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In laminar flow chemistry, tubular reactors are often operated in the transition regime were neither the axial
dispersion model nor the pure convection model are valid. This paper presents for solute transport under
Poiseuille flow models for the residence time distribution (RTD) in the transition regime missing previously. A
novel approach uses an assumed outlet concentration field to calculate the RTD fully analytically via the mixing
cup average concentration and its moments. The proposed mechanistic transition regime model (MTR model)
depends on the time scale ratio of transversal diffusion and space time as sole parameter, is predictive for straight
tubes and recovers the pure convection and axial dispersion models in the limits. In addition, a simplified
compartment model based on a plug flow reactor followed by tanks-in-series is proposed (dTiS model). In
combination with a correlation for a dispersion reduction factor, both models are predictive for coiled tubes and
can be used for reaction engineering design. They are also useful to predict or characterize RTDs in other ap-
plications, as demonstrated for a pneumatic flotation cell.

1. Introduction this context is dispersion, which is the process whereby a locally

concentrated solute is distributed in a solvent toward the equilibrium

1.1. Continuous flow chemistry

Chemical engineering can contribute in a number of ways to
achieving the 17 sustainable development goals set by the United Na-
tions in 2015 by 2030 (Aristizabal-Marulanda et al., 2024) and beyond
(Bollini et al., 2023). In production, sustainability essentially requires
making the best use of educts by maximizing yield while reducing waste
and energy consumption, a goal which may be achieved for many pro-
cesses by applying continuous flow chemistry (Plutschack et al., 2017)
instead of batch reactors. In continuous flow chemistry (CFC), a chem-
ical reaction is run in a continuous stream flowing through channels or
tubing. While operation in batch mode (e.g. in stirred tanks) has its own
benefits (Holtze and Boehling, 2022), CFC offers some major advantages
as compared to batch production. Besides faster and safer reactions in
drastically reduced reactor sizes, these include improved control over
temperature and product quality, cleaner and more sustainable prod-
ucts, and the integration of typically separate processes such as synthesis
(Hartman and Jensen, 2009), work-up and analysis. To obtain full
benefit of CFC in reaction technology, it should be combined with in-
tegrated product and process design based on a fundamental under-
standing of reactors and reactions (Agar et al., 2023). One problem in
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condition of uniform concentration (Probstein, 1994). In CFC, the pipe
diameter is usually small resulting in laminar flow. While dispersion in
laminar flow reactors is largely understood, it is not modelled properly
in the transition regime (also called intermediate regime) where both,
transversal diffusion and longitudinal convection determine solute
transport.

1.2. Dispersion

The effects on solute transport resulting from the combined action of
molecular diffusion and the non-uniform axial velocity in a shear flow
are known as Taylor-Aris dispersion (Aris, 1956; Taylor, 1953). This
type of axial dispersion is a key phenomenon in reactor engineering that
can affect yield and selectivity when reactions are carried out in empty
or packed bed tubular reactors. While large dispersion can create con-
centration gradients that may be useful for studying biochemical re-
actions (Wang et al., 2017), low dispersion is desirable in purification
and separation applications (Datta and Ghosal, 2009) such as on-chip
capillary electrophoresis (Bharadwaj et al., 2002) and chromatog-
raphy where it contributes to extra-column band broadening (Desmet
and Broeckhoven, 2019). In flow injection analysis as an automated
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approach to chemical analysis (Hansen and Miro, 2007), a bolus of a
chemical sample is injected into the flowing carrier stream; this bolus
takes on different shape as it disperses downstream depending on the
parameters of the system.

Beside chemical engineering and chemistry, shear dispersion theory
has application to a number of other fields including material science
(continuous production of nano-materials and catalyst), food industry
(continuous thermal processing of liquid foods (Torres and Oliveira,
1998), pasteurization of milk in holding tubes (Gutierrez et al., 2010)),
live sciences (continuous production of pharmaceuticals and bio-
pharmaceuticals, continuous virus filtration (Chen et al., 2024)), biology
(nutrient transport in blood vessels, active swimming micro-organisms
(Peng and Brady, 2020)) and environmental fluid mechanics
(spreading of pollutants and contaminants in porous groundwater
aquifers, rivers (Young and Jones, 1991), estuaries (Chatwin and Allen,
1985) and constructed wetlands for treating waste-waters from domestic
and industrial sources (Werner and Kadlec, 2000)). The understanding,
quantification and proper modeling of the dispersion of dissolved sub-
stances in flowing streams is thus of importance for a plethora of
applications.

Physically, dispersion of soluble matter in a solvent flowing laminar
with mean linear velocity U through a straight circular pipe (inner
radius a, inner diameter d = 2q, length L, cross-sectional area A = 7a?)
arises due to the interaction of longitudinal advection and transverse
molecular diffusion resulting in the exchange of solute between the fast-
moving fluid near the center and the slow-moving fluid near the wall.
Accordingly, the degree of dispersion is characterized by the competi-
tion of two time scales. The time scale of longitudinal advection is the
space time 7, = L/U, representing the mean (or average) residence time
of the solvent. The time scale of transversal (radial) diffusion is 74 =
a? /D, where D denotes the molecular diffusion coefficient of the solute
(tracer) which is assumed constant independent of concentration. We
indicate the ratio between both time scales by @ = 74/t = a?>U/LD. The
models developed in this paper are formulated as a function of a only.

1.3. Residence time distribution

Mixing happens at different scales. The mixing being associated to
the flow regime and flow patterns within the reactor and occurring over
the entire reactor volume is characterized by the residence time distri-
bution (RTD). The residence time is defined as the time that a material
element needs to proceed from an inlet of an apparatus or system to its
outlet. Because different elements follow different paths, there will be a
spread on the residence time. The distribution of residence time is
usually determined by an input-response experiment. The differential
residence time distribution E(t) defines the probability that a fluid ele-
ments spends a total time ¢t in the reactor; it is particularly useful to
quantify the deviation from ideal plug flow. Time integration of E(t)
yields the cumulative residence time distribution F(t) representing the
fraction of the solute that has spent in the system a time t or less. To
allow for a better comparison of different residence time distributions,
each residence time distribution is usually normalized, either by its
mean value or more common by the space time of the reactor. The
concept of RTD for the analysis of chemical reactors was first introduced
by Mac Mullin and Weber (1935) and worked out in more detail for
continuous flow systems and laminar pipe flow by Danckwerts (1953).
The main advantage of the RTD is that it allows understanding the flow
behavior of the system by concentration measurements at the outlet
without having to account for the complete history of each fluid element
inside the reactor. While traditionally developed for liquid-based sys-
tems, the RTD concept is also applied for gas flows in microreactors
(Wibel et al., 2013) and for processing of solids (Gao et al., 2012), with
applications ranging from powders to granular systems like pharma-
ceuticals (Bhalode et al., 2021). The status of RTD theory is frequently
reviewed (Nauman, 1981, 2008; Nechita et al., 2023; Rodrigues, 2021;
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Wen and Fan, 1975).

The development of chemical milli- and microreactors (Hartman and
Jensen, 2009) in combination with the recent push of CFC e.g. for
pharmaceutical synthesis (Siguemoto et al., 2020) or polymerization of
macromolecules (Reis et al., 2019) renewed the interest in character-
ization of the flow behavior in such devices through the RTD (Boskovic
and Loebbecke, 2008; Gobert et al., 2017; Hopley et al., 2019; Huber
and Santiago, 2007; Vikhansky, 2011). For maximizing process inten-
sification via flow chemistry, precise setting of residence time down to
minutes and seconds is essential (Hessel, 2009). A broad residence time
distribution generally might have a negative effect on conversions and/
or selectivity in syntheses, and can lead to a wide size distribution in
nanoparticle/cluster syntheses and polymer dispersity. In general, the
RTD of the reactor should be as narrow as possible to ensure each fluid
element has the same residence time. This requires the reduction of axial
dispersion, which will not only yield higher efficiencies but also allow
integration of the reactor unit with downstream processing (Hereijgers
et al., 2015).

For realization of larger reaction times, a residence-time providing
unit is required. Often a helically coiled capillary tube serves for this
purpose. If centrifugal forces are sufficiently large, a secondary flow
(Dean vortices) perpendicular to the primary axial flow is induced which
contributes to a reduction in axial dispersion promoting plug flow
(Janssen, 1976; Koutsky and Adler, 1964; Savage et al., 2024) and a
narrowed RTD (Ruthven, 1971). Further narrowing of the RTD can be
obtained by coiled tubes with flow inversion, where the direction of
centrifugal forces is regularly reversed (Rossi et al., 2017; Saxena and
Nigam, 1984; Schmalenberg et al., 2019). For other applications of the
Taylor-Aris theory, such as the measurement of molecular diffusion
coefficients (e.g. of large biomolecules (Sadriaj et al., 2022)) by injection
of narrow sample plug into long coiled tubes, the influence of secondary
flows on the band broadening should be insignificant. This can be
ensured by operating below a transitional flow rate (Atwood and
Goldstein, 1984).

With the increasing interest in flow chemistry (Guidi et al., 2020),
appropriate modeling of the RTD comes into focus. Physically, the RTD
is determined by the interplay between convective and diffusive trans-
port. In the pure convection (PC) regime, molecular diffusion is negli-
gible and each fluid element follows its streamline with no intermixing
with neighboring elements. Then, the velocity profile causes fluid ele-
ments to spend different times within the reactor giving rise to a (usually
unfavorable) wide RTD. In the PC limit, the RTDs of the solute and the
solvent are identical and determined by the non-uniform velocity profile
alone. Closed analytical forms of the diffusion-free RTD in laminar flows
are known only for certain Newtonian, non-Newtonian or generalized
velocity profiles (Emami Meibodi, 2022; Levenspiel, 2012; Osborne,
1975; Worner, 2015) and few channel shapes (Erdogan and Worner,
2013). Typical for the diffusion-free RTD of the PC regime are a sharp
peak head corresponding to the maximum (centerline) velocity followed
by long tails leading to infinite variance. The minimum residence time,
which corresponds to the residence time of the fastest fluid elements, is
commonly denoted as first-appearance time or breakthrough time. The
other extreme is the pure diffusion regime which is without relevance
for CFC. When convection and diffusion are both of importance, the RTD
can — under certain conditions — be described by the axial dispersion
(AD) model, either with the Taylor or the more general Taylor-Aris
expression for dispersion. In this case, flow behavior shows minor de-
viations from ideal plug flow and the RTD is a close-to-symmetric bell
shaped curve which can well be fitted by the AD model.

