KIT | KIT-Bibliothek | Impressum | Datenschutz

Simultaneous sweet-spot locking of gradiometric fluxonium qubits

Bénâtre, Denis 1; Féchant, Mathieu 1; Zapata, Nicolas 1; Gosling, Nicolas 1; Paluch, Patrick 1; Reisinger, Thomas 1; Pop, Ioan M. 1,2
1 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)
2 Physikalisches Institut (PHI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Efforts to scale up superconducting processors that employ flux qubits face numerous challenges, among which is the crosstalk created by neighboring flux lines, which are necessary to bias the qubits at the zero-field and Φ$_0$/2
sweet spots. A solution to this problem is to use symmetric gradiometric loops, which incorporate a flux-locking mechanism that, once a fluxon is trapped during cooldown, holds the device at the sweet spot and limits the need for active biasing. We demonstrate this technique by simultaneously locking multiple gradiometric fluxonium qubits in which an aluminum loop retains the trapped fluxon indefinitely. By compensating the inductive asymmetry between the two loops of the design, we are able to lock the effective flux bias within Φ$_{eff}$ =−3 ×10$^{−4}$ ⁢Φ$_0$ from the target, corresponding to only 15% degradation in 𝑇$_{2,𝐸}$ when operated in zero external field. The design strategy demonstrated here reduces integration complexity for flux qubits by minimizing crosstalk and potentially eliminating the need for local flux bias.


Verlagsausgabe §
DOI: 10.5445/IR/1000187229
Veröffentlicht am 20.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für QuantenMaterialien und Technologien (IQMT)
Physikalisches Institut (PHI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 2331-7019
KITopen-ID: 1000187229
HGF-Programm 47.12.01 (POF IV, LK 01) Advanced Solid-State Qubits and Qubit Systems
Erschienen in Physical Review Applied
Verlag American Physical Society (APS)
Band 24
Heft 5
Seiten 054031
Vorab online veröffentlicht am 12.11.2025
Schlagwörter Magnetism, Quantum circuits, Quantum information with solid state qubits, Superconducting qubits, Microwave techniques
Nachgewiesen in OpenAlex
Web of Science
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page