normalized transversal diffusion time. The mechanistic transition 
regime (MTR) model given by Eqs. (36), (42) and (54) is valid in the 
entire transition regime 0.25 < α < 125 and recovers the axial disper
sion and pure convection models in the limits α→0.25 and α→125, 
respectively. A simpler phenomenological compartment model (dTiS) 
given by Eq. (55) is valid in the range 0.25 ≤ α ≤ 6. With increase of α, 
the RTD curves undergo a transition from the nearly symmetrical 
Gaussian shape typical for the axial dispersion regime towards the skew 
shape of the pure convection regime with sudden jump at the break
through time and long tails. To determine the normalized transversal 
diffusion time α, knowledge of the pipe diameter, pipe length, mean 
solvent velocity and molecular diffusivity of the solute is required. For 
applications in flow chemistry, α is usually known in advance to that the 
proposed models can be used to predict the RTD in straight tubes and, in 
combination with a dispersion reduction factor, also in coiled tubes as 
shown. The proposed models are furthermore useful to characterize 
skew RTDs occurring in other applications via the measured variance of 
the RTD or by a-posteriori fitting, as demonstrated for gas–liquid two- 

phase flow in a lab-scale pneumatic flotation cell.
In summary, the proposed models are the first developed specifically 

for the transition regime. They are predictive for straight and coiled 
tubes and can be used for reaction engineering design. They are also 
useful to predict or characterize RTDs in non-tubular reactors. Mathe
matical modeling can be further extended by combining RTD theory 
with chemical reaction kinetics to forecast conversion and yield.

Notation
Roman
a Inner pipe radius, m.
A Cross-section area of the pipe, A = πa2, m2.

Bo Bodenstein number, Bo = LU/Dax, dimensionless.
c Solute (tracer) concentration, mol/m3.

cref Reference concentration, cref = m/Vreactor, mol/m3.

C Normalized tracer concentration, C = c/cref , dimensionless.
d Inner pipe diameter, m/s.
D Molecular diffusion coefficient, m2/s.
Dax Axial dispersion coefficient, m2/s.
De Dean number, De = Re

̅̅̅̅̅̅̅̅̅̅̅̅̅
d/2Rc

√
, dimensionless.

E Differential RTD, s− 1.

Eθ Non-dimensional differential RTD, Eθ = τsE, dimensionless.
F Cumulative RTD, dimensionless.
Fod Fourier number, Fod = τsD/d2 = 1/4α, dimensionless.
H( • ) Heaviside function, dimensionless.
k Variance parameter in MTR model, k = 1 or k = 1 − p, dimensionless.
L Axial distance between the tracer inlet and outlet planes, m.
m Total amount of tracer/solute released in pulse input, mol.
p Regime transition parameter of the MTR model, 0 < p < 1, dimensionless.
Pe Peclet number, Pe = dU/D = Re⋅Sc, dimensionless.
Q Volumetric flow rate of solvent, Q = πa2U, m3/s.
q Hypothetical number of tanks-in-series, dimensionless.
r Radial coordinate, m.
R Normalized radial coordinate, R = r/a, dimensionless.
Rc Coil radius, m.
Re Reynolds number Re = dU/ν, dimensionless.
S Model parameter related to variance of the MTR model, dimensionless.
Sc Schmidt number Sc = ν/D, dimensionless.
t Time, s.
u(r) Radial profile of axial velocity, m/s.
U Mean axial velocity, m/s.
Umax Maximum axial velocity, Umax = 2U, m/s.
Vreactor Reactor volume, Vreactor = πa2L, m3.

V(R) Normalized axial velocity profile, V = 2
(
1 − R2), dimensionless.

z Axial coordinate, m.
Z Normalized axial coordinate, Z = z/L, dimensionless.
Greek
α Normalized transversal diffusion time, α = τd/τs = a2U/LD, dimensionless.
αAD Boundary between axial dispersion and transition regime, dimensionless.
αPC Boundary between pure convection and transition regime, dimensionless.
Γ( • ) Complete Gamma function, Γ(q) = Γ(q,0), dimensionless.
Γ(•,•) Incomplete upper Gamma function, dimensionless.
δ( • ) Dirac delta function, dimension inverse to that of the argument.
ε Small positive parameter, m.
θ Normalized (reduced) time, θ = t/τs = tU/L, dimensionless.
θf First appearance time, dimensionless.
κ Dispersion reduction factor due coiling, κ = Dax,coiled/Dax,straight, dimensionless.
λ Ratio between length and diameter of the circular pipe, λ = L/d, dimensionless.
μn Moments of mixing cup concentration defined in Eq. (6), dimensionless.
ν Kinematic viscosity of solvent, m2/s.
σ2