1.4. Dispersion regime map

Ananthakrishnan et al. (1965) developed a map showing a graphical
summary of the regions with different dispersion regimes in a straight
circular pipe as function of two non-dimensional parameters, the Peclet
number Pe = dU/D and the dimensionless time t/z4. Levenspiel (1999,



M. Worner

Fig. 15.2) adapted this diagram for selecting an appropriate RTD model
by replacing the dimensionless time on the horizontal axis by 2 = L/d,
representing the ratio of length and inner diameter of the pipe. A further
variant of this map for tracer dispersion in a capillary tube is given by
Probstein (1994, Fig. 4.6.5). While the axes and regime boundaries
differ, all these maps show the different regions in which the role of
diffusion, dispersion, and convection vary in importance. In Fig. 1 (a) we
show an adaptation of the Levenspiel map for the present paper. There
are four main boundaries in Fig. 1(a), namely pure diffusion, pure
convection, axial dispersion, and Anmi,. Axial dispersion is further sub-
divided into two regions where dispersion coefficients of Taylor and
Taylor-Aris are appropriate, respectively. The remaining region of the
dispersion regime map is denoted differently in literature. Anan-
thakrishnan et al. (1965, Fig. 8) indicated that in this region only nu-
merical solution is applicable. Probstein (1994, Fig. 4.6.5) named that
region as transition region, while Levenspiel (1999, Fig. 15.2) denoted
the region which is shaded in gray in Fig. 1(a) as intermediate regime.
Here we mainly use the terminology transition regime (TR), but consider
it synonymous with intermediate regime. While Levenspiel did not
specify the position of the diagonal lines enclosing the transition regime,
the respective regime boundaries of Ananthakrishnan et al. (1965) are
0.012 < t/rq < 0.8. With t =~ L/U the latter boundaries correspond to
1.25 < a < 83.3. The boundaries for the transition regime shown in
Fig. 1(a) and used in this paper are 0.25 < a < 125, as explained below
(Section 2.3).

Peclet numbers in microfluidics usually vary between 10 and 10°
with molecular diffusivities ranging from 10~° to 10~ m?/s (Stone
et al., 2004), the lower value being typical for solute in water at room
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temperature. While the extension of the abscissa to A = 10° in Fig. 1(a) is
unrealistic for straight tubes, it is realistic for coiled tubes as for an inner
diameter of 100 ym and a typical length of 10 m a value 1 = 10° results.
Accordingly, many CFC and microfluidic applications fall in the transi-
tion regime. For example, Gobert et al. (2017) characterized the RTD of
various geometrically complex micro- and milliflow reactors in com-
parison to a wide range of classical tubular reactors (with inner diameter
ranging from 0.4 to 4.8 mm). Most of the coiled tubular reactors made of
flexible polymer tubes investigated are in the transition regime. Simi-
larly, for flow-injection analysis, the most practical region is the tran-
sition regime where neither the pure convection model nor the axial
dispersion model are applicable (Kolev, 1995; Vanderslice et al., 1981).
Levenspiel (1999) suggests “If your system falls in the no-man’s land
between regimes, calculate the reactor behavior based on the two
bounding regimes and then try averaging”. Levenspiel gives, however,
no advice how to perform this averaging in practice and the author is not
aware of any paper on the subject how to properly average between the
PC and AD regimes. Clearly, linear interpolation (Read, 1999) of the
completely different RTDs is not suitable here. The interpolation method
proposed by Bursal (1996) requires that the variance of the two PDFs is
finite. Since the variance of the pure convection RTD is infinite, this
method cannot be used here. The usual practice for characterization of
milli- and microflow reactors falling in the transition regime, also
adopted by Gobert et al. (2017), is therefore to model the measured RTD
by one of the two classical flow models, the axial dispersion model and
the pure convective flow model.
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Fig. 1. (a) Regime map for dispersion in a straight tube adapted from Levenspiel (1999, Fig. 15.2). Straight lines in this log-log plot separate regions where different
models apply. Diagonal upward solid red line: Pe = 5004, diagonal upward solid blue line Pe = 1, horizontal dashed blue line Pe = 100, vertical dashed blue line
Amin = 10, diagonal downward dotted brown line Pe = 1/104. In the grey-shaded transition regime (TR) neither the dispersion model nor the pure convection model
are ideal. In this paper, a mechanistic model for the RTD in the hatched region is developed based on a regime transition parameter 0 < p < 1 indicated by the black
arrow. The diagonal upward dashed-dotted green line corresponding to Pe=244 represents the upper limit for the simplified compartment (dTiS) model. For a given
Pe value, plug flow behavior results for 1 values to the right of the plug flow limit (orange dash-dot-dot line, Eq. (17)). The magenta star symbol corresponds to
experimental conditions related to the RTD of a coiled pipe (Gobert et al., 2017) to be discussed below (Section 4.2). (b) RTD of pure convection regime. (c) RTD of
axial dispersion regime for different values of the Bodenstein number. For Bo>100, dispersion is generally considered to be low. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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1.5. Goal

The above discussion shows that there is a strong need in chemical
engineering and other scientific and technical fields for a model that
correctly describes dispersion in the transitional diffusion-convection
regime and the associated RTD. However, to the best of the author’s
knowledge, a suitable mathematical model is still missing that can
represent the transition from the skewed RTD of the PC regime (Fig. 1
(b)) to the almost symmetric bell-shaped RTD of the AD regime (Fig. 1
(c)) and satisfies the mathematical constraints of an RTD. The goal of the
present paper is to develop a mathematical model which can describe
this shape transition of the RTD and which is predictive in the sense that
it depends on prior known parameters only.

To reach these goals, the transport of a passive tracer in a straight
tube with circular cross section under fully developed laminar
isothermal flow of an incompressible Newtonian fluid is studied theo-
retically. By assuming a radial concentration profile at the channel
outlet which agrees with the concentration profiles of the pure con-
vection and axial dispersion models in the respective limits, first an
unclosed mechanistic model for the RTD in the transition regime with a
single adjustable parameter is derived analytically from first physical
principles. The mechanistic model is closed by fitting the free parameter
to a case study of numerical RTD data from the literature, covering a
very wide range of dispersion conditions (Dantas et al., 2014). The
proposed mechanistic model is applicable in the hatched area of the
dispersion regime map in Fig. 1(a). While the regime map is spanned by
the normalized pipe length 4 = L/d and the Peclet number Pe = dU/D,
the model depends on the sole dimensionless parameter @ = a?U/LD =
Pe/41, representing the ratio of the characteristic time scales of trans-
versal transport by diffusion to longitudinal transport by advection.
Since the mechanistic RTD model is mathematically rather complex,
additionally a simpler model based on a compartment approach is
derived which is, however, applicable only in a sub-region of the tran-
sition regime. It is expected that both models will be useful for pre-
dicting or characterizing dispersion behavior in flow chemistry and
other flow systems where operating conditions fall in the transition
regime.

2. Methodology

In the transition regime, diffusion can neither be neglected as is in
the pure convection regime nor is diffusion sufficiently dominant to
establish a uniform concentration distribution across the outlet plane as
is the case for the axial dispersion regime. To exploit the full potential of
CFC, mechanistic models for dispersion in the transient regime are
required for design purposes. In this section, we present the theoretical
basis for the development of our RTD models for the transition regime,
which are described in Section 3.

2.1. Determining the RTD in experiment and simulation

The RTD is traditionally measured through a stimulus-response
experiment by monitoring the change in concentration of a non-reactive
tracer as it passes through the reactor. The term RTD is therefore usually
implicitly associated with the solute. In this paper, we strictly distin-
guish between the RTD of the solute (tracer) and that of the solvent. The
mean RT of solvent molecules which collectively create the Poiseuille
flow is given by the space time. For various reasons, a solute molecule
may move axially through the tube at a different average velocity (either
greater or lesser) than the solvent (Brenner, 1990). In general, the mean
RT of the solute equals that of the solvent only when the tracer is
injected in flux by a temporal delta pulse and is detected in flux. The
flow average or “mixing cup” concentration detected in flux is the
concentration that would be measured if the liquid were collected at a
certain axial distance (here at the outlet) and thoroughly mixed.
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To determine the solute RTD theoretically or by numerical simula-
tion, the injection of a passive tracer at the inlet and the detection of its
mixing cup average concentration at the outlet must be mimicked. In the
absence of reaction, the instantaneous solute concentration field is
described by an advection—-diffusion equation (Section 2.2.1). In com-
bination with suitable initial conditions representing tracer injection
(Section 2.2.2), analytical or numerical solutions of the solute advec-
tion—diffusion equation can be used to determine from the concentration
distribution in the outlet plane the corresponding mixing cup concen-
tration and the differential RTD (Section 2.2.3). Here, we are interested
in the solute RTD for a pipe segment of length L, corresponding to a
circular cylindrical reactor with volume Vyeaetor = 7a®L, under Poiseuille
flow of the solvent with constant solvent volumetric flow rate Q = za2U.
The length L is arbitrary and treated as a variable. It enters into the RTD
models developed below only indirectly via dimensionless parameters, i.
e., the Bodenstein number Bo and the normalized transversal diffusion
time a.

2.2. Concentration field and RTD

2.2.1. Solute transport equation

We employ a cylindrical coordinate system with axial coordinate z
and polar coordinates (r,¢), where the distance from the axis of the tube
(r) is in the range 0 < r < a. With the infinite pipe assumption, the axial
coordinate is in the range —oo < 2 < o0. The formal entrance and outlet
planes of the tracer are located at z =0 and z = L, respectively. We
assume that the distribution of solute is rotationally symmetrical around
the z axis and denote its molar concentration at time t by c(r, z, t).
Concerning hydrodynamics of the solvent, we assume a fully developed
unidirectional steady and axisymmetric laminar flow of an incom-
pressible viscous Newtonian fluid (kinematic viscosity v). We further
assume Reynolds numbers Re = dU/v < 2000 so that the velocity profile
is parabolic (Poiseuille flow). Entrance effects on the RTD, as discussed
in Ham et al. (2011), are neglected here.

With the latter assumptions, the mass balance for a conserved single-
component solute in a volume element of the tube yields the microscale
advection—diffusion equation
ac 2\ dc 19/ d\ d%

———

=u(r)

which describes the transport and temporal evolution of solute con-
centration. To transfer Eq. (1) in an appropriate non-dimensional form,
we define C=c/ces with reference molar concentration crf =
M/ Vyeactor- Here, m denotes the amount of tracer moles injected during
the pulse input. For normalization of coordinates and time different
options exist. Following Kolev and van der Linden (1991), we normalize
the radial and axial coordinates differently and define R =r/a and Z =
z/Lsothat 0 <R <1 and —o < Z < 0, respectively. Since we include
in our analysis the case of pure convection (D = 0), a normalization of
time by the time scale of transverse diffusion 74 = a®/D is not mean-
ingful. Instead, we normalize time by the space time 7y =L/U and
introduce the reduced time 6 = t/7; = tU/L. Then the non-dimensional
equation for the transport of a solute in cylindrical coordinates is

o —ge)E M {1 9 (Rac> N
——

1 &#C
30 9z~ pe |R R \RaR } @

442 072

=V(R)

where V =u(r)/U = 2(1 —R?) denotes the normalized Poiseuille ve-
locity profile.

The latter two partial differential equations are linear in concentra-
tion and can be solved by Laplace transformation for given initial and
boundary conditions. However, inverting the solution back often results
in infinite series with low rate of convergence for large values of the
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Peclet number (Martin, 2000). Gill and Sankarasubramanian (1970)
solved Eq. (1) analytically using the series expansion method originally
proposed by Gill (1967) by treating the axial dispersion coefficient as a
function of time. For references to analytical solutions of Eq. (1) by other
mathematical methods, such as long-time asymptotic expansion tech-
nique, two-scale perturbation approximation and Lyapunov-Schmidt
technique the interested reader is referred to Jiang and Chen (2018)
and Guan and Chen (2024). In general, the advection—-diffusion equation
for laminar flow through a cylindrical tube is solved numerically
(Ananthakrishnan et al., 1965; Bailey and Gogarty, 1962; Bate et al.,
1973; Bate et al., 1969; Ekambara and Joshi, 2004; Farrell and Leonard,
1963; Yu, 1976). In the transition regime, adjustment of any one, or all,
of the parameters U, a and D can fundamentally alter the shape of the
dispersion curve resulting from bolus injection (Bate et al., 1973). Nu-
merical solutions covering a wide range of the Peclet number 1 < Pe <
10° and dimensionless time 10~8 < tD/a? < 10? are consistent with all
previously reported special cases (Ekambara and Joshi, 2004).

