KIT | KIT-Bibliothek | Impressum | Datenschutz

Classification of Music Preferences Using EEG Data in Machine Learning Models

Vedder, Helen; Stano, Fabio ORCID iD icon 1; Knierim, Michael 1
1 Institut für Wirtschaftsinformatik und Marketing (IISM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

In this paper, we investigate how EEG data can be used to predict individual music preferences. Our study relies on machine learning and specially developed models such as EEGNet to analyze participants' brain activity while listening to music. Participants listened to music excerpts, rated them, and their EEG data were recorded. We extracted relevant features from the EEG data and used convolutional neural networks (CNNs) to classify music preferences. Our results show that our models are able to predict music preferences with an accuracy of up to 69%. This confirms the potential of EEG in personalized music recommendation and demonstrates the feasibility of integrating EEG into wearable devices to improve the user experience.


Originalveröffentlichung
DOI: 10.18420/muc2024-mci-src-324
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000187257
Erschienen in Mensch und Computer 2024 : Workshopband
Veranstaltung Mensch und Computer (MuC 2024), Karlsruhe, 01.09.2024 – 04.09.2024
Verlag Gesellschaft für Informatik (GI)
Schlagwörter EEG, BCI, Music Preference, Machine Learning, Classification, EEGNet
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page