KIT | KIT-Bibliothek | Impressum | Datenschutz

Engineering a large-scale data analytics and array computing library for research: Heat

Hoppe, Fabian; Gutiérrez Hermosillo Muriedas, Juan Pedro ORCID iD icon 1; Tarnawa, Michael; Knechtges, Philipp; Hagemeier, Björn; Krajsek, Kai; Rüttgers, Alexander; Götz, Markus ORCID iD icon 1; Comito, Claudia
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Heat is a Python library for massively-parallel and GPU-accelerated array computing and machine learning. It is developed by researchers for researchers, with the ultimate goal to make multi-dimensional array processing and machine learning for scientists (almost) as easy on a supercomputer as it is on a workstation with NumPy or scikit-learn. This paper highlights the relevance of this project to the research software engineering community by giving a short, but illustrative overview of Heat and discusses its role in the context of related libraries with a specific focus on its research software aspects.


Verlagsausgabe §
DOI: 10.5445/IR/1000187312
Veröffentlicht am 02.12.2025
Originalveröffentlichung
DOI: 10.14279/eceasst.v83.2626
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1863-2122
KITopen-ID: 1000187312
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Erschienen in Electronic Communications of the EASST
Verlag Electronic Communications of the EASST
Band 83
Seiten 1
Vorab online veröffentlicht am 21.02.2025
Schlagwörter Multi-dimensional Arrays, Machine learning, Data Science, Data analytics, High-Performance Computing, Parallel Computing, GPUs, Big Data, Research Software
Nachgewiesen in OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page