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A B S T R A C T

Species identification in Amazonian forest inventories is challenging due to a shortage of tax
onomists, high biodiversity, and morphological similarities leading to taxonomic errors. Full- 
range spectroscopy (350–2500 nm) is a promising tool for improving species identification effi
ciency and reliability. This study assessed the effectiveness of full-range spectroscopy in 
discriminating against 26 abundant tree species across three Amazonian ecosystems: upland 
forest, white-sand ecosystems, and floodplain forest, using spectral data from different tree tis
sues—outer bark, inner bark, and fresh leaves. Each tissue was tested using Linear Discriminant 
Analysis (LDA) spectral models with two cross-validation methods: leave-one-out and holdout 
(70/30), as well as external validation with samples from different sites. Results showed high 
discrimination accuracy for all tissues and ecosystems. The general models achieved 86 % ac
curacy for outer bark, 97 % for inner bark and 98 % for fresh leaves. The most informative 
spectral bands varied by tissue type: SWIR I (1300–1900 nm) for outer bark, and VIS 
(400–700 nm) + SWIR I (1300–1900 nm) for inner bark and fresh leaves. A general model 
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integrating species across ecosystems confirmed full-range spectroscopy as an effective tool for in- 
field species identification. These findings highlight the potential of spectroscopy to Amazonian 
biodiversity inventories, contributing to more accurate species identification, refining forest 
management and conservation efforts.

1. Introduction

Conserving biodiversity of tropical forests is a challenge, especially given the lack of knowledge about the totality of species that 
occur in the vast mosaic of habitats and ecosystems that compose these forests. Although there have been many efforts to find out how 
many tree species exist in the Amazon (Cardoso et al., 2017; Oliveira-Filho et al., 2021; ter Steege et al., 2019, 2016, 2013) and it is 
estimated that there are more than 15,000 tree species (ter Steege et al., 2020), but only around 6000 have been cataloged (Cardoso 
et al., 2017). The challenges of delimiting and quantifying species persist due to taxonomic uncertainties (Draper et al., 2020; Stropp 
et al., 2022) and lack of botanical collections in remote regions (Hopkins, 2019, 2007; Nelson et al., 1990).This uncertainty directly 
affects biodiversity inventories that monitor tropical forests and compromises subsequent activities that depend on this information, 
such as forest management and conservation, as well as scientific research and ecological modeling. Although the problem of species 
identification in the Amazon is well-known in forest management (Cysneiros et al., 2018; Procópio and Secco, 2008), it is still 
neglected due to the lack of efficient and quick inspection techniques. The consequences of misidentification can be both economic and 
ecological, including the overestimation of commercially valuable species populations, the compromise forest product transaction 
integrity (Baraloto et al., 2007; Gaui et al., 2019; Procópio and Secco, 2008) and facilitation of rare species exploitation and illegal 
logging, by identifying a rare species in a group of species, usually called hyperdominant. Therefore, mitigating identification errors in 
forest inventories is an urgent priority. It is essential to focus on training new parataxonomists and developing innovative technologies 
and methodologies to optimize the process.

Field monitoring of the Amazon rainforest is conducted through forest inventories, where the first step is to ensure species iden
tification. This is a slow, laborious process and requires a high level of taxonomic knowledge. Identification begins in the field facing 
difficulties due to the high morphological similarity between tropical species, making this activity subjective and inaccurate (Gomes 
et al., 2013) and the scarcity of botanical taxonomists, since the samples collected in the field must be validated with reference col
lections in herbarium. However, the absence of reproductive material for accurate identification can lead to the accumulation of errors 
in herbarium, perpetuating misidentifications. This issue is evidenced by a mismatch of over 50 % in the names of tropical species 
(Gomes et al., 2013; Goodwin et al., 2015; Hopkins, 2007; Procópio and Secco, 2008). Therefore, those responsible for forest moni
toring need species verification techniques beyond field identification to ensure quality control and reduce the errors associated with 
identification.

Some approaches have been developed to solve the taxonomic challenges, such as DNA barcoding, mass spectroscopy, visible and 
near-infrared spectroscopy (VIS-NIRS) in the field and the laboratory, and imaging spectroscopy. Each of these techniques has its 
advantages and limitations, and their integrated use is recommended to minimize identification errors (Damasco et al., 2019; Draper 
et al., 2020; Prata et al., 2018). Among the available tools, the in situ optical spectroscopy technique is a way to evaluate biodiversity 
and support forest management with the automation of data collection (Juola et al., 2023) and is suitable for optimizing forest in
ventories (Hadlich et al., 2018). Spectral reflectance operates by directing a light source onto organic samples and measuring the 
intensity of the light that is reflected or absorbed, producing characteristic spectral profiles in the visible and near-infrared regions 
(350–2500 nm, full-range spectroscopy - Cavender-Bares et al., 2025). These spectra, influenced by the chemical composition, cellular 
structure, and internal morphology of the samples (Ponzoni, 2002), can be analyzed using multivariate statistical techniques to extract 
qualitative and quantitative information (Foley et al., 1998; Pasquini, 2018, 2003; Tsuchikawa, 2007).

