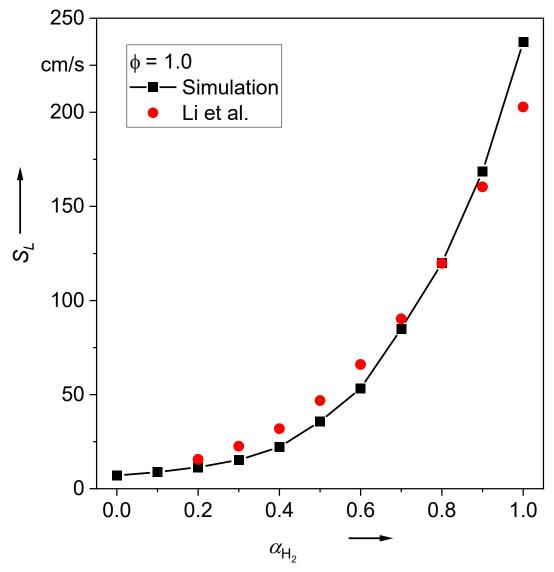


Numerical simulation of the impact of spark parameters on the ignition of ammonia/hydrogen/air mixtures

M. Reinbold^a, S. Essmann^b, D. Markus^b, C. Yu^a, U. Maas^a


^aKarlsruhe Institute of Technology (KIT), Karlsruhe, Germany ^bPhysikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany

Motivation

- Usage of ammonia as a carbon-free fuel
 - Low laminar burning velocity
 - High ignition energy
- Hydrogen blending
 - $\alpha_{\rm H_2}$: fraction of hydrogen in the fuel

$$\qquad \alpha_{\rm H_2} = \frac{n_{\rm H_2}}{n_{\rm H_2} + n_{\rm NH_3}}$$

- Increase in laminar burning velocity
- Decrease in ignition energy
 - Comparison of experimental and numerical data

Scope of this work

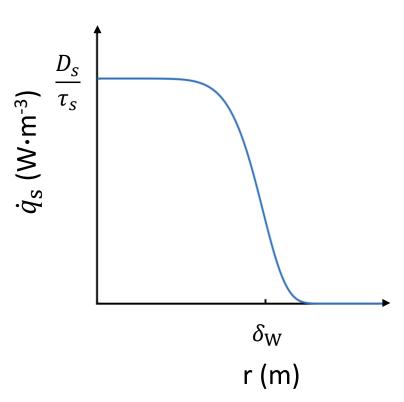
- Investigate the ignition energy of various ammonia/hydrogen/air mixtures depending on
 - Geometry of numerical model
 - Different pressure assumptions (presence of pressure waves)
 - Source radii
 - Source times
- Comparison with experimental data [1]

	NH_3	H_2
Max. explosion pressure	6.9 bar	8.3 bar
Most ignitable mixture	$20 \operatorname{vol} \%$	$22 \operatorname{vol}\%$
Lower explosion limit	$14\mathrm{vol}\%$	$4 \operatorname{vol} \%$
Upper explosion limit	$32.5\mathrm{vol}\%$	$77 \operatorname{vol}\%$
Minimum ignition energy	$14\mathrm{mJ}$	$0.017\mathrm{mJ}$

Chemsafe Database [2]

^{[2]:} Chemsafe database, https://www.chemsafe.ptb.de

^{[1]:} Essmann, S. et al. Ignition characteristics of hydrogen-enriched ammonia/air mixtures. 2024


Simulation (In-House code INSFLA [3])

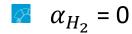
- Cylindrical & spherical geometry (1D, spatial coordinate is radius)
- Adaptive grid and time steps (time steps coupled to error control)
- Detailed molecular transport model including differential diffusion & thermal diffusion (Soret effect)
- Detailed reaction kinetics (mechanism from Shrestha et al. [4])
- Ignition source term given by

$$\dot{q}_{\rm S}(r,t) = \frac{D_{\rm S}}{\tau_{\rm S}} \exp\left[-\left(\frac{r}{\delta_{\rm W}}\right)^{8}\right]$$