Except for extremely slow flows and at extremely short length scales,
longitudinal molecular diffusion is vastly dominated by advection. If one
follows Taylor (1953) and neglects axial diffusion, then Eq. (2) depends
on the parameter 1/Pe =LD/d*U only. Steffani and Platzer (2002)

identified the inverse ratio d>U/LD as modified Peclet number (}Te* in

their nomenclature) and noted that “the parameter Pe alone is apt to
characterize unambiguously cases of laminar (tube) flow, which is in
part a confirmation of earlier works, but has yet not found to be stated in
this clearness”. Other researchers interpreted the non-dimensional
group LD/(d?U) as a Fourier number based on the space time and
either the diameter (Golbig et al., 2005) (Foq = 7sD/d?) or radius (Nagy
et al., 2012) (Fo, = tsD/a?) of the tube. Here, we follow Wissler (1969)
and interpret @ = 74/75s = a?U/LD = Pe/4). = 1/Fo, as ratio between the
time scales of transversal diffusion and longitudinal advection (space
time). The results of the present paper confirm and reinforce the state-
ment of Steffani and Platzer (2002) concerning the outstanding impor-
tance of parameter d?U/LD, respectively — in present notation — the
normalized transversal diffusion time a = a?>U/LD.

2.2.2. Initial conditions representing tracer injection

Experimental measurement of the RTD is commonly conducted by
tracer response techniques. Usually, the inert tracer substance is injected
into the continuous solvent stream at the inlet plane either in the form of
an instantaneous pulse (mathematically described as Dirac delta func-
tion), a step (Heaviside function) or a rectangular pulse (bolus). A pulse
input of tracer requires injection of a quantity of tracer within a period of
time much shorter than the average residence time in the reactor; on the
other hand, a step input requires a stable and constant source of tracer
(Huang and Seinfeld, 2019). For the pulse input method, the tail of the
RTD will be strongly affected by noise whereas for the step input method
the tracer may affect fluid properties of the solvent. At the outlet plane,
the transient concentration or a proportional signal is measured and
processed to determine the RTD. The stimulus-response principle can be
imitated by solving Eq. (2) with appropriate initial and boundary con-
ditions. The injections are considered to occur at zero time (¢ = 0) at
axial position Z = 0 while the measurement plane is located atZ = 1. In
this paper, only flux pulse injections in form of a delta function are
considered. The step response is then simply the time integral of the
pulse response.

Mathematically, one can distinguish between delta functions, which
represent pulse injections in time or in space. For the axial dispersion
model, only flux delta injection in time and mixing cup measurement at
the outlet gives a solute RTD with first moment equal to the mean
residence time of the solvent (Kreft and Zuber, 1978). Flux delta injec-
tion in time can hardly be realized experimentally, since it requires a
finite amount of tracer be injected in zero time (Himmelblau and Bis-
choff, 1968, pg. 116). In the present study, we consider delta injection in
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space. The reason is that the application of a similar procedure as pre-
sented below for a spatial pulse (Section 3) does not allow the analytical
calculation of all integrals when a temporal pulse is used. An ideal flux
pulse injection in space indicated by symbol 1z can be represented by the
initial condition

(1 2)lco = 5 4579(2) 3

The multiplication by the velocity profile u(r) implies that the tracer
with total injected molar amount m is added in quantities proportional
to the flow through each point in the injection plane (flux injection).

2.2.3. Analytical calculation of the RTD from the concentration distribution
in the outlet plane

The residence time distribution can be quantitatively described by
the time that individual fluid elements spend in the reactor. For the pulse
tracer method, the differential RTD can be defined as

B - Cenll)__ Capl®)

T TS cap(d I Caplt)dt @

where c.yp(t) is the mixing cup tracer concentration at the outlet plane as
a function of time and Ccyp = Ccup/Cres- By definition it is f(;” Eitydt=1
independent of the amount of the injected tracer.

The normalized mixing cup average concentration C, in Eq. (4) can
be calculated from the concentration field in the outlet plane Cou(7,t) =
C(r,z = L,t) by a flow-rate weighted area average as

1

1 2
Ceup(0) = m]/: Cou (1, t)-u(r)-2zr-dr = 5/0 Cout(0|V)-V-dV, 5)

where the last expression follows from the substitution V = u(r)/U =
2(1 —r*/a?). The moments of the mixing cup concentration about the
origin can be written as

00 2 00
= / 0 Cop(0)-d0 = = / { / 9"-com<9|V)-d9}vV-dv, ®)
0 2 0 0

where n is a non-negative integer and the normalized velocity profile V
has become a dummy variable of integration. For a given outlet con-
centration Coyu(0|V), the integrals in Eqgs. (5) and (6) are always carried
out analytically in the present paper using support by Mathematica
software. For some cases, when Mathematica was unable to calculate the
single integral over 6 in Eq. (6) analytically, the order of integration was
reversed, resulting in the double integral in Eq. (6). Carrying out
analytically the integration of the inner integral in the curvy brackets
first, the outer integral could always be calculated analytically as well.

Multiplying Eq. (4) by the space time yields the non-dimensional
RTD

Cewp(9)

Ey(6) = tB(e) = =2, @
0

which fulfills the normalization condition [ E,d6 = 1. For the

normalized mean value () and variance (og) we obtain the relations

g-E_ / OE,(6)do =", ®)
Ts 0 :MO

2 On ® 712 “ 2 2y 8

6,,:—5:/ ©-10) E,,(H)dé):/ CE(0)do—7 =F2 1 (9
s 0 0 Ho Ho

Eq. (8) yields 1 only when the mean residence time gz determined from
the tracer response technique equals the space time 7. In this case it is

é:/o OFy(0)do =1, aﬁ:/o (0 — 1)°E,s(6)de (10)
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We remark, that in experimental RTD studies using tracer technology,
time is — in contrast to the present paper — sometimes not normalized by
the space time but by the measured mean residence time tg of the solute.
Such normalization results in different definitions for reduced time,
reduced mean RT and reduced variance as used here.

2.3. Limiting cases

Taylor (1953) has presented solutions of Eq. (1) for two limiting
cases: an early (pre-asymptotic) period where dispersion is determined
by advection alone and a late asymptotic period. At short times t <
a?/D = 14 corresponding to 6 < a, dispersion is convection dominated
leading to a rapid increase in axial length of the solute band and sig-
nificant cross-stream diffusion. For asymptotically long times t>a®/D
corresponding to #>a, a quasi-equilibrium is reached where the longi-
tudinal stretching by axial convection is balanced by radial diffusion.
The resulting cross-stream averaged axial concentration profile is
Gaussian, resembling that of diffusive transport alone with an increased
diffusion coefficient, and travels in a plug-like fashion at the average
flow velocity. The Taylor-Aris dispersion relation is true asymptotically
only after the tracer has sampled each streamline with equal opportu-
nities through the whole cross-section (Guan and Chen, 2024). Below we
discuss both limiting regimes of the concentration field and the related
RTD, starting with the long time axial-dispersed plug flow regime fol-
lowed by the early-time convection dominated regime. Graphical illus-
trations of the concentration fields at early and late times are provided in
the Supplemental Material (Fig. S.1).

2.3.1. Asymptotic axial dispersion regime and limit aap

For long times t>a®/D, the cross-sectional average of the unsteady
three-dimensional concentration field within a tube evolves as a one-
dimensional convective diffusion equation (Taylor, 1953). In this
regime, the axial dispersion model is valid having its origins in the cross-
sectional averaged advection—diffusion equation developed in the pio-
neering work of Taylor (1953, 1954) and the longitudinal concentration
moment analysis of Aris (1956). We use the hat symbol to denote vari-
ables related to the transverse area average over the cross-section
defined by

O=2 [ trar an

With the prime denoting the deviation, the concentration field can be
split into its cross-sectional average and r-dependent part as c(r,z,t) =
€(2,t) + ¢/(r,2,t), where ¢ = 0. By inserting this decomposition into Eq.
(2), averaging over the channel cross section and introducing some
simplifying assumptions (Sharp, 1993), the following one-dimensional
Fokker-Planck type advection—diffusion equation for the mean (cross-
average) concentration can be derived

oc __dc ot

E+ U& - Daxg (12)
In Eq. (12), Dy is the effective axial Taylor-Aris dispersion coefficient
(Aris, 1956; Taylor, 1953), which is the sum of the molecular diffusion
coefficient (D) and the shear dispersion due to external flow

a’U?
48D

Dy =D+ 13
It should be noted that Eq. (13) predicts Dox— oo as D—0, but in this limit
the assumption of small lateral concentration gradients breaks down and
the result is no longer valid (Sharp, 1993). For D<a?U?/48D axial
molecular diffusion may be neglected (Taylor, 1954). In this case, the
longitudinal dispersion coefficient in Eq. (13) reduces to the Taylor
dispersion coefficient a>U? /48D which is inversely proportional to the
molecular diffusion coefficient of the solute. Numerical results of

Chemical Engineering Science 318 (2025) 122116

Ananthakrishnan et al. (1965) indicate that neglecting D in Eq. (13)
against the Taylor dispersion coefficient is applicable provided
Pe > 100. Following Levenspiel (1999, Fig. 15.2), we adopted this limit
in Fig. 1(a) (horizontal dashed blue line).

Among the different variants of dispersion models, the partial dif-
ferential Eq. (12) is known as the axially dispersed plug flow model
(Kolev, 1995). Since the pre-factor u(r) of the convective term in Eq. (1),
representing the parabolic radial velocity profile, is in Eq. (12) replaced
by the constant plug flow velocity U, the radial variable is eliminated
completely and an ideal plug flow is superimposed by axial dispersion
while the degree of backmixing during flow is uniquely characterized by
D,y. The solution of Eq. (12) depends on the initial conditions and on the
boundary conditions at the inlet and outlet of the control domain
(Brenner, 1962; Colli and Bisang, 2015; Kreft and Zuber, 1978; Trinidad
et al., 2006). For closed-to-diffusion boundary conditions, no analytical
solutions exist but Eq. (12) can be resolved by the use of Laplace
transforms. For the pulse initial condition, the solution depends on
whether the delta function is formulated in space or time. Both initial
conditions of the AD model have different physical meanings, which
result in different analytical solutions (Hsu and Dranoff, 1986).