Over the years, spectral reflectance methods have been developed to discriminate between species, employing various data sources 
and both laboratory and field equipment. The technique has already been tested on herbarium leaf samples (Botelho, 2017; Durgante 
et al., 2013; Lang et al., 2015; Meireles et al., 2020); laboratory-dried woods (Bergo et al., 2016; Braga et al., 2011; da Silva et al., 2024; 
Pastore et al., 2011; Pigozzo, 2011), fresh leaves in the field (Asner et al., 2014; Mallmann et al., 2023) and bark of standing trees 
(Hadlich et al., 2018; Juola et al., 2023, 2022), demonstrating remarkable potential for these applications. In an integrative context, 
spectral signature has also been effective in assisting the delimitation of species with cryptic morphological variation (Damasco et al., 
2019; Prata et al., 2018), even hypothesizing new species (Vasconcelos et al., 2021; Vasconelos et al., 2020), which shows the 
importance of using multiple tools to solve eventual taxonomic errors, especially in the highly diverse Amazonian flora.

The application of spectral reflectance to improve species identification has shown promising results in the field mainly in upland 
forests based on bark (Hadlich et al., 2018) and leaf spectra (Asner et al., 2014) in the Amazon. However, its applicability in different 
Amazonian ecosystems remains largely unexplored. The Amazon is made up of distinct ecosystems in terms of floristics, soil types, 
topography and water availability, which form mosaics of landscapes, each with specificities that must be considered when monitoring 
biodiversity. The predominant vegetation is non-flooded upland forest (also known as terra-firme forest), which covers about 70 % of 
the basin. The remaining 30 % consists predominantly of wetland complexes, most of them forested, and which experience seasonal 
flooding (Junk et al., 2014, 2011). Additionally, other ecosystems are interspersed throughout the biome, including savannas, coastal 
vegetation, montane forests, and the white-sand ecosystem (locally known as campinarana), the latter covering approximately 5 % of 
the basin area (Adeney et al., 2016). Given this environmental heterogeneity, spectral-based identifications must be tailored to the 
specific conditions of each ecosystem to improve the accuracy of species identification as the spectral variation between tree species is 
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influenced by morphology, structural traits, chemical composition of tissues and environmental conditions (Clark and Roberts, 2012).
Inventorying Amazonian ecosystems is a complex task that requires strategic planning to minimize cost and maximize efficiency. 

Considering the specific limitations of each ecosystem - such as the inundation of flooded forests, phenology of most species, density of 
trees, accessibility to samples - during the planning phase can significantly optimize the process. To improve forest inventories using 
full-range spectroscopy for in-field species identification, four key questions have been addressed in this study: How effective are 
different plant tissues in predicting species identification in different Amazonian ecosystems? What is the efficiency of a local model 
combining all ecosystems? Is the local model effective in predicting species from other locations? Which wavelengths are the most 
informative for species recognition in different tissues? The findings will provide a practical framework for improving inventory 
methodologies, ensuring greater accuracy and reducing costs. This research will contribute to more reliable biodiversity assessments 
and better-informed conservation and management strategies by shifting from uncertain identifications to a high-precision approach.

2. Materials and methods

2.1. Study sites

Spectral data were systematically collected from established permanent plots as part of the Long-term Ecological Research Program 

Fig. 1. Map of the study area in Central Amazon, showing the sampling permanent plots where spectral data were collected from tree species. Solid 
black markers represent plots in upland (circles), white-sand (triangles), and floodplain forests (squares).
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(PELD) of the Working Group Ecology, Monitoring and Sustainable Use of Wetlands (MAUA) within the Amazon Tall Tower Obser
vatory (ATTO site). The ATTO site is situated in the Uatumã Sustainable Development Reserve (02◦10’30’’ S; 59◦00’30’’ W), 
approximately 150 km northeast of Manaus, Amazonas, Brazil (Fig. 1). The climate within the study area is the equatorial pluvial (Af) 
type, following the Köppen-Geiger classification system (Alvares et al., 2013). The region experiences an average annual rainfall of 
approximately 2030 mm and an average annual temperature of 28 ◦C. The dry season extends from June to October and is charac
terized by reduced rainfall in this period, with monthly precipitation below 100 mm (Andreae et al., 2015).

The present research was developed in three distinct forest ecosystems: upland forest (terra-firme), white-sand ecosystem (cam
pinarana), and floodplain forest (igapó).

The upland plots are located on plateaus near the ATTO tower (Fig. 1), reaching a maximum altitude of approximately 130 m. The 
upland forest grows on clayey soil, Ferralsols (85.3 % clay), which have good moisture retention capacity (Andreae et al., 2015; 
Chauvel et al., 1987). It is a dense forest, with a mean height of 21 m and canopy trees reaching up to 45 m. The studied plots comprise 
54 botanical families, with Fabaceae, Lecythidaceae, Sapotaceae, Burseraceae, and Euphorbiaceae being the most abundant. Based on 
previous forest inventory data, a total of 179 tree species were recorded, with Protium apiculatum and Pouteria sp. as the most abundant 
species (Andreae et al., 2015).

The white-sand ecosystem of the ATTO site is positioned between the ancient river terraces and the plateau slopes (Targhetta et al., 
2015). White-sand ecosystems are characterized by nutrient-poor, highly acidic, and easily leached soils. The soil is predominantly 
sandy, with a sand fraction of 93.4 ± 1.5 % (Targhetta et al., 2015), resulting in low water retention capacity. According to Demarchi 
et al. (2022), the white-sand ecosystem of the RDSU are composed of six distinct phytophysiognomies, varying from open to dense 
white-sand ecosystem, in which the dense phytophysiognomie are differentiated by the reach of the water table to the surface. 167 
taxonomically identified species were recorded in the ATTO site, 30 % of which are endemic. In this study, four plots were selected of 
the open to intermediate white-sand ecosystem (Fig. 1) that suffer the most significant water deficit, especially in the dry season. The 
mean height of the trees in this environment is between 15 and 20 m, with some emergent trees reaching 25–30 m high in the canopy. 
In these plots, 40 families were recorded, with Fabaceae, Humiriaceae, Sapotaceae, Chrysobalanaceae, and Rubiaceae being the most 
abundant. There were 146 species, of which Sacoglottis guianensis was the most abundant, followed by Aldina heterophylla and Pradosia 
schomburgkiana, both specialists in Amazonian white-sand ecosystem (Demarchi et al., 2022).