- D_s : source density
- τ_s : source time
- δ_w : source radius
- r: radius
- *t*: time

For
$$t > \tau_{\rm S}$$
, $\dot{q}_{\rm S} = 0$

[3]: Maas, U., J. Warnatz Ignition processes in hydrogen oxygen mixtures. 1988


[4]: Shrestha, K.P. et al. Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides. 2018

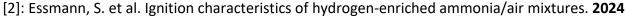
Simulation | Choice of Parameters

Gas mixture

- NH₃: MIE at $\phi = 0.9$
- H₂: MIE at $\phi=0.7$, but ignition limit curve is very flat between $\phi=0.7$ and $\phi=1.0$
- \blacktriangleright keep $\phi = 0.9$ constant, $\alpha_{\rm H_2} = 0 \dots 0.2$
- Experimental data for comparison available at PTB [2]
 Source radius
- Cylindrical simulation: Initial flame kernel measured in experiment with schlieren images (depending on α_{H_2})
- Spherical simulation: Calculation of spherical radius under the assumption that the ignition volume is constant

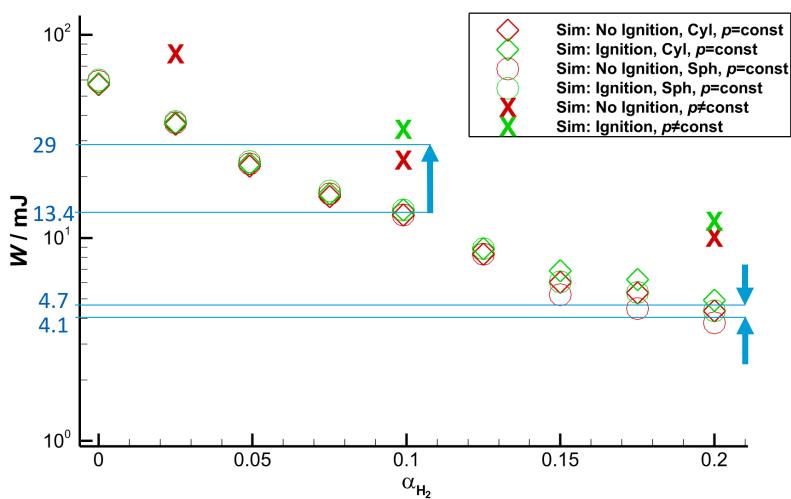
- $r_{0, \text{ cyl}} = 2.64 \text{ mm}$
- $r_{0, sph} = 2.77 \text{ mm}$

$$\alpha_{H_2} = 0.049$$


- $r_{0, cyl} = 1.69 \text{ mm}$
- $r_{0, sph} = 2.06 \text{ mm}$

$$\alpha_{H_2} = 0.099$$

- $r_{0, \text{ cyl}} = 1.28 \text{ mm}$
- $r_{0, sph} = 1.71 \text{ mm}$



Results | Effect of Geometry & Shockwaves

- Only minor differences with spherical geometry
 - Transport processes are not affecting the ignition
- In fully compressible simulation(p ≠ const) formation of pressurewave leads to higher ignition energies
 - Lower temperature in source volume when pressure wave is formed
- Constant pressure assumption is not valid with source times of $\tau_s = 10^{-6}$ s
 - Effect of shock wave needs to be considered

