KIT | KIT-Bibliothek | Impressum | Datenschutz

(Multivariate) k-SUM as Barrier to Succinct Computation

Gokaj, Geri 1; Künnemann, Marvin 1; Storandt, Sabine; Truschel, Carina; Benoit, Anne [Hrsg.]; Kaplan, Haim [Hrsg.]; Wild, Sebastian [Hrsg.]; Herman, Grzegorz [Hrsg.]
1 Karlsruher Institut für Technologie (KIT)

Abstract:

How does the time complexity of a problem change when the input is given succinctly rather than explicitly? We study this question for several geometric problems defined on a set X of N points in ℤ^d. As succinct representation, we choose a sumset (or Minkowski sum) representation: Instead of receiving X explicitly, we are given sets A,B of n points that define X as A+B = {a+b∣ a ∈ A,b ∈ B}.
We investigate the fine-grained complexity of this succinct version for several Õ(N)-time computable geometric primitives. Remarkably, we can tie their complexity tightly to the complexity of corresponding k-SUM problems. Specifically, we introduce as All-ints 3-SUM(n,n,k) the following multivariate, multi-output variant of 3-SUM: given sets A,B of size n and set C of size k, determine for all c ∈ C whether there are a ∈ A and b ∈ B with a+b = c. We obtain the following results:
1) Succinct closest L_∞-pair requires time N^{1-o(1)} under the 3-SUM hypothesis, while succinct furthest L_∞-pair can be solved in time Õ(n).
2) Succinct bichromatic closest L_∞-Pair requires time N^{1-o(1)} iff the 4-SUM hypothesis holds.
3) The following problems are fine-grained equivalent to All-ints 3-SUM(n,n,k): succinct skyline computation in 2D with output size k and succinct batched orthogonal range search with k given ranges. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000187238
Veröffentlicht am 20.11.2025
Originalveröffentlichung
DOI: 10.4230/lipics.esa.2025.42
Zugehörige Institution(en) am KIT Karlsruher Institut für Technologie (KIT)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 01.10.2025
Sprache Englisch
Identifikator ISBN: 978-3-95977-395-9
ISSN: 1868-8969
KITopen-ID: 1000187238
Erschienen in 33rd Annual European Symposium on Algorithms (ESA 2025), Warsaw, 15th-17th September 2025
Veranstaltung 33rd Annual European Symposium on Algorithms (ESA 2025), Warschau, Polen, 15.09.2025 – 17.09.2025
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 1
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 351
Schlagwörter Fine-grained complexity theory, sumsets, additive combinatorics, succinct inputs, computational geometry, Theory of computation → Computational geometry
Nachgewiesen in OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page