The floodplain forest plots are located along the Abacate River, the main tributary of the Uatumã River (Fig. 1). This river is 
classified as a blackwater (locally known as igapó) that originate in the Guiana Shield and the Central Brazilian Shield (Junk et al., 
2011). These waters are poor in suspended sediments and carry few nutrients, so the soils associated with blackwater rivers are of low 
fertility and high acidity (Junk et al., 2015). The permanent plots used were those of the low and medium igapó of the Abacate River. 
These floodplain forests remain preserved, as their hydrological cycle has not been impacted by the Balbina Dam (Schöngart et al., 
2021). The flooding regime varies from 1 to 3 m for 50–100 days a year in medium igapó. The species sampled from the low igapó such 
as E. tenuifolia, M. acaciifolium, H. brasiliensis, M. tamaquarina (Table 1) experience flood levels reaching up to 7 m in height, remaining 
inundated for 96–127 days each year (Householder et al., 2021; Lobo et al., 2019). The percentages of sand and clay are 57.0 % and 
27.4 %, respectively (Mori, 2019). Therefore, the soil is characterized as clay-sandy. The trees in these environments have a mean 
height of 13.5 m and can reach a height of approximately 30 m. The flora of the plots is represented by 26 botanical families, with 
Lecythidaceae, Ochnaceae, Sapotaceae, and Fabaceae having the most abundance. A total of 65 species were recorded, with Elvasia 
calophyllea, Eschweilera albiflora, Pouteria pachyphylla, and Eschweilera tenuifolia as the most abundant species (Schöngart et al., 2021).

2.2. Sampling design

The bark and fresh leaf spectral data were collected directly in the field from mature trees with over 10 cm DBH, with leaves 
reaching the canopy. We selected a minimum of 10 individuals of 10 abundant species from each ecosystem (upland, white-sand, and 
floodplain forest) according to an a priori inventory to create the local models on the ATTO site (see Table 1). The spectral collections 
were carried out by ecosystems at different times: in the floodplain forest (igapó) it was in October 2022, when the plots were not 
flooded; in the white-sand ecosystem it was in March 2023 and in the upland forest in August 2023, following the phenology of the 

Table 1 
Selected tree species in each ecosystem. A minimum of ten individuals were used for each species. n is the number of individuals collected.

Upland forest White-sand ecosystem Floodplain forest

Family Species n Family Species n Family Species n
Burseraceae Protium apiculatum 11 Rubiaceae Ferdinandusa chlorantha 10 Apocynaceae Malouetia tamaquarina 10
Violaceae Rinorea guianensis 10 Simaroubaceae Simaba guianensis 10 Euphorbiaceae Hevea spruceana 10
Euphorbiaceae Micrandropsis 

scleroxylon
10 Primulaceae Cybianthus 

fulvopulverulentus
10 Fabaceae Macrolobium 

acaciifolium
10

Fabaceae Swartzia reticulata 10 Fabaceae Aldina heterophylla 11 Fabaceae Swartzia acuminata 10
Humiriaceae Sacoglottis guianensis 10 Humiriaceae Sacoglottis guianensis 10 Humiriaceae Sacoglottis guianensis 10
Lecythidaceae Corythophora alta 10 Vochysiaceae Ruizterania retusa 10 Lecythidaceae Couratari tenuicarpa 10
Malvaceae Scleronema micranthum 10 Malvaceae Scleronema micranthum 11 Lecythidaceae Eschweilera tenuifolia 10
Sapotaceae Ecclinusa guianensis 10 Malvaceae Catostemma sclerophyllum 11 Lauraceae Ocotea aciphylla 10
Sapotaceae Manilkara elata 10 Sapotaceae Manilkara bidentata 10 Sapotaceae Manilkara bidentata 11
Sapotaceae Pouteria anomala 10 Sapotaceae Pradosia schomburgkiana 12 Sapotaceae Pouteria pachyphylla 11
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trees to ensure that the leaves were in the mature leaf phase.

2.3. Spectral data

Spectral reflectance collections of different tree tissues were conducted in the field using a portable high-resolution spectroradi
ometer ASD FieldSpec® 4. This equipment has its own light source, allowing measurements to be taken independently of ambient 
lighting and ensuring consistent data quality across all samples. The contact probe accessory was used to take spectral measurements of 
bark directly from trunks at breast height. The leaf clip accessory was used to collect leaf spectra, with a black background, from freshly 
cut branches in the field. This portable instrument facilitated rapid data acquisition, capturing information for 0.1 s per spectrum. The 
spectrometer collected full-range reflectance data covered wavelengths from 350 to 2500 nm, encompassing the visible (VIS =
350–700 nm), near-infrared (NIR = 700–1300 nm), shortwave-infrared regions (SWIR I = 1300–1900; SWIR II = 1900–2500 nm) 
range of the electromagnetic spectrum. The instrument offered a spectral resolution of 3 nm for wavelengths from 350 to 700 nm, and 
10 nm for the wavelengths between 701 and 2500 nm, measuring the sample’s reflectance and generating 2151 data points.

The spectral signature of the species has distinct reflectance spectra between the three tissues evaluated: outer bark, inner bark, and 
fresh leaves (Fig. 2). To ensure the cleanliness of the instrument and prevent contamination with resins, latex, gum, sap, and dust, as 
well as to protect the lens of the contact probe, a glass slide (microscope slide) adapted to the optical reader was utilized to collect the 
trunk samples (outer and inner bark). Before each measurement, the equipment was calibrated with a white reference panel (Spec
tralon®). The white reference panel features material with approximately 100 % reflectance to convert the energy incident on the 
sample into spectral reflectance. Three spectral readings of the outer bark and three spectral readings of the inner bark were collected 
for each tree at breast height. The collection strategy involved obtaining spectra at different points around the tree to maximize the 
capture of individual variation (Hadlich et al., 2018). Spectra were collected from the most preserved part of the outer bark to ensure 
high-quality data. For inner bark collection, a machete delicately removes the outer bark until reaching the inner bark without passing 
through the cambium and the wood, i.e., without injuring the tree. The bark of the tree is formed by non-living outer bark and inner 
bark with living tissues, including all the tissues from the vascular cambium to the periderm, formed by three layers: suber, phellogen, 
and phelloderm (Esau, 1974; Ferri, 1999), this means the outer and inner bark have different spectral signatures (Hadlich et al., 2018). 
Visual inspection of the spectra collected in situ guided the accuracy of the spectral signature of each bark tissue according to the 
method used by Hadlich et al. (2018), where both tissues are separated by PCA. If the reflectance spectrum differed from the spectral 
signature of the tissue, especially in the inner bark due to not removing all the outer bark for example, the collection was redone by 
scraping more of the tissue until the fidelity of the data was guaranteed (see an example of the spectral signature of the barks in Fig. 2). 
Leaf spectral collections involved harvesting branches from the uppermost portions of the trees, which a professional climber facili
tated. Approximately 20 mature, healthy leaves were selected from each individual, and readings were taken using four overlapping 
leaves on the adaxial side, based on two principles: (i) reducing intraspecific variability; (ii) strengthening the spectral signal by 
minimizing interference from the dark background and irregularities on the leaf surfaces (Jacquemoud and Ustin, 2019). In this way, 
the spectral signal tends to stabilize and more accurately reflect the structural and biochemical characteristics that are important for 
discriminating between species. By reducing the variability between leaves of the same individual, we increase the spectral 
discrimination capacity between species, the focus of the study. This approach produced five leaf spectral readings per individual. 
Calibration for each leaf measurement was carried out using the white side of the leaf clip. These meticulous and standardized pro
cedures ensured the acquisition of high-quality spectral data, representative of different tree tissues, forming the foundation for the 

Fig. 2. Reflectance spectral signature for each tissue: panels a, c, and e show examples of field measurements for the outer bark; inner bark; and 
fresh leaf respectively; panels b, d, and f show the corresponding reflectance spectrum.
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subsequent analyses and model development.

2.4. Data analysis

To evaluate the potential of the in situ collected spectra of the bark (inner and outer) and leaves for species recognition, spectral 
models were constructed for different tree tissues within each ecosystem. The initial phase involved preprocessing the spectral data to 
assess the quality and incorporated careful visualization of spectral curves and principal component analysis (PCA) to identify spectral 
behavior and outliers. Subsequently, wavelengths within 350–399 nm and 2401–2500 nm were excluded to eliminate equipment- 
induced noise.

Models based on Linear Discriminant Analysis (LDA) were then developed for the different tree tissues in each ecosystem to assess 
their predictive capacity for species recognition. In the LDA models, the dependent variables were the species (data known a priori), 
and the independent variables comprised the reflectance obtained at each wavelength from individual readings (Hair et al., 2009). The 
predictive efficiency of the models was tested using tree cross-validation techniques: leave-one-out (LOO); holdout (70/30), in which 
the model (training set) was built with 70 % of the individuals of each species, and the test set was made up of the remaining 30 % 
(Kohavi, 1995) and was repeated 100 times with the model and test sets randomly selected each time. These results were calculated by 
averaging the 100 permutations, which is consistent with the methodologies employed by Durgante et al. (2013) and Hadlich et al. 
(2018); and finally to test the efficiency of the general model in predicting independent data, external validation was applied. The 
individuals that make up the independent data set were collected in the same ecosystems (upland forest, white-sand ecosystem and 
floodplain forest- Igapó) at sites located on the Acaraí River, near the Xingu River, approximately 733 km from the ATTO site; the 
Trombetas River, approximately 300 km from ATTO site; and the Arapiuns River, near the Tapajós River, approximately 395 km from 
ATTO site, all located in Pará - Brazil (see fig. S1). A total of 7 species and 26 individuals were used to test the inner and outer bark 
models and 9 species with 43 individuals to test the fresh leaf model (see table S1). As the spectral data is highly collinear, the stepwise 

Fig. 3. Mean spectral reflectance curves of tree species per tissue type across ecosystems. Species abbreviations are as follows: upland forest (COR =
Corythophora alta, ECC = Ecclinusa guianensis, MAE = Manilkara elata, MIC = Micrandropsis scleroxylon, POA = Pouteria anomala, PRO =
Protium apiculatum, RIN = Rinorea guianensis, SAC = Sacoglottis guianensis, SCL = Scleronema micranthum, and SWR = Swartzia reticulata); 
white-sand ecosystem (ALD = Aldina heterophylla, CAT = Catostemma sclerophyllum, CYB = Cybianthus fulvopulverulentus, FER = Ferdinandusa 
chlorantha, MAB = Manilkara bidentata, PRA = Pradosia schomburgkiana, RUI = Ruizterania retusa, SAC = Sacoglottis guianensis, SCL= Scle
ronema micranthum, and SIM = Simaba guianensis); floodplain forest (COU = Couratari tenuicarpa, ESC = Eschweilera tenuifolia, HEV = Hevea 
spruceana, MAB = Manilkara bidentata, MAC = Macrolobium acaciifolium, MAL = Malouetia tamaquarina, OCO = Ocotea aciphylla, POP =
Pouteria pachyphylla, SAC = Sacoglottis guianensis, and SWA = Swartzia acuminata).
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method was used to determine the most important wavelengths for discriminating between species and reduce the variables’ 
collinearity, using a maximum of 1/3 of the number of samples (Williams and Titus, 1988). The models were built using the mean of 
the spectral readings per individual. Five spectral models were established: individual models for each ecosystem (terra firme forest, 
white sand and floodplain) based on the data set for each tissue (outer bark, inner bark and fresh leaf); a general model that included all 
the individuals from the three ecosystems for each tissue and a general model built only with the wavelengths selected by the stepwise 
method.

All data processing and analysis were performed using the open-source statistical software R (v 4.4.1; R Core Team, 2024), 
employing custom-made R scripts and add-on packages. The analysis of variance was carried out in Python 3 with Jupyter Notebook as 
the primary environment. The Python libraries pandas, NumPy and matplotlib.

3. Results

The variation of the spectra signals changes between plant tissues and ecosystems (Fig. 3 and Fig. S2). The outer and inner bark 
tissues showed a similar pattern of variation in the spectra of the species in all ecosystems. The lowest variation of both tissues was in 
the floodplain forest (Fig. S2.A) and the highest variation in the white-sand ecosystem, with the greatest difference in the VIS region, 
showing 111 % (CV) in the inner bark and 54.6 % (CV) in the outer bark. Inner bark showed very similar mean spectral curves of the 
species and CV in the upland and floodplain forest (Fig. 3 and S1.A). The fresh leaf spectral signal was the tissue with the lowest 
variation in all ecosystems (S2.B), with a maximum variation of 16.5 % (CV) in the upland forest, 23.9 % (CV) in the white-sand 
ecosystem and 29.9 % (CV) in the floodplain forest, in the VIS region. Overall, the region with the greatest variations was the VIS 
region, followed by SWIR II and then SWIR I and NIR.

Species discrimination was successfully achieved using spectral signatures across all tested tree tissues and ecosystems. Taxonomic 
prediction accuracy ranged from 78.5 % to 100 %, depending on the validation method (LOO and 70/30 holdout) and using mean 
spectral readings per individual (see Table 2). Among the tissues, outer bark had the lowest prediction accuracy, ranging from 71 % to 
89 %, while inner bark models achieved accuracies between 91 % and 97 %. Fresh leaf models exhibited the highest accuracy, varying 
between 92.4 % and 100 %. In the outer bark models, the lowest predictions in the 70/30 holdout validation occurred in white-sand 
trees (79.6 %), while the highest was in the floodplain forest trees (86.5 %). Inner bark models had the lowest prediction in floodplain 
forests (92.2 %) and slightly higher accuracy in upland and white-sand ecosystems (95.5 %). For fresh leaf spectral models, the lowest 
accuracy was observed in floodplain forests (92.4 %), while white-sand trees showed the highest accuracy (99.9 %).

Fig. 4 presents confusion matrices highlighting misclassified species in each ecosystem based on the LOO validation. Correctly 
classified individuals are positioned along the diagonal, whereas misclassified trees appear outside the diagonal. In upland forests, the 
outer bark model misclassified 13 out of 101 individuals evaluated using the LOO validation. In contrast, the inner bark and fresh leaf 
models were misclassified by only three and two individuals, respectively. Notably, one misclassified individual was familiar across all 
three models belonging to Pouteria anomala. In the white-sand ecosystem, the outer bark misclassified 13 out of 105 individuals 
evaluated using the LOO validation, while the inner bark model misclassified only five trees. The fresh leaf model, however, attained 
100 % accuracy. In the floodplain forest, the outer bark model misclassified 9 out of 102 individual trees, performing the best model 
among forest types. The inner bark model misclassified seven individuals, while the fresh leaf model misclassified only four. In this 
ecosystem, the LOO validation (Fig. 4) revealed that Hevea spruceana and Couratari tenuicarpa were commonly misclassified across the 
outer bark, inner bark, and fresh leaf models.

When combining all the individuals from the three ecosystems into a single general model, prediction accuracy remained high, 
ranging from 86 % to 98 % (Table 2). Fig. 5 illustrates the misclassifications. The outer bark model had the lowest accuracy, with 26 
misclassified individuals from 308. In contrast, the inner bark and fresh leaf models performed similarly, achieving 97 % and 98 % 
accuracy in the LOO validation, respectively, with only nine misclassified individuals in the inner bark and seven in the fresh leaf 
model. External validation showed consistent prediction power for both fresh leaf (95 %) and inner bark (92 %), with only two 

Table 2 
Results of the linear discriminant analysis (LDA) for the three tissue types within each ecosystem; general model encompassing all ecosystems; general 
model built with the wavelengths selected by the stepwise method and external validation with data from other sites. Accuracy was assessed using the 
leave-one-out (LOO) and holdout (70/30 split) cross-validations. n represents the number of individual trees used.