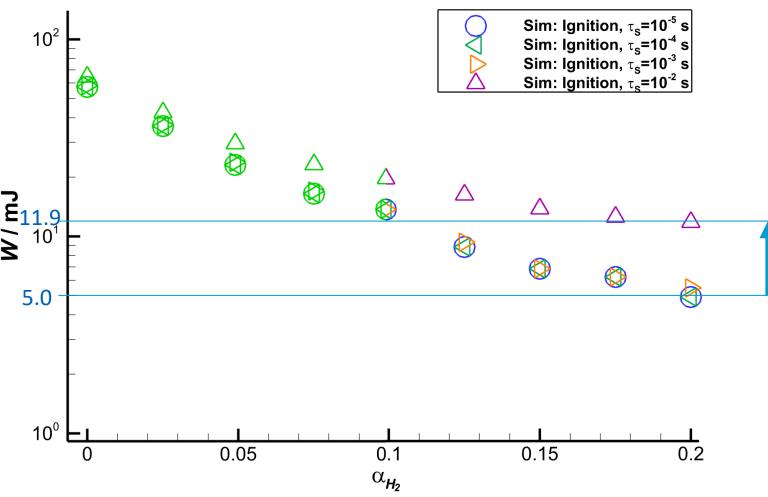
Ignition and no-ignition events for various $\alpha_{\rm H_2}$, comparison between simulations with spherical & cylindrical geometry, $p = {\rm const} \ \& \ p \neq {\rm const} \ (\tau_{\rm S} = 10^{-6} \ {\rm s})$.

Results | Effect of Source Radius

29 % smaller source radii (this corresponds to a measurement error of approx. 40 % in the experiment) result in significantly lower ignition energy (≈ 45 % lower)

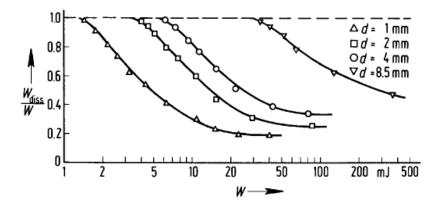
 Higher energy density leads to a higher temperature in the source volume

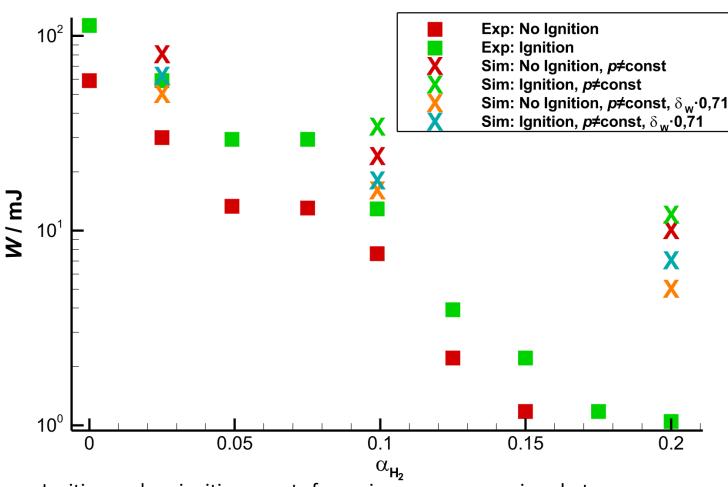
Similar decrease in minimum ignition energy for simulation with constant pressure and without



Ignition and no-ignition events for various $\alpha_{\rm H_2}$, comparison between simulations with radii measured in experiment (δ_w) and 29 % smaller radii ($\delta_w \cdot 0.29$).