The solution of Eq. (12) subject to the macroscale initial condition
C(z,t = 0) = m-5(z)/A representing a spatial delta pulse in the longitu-
dinal direction is (Levenspiel and Smith, 1957)

(z—Ut

)2
T 4Dt } as

~AD

c,, (2 t)fT ! ex {
1z A \/47zDaxtLp

The non-dimensional form of Eq. (14) becomes

(15)

4n6 4 0

_AD Bo Bo (Z—6)°
C,, (6,Z|Bo) = {/—-exp { - ) }
The characteristic dimensionless number in Eq. (15) is the Bodenstein

number

LU e 1 Pe?
Dy 1+Pe2/192  4a 1+ Pe?/192

Bo = e)

which represents the time scale ratio between longitudinal dispersion
(L2 /Dax) and longitudinal advection (L/U). It can also be interpreted as a
Peclet number based on the pipe length and the axial dispersion coef-
ficient (Bremer and Turek, 2024). The inverse D,y /LU is sometime
denoted as vessel dispersion number (Levenspiel, 1999). Higher Bo
numbers indicate reduced axial mixing, while lower Bo numbers indi-
cate higher mixing degrees. The limit Bo—0 corresponds to full back-
mixing, which is the ideal state to be reached in a continuous stirred tank
reactor (CSTR). In this case, each portion of the material has the same
chance to be discharged at the outlet, regardless how long it has already
been inside the CSTR. For Bo > 100 axial dispersion is considered low.
Ideal plug flow with no backmixing is theoretically obtained in the limit
Bo— 0. Taking Bo = 1000 as practical value instead (Nagy et al., 2012),
the plug flow limit following from Eq. (16) as displayed in Fig. 1(a) is

1000 Pe?
>—(1+-— 1
Aop 2 ( + 192) a7

For Pe > 100 as considered here (hatched region in Fig. 1(a)) it is
Pe?/192 > 52.08>1 so that the Bodenstein number can be approxi-
mated as Bo ~ 48/a.

If one sets in Eq. (15) Z =1 and calculates the integrals in Egs. (5)-
(7) for this outlet concentration, one obtains with 5>
dimensional differential RTD

. . Bo Bo (1-6)°
B (0B0) = C3%0) = [ exe | - 5 10 as)

first derived by Levenspiel and Smith (1957) and shown in Fig. 1(c).
Notably, the non-dimensional differential RTD and the normalized

=1 the non-
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outlet mixing cup concentration are identical for this case. The reduced
mean and reduced variance of this RTD are aAmz =1+42/Bo and
0gap1z = 2/Bo + 8/Bo?, respectively. To fit an experimental RTD of a
reactor by the AD model, Bo is therefore often determined from the
measured variance of the RTD, which is as the second central moment a
measure for the degree of dispersion around the mean.

We remark, that the solution ¢y.(z,t) of Eq. (12) subject to the con-
dition ¢(z = 0,t) = m-5(t)/Q representing a delta pulse in time is related
to Eq. (14) by €y¢(2,t) = 2€4,/tU (Hsu and Dranoff, 1986; Hubert, 1970;
Kreft and Zuber, 1979). Similarly, the corresponding RTDs are related by
ERP1t = EAP'% /9. With first and second moments about the origin equal
to unity, E;™"" agrees with the non-dimensional differential RTD derived
by Gibilaro (1978), where the mean RT of the solute agrees with the
mean RT of the solvent. The reduced variance of this RTD is 63 sp;, =
2/Bo.

The axial dispersion model can be used to model laminar flow if the
reactor is sufficiently long so that radial diffusion effectively removes
radial concentration gradients. For measuring the molecular diffusion
coefficient by dispersion theory in a circular tube, Taylor (1954) sug-
gested the criterion L»>a?U/4D corresponding to a<4. Synonymously,
the validity of the AD model requires that the time scale of transversal
diffusion 74 is very low compared to the time scale of longitudinal
convection 7;. The boundary for the axial dispersion region can thus be
written as @ = 74/7s = Pe/44 < aap where a,p is a constant. If a 10:1
ratio is permitted between the terms of the inequality 74<7;, one obtains
aap = 0.1 corresponding to Pe < 0.44; this value is used in the book of
Probstein (1994, Fig. 4.6.5) (note that there the Peclet number is based
on the pipe radius instead on the diameter as here). A much larger value
of aap ~ 1 corresponding to Pe < 441 is used in the book of Levenspiel
(1999, Fig. 15.2). In this work we apply a criterion that lies between the
two latter values and use axp = 0.25 corresponding to Pe < J.

2.3.2. Pure convection regime and limit apc

The short time convective dispersion regime (6 < a) is also known as
kinematic or “ballistic” dispersion regime (Ajdari et al., 2006; Huber and
Santiago, 2008). In this regime time is too short, or interpreted differ-
ently, the pipe is not long enough to achieve radial uniformity of the
solute at the outlet. The influence of the velocity profile is thus very
important. In the limit of complete absence of molecular diffusion (D =
0), this regime remains, so to speak, forever and is known as pure
convection regime. For the pure convection regime, the right-hand sides
of Eq. (1) and Eq. (2) vanish and the solute RTD is determined exclu-
sively by the velocity field of the solvent. The RTD of the PC regime for
the parabolic velocity profile of pressure driven Poiseuille tube flow is
(Bosworth, 1948)

E;¢ = H(6 - 6) % 19)

Here, 0 = U/Umax = 0.5 denotes the normalized first-appearance time
of Poiseuille flow and H the Heaviside function, H(6 — 6;) =1 if 0 > 6;
and H(0 — 6;) = 0 otherwise. The mean value of the pure convection
RTD in Eq. (19) is 1 and the variance is infinite. An illustration of the
RTD Egc(é) in the pure convection regime is shown in Fig. 1(b).

The pure convection model is valid when the diffusion term on the
right side of Eq. (2) is small as compared to the convection term on the
left side (Probstein, 1994). The criterion to neglect radial diffusion may
be written as Pex> while that for neglecting longitudinal diffusion is
Pex>1/A. Here we assume A > Apin = 10 so that for Pex>2 the condition
Pex>1/4 is automatically satisfied. The boundary in Fig. 1(a) for the
validity of the PC model can thus be written as a =74/7s = Pe/41 > apc,
where apc is a constant. If a 10:1 ratio is permitted between the terms of
the inequality 74>, this yields apc = 10 corresponding to Pe > 4041. A
value corresponding to apc = 10 is used in the regime map of Probstein
(1994, Fig. 4.6.5). In this paper, we permit for the validity of the pure
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convection regime a 125:1 ratio so that apc = 125 corresponding to
Pe > 5004, which also represents the border between the PC and tran-
sition regime in the regime map of Levenspiel (1999, Fig. 15.2).

3. Model development

In this section we present two novel models for the RTD in the
transition regime, a mechanistic first principle one derived from the
governing equation for solute transport and a descriptive one based on a
compartment approach. Both models are first developed with one free
adjustable parameter. To close the models and make them predictive,
the free parameter of each model is then related to the normalized
transversal diffusion time a.

3.1. Mechanistic transition regime model (MTR model)

The starting point for the development of the mechanistic model is
the dimensional advection—diffusion equation describing solute trans-
port under Poiseuille flow of the solvent, Eq. (1). The normalized version
of this partial differential equation given by Eq. (2) shows that solutions
depend on the two parameters Pe and 4 spanning the dispersion regime
map (Fig. 1 a). In Section 2.2.3 we have demonstrated how solutions of
Eq. (2) under fundamental initial conditions and appropriate boundary
conditions can be used to calculate the RTD from the time dependent
concentration field in the outlet plane. If the time-dependent concen-
tration distribution in the outlet plane would be known for the transition
regime, the RTD could thus be computed. However, there exists no
analytical solution of Eq. (2) valid in the transition regime that would
allow for analytical calculation of the integrals in Eq. (5) and Eq. (6). The
present strategy outlined below is therefore to assume a heuristic
approximation of this outlet concentration field instead.

3.1.1. Strategy of model development

Following Taylor (1953) and neglecting longitudinal molecular
diffusion simplifies the normalized solute transport equation, Eq. (2), to
the form
e

—+2(1-R?)

o
90 P

1190 aC
2R R (%) (20)

Commonly used boundary conditions in radial direction are dC/dR = 0
at both, R = 0 (symmetry axis) and R = 1 (the tube wall is impenetrable
to solute). Boundary conditions in axial direction are classified as “open”
if tracer transport across the boundary is allowed and are denoted as
“closed” otherwise. Here we assume that the pipe extends to infinity in
both axial directions and employ the far-field axial boundary conditions
C—0 as |Z|—>o0. These correspond to co-called “open-open” boundaries
enabling tracer flux through the inlet (Z = 0) and outlet (Z = 1) planes
of the control domain. Solutions of Eq. (20) depend only on the single
parameter @ = Pe/4A.

If we perform cross-sectional averaging on Eq. (20) and apply Tay-
lor’s assumptions, we obtain

aC oC a &*C

0 oz a8 oz @

The solution of Eq. (21) for an initial delta pulse in space is

N 12 12 (Z — 0)*
C?ZD(H,ZW) = \/%eXp{ - ( 00) ] (22)

The corresponding RTD is

E5P(6la) = C22

out

2
(0) = € (0.20) = [ Zexp| - 200 2

The non-dimensional mean and variance are Oxp = 1 +a/24 and 03 ,, =
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a/24 + a®/288, respectively. For small extends of dispersion (i.e., if
Dax/LU = 1/Bo =~ a/48 is below 0.01) the spreading tracer curve does
not significantly change in shape as it passes the measuring point during
the time it is being measured (Levenspiel, 1999). Under these conditions
the solution of Eq. (21) gives the symmetrical (AD—ADS) curves

E5PS(Gla) = Chos(6,Z = 1]a) = \/:[:jexp [ — %(1 — 6)2} 24)

The non-dimensional mean RT is unity and the RTD in Eq. (24) corre-
sponds to a normal (Gaussian) distribution with standard deviation

v/ @/24 and amplitude /12/za.

The present strategy for determining a mechanistic model for the
RTD in the transition regime is to replace the unknown transient con-
centration distribution in the outlet plane fulfilling Eq. (20) by a heu-
ristic approximation. This postulated outlet concentration
CMIR(9,R,Z = 1|a) is utilized to compute EY™® by evaluating the in-
tegrals in Section 2.2.3 while keeping the entire procedure analytical. In
order to be physically meaningful, the postulated outlet concentration
should obey features of the axial dispersion regime and the pure con-
vection regime while the RTD of the transition regime reduces to both
cases in the limits. For the AD regime with spatial delta pulse as initial
condition, the RTD equals the radially uniform outlet concentration and
is given by Eq. (23). The RTD of the PC regime for pressure driven
Poiseuille tube flow is given by Eq. (19). This RTD is a scale-invariant
power law distribution (Pareto distribution).

3.1.2. Scale-variant approximation of pure convection RTD

The present procedure for developing a model for the RTD in the
transition regime requires a scale-variant approximation of Eq. (19). To
that end we consider the effects of a small amount of diffusion on the
pure convection RTD. Bosworth (1948) presented a theoretical analysis
of the effects of small amounts of radial and of small amounts of lon-
gitudinal diffusion on the RTD in laminar pipe flow and noted two
modifications as compared to Eq. (19), where diffusion is absent. In the
first place, the sharp cut-off at the head of the RTD is replaced by one
which is more gradual the lower the value of \/APe/2 = Av/2a. This is
because of diffusion some molecules have a residence time less than ;.
In the second place, the operation of diffusion replaces the inverse cube
law distribution curve in Eq. (19) by one in which values at high resi-
dence times are somewhat larger. This flattening of the distribution
curve at high values of 6 is the more pronounced the lower the value of
Va.