Model Validation n Outer bark Inner bark Fresh leaf

Upland forest LOO 
70/30

101 86 % 
78.5 %

97 % 
95.5 %

98 % 
97.2 %

White-sand ecosystem LOO 
70/30

105 82 % 
79.6 %

95 % 
95.2 %

100 % 
99.9 %

Floodplain forest LOO 
70/30

102 89 % 
88.3 %

93 % 
92.2 %

96 % 
92.4 %

General model LOO 
70/30

308 86 % 
86.5 %

97 % 
96.2 %

98 % 
97.7 %

General model with stepwise LOO 308 71 % 91 % 98 %
General model x other sites external validation * 54 % *(26) 92 % *(26) 95 % *(43)

* the number of individuals for outer and inner bark was lower than for fresh leaf due to the flooded conditions in the floodplain forest ecosystem on 
the Xingu site at the time of collection, making it impossible to collect bark spectra.
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individuals incorrectly predicted in both tests (see confusion matrix in figure S3). As for the outer bark, the set with data from other 
sites did not show high efficiency, reaching only 54 % correct predictions.

Using the stepwise technique, the most informative characteristics for species classification were identified for each tissue type 
using the general models (Fig. 6). The outer bark model (Fig. 6.a) selected the 52 most informative variables, with the SWIR I region 
(1300 nm–1900 nm) being the most representative. The inner bark model (Fig. 6.b) relied on 66 selected variables, primarily from the 
VIS and SWIR I regions. For fresh leaves (Fig. 6.c), 78 variables were selected, with 41 in the VIS region. Table S2 presents all selected 
variables for each of the three tissue models. When the general model was built using the wavelengths selected, the prediction power 
decreased for outer bark (71 %) and inner bark (91 %), while it remained consistent for fresh leaf (98 %).

4. Discussion

This study assessed the potential of spectral signatures from different tree tissues—outer bark, inner bark, and fresh leaves—for 
species identification across three distinct Amazonian ecosystems: upland, white-sand, and floodplain forest. Our results demonstrate 
that species discrimination was successfully achieved across all tested tissues and ecosystems. Fresh leaves exhibited the highest 
classification accuracy among the tissues analyzed, followed by inner and outer bark. Furthermore, we evaluated the feasibility of 
developing a generalized spectral model applicable across these three forest types. Despite the variations in spectral responses, the 
model achieved high accuracy in species recognition for the tested tissues. These findings highlight the promising potential of full- 

Fig. 4. Confusion matrices resulting from LOO validation for each model tested for across different ecosystems. The diagonal represents correct 
predictions of species identification, while off the diagonal line are the incorrect predictions using the spectroscopic method. Species listed hori
zontally correspond to those identified by a taxonomist, while those listed vertically correspond to species “identified” using spectroscopy. Species 
abbreviations are as follows: Upland forest (COR = Corythophora alta, ECC = Ecclinusa guianensis, MAE = Manilkara elata, MIC = Micrandropsis 
scleroxylon, POA = Pouteria anomala, PRO = Protium apiculatum, RIN = Rinorea guianensis, SAC = Sacoglottis guianensis, SCL = Scleronema 
micranthum, and SWR = Swartzia reticulata); white-sand ecosystem (ALD = Aldina heterophylla, CAT = Catostemma sclerophyllum, CYB = Cybianthus 
fulvopulverulentus, FER = Ferdinandusa chlorantha, MAB = Manilkara bidentata, PRA = Pradosia schomburgkiana, RUI = Ruizterania retusa, SAC =
Sacoglottis guianensis, SCL = Scleronema micranthum, and SIM = Simaba guianensis); floodplain forest (COU = Couratari tenuicarpa, ESC = Eschweilera 
tenuifolia, HEV = Hevea spruceana, MAB = Manilkara bidentata, MAC = Macrolobium acaciifolium, MAL = Malouetia tamaquarina, OCO = Ocotea 
aciphylla, POP = Pouteria pachyphylla, SAC = Sacoglottis guianensis, and SWA = Swartzia acuminata).
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Fig. 5. Confusion matrix resulting from LOO validation of the general model from different tissues. The diagonal line represents the correct pre
dictions for species identification and those off the diagonal line are the incorrect predictions using the spectroscopic method. Species listed hor
izontally correspond to species identified by a taxonomist, while those listed vertically correspond to species “identified” using spectroscopy. 
*Species are the same as Table 1 and Figs. 3 and 4.
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range spectroscopy as a powerful tool for enhancing biodiversity inventories and advancing field-based species identification in the 
Amazon.