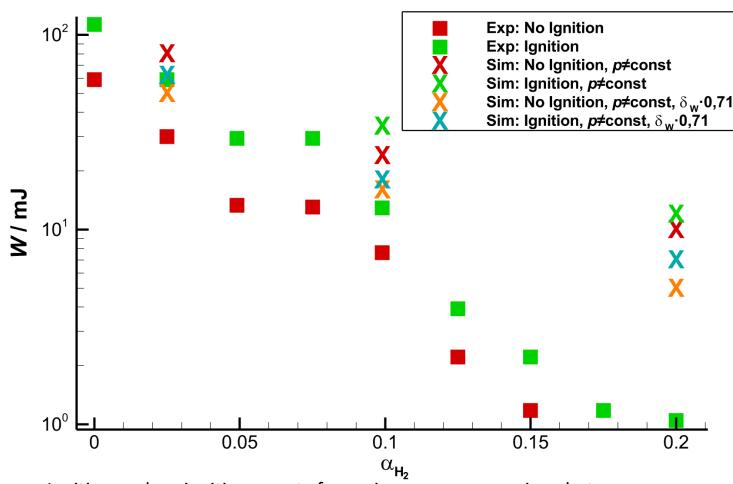
Results | Effect of Source Time


- Formockwa0e3 arminatufes metal, bargereating showartioned does in a traffect more assemble as the state of the state of
 - Dyffreigen and heat iconstruction progences a demonration timet wategred tenenglous ateat important
- For $\tau_{\rm S} > 10^{-3}$ s more energy needed for ignition
 - Temperature decrease due to transport processes


Ignition and no-ignition events for various α_{H_2} , comparison between simulations with different source times (p = const). No-ignition events are within a 1 mJ range.

Results | Comparison With Experiment

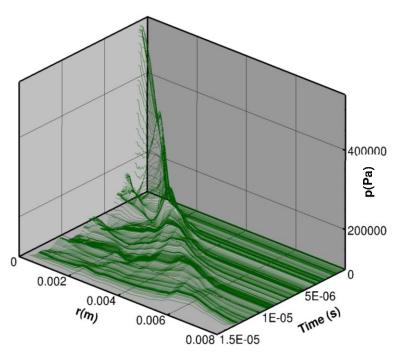
- For high energies overestimation of minimum ignition energy in experiment is likely
 - Energy transfer from capacitive discharge ($W = 1/2 CV^2$) less efficient when energy increases



Ignition and no-ignition events for various $\alpha_{\rm H_2}$, comparison between simulations and experiment.

Results | Comparison With Experiment

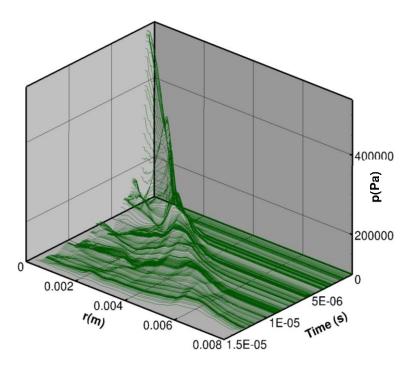
- Chemical kinetics may introduce uncertainties for mixtures that deviate from pure ammonia or hydrogen
- Source radius measured in experiment with schlieren images is source radius for simulation and contains uncertainties
 - Source radius has significant effect on ignition energy


Ignition and no-ignition events for various $\alpha_{\rm H_2}$, comparison between simulations and experiment.

Conclusions

This work

- Simulations conducted with a fuel/air equivalence ratio (ϕ) of 0.9 & hydrogen addition up to $\alpha_{\rm H_2}=0.2$
- Geometry, pressure assumption, source radii and source time varied
- \blacksquare Transport processes not important for source times $\leq 10^{-3}$ s
- Formation of pressure waves for short source times ($\tau_s \leq 10^{-6}$ s) lead to higher minimum ignition energies
- Source radii affects the minimum ignition energy significantly
- Comparison with experimental results
 - Trend of reduced minimum ignition energy is reflected by simulation
 - Experimental trend reflected by simulation results
 - Energy transfer from capacitive discharge less efficient when energy increases
 - Chemical kinetics may introduce uncertainties for mixtures that deviate from pure NH₃ or H₂



Pressure profile of simulation with p \neq const and $\tau_S = 10^{-6}$ s

Outlook

- Simulation
 - Investigation of different reaction mechanisms
 - Modelling of the ionization process
- Experiment
 - Investigations with higher H₂ content planned
 - Optimization of radius measurement accuracy

Pressure profile of simulation with p \neq const and $\tau_{\rm S}=10^{-6}~{\rm s}$

Numerical simulation of the impact of spark parameters on the ignition of ammonia/hydrogen/air mixtures

M. Reinbold^a, S. Essmann^b, D. Markus^b, C. Yu^a, U. Maas^a

^aKarlsruhe Institute of Technology (KIT), Karlsruhe, Germany

^bPhysikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany

