
International Journal for Numerical Methods in Engineering

RESEARCH ARTICLE OPEN ACCESS

Control Variates Method to Estimate Stochastic
Buckling Loads
Marc Fina1 | Marcos A. Valdebenito2 | Werner Wagner1 | Matteo Broggi3 | Steffen Freitag1 | Matthias G. R. Faes2, 4 |
Michael Beer3, 4, 5

1Institute for Structural Analysis, Karlsruhe Institute of Technology, Karlsruhe, Germany | 2Chair for Reliability Engineering, TU Dortmund University,
Dortmund, Germany | 3Institute for Risk and Reliability, Leibniz University Hannover, Hannover, Germany | 4International Joint Research Center for
Resilient Infrastructure & International Joint Research Center for Engineering Reliability and Stochastic Mechanics, Tongji University, Shanghai, PR China |
5Department of Civil and Environmental Engineering, University of Liverpool, Liverpool, UK

Correspondence: Marc Fina (marc.fina@kit.edu)

Received: 23 April 2025 | Revised: 23 April 2025 | Accepted: 4 June 2025

Funding: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in the framework of project 511267658.

Keywords: buckling analysis | control variates | monte carlo simulation | random imperfections | second-order statistics

ABSTRACT
Buckling is the most significant failure mode for thin-walled structures. In particular, geometric imperfections have a major influ-
ence on the buckling behavior. These spatially correlated imperfections are inherently random and can be modeled using random
fields. Therefore, computationally expensive probabilistic buckling analyses have to be performed. For some structures, a linear
pre-buckling behavior can be observed. In this case, the stability point can be calculated with a linear buckling analysis, which
is widely used in engineering practice. However, the results of linear buckling analyses strongly differ from the correct buckling
load in the case of a non-linear pre-buckling behavior. Then, a non-linear buckling analysis is required, which is computationally
expensive for probabilistic safety assessments based on Monte Carlo simulations. This paper aims to estimate the second-order
statistics of buckling loads for thin-walled structures exhibiting strongly non-linear pre-buckling behavior. The estimation lever-
ages existing correlations between the outcomes of linear and non-linear buckling analyses. The proposed approach utilizes the
framework of Control Variates, wherein the more expensive analysis (non-linear buckling analysis) is run a few times only, while
the cheaper linear buckling analysis is run a considerable number of times. The proposed method is demonstrated on a variety
of structures, including a folded plate with multiple types of stability points, a composite shell panel, and a cylinder with random
geometric imperfections. In these numerical examples, stochastic buckling analysis using Control Variates is approximately 1.5 to
2.6 times faster than classical Monte Carlo simulation.

1 | Introduction

One of the dominant failure modes of thin-walled structures
is buckling. Geometric and material imperfections, such as
deviations in shape and thickness, residual stresses, varia-
tions in boundary conditions, and material properties, have
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a substantial influence on the buckling behavior. Even small
variations in geometric imperfections significantly influence
the load-bearing capacity. The exact shape of imperfections is
frequently unknown, or in other words, uncertain. Deterministic
and semi-probabilistic design concepts are based on very conser-
vative design factors, also known as knockdown factors (KDFs).
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The development of reliable and more economical KDFs remains
a focus of numerous ongoing research projects, as illustrated, for
example, in Reference [1].

In a probabilistic approach, the aleatory uncertainties of spa-
tially varying imperfections are modeled as random fields,
see, for example, in References [2–4]. In this paper, random
imperfections are applied to the finite element (FE) model, and
Monte Carlo simulations (MCS) are conducted to determine
the second-order statistics of random buckling loads. However,
to quantify the uncertain shape of the geometrical imperfec-
tions, only a few measurements are available. The definition of
deterministic random field parameters under these limited data
would imply precise probabilistic knowledge on the stochastic
distribution and its spatial correlation. Therefore, in References
[5–7], the concept of polymorphic (mixed/hybrid) uncertainty
models [8], also known as imprecise probabilities [9, 10], is
introduced to consider epistemic uncertainties of shell imper-
fections by means of intervals or fuzzy numbers. An extension
to quantify the uncertainties in boundary conditions, material
properties, and thickness imperfections is provided in Reference
[11]. This paper initially explores the feasibility of using the
Control Variates method for stochastic buckling analyses, with
an emphasis on the spatial correlation of random imperfections.
A potential extension of this work could involve applying the
method to address polymorphic uncertainty, such as random
fields with interval or fuzzy correlation lengths.

A numerical treatment of aleatory and epistemic uncertainties
requires a multi-loop algorithm consisting of the fundamental
solution (e.g., FE buckling analysis), the MCS loop, and the
fuzzy or interval analysis. This can be highly computationally
expensive, and the effort increases rapidly for buckling design
optimization, as illustrated in Reference [12]. Additionally, when
geometric imperfections are applied to an FE model, the geomet-
rical deviation at each node is a single input variable. This leads
to a high-dimensional input space of uncertain variables. There-
fore, appropriate surrogate models can be used to replace the
time-consuming FE analysis. For instance, an approach for effi-
ciently analyzing the imperfection sensitivity using reduced order
models is presented in References [13, 14]. Furthermore, neural
network surrogate models to approximate FE buckling analysis
are shown in References [15, 16]. Based on a first surrogate
model for the fundamental solution, a further surrogate model
can be constructed to replace the MCS, see, for example, [17]. An
approach for bounding imprecise failure probabilities of linear
structural systems is introduced in Reference [18]. However, this
approach is not applicable to non-linear buckling problems, as it
relies on the assumption of a linear mapping between input and
output quantities within the used operator norm theory.