The spectral models based on fresh leaves showed the highest effectiveness for species recognition in the field for all ecosystems. 
The spectral reflectance of the leaves is determined by their chemical adaptations to environmental conditions, including climate, 
nutrient availability, phenology, age of the individual, and lighting (Asner, 1998; Asner et al., 2014; Ponzoni, 2002), which influence 
their biochemical composition. The most accurate fresh leaf model was in the white-sand ecosystem, where the leaves exhibit scle
romorphic traits, being thicker and enriched with secondary compounds to avoid herbivory, potentially enhancing their spectral 
signal. For the floodplain forest, the fresh leaf model showed slightly lower accuracies (92 % and 96 %) than those observed in the 
white-sand and upland. These results may have been influenced by leaf phenology, since in the field there is no such control, although 
only adult individuals and the preference for mature, healthy leaves were used. Our findings corroborate those of Prospere et al. (2014)
and Liu et al. (2012) who successfully discriminated plant species in situ in wetlands with leaf spectra using different classification 
methods. However, collecting leaves requires climbing trees, an expensive and time-consuming field practice, especially considering 
the great heights of the trees in the Amazon. In addition to species discrimination in hyperdiverse environments, leaf spectra can also 
be robustly applied in differentiating between invasive and native species, which is important for the management of conservation 
areas (Mallmann et al., 2023).

The inner bark was the second-best tissue for species identification, with the spectral model accuracy decreasing by less than 5 % 
compared to fresh leaves across all forest types. This slight reduction suggests that inner bark is a viable alternative for species 

Fig. 6. Mean spectral reflectance curves of all species sampled at the ATTO site, with the wavelengths selected (vertical green lines) for the general 
model by tissue type using the stepwise selection technique. *Species are the same as Table 1 and Figs. 3, 4 and 5.
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classification in forest inventories, balancing efficiency and practicality. Outer bark, while less effective, still achieved an accuracy of 
approximately 89 %, only 18 % lower than fresh leaves. Although this reduction is notable, it remains a reasonable outcome given the 
challenges associated with outer bark spectroscopy. Our findings align with Hadlich et al. (2018), who demonstrated similar results for 
upland forest trees in the Central Amazon. Our study expands these insights across different forest types, reinforcing the potential of 
inner and outer bark spectroscopy for species identification in diverse Amazonian ecosystems.

The lower accuracy of outer bark models can be attributed to their exposure to environmental factors, including dust and mi
croorganisms (e.g. lichens), and substantial variation in bark thickness between species (Paine et al., 2010; Rosell, 2016). These effects 
were captured with the spectral variation within the tissue between species. They were pronounced in the white-sand ecosystem, 
probably due to the scleromorphic characteristics of these forests, where trees are functionally adapted to water scarcity, leading to 
distinct chemical and structural traits that affect spectral discrimination, such as bark thickness and texture. The high variability in 
bark morphology and texture contributed to more significant spectral variability. This variation in the outer bark, along with dif
ferences between species, also changes throughout the tree’s ontogeny. However, further studies assessing the spectral responding of 
bark at different ontogenetic stages may provide valuable insights. The rough, cracked, fissured and fenestrated barks for example have 
the limitation of light scattering at the time of collection with the ASD Fieldspec 4 equipment in the field, leading to less consistent 
spectral signatures to the outer bark than the more uniform patterns observed in fresh leaves and inner bark. Because it is a tissue that is 
protected by the outer bark, the inner bark, however, presents the most conserved biochemical characteristics and has less intraspecific 
variation (Hadlich et al., 2018). In the field, with the removal of the outer bark, the surface becomes regular, facilitating the accuracy 
of the spectral curve exposed from inner bark. However, Juola et al. (2023) demonstrated that the use of in situ imaging spectroscopy of 
the outer bark of standing trees, together with information on the texture of the trunk bark, can significantly improve the accuracy of 
spectral models of ten boreal species, with an accuracy of between 93 % and 97.5 %. Thus the combination of spectroscopy with 
morphological data is a promising alternative for the development of accurate applications for identifying tree species and supporting 
inventory (Juola et al., 2022, 2023). On the other hand, for the floodplain forest, the model with the outer bark performed better 
between upland and white-sand, showing the lowest intraspecific variation and with a reflectance spectrum similar to that of upland. 
This is remarkable, considering that trunks experience long periods of flooding, which could accelerate the decomposition of their 
tissues, affecting predictions.

The general model’s results were also promising, as accuracy remained high for fresh leaves, inner bark, and outer bark models. 
This suggests species identification in forest inventories does not require separate models for each forest type. By incorporating spectra 
from individuals across upland, white-sand, and floodplain forests, the general model captured a broader range of phenotypic vari
ation, integrating more comprehensive physical and chemical information. And by testing whether this local model is efficient in 
predicting species from other locations, more than 300 km away from where the model was generated, we have shown that the po
tential is enormous, especially for fresh leaves and inner bark. Although few species and individuals were used for this test, this step is 
very important for making this technique applicable in different regions of the Amazon. Given the challenges of species delimitation in 
the Amazon, species recognition tests using field spectroscopy must account for the fact that locally trained models need to be tested on 
well-delimited species occurring in geographically distant regions. If the tested specimens represent undescribed species currently 
grouped under a known species, the model is likely to misclassify them, as the spectral variation may reflect biological diversity that 
has not yet been formally recognized. Two key factors must be carefully evaluated when testing the regionalization of the model: i. the 
spectral response of species in other ecosystems not tested in this study; ii. species with identification challenges may involve species 
complexes or distinct allopatric species that have yet to be formally identified or described. Using such models represents a significant 
step forward in improving the efficiency of species identification for biodiversity research and monitoring, ultimately contributing to 
more effective conservation strategies in the Amazon.