In the present paper, we take into account the effect of a small
amount of diffusion by considering the advection equation

oc dc

EJF u(r) po 0 (25)

in combination with a modification of the initial condition. To allow for
a fully analytical treatment, we replace the spatial delta function §(z) in
Eq. (3) by a regularized version. There exists several options for doing
so. To establish the required connection with the concentration field in
Eq. (14) resulting in the AD model, we choose the exponential
relationship

1 2
Sze(2€) = ﬁexp< — ;) (26)

Here, ¢ is a small positive parameter with the dimension of a length scale
which will be related to the diffusion coefficient. The initial condition in
Eq. (3) then becomes

1 2
Ciz¢(1,2) }t 0 % % meXP( - §_2> 27)

We choose the length scale as ¢ = 442D/U where we assume 0 < D<
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a?U/L corresponding to a>>1. With L/e = @, Eq. (27) can be expressed as

Cize (T, 2) a 272

—_— = C:(V,2) =—V(R)- —a’Z 28
Cref | ! }H RVZ ® exp( “ ) ©®
The solution of Eq. (25) subject to the axial boundary conditions C =

0 at Z = +oo and the initial condition in Eq. (28) is

Cepp(R,Z,0|a) = i~2(1 - R2)~exp[ -

N

a
= W-V-exp[ - a*(Z - Vo)*], (29)

where the acronym CDP stands for “convection dominated preliminary”.
Inserting Eq. (29) with Z =1 into Eq. (6) yields for the zero moment
about the origin the result

w3 ([4

=3 [1 +erf (@)] (30)

@(Z-20(1 - R?))’]

-V-exp[ — a?(1 — V6)°] d9}~v-dv

In the limit a— oo corresponding to D = 0 it is u§P¥ = 1. For finite values

of a corresponding to D > 0 it is erf(a) < 1 and Eq. (30) yields uSPP < 1.
The concentration field in Eq. (29) does thus not assure that the entire
injected tracer amount has traversed through the outlet plane at infinite
time. For the case D > 0, the advection equation of Eq. (25) should be
replaced by the advection-diffusion equation of Eq. (1) which requires a
boundary condition for dc/dr at r = a. To ensure that the entire injected
tracer amount leaves the outlet plane, a no-penetration boundary con-
dition at the wall corresponding to (dC/dR)|z_; = O is appropriate. For
the concentration field in Eq. (29) it is (0Ccpp/0R)|g_; < O for finite a.
This corresponds for @ < o to a permeable wall so that not all tracer
amount injected at the inlet reaches the outlet plane. It should be noted
that the concentration profile in Eq. (29) is for @ < oo no solution of the
advection—diffusion equation of Eq. (20) in combination with the no-
penetration boundary condition at the tube wall.

The mean value of the outlet concentration distribution in Eq. (29)
less than 1 for finite a is undesirable. To increase the mean value, we
need to add skewness in the sense that the relative contribution to the
distribution is decreased for 6 < 1 while it is increased for § > 1. For this
purpose, we heuristically replace a in Eq. (29) by a/+/0 to obtain the
convection dominated (CD) concentration field as

CP(V,Z,0la) = L-V-exp{ —a? 31)

Va0

Inserting Eq. (31) with Z=1 into Eq. (6) and calculating the double
integral yields u§° = 1. In contrast to Eq. (29), the heuristic concen-
tration field in Eq. (31) thus ensures that for D > 0 all the injected tracer
formally leaves the outlet plane though (dCcp/dR)|z_; < O. Inserting Eq.
(31) with Z = 1 into Eq. (5) yields the mixing cup concentration corre-
sponding to the RTD of the CD regime as given in Eq. (34). It should be
noted that for obtaining this result, weighting of the delta function in Eq.
(3) by the velocity profile u(r) is essential (Levenspiel et al., 1970;
Levenspiel and Turner, 1970). Inserting Eq. (31) with Z = 1 into Eq. (6)

yields
)2
} -do }~V~dV

4P (a, b)—%lirt}i {/ \/7 aVexp[ 2(1 =
—1+hm{—ln<b)}

and ySP = co. These results imply that the reduced mean RT becomes 1
in the limit a—oco while the reduced variance is infinite.
By replacing the spatial delta function by a regularized version with

¥4 fgve)z]

(32)
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exponential term, we thus have derived the following outlet concen-
tration of the convection dominated (CD) regime

1- VG)Z}’

7] (33)

C (Ola, V) = LoVoexp{ —a?

V6

where V = 2(1 —R?) represents the normalized Poiseuille velocity pro-
file. The resulting RTD of the convection dominated regime is obtained

as
EP(Bla) = ! {2\\;;”{ p(—%z) —(1+2€)~exp(—a2%>} ,

()2

where erf(x) = 2771/2 [] e *dt denotes the error function. In the limit

(34)

a—o0, Eq. (34) reduces to the correct pure convection RTD for laminar
pipe flow of a Newtonian fluid according to Eq. (19).

In Fig. 2 we compare the RTD from Eq. (34) for three different values
of a. For a = 125, Eq. (34) is visually identical to the exact pure con-
vection RTD in Eq. (19). With decrease of @ corresponding to an increase
of D the first effect reported by Bosworth (1948) is observed. Namely,
the sharp cut-off of at 6; = 0.5 is replaced by a more gradual one while
some molecules have a residence time less than ¢;. The second effect of
diffusion reported by Bosworth (1948), i.e. the flattening of the RTD
curve at high values of 8, becomes visible only for the smallest value of a.

3.1.3. Postulated outlet concentration field

To combine the outlet concentration field of the AD regime, Eq. (23),
with that of the CD regime, Eq. (33), we postulate the following outlet
concentration field for the transition regime

1-p+pV 1-61-p+pV)?
Cou (01V.p.S) = Lz’”sg exp{[ (2519) £ ”} 35)

This particular outlet concentration field is chosen because it allows to
carry out all integrations in the various equations in Section 2.2.3
analytically. In Eq. (35), p = p(a) is a regime transition parameter in the
range 0 < p(a) <1 (cf. black arrow in Fig. 1 a) while S = S(a) >0isa
parameter related to the variance of the RTD. Eq. (35) reduces forp = 0

(o
a = Pel(4.1)

ESP -]

0.1-

0.01

0.1 - ””1 | 10
O[]

Fig. 2. Log-log plot of normalized RTD curves for the convection dominated
model as given by Eq. (34) for three different values of a.
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and S = a/24 to the transversal uniform outlet concentration of the axial
dispersion model with spatial delta pulse, Eq. (23). Forp=1and S =
1/2a2, Eq. (35) reduces to the outlet concentration field of the con-
vection dominated regime based on a regularized spatial delta pulse, Eq.
(33). While the outlet concentration field in Eq. (35) satisfies the con-
dition of vanishing radial gradient at the pipe axis, the boundary con-
dition of an impermeable tube wall is not fulfilled. In the following it
will be necessary to restrict the transition parameter to the range
0 < p < 1. The parameter p enables a smooth transition of the skewed
PCRTD (p—1) towards the symmetric Gaussian RTD of the AD regime in
the limit p—0.

Inserting the assumed outlet concentration profile from Eq. (35) into
Eq. (6), taking n = 0 and evaluating the integral yields for the zero
moment the result y}™ = 1, see Supplemental Material Section 3.1. All
tracer injected at the inlet plane thus leaves the outlet plane, indepen-
dent on the values of p and S. This results in the relationships E}y'} =

CY™R, Byrr = W™ and oy = HY™ ~Byry, cf. Es. (7)-(9).
3.1.4. Unclosed MTR model

Inserting the assumed outlet concentration profile from Eq. (35) into
Eq. (5) and evaluation of the integral by assuming p > 0 yields EJ'™ (¢|p,

S) = CMIR(g|p,S) as given by Eq. (S.3) in Supplemental Material. With

cup
the abbreviation f. = (1 — 0 £+ pd)/+/2S60 one can express the unclosed
RTD as

B p.S) — Ly { \/g exp (—f2) - <1p+2 200 (=) g
erf (f,) —erf (f_)
pS)]zpz}

(36)

The pre-factor 1/26° in Eq. (36) also occurs in the RTD of the pure
convection regime, Eq. (19). The deviation of the terms in the curly
brackets from the Heaviside function in Eq. (19) thus represents the
deviation of the RTD in the transition regime from that of the PC regime.
Profiles of the four terms in Eq. (36) for different values of p in combi-
nation with Eq. (42) for S as derived below are shown in the Supple-
mental Material (Fig. S.2). The mathematical structure of Eq. (36) is
similar to the analytical RTD obtained by neglecting radial diffusion in
Eq. (2) while retaining axial diffusion, see Platzer et al. (1999, Eq. (36))
and Fazli-Abukheyli & Darvishi (2019, Eq. (13)).

Inserting the assumed outlet concentration profile from Eq. (35) into
Eq. (6), taking n = 1 and calculation of the integral yields for the mean
value of the RTD the result

14p-S 1-p-—
p +p? p?

_ S

e (p,S) = W)™ (p,S) = Arctanh(p), 37)
see Supplemental Material Section 3.2. The definition range of the in-
verse hyperbolic function requires the restriction p < 1. Repeated

application of L’Hospital’s rule to Eq. (37) yields the limits

lin(}qu(p,S) =148, linlwllmR(p,S) = 1+1im(S-Arctanh(p)) (38)
P~ P~ P~
The condition u}'™ > 1 thus requires S(p) > 0.

Inserting the assumed outlet concentration profile from Eq. (35) into
Eq. (6), taking n=2 and calculation of the integral yields for the second
moment about the origin the result

Arctanh(p) 1 (1 S 3-p
p? 1+p{5_1—p2 <3+1—p25 @Y

MTR(p S)

see Supplemental Material Section 3.3. The reduced variance is obtained
by inserting Eq. (37) and Eq. (39) into o3y = py~ —B2p, see Sup-
plemental Material Eq. (S.16). The cumulative RTD of the unclosed MTR
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model is derived in Supplemental Material Section 3.4.

To close the MTR model, we need to express p and S as functions of
the normalized transversal diffusion time a. To that end we first deter-
mine the relation S = S(p) and thereafter the relation p = p(a). To
determine parameter S, we resort to the result for the mean value of the
unclosed RTD in Eq. (37). For an ideal delta pulse in time the mean value
of the solute RTD equals the mean value of the solvent RTD, i.e., the
space time. For an open-open system, the mean value of the RTD of the
solute is typically slightly larger than that of the solvent (Spalding,
1958). We thus require at this stage of model development Oygr > 1.

Setting Oyrr in Eq. (37) to 1 yields the relation

(1 — p?)[Arctanh (p) — p]
(1 + p)Arctanh (p) —p ’

Smean =1 (P) = (40)

which is plotted in Fig. 3. The curve Spean—1(p) has a maximum value
0.1173 at p = 0.5826 and the analytical limits

limSmean = 1(P) = lil'nsmeam = 1(P) =0 (41)
p—0 ol

To meet the limits S(p—0) = aap/24 and S(p—1) = 1/2a%, of the AD
and CD regimes, we set

p (1 —p®)[Arctanh (p) —p]
202, (1 +p)Arctanh (p) —p’

QAD

) = g( (42)

S(p,k 1-p)+

where 0 <k <1 so that S(p) >0 for 0 <p < 1. The parameter k is
introduced to allow the choice between two models for the RTD in the
transition regime. Each of the two models has its own limitations, which
are explained below.