This paper aims to estimate the second-order statistics (mean and
standard deviation) of the buckling loads of thin-walled shell
structures, with imperfections characterized by probabilistic
models. The proposed approach is based on the concept of Con-
trol Variates [19], which has been studied in various engineering
applications, such as [20–22]. The main contribution of this
work is to introduce Control Variates for probabilistic buckling
analysis, where geometric imperfections are modeled as random

fields. The idea is to leverage the existing correlations between
the solutions of linear and non-linear buckling analyses.

In case of non-linear pre-buckling behavior, a non-linear buck-
ling analysis provides an accurate prediction of the buckling load,
and a linear buckling analysis leads to imprecise results. It should
be noted that for some structures with a linear pre-buckling
behavior, the linear buckling analysis can still yield an incorrect
prediction due to buckling mode interaction. However, in case
of multiple buckling loads nearly at the same level, for example,
for an axially loaded cylinder, the “exact” buckling load can be
calculated, and the shape of the associated buckling mode is not
relevant. Furthermore, the non-linear buckling analysis requires
a geometrically non-linear path-following analysis involving an
iterative procedure. Therefore, the linear buckling approach is
typically less computationally expensive than the non-linear
buckling analysis. Second-order statistics are determined by
sampling, involving a limited number of non-linear analyses and
a relatively large number of linear buckling analyses. Thus, the
presented Control Variates approach reduces overall computa-
tional costs, as the more expensive non-linear buckling analysis is
performed only a few times, while the less costly linear buckling
analysis is executed more frequently. Furthermore, by exploiting
the correlation between linear and non-linear analyses, it is still
possible to estimate the statistics of the accurate buckling load,
even when the linear buckling analysis is applied to cases with
strong non-linear pre-buckling behavior.

In this paper, the Control Variates approach is demonstrated
for stochastic buckling analysis of a composite cylindrical shell
panel. Random geometric imperfections are modeled as random
fields using the Karhunen-Loève Expansion (KLE). The shape
of the random imperfection can be controlled by the correlation
length. Thus, second-order statistics of the buckling loads are
analyzed for various correlation lengths using Monte Carlo sim-
ulations (MCS). To illustrate the applicability of Control Variates,
the correlation between linear and non-linear buckling analysis
is investigated. The effectiveness of Control Variates in estimat-
ing the second-order statistics of buckling loads is demonstrated
on various thin-walled structures, including a folded plate with
different types of stability points, a composite shell panel, and a
cylinder subjected to random geometric imperfections with vary-
ing correlation lengths.

The paper’s innovative contributions and key features can be
summarized as follows:

• Introduction of Control Variates with splitting technique for
stochastic buckling analyses

• Efficient estimation of the second-order statistics of buckling
loads

• Leveraging correlations between linear and non-linear buck-
ling analyses

• Random field modeling with Control Variates

• Study on the effectiveness of Control Variates for various cor-
related random geometric imperfections
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• Stochastic buckling analysis using Control Variates is
approximately 1.5 to 2.6 times faster than classical Monte
Carlo simulation

In Sections 2 and 3, the fundamentals of numerical buckling anal-
ysis and the estimation of second-order statistics using Monte
Carlo simulations are presented. Following this, the Control Vari-
ates approach for buckling is introduced in Section 4. Section 5
illustrates the concept on three different examples: a folded
plate, a composite shell panel, and a composite cylinder. Finally,
Section 6 provides conclusions and outlines potential directions
for future research.

2 | Basics of Linear and Non-Linear Buckling
Analysis

Various strategies are available for identifying a stability point,
as discussed, for example, in References [23, 24]. For a specific
load level 𝜆𝑷 0 with a load factor 𝜆 and a basic external load 𝑷 0, a
non-linear eigenvalue problem can be constructed

[𝑲 lin + Λ𝑲nlin] 𝝋 = 𝟎 (1)

where it is assumed that

𝑷 cr ∼ Λ𝑲nlin (2)

In Equation (1), Λ can be interpreted as a load increasing factor,
and 𝝋 is the associated eigenvector. The tangent stiffness matrix
𝑲𝑇 is divided in linear 𝑲 lin and non-linear parts 𝑲nlin. Gener-
ally, the tangent stiffness matrix depends on the displacement 𝒖
and stress state 𝝈(𝒖), respectively. If the variational formulation
allows to separate 𝑲nlin, the initial displacement matrix 𝑲𝑈 and
the geometrical matrix 𝑲𝐺 can be introduced

𝑲𝑇 = 𝑲 lin +𝑲nlin = 𝑲 lin +𝑲𝑈 (𝒖) +𝑲𝐺(𝝈(𝒖)) (3)