Identifying the most informative wavelength for species discrimination across different tissues is essential for optimizing spectral 
models, especially considering variations in the range of the electromagnetic spectrum captured by the equipment, spectral resolution, 
and the influence of chemical signals on classification accuracy. Although the selection of the most important variables did not improve 
the accuracy of the models, maintaining accuracy only for fresh leaf (98 %), we identified that the VIS (400–700 nm) and SWIR I 
(1300–1900 nm) regions were the most important for distinguishing species across all three tested tissues, with some variations among 
them. The fresh leaves models used 48 wavelengths in the VIS region, 18 in the SWIR I, and only 5 in the NIR region (700–1300 nm). 
Fresh leaf spectral responses are a function of leaf structure, water content, and the concentration of biochemicals (Curran et al., 1992). 
The discriminatory power in the VIS region was evidenced in the spectral range corresponding to the blue-green transition 
(400–499 nm) (Hennessy et al., 2020). In this region, the optical properties of the leaves remain stable due to the presence of bio
logically active pigments, such as chlorophyll and carotenoids (Gausman, 1983; Jones & Vaughan, 2010) that play a crucial role in this 
discrimination process. The NIR region, which reflects cell structure (Ponzoni et al., 2015), had only 5 wavelengths selected by the 
spectral model. Additionally, specific wavelengths in the shortwave infrared (SWIR II) region (2.100–2300 nm) provide valuable 
information on cellulose and lignin content (Curran, 1989).

The spectral model of the outer bark selected 34 informative wavelengths in the SWIR I and II regions, of which 16 specific 
wavelengths belonged to lignin, hemicellulose, cellulose, aromatic compounds, and extractives (Jones et al., 2006; Schwanninger 
et al., 2011; Workman and Weyer, 2007) being the most representative region. For the inner bark, the spectral models selected 32 in 
the VIS region, and also detected 11 wavelengths belonging to lignin, cellulose, and water (Workman and Weyer, 2007), with VIS and 
SWIR I being the most important regions. When comparing the most informative wavelengths for species discrimination between outer 
and inner bark using the general model (upland, white-sand, and floodplain forests) to those presented by Hadlich et al. (2018) for 
upland forest, distinct differences emerged. In the present study, the most informative wavelengths for the outer bark were in SWIR I, 
whereas Hadlich et al. (2018) recognized VIS and NIR, as the most relevant. For inner bark, the selection of the most informative 
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regions in this study were VIS and SWIR I, while Hadlich et al. (2018) identified VIS and NIR as the key regions. The selection of the 
most informative wavelength between models can be influenced by differences in the dataset, such as species composition and 
environmental variation. Juola et al. (2022) found selected features within the VIS and NIR range for the outer bark. Therefore, the 
selection of variables that best discriminate between species must be refined because, in addition to the data set, this information can 
be influenced by different equipment with different resolutions and spectral range.

Spectroscopy is a valuable technique for improving tree biodiversity inventories in the field. However, some equipment-related 
limitations can be refined. The ASD FieldSpec 4 is an expensive device, making it difficult to popularize this technique among for
est companies and scientific institutions. Additionally, the equipment weighs around 8 kg and requires a computer connection and 
battery power for operation, which makes it challenging to use in dense forest environments where accessing trees can be difficult. 
However, to make this technique more widely accessible to the field, we expect smaller, more affordable, and high-precision spec
trometers, such as a small device from the ASD FieldSpec 4 or other spectral companies. However, it is necessary to verify the pre
diction efficiency when such equipment with different spectral resolution and spectral range is employed. The development and 
adoption of such equipment would help to expand the use of spectroscopy, as it is necessary to assess the species discrimination power 
of entire plots, including rare species and species with identification problems (species clusters, undelimited species or hypotheses of 
new species). This would facilitate the implementation of quality control in species identification and improve biodiversity inventories 
in tropical forest monitoring.
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Braga, J.W.B., Pastore, T.C.M., Coradin, V.T.R., Camargos, J.A.A., Silva, A.R.Da, 2011. The use of near infrared spectroscopy to identify solid wood specimens of 
Swietenia macrophylla (cites appendix II). IAWA J. 285–296. https://doi.org/10.1163/22941932-90000058.

Cardoso, D., Särkinen, T., Alexander, S., Amorim, A.M., Bittrich, V., Celis, M., Daly, D.C., Fiaschi, P., Funk, V.A., Giacomin, L.L., Goldenberg, R., Heiden, G., Iganci, J., 
Kelloff, C.L., Knapp, S., De Lima, H.C., Machado, A.F.P., Dos Santos, R.M., Mello-Silva, R., Michelangeli, F.A., Mitchell, J., Moonlight, P., De Moraes, P.L.R., 
Mori, S.A., Nunes, T.S., Pennington, T.D., Pirani, J.R., Prance, G.T., De Queiroz, L.P., Rapini, A., Riina, R., Rincon, C.A.V., Roque, N., Shimizu, G., Sobral, M., 
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Licona, E.M., cerón, J., thomas, C., Maas, R., Silveira, P., Henkel, M., Stropp, T.W., Ríos Paredes, J., Dexter, M., Daly, K.G., Baker, D., Huamantupa- 
Chuquimaco, T.R., Milliken, I., Pennington, W., Sebastián Tello, T., Luis Marcelo Pena, J., Peres, J., Klitgaard, C.A., Fuentes, B., Silman, A., Di fiore, M.R., von 
Hildebrand, A., Chave, P., van Andel, J., Richard Hilário, T.R., Fernando Phillips, R., Rivas-torres, J., Costa Noronha, G., Prieto, J., Gonzales, A., de Sá 
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