At this stage it is necessary to select specific values for axp and apc to
proceed. However, the development of the present analytical model is
such that both parameters can be easily changed if necessary. Taking the
diagonal lines of the hatched transition regime in Fig. 1(a) as limits it is
aap = 0.25 and apc =125 so that S(p =0)=1/96 and S(p =1) =
1/31250. The resulting relation S(p) is plotted in Fig. 3 for two different
values of k. For k = 1, the maximum value S;,,x = 0.1217 is obtained for
p = 0.5716; for k =1 —p the maximum value Syax = 0.0684 is lower
and obtained for p = 0.3683.

By inserting S = S(p, k) from Eq. (42) into Eq. (36), we can now plot
for either value of k continuous families of curves E}TR(d|p, k) with sole
parameter p. Fig. 4 shows the corresponding set of curves for nine

oS5 ———-————————
Sp.k) e Smean=1
—_—k=
——-k=1p N
010 B ,/’, \\\\ -
2 ,’// - =<
i >
0.05 / S ]
74 N
s N\
/I b
’ N
i N
’ ~N
000 PRI ST RS RS T ST .
0.0 0.2 04 0.6 0.8 1.0

Fig. 3. Plots of Smean—1(p) and of S(p, k) for k =1 and k = 1 —p as given by Eq.

(40) and Eq. (42), respectively, in combination with aap = 0.25 and apc =
125.
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different values of p in the range 0.001 —0.999. With increase of p, the
differential RTD curves change from the symmetric Gaussian bell shape
of the AD regime to the skewed RTD of the PC regime, with the position
of the RTD maximum shifting from 6 =1 to & = 0.5. The set of RTD
curves EY™ (g|p, k = 1) in Fig. 4(a) exhibits two weaknesses. First, even
for p = 0.999 the maximum value 3.44 of the RTD is notably below the
maximum value 4 of the PC regime. Second, the RTD curves for p > 0.1
have non-zero (positive) values for 6 < 6y = 0.5 which means that some
tracer reaches the outlet plane faster than the fastest solvent molecules.
Since longitudinal molecular diffusion is neglected in the derivation as it
is insignificant in the considered parameter range of Pe and 4, such
behavior is inconsistent with model assumptions and essentially
unphysical.

Both of the latter weaknesses can be mitigated by settingk =1 —p, as
shown in Fig. 4(b). The maximum value of the RTD for p = 0.999 is now
increased to 3.84. Furthermore, the relative fraction of tracer with
residence time below ¢ = 0.5 is significantly reduced. For values p <
0.1 the differences in the RTD curves in Fig. 4(a) and (b) are very small.
The choice k = 1 —p makes the RTD curves for p > 0.25 physically more
plausible, but goes along with a drawback regarding the mean RT as
discussed next.

Inserting Eq. (42) into Eq. (37) yields for the mean RT of the MTR
model the result

B (p, ) = 1= ks -p) (1 _ngl —K) Arctanh(p) — (%"(1 ~p)
LP ) p — (1 4+ p)Arctanh(p)
2agy, p*(1+p)

(43)

Eq. (43) is plotted in Fig. 5 for the two different values of k. Fork =1,
the mean solute RT decreases monotonically with increase of p, but is
always larger than 1. For k =1 —p, however, the mean RT of the solute is
not monotonic and takes values less than 1 for p > 0.167. The minimum
value of the mean RT of 0.927 is obtained for p = 0.7885.

In reality, the mean RT measured by inert tracer experiments may be
smaller than the space time of the reactor due to the existence of stag-
nation or recirculation zones. In the present theoretical approach, such
zones are excluded because the parabolic velocity profile is assumed. In
practice, measured tracer data for times longer than 2-3 space times are
seldom accurately enough to be used for RTD calculations (Bischoff and
McCracken, 1966). For calculating the mean RT and the variance, the
integrals in Eq. (8) and Eq. (9) are therefore often truncated by replacing
the upper limit of integration of infinity by # = 2 or 3. Accordingly the
truncated mean RT from tracer measurements can be lower than the
space time, see e.g. Gobert et al. (2017, Table 4), where the measured
mean RT is up to 10 % smaller than the expected mean RT. For non-inert
matter it is known that irreversibly absorbing analytes move faster than
inert analytes in pressure-driven flow. This is because the slow-moving
analyte molecules near the wall are preferentially removed from the
channel (Datta and Ghosal, 2009; Sankarasubramanian and Gill, 1973).
Correspondingly, the mean RT of the solute is lower than the mean RT of
the solvent.

Inserting Eq. (37) and Eq. (39) in combination with Eq. (42) into
02\ = MR G5 vields the reduced variance of the MTR model
which is for k = 1 and k = 1 —p plotted in the inset of Fig. 6. For both
values of k, the minimum value of the variance is obtained in the limit
p—0. The minimum value 49/4608 ~ 0.01063 is in agreement with the
variance of the AD model for ¢ = aap = 0.25. By Eq. (42), the variance-
related parameter S(p,k) decreases with decrease of k. Choosing
k = 1 —p therefore reduces the variance as compared to the case k = 1,
see inset of Fig. 6. For both choices of k, the variance increases mono-
tonically with increasing p and becomes infinite in the limit p—1.
Although other choices for k besides k = 1 and k = 1 —p are possible and
have been tested, these have not proven to be useful.
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Fig. 4. Families of RTD curves of the MTR model under variation of the regime transition parameter p for k = 1 (a) and k = 1 —p (b). Regime boundaries are aap =
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Fig. 5. Mean normalized solute residence time Ourr (p, k) of the MTR model as
function of regime transition parameter p for k=1 and k = 1—p. Regime
boundaries are aap = 0.25 and apc = 125.

3.2. Compartment model (dTiS model)

While the MTR model given by Eq. (36) and Eq. (42) has the
advantage of being derived from first principles, its complexity may
appear as a disadvantage. Furthermore, the computational evaluation
can cause numerical underflows for very small values of the arguments
of the exponential function. We therefore present a phenomenological
compartment model as simpler alternative. Compartment models are
based on the combination of ideal CSTR and PFR arranged in different
configurations (Levenspiel, 1999). In the present case the compartment
model consists of one PF unit followed by a cascade of ideally mixed
CSTR’s with equal volumes and identical flow rates, a model that is
already used in the context of hot melt extrusion (Grimard et al., 2016),
powder blending (Escotet-Espinoza et al., 2019) and constructed wet-
lands (Zhang et al., 2024).

The dimensional RTD of a cascade of n=1,2,3, .- equal-volume
CSTRs in series with mean residence time trig is (MacMullin and
Weber, 1935)
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This tank-in-series (TiS) model can be generalized to the extended tank-
in-series (eTiS) model (Martin, 2000) with non-dimensional RTD

E—ns (t|n) = (44)

q
q—Gq’lexp( —qb)

45
(g “5)

E;"(0]q) =

Here, I'(q) denotes the (complete) Gamma function, with q being a
positive real number that removes the problem of quantization (Buffham
and Gibilaro, 1968) which occurs as n tends to 1 in Eq. (44).

Here, we consider a compartment model where a PFR is in series
with an eTiS. Due to the PFR, material reaches the eTiS with a delay time
tp so that the RTD from Eq. (44) becomes

t<tp

0
—
70) t> 8

( t
exp| —¢

teTis

Eanis(tlq) = qt (t- tp)?! (46)

I'(q)

74
teTiS
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The mean value of this RTD is Z4ris = tp +teris SO that the non-
dimensional RTD becomes

0 0 < bp
E}"8(6]q, 0p) = 1 — 6\ -
) q 0 0]) 6[)
[ — >
1—9Dr(q)(q1—aD) eXp( I1=,) 0=
47)

The delay time associated with PF behavior is considered equal to the
first appearance time 6y = 0.5 of Poiseuille flow. Assuming tp = teris =

Chemical Engineering Science 318 (2025) 122116

75/2 so that 0p = tp/taris = 0.5 yields the delayed-tank-in-series (dTiS)
model with differential and cumulative RTD given by

EY™S(6la) = H(O— 0.5)-1 (20~ 1 expl —q(20 - 1), 48)
" (gq) = H(6 — 0.5)- (1 _ %5)_1))) )

Here I'(g,x) = fx°° t?le~tdt denotes the upper incomplete Gamma
function so that I'(q,0) = I'(q). Since Eq. (48) becomes infinite in the
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Fig. 7. In the eleven subfigures (a-k), open circle symbols represent the numerical RTD data of Dantas et al. (2014) for eleven different values of a. Lines represent
least-squares fits of parameter p of the MTR model, Eq. (36), and of parameter g of the dTiS model, Eq. (48), to the numerical RTD data. Parameter S of the MTR
model is given by Eq. (42) and fits are performed for k = 1 and k = 1 —p. Obtained fit values for p and g for each value of « are given in the legend of each subfigure.
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limit 6— +0.5 for g < 1 we restrict the number of hypothetical tanks in
series to g > 1. The mean value of ES""8(¢|q) is 1 and the variance is 1/4q.
The inset in Fig. 9 shows RTD curves for six different values of g. In the
limit g—oco plug flow is approached. The one-parameter RTD curves
Ed"8(6|q) can be considered as a special case of the general three-
parameter gamma distribution model (Johnson et al., 1971; Wen and
Fan, 1975) in absence of bypass flow and in combination with a
dimensionless delay time 0.5 of the plug flow section.

3.3. Model closure

To close the MTR and dTiS models, the regime transition parameters
p and q have to be related to the normalized transversal diffusion time
a = Pe/4). For this purpose, we resort to numerical solutions of the non-
dimensional advection-diffusion equation in the absence of axial
diffusion, Eq. (20) with present normalization. While there are early
numerical solutions obtained with different normalizations (Shankar
and Lenhoff, 1989, 1991), we use here more recent numerical results of
Dantas et al. (2014) which are based on the present normalization.

3.3.1. Fit of one-parameter models to numerical RTD data

Eq. (20) is a special case (Newtonian fluid) of a more general equa-
tion in Dantas et al. (2014, Eq. (13)) for non-Newtonian power-law
fluids, where « is denoted as modified Peclet number (Pe’). The authors
solved Eq. (20) for different values of « numerically by a finite difference
method in combination with a step input (Dantas et al., 2014). From the
numerical results for the mixing cup average tracer concentration at the
outlet plane, sampled values of the cumulative distribution function
Fi(6;) were evaluated in intervals A6 = 0.02. The discrete differential
RTD is obtained as central difference Ey; = (Fi;1 — Fi_1)/2A60. The nu-
merical E-curves of laminar flow with radial diffusion in a straight tube
obtained in this way were used for characterizing measured RTD curves
in a holding tube with U-bend. The total of 17 considered values for a
span the range from log(a) =—1.5 to log(a) = 2.5 where steps of
log(e) =0.25 are employed, corresponding to the range
0.0316 < a < 316. Since the four smallest values of « are lower than
aap = 0.25 while the two highest values are larger than apc = 125, we
use here numerical data for eleven different values of a in the range
—0.5 <log(a) <2 only, corresponding to 0.0316 < a < 100. Fig. 7
shows for these eleven values of «a least-square fits of the MTR model to
the numerical results of Dantas et al. (2014), both for k =1 and k =
1 —p. For the dTiS model, only fits to numerical data for a < 5.62 are
displayed in Fig. 7 because larger a values lead to values g < 1, which
we do not allow here.

