KIT | KIT-Bibliothek | Impressum | Datenschutz

Uncertainty-Aware Deep Neural Network Training for Imbalanced Geochemical Data Distributions

Dashti, Ali ORCID iD icon 1; Trumpp, Michael ORCID iD icon 1; Ystroem, Lars H. ORCID iD icon 1; Goldberg, Valentin ORCID iD icon 1; Seimetz, Nancy 1; Nitschke, Fabian 1
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)

Abstract:

The growing interest in raw material extraction, particularly in trace elements, highlights the need for innovative geochemical modeling techniques to predict element concentrations accurately. This paper explores the predictive capabilities of a deep neural network (DNN) in estimating the concentrations of 20 trace elements based on 11 major elements and pH values. Using data from the BrineMine project, we applied DNNs to a challenging dataset characterized by a small sample size and imbalanced distributions. In total, 1000 independent DNN models were generated to address prediction accuracy and uncertainty instead of relying on a single model. Two preprocessing methods, including synthetic minority over-sampling technique for regression with Gaussian noise (SMOGN) statistical transformation, were applied to improve the accuracy and decrease uncertainty further. Despite issues such as low initial correlations between input features and target variables, imbalanced data distributions, and extremely low concentrations, the DNN models provided reliable and robust results, except for Cu and V. For 13 trace elements, the DNN models achieved acceptable reliability with R-2 > 0.8. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000187264
Veröffentlicht am 20.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1520-7439, 1573-8981
KITopen-ID: 1000187264
HGF-Programm 38.04.04 (POF IV, LK 01) Geoenergy
Erschienen in Natural Resources Research
Verlag Springer
Vorab online veröffentlicht am 08.11.2025
Nachgewiesen in OpenAlex
Dimensions
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page