KIT | KIT-Bibliothek | Impressum | Datenschutz

Commander: A robust cross-machine multi-phase Advanced Persistent Threat detector via provenance analytics

Liu, Qi ORCID iD icon 1; Bao, Kaibin ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

Intrusion detection systems (IDS) have traditionally focused on identifying malicious behaviors caused by malware undertaking a series of suspicious activities within a short time. Facing Advanced Persistent Threat (APT) actors employing the so-called low-and-slow strategy, defenders are often blindsided by the poor performance of these IDS. Provenance-based IDS (PIDS) emerged as a promising solution for reducing false alerts, detecting true attacks, and facilitating attack investigation, by causally linking and contextualizing indicative system activities in provenance graphs. However, most existing PIDS can detect neither multi-phase nor cross-machine APT attacks, enabled by persistence and lateral movement techniques, respectively. In the present work, we propose a new PIDS called Commander, which is, to our knowledge, the first system capable of detecting cross-machine multi-phase APT attacks. Further, Commander targets several evasion attacks that can bypass existing PIDS, making it more robust. In addition, Commander can perform whole network tracing for cross-machine multi-phase APT attacks across an industrial-sector organization, for which we additionally develop parsers for system logs of popular industrial controllers. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000187231
Veröffentlicht am 20.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2025
Sprache Englisch
Identifikator ISSN: 2214-2126
KITopen-ID: 1000187231
Erschienen in Journal of Information Security and Applications
Verlag Elsevier
Band 91
Seiten Art.-Nr.: 104057
Vorab online veröffentlicht am 29.04.2025
Nachgewiesen in Scopus
OpenAlex
Dimensions
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page