The fitting of the numerical RTD data of Dantas et al. (2014) for the
MTR model in Fig. 7(a-k) is done with Mathematica Software (version
12) using FindFit[data,(expr,cons),pars,vars]. This built-in Mathematica
symbol function finds numerical values of the parameters pars that make
expr under the constraints cons give a best least-squares fit to data as a
function of vars. Here, the range of data is restricted so that only RTD
values satisfying Ey;(6;) > 5-1077 are considered for the fit. For expr, the
mathematical relationship defining the MTR model either with k = 1 or
k =1 —p is used in combination with the constraint 0 < p < 1. The two
remaining arguments pars and vars are given by p and 0, respectively.
For the fitting of the numerical RTD data of Dantas et al. (2014) in Fig. 7
(a-f) to the dTiS model, the software OriginPro 2019 (Version 9.6.0.172)
is used in combination with a user defined function representing Eq. (48)
and the Levenberg-Marquardt algorithm. With increase of @ from 0.316
to 4.62, the coefficient of determination R? decreases from 0.996 to
0.95. We also fitted the MTR model to the entire range of the cumulative
RTD F;(6;), which lead to different results as compared to the fit using
the range-restricted differential RTD. However, the values of p obtained
by fit of the cumulative RTD did not yield a good agreement between the
respective curve of the MTR model and the corresponding numerical
differential RTD.
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3.3.2. Predictive models for the RTD in the transition regime

By the described procedure, eleven discrete data pairs for p;(a;) and
six discrete data pairs for g;(a;) are obtained, which are shown in Fig. 8
and Fig. 9, respectively. Fig. 8 shows that for both, @ < 6 and a > 6 the
relationship p = p(a) in the MTR model is close to linear. However, since
the slope in both regions is very different, the overall relation is strongly
non-linear. A suitable model for data that follow two different linear
relationships but allow for a smooth transition from one linear regime to
the other is the “bent-hyperbola” regression model (Griffiths and Miller,
1973). To fit the data p;(e;) in Fig. 8, we resort to a parametrization of
the bent-hyperbola model (Ratkowsky, 1990, Eq. (4.5.6)). This five-
parameter model, made up of two intersecting straight lines as a
limiting case, is given by the equation

plaler, ca,c3,¢4,C5) = €1+ Ca(ad — cq) — 3/ (a — c4)2 +c2 (50)
By the condition p(0.25) = 0 the parameter c; is determined as
¢1 = Cy(cs — 0.25) + ¢34/ (c4 — 0.25)° + 2 (51)
while the condition p(125) = 1 yields
1+ C3\/(125 —cy)? - Cg\/(C4 —0.25)% +¢c2
2= 125-0.25 ’ 52)
resulting in the three-parameter model
p(ales; cq;c5)
- % {1 + cg\/(lzs —cq) 2 - cg\/(c4 —0.25)% 4 ¢
—coyfla—co) + 2+ oy (es - 0.25)" +¢2
(53)

Since the differences in the data points for k =1 and k =1 —p in Fig. 8
are rather small, the relation p =p(a) in the MTR model is here
approximated independent on both alternatives for k by a common fit.
Furthermore, to keep the relation p(a) relatively simple, the remaining
parameters are not obtained by a regression. Instead, they are arbitrarily
set to rounded values c; = 1/12, ¢4 = 6 and ¢5 = 1 to obtain
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Fig. 8. Relationship p(a) for the MTR model in linear (main graph) and log-
linear (inset) representation. The symbols correspond to the least-squares fit
values given in the legends of Fig. 7(a-k).
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_ 125/545 — /14162 — 12 N 48 + 4/14162 — /545 "
n 5988 5988
~0.4655 ~0.0836
1+ (a—6)
a 12 '

p(a)

(54)

where 0.25 < a < 125.

The latter relationship completes the present mechanistic transition
regime (MTR) model, which is given by Egs. (36), (42) and (54). The
value of k should be chosen as a compromise depending which model
weakness is more acceptable. If the violation of the breakthrough time
0.5 is acceptable, then the value k = 1 is recommended as it ensures that
the mean solute RT given by Eq. (43) is slightly larger than the space
time. On the other hand, if a violation of the breakthrough time 0.5 is not
acceptable while a mean solute RT lower than the space time is toler-
able, then it is recommended to use the value k =1 —p in Eq. (42) for
S =S(p,k).

For the dTiS model, the symbols in Fig. 9 can well be fitted by the
simple relationship g(a) = 6/a. The final differential and cumulative
RTDs of the dTiS model with mean value 1 and variance a/24 then
become

" _H(6—05)12 [6(20—1)] 6-a 6(20 1)
Eg (Ola) = r6/a) «a [ a } ¢ ~exp{7T} G2
and
Fans(0la) = H(o - 0.5)| 1 - L2800, (56)

respectively, where 0.25 < a < 6.
4. Discussion
4.1. Straight tubes

To the author’s knowledge, the MTR and dTiS models developed in
Section 3 represent the first models for the RTD in the transition regime.
The MTR model is valid in the entire hatched region in Fig. 1(a) and
covers with the range 0.25 < @ < 125 almost three orders of magnitude
in a. The dTiS model is only applicable in a subset of the hatched area of
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Fig. 1 (a), as its validity range 0.25 < a < 6 is much smaller. Since the
normalized transversal diffusion time a = a?U/LD = Pe/4. is usually
known in advance, both RTD models are predictive for straight tubes
with operating conditions falling in the transition regime.

For the MTR model, it should be emphasized that the postulated
outlet concentration distribution in Eq. (35) is only a heuristic approx-
imation. Since the radial gradient of the assumed concentration distri-
bution in the outlet plane at the pipe wall is non-zero, it is not
compatible with the advection—diffusion equation given by Eq. (20) in
combination with a zero mass-flux condition at the tube wall. In the limit
a—app = 0.25 this model deficiency is not of great relevance as the wall
concentration gradient in Eq. (35) becomes very small in accordance to
the transversally uniform concentration field of the underlying limit of
the AD regime. In the limit a—apc = 125, the model deficiency is
probably of no great practical relevance as well, as the area of the thin
annular region where the concentration gradient at the wall vanishes
should be very small as compared to the pipe cross-section. It is therefore
expected that disregarding the no-mass flux boundary condition may in
the limit a—apc mainly affect the tail of the RTD. Fig. 7(a) and Fig. 7(k)
confirm that the RTDs predicted by the MTR model on basis of the
postulated outlet concentration distribution in Eq. (35) agree in the
limits a—aap = 0.25 and a—apc = 125 indeed very well with the RTDs
obtained by numerical solution of Eq. (20) by Dantas et al. (2014) in
combination with a zero mass-flux condition at the tube wall. Con-
cerning the tail of skew RTDs it is also interesting to mention findings of
a recent study on pharmaceutical manufacturing, which showed that the
tails of experimental RTDs can be truncated with no loss of accuracy
from quality assurance perspective (Bhalode et al., 2023).

The error made by disregarding the non-penetration condition at the
wall seems to be largest for 2 < @ < 8. In this range of the time scale
ratio 74/7s, the numerical RTDs exhibit a right-skewed “platform” or
plateau as shown in Fig. 7(e) and Fig. 7(f). The origin of the plateau in
the RTD lies in plateaus or double-humped peaks that occur in
concentration-over-time curves under certain conditions, where radially
inward diffusion of solute from low velocity regions near the pipe wall
towards the axis coexists with radially outward diffusion from the high
velocity region at the pipe axis (Gill and Ananthakrishnan, 1967; Golay
and Atwood, 1979; Guan and Chen, 2024; Korenaga et al., 1989a;
Korenaga et al., 1989b; Mayock et al., 1980; Shankar and Lenhoff,
1991). Such a plateau region of the RTD, which occurs in a certain range
of 6 only, where both diffusion regions have not fully interacted, cannot
be predicted by either the MTR model or the dTiS model, cf. the set of
RTD curves of both models in Fig. 4 and the inset of Fig. 9, respectively.
The lacking of this plateau region in the family of RTD curves of the MTR
model may be related to the violation of non-penetration boundary
condition at the pipe wall. However, despite of several attempts, the
author did not find a heuristic outlet concentration distribution that
fulfills the non-penetration boundary condition at the tube wall while
allowing for analytical calculation of all relevant integrals required for
determining the RTD by the novel procedure outlined in this paper.

The dispersion regime map of Levenspiel (1999, Fig. 15.2) suggests
to model the RTD in the region of the pure convection regime by Eq.
(19). This equation is independent on Pe and A. An alternative may be to
use for @ > 125, corresponding to the pure convection regime in Fig. 1
(a), Eq. (34) instead, which approaches Eq. (19) in the limit a—oo.
However, already for a > 50 the difference between Eq. (34) and Eq.
(19) is very small (Fig. 2).

The presented original approach for deriving an RTD model for the
transition regime from an assumed outlet concentration field can be
extended to other laminar velocity profiles representing e.g., the flow of
non-Newtonian liquids. For this purpose, the RTD of the pure convection
model for Poiseuille flow in Eq. (19) should be replaced by the RTD of
the generalized convection model with breakthrough time 6 as a further
parameter (Gutierrez et al., 2010; Worner, 2010).
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4.2. Coiled tubes

The dispersion regime map in Fig. 1(a) and the MTR and dTiS models
developed in this paper are valid for straight tubes so far. Coiling of a
length of tubing saves not only space but also reduces axial dispersion
and narrows the RTD as compared to straight tubes (Koutsky and Adler,
1964). For these reasons and due to their lower costs as compared to
chip-based reactors, coil-based reactors are the most used continuous
flow reactors. We now show that the MTR and dTiS models can be used
to predict the RTD in coiled tubes as well.

The reduction of axial dispersion by coiling due to increased trans-
versal mixing by centrifugal Dean vortices can be quantified by a
dispersion reduction factor x = Day coiled/Daxstraighty Where 0 <k < 1.
The idea to extend the applicability of the present model from straight
tubes with normalized transversal diffusion time Qsraight = a’U/LD to
coiled tubes is to compute a reduced normalized transversal diffusion
time acoiled = K-Ugiraighe that is representative for a coiled tube of identical
diameter and length. The RTD of the coiled tube predicted by the present
models is then given by

oiled __ pMTR/dTiS
E =E,

(alacoiled = K'astraigth) (57)

To test the validity and accuracy of this approach, we use experi-
mental RTD data of Gobert et al. (2017). Symbols in Fig. 10 show the
measured RTD in a coiled tube with 2.4 mm inner diameter where 1 =
829 and Pe = 41511. The value of the normalized transversal diffusion
time for the corresponding straight pipe is Qguaigne = 12.516. A large
discrepancy can be noted between the skewed RTD predicted by the
MTR model using that value (dashed orange line) in combination with
variance parameter k = 1 —p and the measured RTD in a coiled tube of
same diameter and length. This is to be expected as the conditions for a
straight pipe fall in the middle of the transition regime as indicated by
the magenta star in Fig. 1(a). To estimate the dispersion reduction factor
x for this case, we use a correlation of Florit et al. (2021) that was
recently derived using CFD simulations. The authors distinguish be-
tween tight-coils and loose-coils and model « as function of the Germano
number (Ge) and the Schmidt number (Sc = v/D). For tight coils, as

relevant here, it is Ge ~ De where De = Rey/d/2R. is the Dean number
based on coil radius R.. In the experiments of Gobert et al. (2017) it is

4 T
Gobert et al. (2017)
O coiled 2.4 mm tube
3 MTR model k=1-p
astraight:12'516
=== Oeq=12.516"0.1195 ]
- 5 dTiS model
S E == Oiieq=—1-496 ]
Ly
g \\<D (o]
1+ 4 -
/./6)
A %
O .__9‘.’/ "-'”"'""’uw.v\‘ww\v..“.,,\,_»‘
" 1

2.0

Fig. 10. Comparison of measured RTD data (Gobert et al., 2017) in a 2.4 mm
coiled tube (symbols) with model predictions (lines). Predictions include the
MTR and dTiS models for coiled tubes employing a dispersion reduction factor
and the MTR model for a straight tube for comparison. The results of the MTR
model are obtained in combination with k = 1 —p.
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Sc ~ 520. The tight-coils correlation of Florit et al. (2021) for the inverse
dispersion reduction then factor becomes

k! =1+0.9415log,, (520De?) — 2]"**

(58)

The value of the Dean number in the selected experiment of Gobert et al.
(2017) is 11.2 resulting in « = 0.1195 and acojreq = 1.496. Fig. 10 shows
that the RTDs of the MTR and dTiS models using that value are very
similar to each other and agree quite well with the measured RTD. Given
that this good agreement is obtained without any adjustment, the pre-
dictive capabilities of the MTR and dTiS models for coils are highlighted.