θ Variance (around mean) of non-dimensional differential RTD, dimensionless.
τs Space time, τs = Vreactor/Q = L/U, s.
τd Time scale of transversal diffusion, τd = a2/D, s.
Acronyms.
AD. Axial dispersion.
CD. Convection dominated.
CFC. Continuous flow chemistry.
CSTR. Continuous stirred tank reactor.
dTiS. Delayed-tank-in-series.
MTR. Mechanistic transition regime (model)
PC. Pure convection.
PFR. Plug flow reactor.
RT. Residence time.
RTD. Residence time distribution.
Averages

(̂ • ) Cross-sectional area averaging operator defined in Eq. (11)

( • ) Time average
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Verweilzeitverteilungen. Chem. Ing. Tech. 71, 795–807. https://doi.org/10.1002/ 
cite.330710805.

Plutschack, M.B., Pieber, B., Gilmore, K., Seeberger, P.H., 2017. The hitchhiker’s guide to 
flow chemistry. Chem. Rev. 117, 11796–11893. https://doi.org/10.1021/acs. 
chemrev.7b00183.

Probstein, R.F., 1994. Physicochemical Hydrodynamics – An Introduction, 2nd ed. 
Butterworths, Boston. 

Ratkowsky, D.A., 1990. Handbook of Nonlinear Regression Models. Dekker, New York. 
Read, A.L., 1999. Linear interpolation of histograms. Nucl. Instrum. Methods Phys. Res., 

Sect. A 425, 357–360. https://doi.org/10.1016/S0168-9002(98)01347-3.
Reis, M.H., Varner, T.P., Leibfarth, F.A., 2019. The influence of residence time 

distribution on continuous-flow polymerization. Macromolecules 52, 3551–3557. 
https://doi.org/10.1021/acs.macromol.9b00454.

Rodrigues, A.E., 2021. Residence time distribution (RTD) revisited. Chem. Eng. Sci. 230, 
116188. https://doi.org/10.1016/j.ces.2020.116188.

Rossi, D., Gargiulo, L., Valitov, G., Gavriilidis, A., Mazzei, L., 2017. Experimental 
characterization of axial dispersion in coiled flow inverters. Chem. Eng. Res. Des. 
120, 159–170. https://doi.org/10.1016/j.cherd.2017.02.011.

Ruthven, D.M., 1971. Residence time distribution for ideal laminar flow in a helical tube. 
Chem. Eng. Sci. 26, 1113–1121. https://doi.org/10.1016/0009-2509(71)80025-8.

Sadriaj, D., Desmet, G., Cabooter, D., 2022. Taylor-Aris methodology for the 
experimental determination of molecular diffusion coefficients: Tutorial with focus 
on large biomolecules. J. Chromatogr. A 1664, 462787. https://doi.org/10.1016/j. 
chroma.2021.462787.

Sankarasubramanian, R., Gill, W.N., 1973. Unsteady convective diffusion with 
interphase mass transfer. Proc. R. Soc. Lond. A. Math. Phys. Sci. 333, 115–132. 
https://doi.org/10.1098/rspa.1973.0051.

Savage, T., Basha, N., McDonough, J., Krassowski, J., Matar, O.K., del Rio Chanona, E.A., 
2024. Machine learning-assisted discovery of flow reactor designs. Nat. Chem. Eng. 
1, 522–531. https://doi.org/10.1038/s44286-024-00099-1.

Saxena, A.K., Nigam, K.D.P., 1984. Coiled configuration for flow inversion and its effect 
on residence time distribution. AIChE J 30, 363–368. https://doi.org/10.1002/ 
aic.690300303.

Schmalenberg, M., Krieger, W., Kockmann, N., 2019. Modular coiled flow inverter with 
narrow residence time distribution for process development and production. Chem. 
Ing. Tech. 91, 567–582. https://doi.org/10.1002/cite.201800172.

Shankar, A., Lenhoff, A.M., 1989. Dispersion in laminar-flow in short tubes. AIChE J 35, 
2048–2052. https://doi.org/10.1002/aic.690351218.

Shankar, A., Lenhoff, A.M., 1991. Dispersion in round tubes and its implications for 
extra-column dispersion. J. Chromatogr. 556, 235–248. https://doi.org/10.1016/ 
S0021-9673(01)96224-7.

Sharp, M.K., 1993. Shear-augmented dispersion in non-Newtonian fluids. Ann. Biomed. 
Eng. 21, 407–415. https://doi.org/10.1007/BF02368633.

M. Wörner                                                                                                                                                                                                                                        Chemical Engineering Science 318 (2025) 122116 

18 

https://doi.org/10.1021/acs.oprd.6b00359
https://doi.org/10.1016/S0021-9673(00)95261-0
https://doi.org/10.1016/S0021-9673(00)95261-0
https://doi.org/10.1080/00986440590495197
https://doi.org/10.1080/00986440590495197
https://doi.org/10.1080/03610927308827098
https://doi.org/10.1080/03610927308827098
https://doi.org/10.3390/pr4020019
https://doi.org/10.1017/jfm.2024.34
https://doi.org/10.1039/C9CS00832B
https://doi.org/10.1016/j.mineng.2023.108439
https://doi.org/10.1016/j.jfoodeng.2010.01.004
https://doi.org/10.1016/j.jfoodeng.2010.01.004
https://doi.org/10.1002/cite.201100004
https://doi.org/10.1016/j.trac.2006.07.010
https://doi.org/10.1039/B906343A
https://doi.org/10.1002/jctb.4772
https://doi.org/10.1002/jctb.4772
https://doi.org/10.1002/ceat.200900474
https://doi.org/10.1002/ceat.200900474
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0270
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0270
https://doi.org/10.1016/j.coche.2022.100798
https://doi.org/10.1016/j.coche.2022.100798
https://doi.org/10.1016/j.ces.2019.06.016
https://doi.org/10.1016/j.ces.2019.06.016
https://doi.org/10.1016/0009-2509(86)87076-2
https://doi.org/10.1016/j.aeaoa.2019.100006
https://doi.org/10.1016/j.aeaoa.2019.100006
https://doi.org/10.1002/elps.200600830
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0305
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0305
https://doi.org/10.1016/0009-2509(76)85059-2
https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.003
https://doi.org/10.1021/i260040a001
https://doi.org/10.1016/0003-2670(94)00574-6
https://doi.org/10.1016/S0003-2670(00)83051-2
https://doi.org/10.1002/aic.690350821
https://doi.org/10.1002/aic.690350821
https://doi.org/10.1246/bcsj.62.1492
https://doi.org/10.1002/cjce.5450420602
https://doi.org/10.1002/cjce.5450420602
https://doi.org/10.1016/0009-2509(78)85196-3
https://doi.org/10.1016/0020-708x(79)90113-3
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0360
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0360
https://doi.org/10.1007/978-1-4419-8074-8_9
https://doi.org/10.1016/0009-2509(70)85084-9
https://doi.org/10.1016/0009-2509(70)85084-9
https://doi.org/10.1016/0009-2509(57)85021-0
https://doi.org/10.1016/0009-2509(57)85021-0
https://doi.org/10.1016/0009-2509(70)85083-7
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0385
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0385
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0385
https://doi.org/10.1016/S0009-2509(00)00108-1
https://doi.org/10.1080/01496398008068505
https://doi.org/10.1080/01496398008068505
https://doi.org/10.1021/op200349f
https://doi.org/10.1021/op200349f
https://doi.org/10.1080/00986448108912576
https://doi.org/10.1021/ie071635a
https://doi.org/10.3390/pr11123420
https://doi.org/10.1016/0009-2509(75)80001-7
https://doi.org/10.1016/0009-2509(75)80001-7
https://doi.org/10.1002/cjce.5450470202
https://doi.org/10.1002/cjce.5450470202
https://doi.org/10.1103/PhysRevFluids.5.073102
https://doi.org/10.1103/PhysRevFluids.5.073102
https://doi.org/10.1002/cite.330710805
https://doi.org/10.1002/cite.330710805
https://doi.org/10.1021/acs.chemrev.7b00183
https://doi.org/10.1021/acs.chemrev.7b00183
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0445
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0445
http://refhub.elsevier.com/S0009-2509(25)00939-X/h0450
https://doi.org/10.1016/S0168-9002(98)01347-3
https://doi.org/10.1021/acs.macromol.9b00454
https://doi.org/10.1016/j.ces.2020.116188
https://doi.org/10.1016/j.cherd.2017.02.011
https://doi.org/10.1016/0009-2509(71)80025-8
https://doi.org/10.1016/j.chroma.2021.462787
https://doi.org/10.1016/j.chroma.2021.462787
https://doi.org/10.1098/rspa.1973.0051
https://doi.org/10.1038/s44286-024-00099-1
https://doi.org/10.1002/aic.690300303
https://doi.org/10.1002/aic.690300303
https://doi.org/10.1002/cite.201800172
https://doi.org/10.1002/aic.690351218
https://doi.org/10.1016/S0021-9673(01)96224-7
https://doi.org/10.1016/S0021-9673(01)96224-7
https://doi.org/10.1007/BF02368633
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