4.3. General reactors

Beside coil-based reactors, chip or plate-based reactors and packed
bed reactors are widely used in continuous flow chemistry. Chip based
reactors offer advantages in the wide range of geometries that can be
manufactured including complex mixing sections while packed bed re-
actors are appropriate if heterogeneous catalysts or reagents are
required. Traditional RTD analysis for characterization of these and
other reactor types fits observed data from a pulse input or differentiated
data from a step input to a model, such as AD or TiS. In this context, the
variance is especially useful for matching experimental RTD curves to
one of a family of theoretical curves. The long tails, however, often
associated with the RTD measurements, distort variance values and
yield fitting-parameter values of little accuracy. A Bodenstein number or
other parameter computed in this way may be very much in error. This is
because the later concentrations values of the recorded distributions
normally cannot be determined with great accuracy but contribute
heavily to the second moment (Ostergaard and Michelsen, 1969).
Alternatively, RTD data can be fitted to theoretically calculated profiles
and the “best fit” can be determined from the sum of squares of the
differences between experimental and calculated values, an approach
where one is not bothered by any long tail. Here, we demonstrate both
concepts for the MTR and dTiS models using experimental RTD data for
a flotation cell.

Guner et al. (2023) recently conducted a series of laboratory resi-
dence time measurements on the gas-liquid two-phase flow in a pneu-
matic flotation cell (Reflux™ RFC-1 00, cell volume 16 L). The authors
studied six cases with different operating conditions, each case being

2.5 [ L LA AN RN L EE N DL LN BEL LN R L N R L
O Guner et al. (2023) C4
! MTR model 62 = 0.2 ]
=9 - = G- 13133k 1
! ,‘;’o‘g - a=4.63,k=1-p=0.29 |
15} NG dTiS model ki
w ! VAL —-—a=48,0:;=02 ]
Lutb 1_0:_ —---a=35,02=0.146 B
05} .
0.0 o -—0
00 05 10 15 20 25 3.0

O[]

Fig. 11. Comparison of measured RTD in a pneumatic flotation cell (Guner
et al., 2023) (symbols and error bars) with predictions by the MTR and dTiS
models (lines) for reduced variance 0.2 and with least-squares fit of the dTiS
model resulting in reduced variance 0.146.
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repeated. Fig. 11 shows the RTD data of Guner et al. (2023, case C4) by
symbols (open circles) and error bars. The authors did not report values
for the RTD variance. However, their supplemental material provides all
necessary information for calculation. For case C4, the reduced variance
is estimated as 62 = 0.20 (see Supplemental Material, Section 4). The
reduced variance of the dTiS model is /24 so that the effective time
scale ratio is estimated as @ = 4.8. For the MTR model, the effective
values of the time scale ratio are determined iteratively as 3.13 for k = 1
and as 4.63 fork =1 —p =0.29. Fig. 11 shows that the MTR model with
k = 1 underestimates the maximum of the experimental RTD, while the
MTR model with k = 1 —p overestimates it. A better agreement is ob-
tained with the dTiS model, though the position of the RTD maximum is
shifted to lower values of 6. Despite the same value of the variance of
0.2, the three RTD curves differ notably. This illustrates the problem of
determining the fitting parameter of models that have different tail
behaviour from the measured variance when the tails of the RTD are
truncated or affected by noise. A better agreement is obtained by a least-
squares fit of the dTiS model to the experimental RTD as shown in
Fig. 11, which yields a = 3.5 and a reduced variance of 0.146. These
results demonstrate that general reactors can be characterized by
correlating the measured RTD by means of a weighted least-squares
method applied to the MTR and dTiS models using a as fitting
parameter.

5. Conclusions

Solute dispersion in a solvent flowing laminar through a pipe is of
interest for continuous flow chemistry (CFC) and other fields. CFC is
nowadays well established and widely used in a variety of industries and
applications due to its efficiency, safety, and scalability. Solute disper-
sion arises by two competing processes. The axial transport of solutes by
the non-uniform velocity field of the solvent creates radial concentration
gradients, which tend to be eliminated by transverse diffusion. If the
time scale of transversal diffusion is large as compared to the space time
of the solvent streaming in Poiseuille flow, the dispersion and the
associated RTD is described by the pure convection regime. If the time
scale is small in contrast, the Taylor-Aris axial dispersion regime applies.
Operation conditions in laminar tubular reactors as used in CFC often
fall in the transition regime where neither longitudinal convection nor
transversal diffusion are dominant and both, convection and diffusion
determine dispersion and the RTD. In the transition regime, neither the
pure convection nor the axial dispersion models are valid.

This paper uses a novel analytical approach to develop for solute
transport in Poiseuille flow models for the RTD in the transition regime
missing previously. Both proposed models yield continuous families of
RTD curves that depend on a sole dimensionless parameter (@ = Pe/41),
namely the ratio of transversal diffusion time to space time denoted as
normalized transversal diffusion time. The mechanistic transition
regime (MTR) model given by Egs. (36), (42) and (54) is valid in the
entire transition regime 0.25 < a < 125 and recovers the axial disper-
sion and pure convection models in the limits @—0.25 and a—125,
respectively. A simpler phenomenological compartment model (dTiS)
given by Eq. (55) is valid in the range 0.25 < a < 6. With increase of q,
the RTD curves undergo a transition from the nearly symmetrical
Gaussian shape typical for the axial dispersion regime towards the skew
shape of the pure convection regime with sudden jump at the break-
through time and long tails. To determine the normalized transversal
diffusion time a, knowledge of the pipe diameter, pipe length, mean
solvent velocity and molecular diffusivity of the solute is required. For
applications in flow chemistry, « is usually known in advance to that the
proposed models can be used to predict the RTD in straight tubes and, in
combination with a dispersion reduction factor, also in coiled tubes as
shown. The proposed models are furthermore useful to characterize
skew RTDs occurring in other applications via the measured variance of
the RTD or by a-posteriori fitting, as demonstrated for gas-liquid two-
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phase flow in a lab-scale pneumatic flotation cell.

In summary, the proposed models are the first developed specifically
for the transition regime. They are predictive for straight and coiled
tubes and can be used for reaction engineering design. They are also
useful to predict or characterize RTDs in non-tubular reactors. Mathe-
matical modeling can be further extended by combining RTD theory
with chemical reaction kinetics to forecast conversion and yield.

Notation

Roman

a Inner pipe radius, m.

A Cross-section area of the pipe, A = a%, m*

Bo Bodenstein number, Bo = LU/D,y, dimensionless.

c Solute (tracer) concentration, mol/m*>

Cref Reference concentration, cref = M/ Vreactors mol/m*

C Normalized tracer concentration, C = c/cyet, dimensionless.

d Inner pipe diameter, m/s.

D Molecular diffusion coefficient, m?/s.

Dax Axial dispersion coefficient, m?/s.

De Dean number, De = Re\/d/2R., dimensionless.

E Differential RTD, sh

Ey Non-dimensional differential RTD, E, = tE, dimensionless.

F Cumulative RTD, dimensionless.

Foq Fourier number, Foq = 1;D/d? = 1/4a, dimensionless.

H(e) Heaviside function, dimensionless.

k Variance parameter in MTR model, k = 1 or k = 1 —p, dimensionless.
L Axial distance between the tracer inlet and outlet planes, m.

m Total amount of tracer/solute released in pulse input, mol.

P Regime transition parameter of the MTR model, 0 < p < 1, dimensionless.
Pe Peclet number, Pe = dU/D = Re-Sc, dimensionless.

Q Volumetric flow rate of solvent, Q = rna’U, m®/s.

q Hypothetical number of tanks-in-series, dimensionless.

r Radial coordinate, m.

R Normalized radial coordinate, R = r/a, dimensionless.

R, Coil radius, m.

Re Reynolds number Re = dU/v, dimensionless.

S Model parameter related to variance of the MTR model, dimensionless.
Sc Schmidt number Sc = v/D, dimensionless.

t Time, s.

u(r) Radial profile of axial velocity, m/s.

U Mean axial velocity, m/s.

Umax Maximum axial velocity, Umax = 2U, m/s.

Vreactor  Reactor volume, Vieactor = 7aL, m*

V(R) Normalized axial velocity profile, V = 2(1 —R?), dimensionless.

Z Axial coordinate, m.

Z Normalized axial coordinate, Z = z/L, dimensionless.

Greek

a Normalized transversal diffusion time, @ = 74/7s = a®>U/LD, dimensionless.
aap Boundary between axial dispersion and transition regime, dimensionless.
apc Boundary between pure convection and transition regime, dimensionless.
I(e) Complete Gamma function, I'(q) = I'(q,0), dimensionless.

I(e,0) Incomplete upper Gamma function, dimensionless.

5(e) Dirac delta function, dimension inverse to that of the argument.

€ Small positive parameter, m.

0 Normalized (reduced) time, 6 = t/t; = tU/L, dimensionless.

O First appearance time, dimensionless.

K Dispersion reduction factor due coiling, k = Dx coiled / Dax straight, dimensionless.
A Ratio between length and diameter of the circular pipe, 2 = L/d, dimensionless.
Hn Moments of mixing cup concentration defined in Eq. (6), dimensionless.
v Kinematic viscosity of solvent, m?%/s.

gg Variance (around mean) of non-dimensional differential RTD, dimensionless.
T5 Space time, 75 = Vreactor/Q = L/U, s.

7d Time scale of transversal diffusion, 74 = a?/D, s.

Acronyms.

AD. Axial dispersion.

CD. Convection dominated.

CFC. Continuous flow chemistry.

CSTR. Continuous stirred tank reactor.

dTis. Delayed-tank-in-series.

MTR. Mechanistic transition regime (model)

PC. Pure convection.

PFR. Plug flow reactor.

RT. Residence time.

RTD. Residence time distribution.

Averages

Cross-sectional area averaging operator defined in Eq. (11)

Time average
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