A solution for Λ = 1 in Equation (1) yields the classical form of
an eigenvalue problem for the tangent stiffness matrix

(𝑲 lin + Λ𝑲nlin)𝝋 = 𝟎 ⇔ 𝑲𝑇𝝋 = 𝟎 ⇔ (𝑲𝑇 − 𝜔𝟏)𝝋 = 𝟎 (4)

wherein a stability point is indicated for 𝜔 = 0. In the non-linear
case, the eigenvalue Λ is an indicator of the type of stability

Λ > 1 → stable
Λ = 1 → indifferent (stability point)
Λ < 1 → unstable

(5)

Furthermore, the non-linear critical load vector can be com-
puted by

𝑷 cr = 𝑷 cr,nlin = Λ(𝜆𝑷 0) with Λ = 1 (6)

In addition, the type of stability point can be determined by the
following criterion, see, for example, [25, 26],

𝝋𝑇𝑷 cr

{
= 0 bifurcation point
≠ 0 limit point

(7)

A schematic non-linear load–displacement curve 𝜆𝑃0 − 𝑢 with
corresponding eigenvalue-displacement curves Λ(𝜆𝑃0) − 𝑢 and
𝜔 − 𝑢 are depicted in Figure 1, see black, red and blue curve,
respectively.

For some structures, a linear pre-buckling behavior can be
observed. In such cases, only a single linear calculation step and
the solution of an eigenvalue problem are required. This moti-
vates the use of the linear buckling analysis as a special case of the
non-linear analysis. It starts from the displacement state 𝒖 = 𝟎,
where the linear solution

𝑲𝑇 (𝟎)𝒖0 = 𝑷 0 ⇔ 𝒖0 = 𝑲−1
𝑇 (𝟎)𝑷 0 (8)

is computed for an external basic load of 𝑷 0 (𝜆0 = 1) with
𝑲𝑇 (𝟎) = 𝑲 lin. Thus, the linear buckling analysis is defined as

[𝑲 lin + Λ0𝑲nlin(𝒖0)] 𝝋0 = 𝟎 (9)

The associated critical load and displacement vectors are

𝑷̃ cr = 𝑷 cr,lin = Λ0𝑷 0 (10)

𝒖̃cr = 𝒖cr,lin = Λ0𝒖0 (11)

However, as shown in Figure 1, the results of a linear buck-
ling analysis (maximum value of the green curve) can signifi-
cantly differ from the non-linear buckling load (maximum value
of the black curve) in the case of non-linear pre-buckling behav-
ior. This requires a comprehensive geometrically non-linear
path-following analysis using an iterative procedure such as the
Newton-Raphson scheme. In this paper, the non-linear buckling
analysis is performed by a path-following analysis, where the
signs of the diagonal elements of the tangent stiffness matrix are
observed. A change in the sign of the diagonal elements of 𝑲𝑇
indicates a change in the equilibrium state, with

∀𝐷𝑖𝑖 , 𝐷𝑖𝑖 > 0 → stable
∃𝐷𝑖𝑖 , 𝐷𝑖𝑖 = 0 → indifferent, (stability point)
∃𝐷𝑖𝑖 , 𝐷𝑖𝑖 < 0 → unstable

(12)

If at least one of the diagonal elements 𝐷𝑖𝑖 becomes negative,
the calculation is terminated and the load state is saved. At
this equilibrium state, the critical load vector 𝑷 cr and the ini-
tial post-buckling mode 𝝋cr can be computed with the non-linear

FIGURE 1 | Schematic representation of linear and non-linear buck-
ling analysis.
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eigenvalue problem given by Equation (1). Based on the special
loading conditions in the examples, the buckling loads𝑃cr and𝑃 cr
can be computed from the associated load vectors 𝑷 cr and 𝑷̃ cr.

3 | Second-Order Statistics of Buckling Load

3.1 | Uncertainty in Buckling Load

The behavior of structures prone to buckling may be affected by
several factors, which cannot be quantified deterministically. For
example, there may be imperfections in the shells with respect
to their nominal dimensions due to uncertainty associated with
the manufacturing processes. Also, parameters such as Young’s
modulus or Poisson’s ratio may be affected by uncertainties due
to variability associated with batches of raw material. Therefore,
these sources of uncertainty must be explicitly accounted for such
that their effect can be properly quantified. In the following, it is
assumed that the material and geometrical properties of a struc-
ture are collected in the vector 𝝃. The uncertainty associated with
𝝃 is characterized by a random variable vector 𝚵 with probability
density function 𝑝𝚵(𝝃) [27]. As the buckling load of a structure 𝑃cr
depends on the properties of the structure 𝝃, which are assumed
to be uncertain, it is clear that the buckling load becomes uncer-
tain as well. In other words, the buckling load 𝑃cr is a random
variable, with its own probability density function. Calculating
the probability density function associated with the buckling load
may be challenging for problems of engineering interest, partic-
ularly in the tails of the distribution. However, the calculation
of second-order statistics (i.e., mean and variance) may be more
tractable while still providing valuable insights on the uncer-
tainty associated with the buckling load.

3.2 | Estimation of Second-Order Statistics
of Buckling Loads by Means of Monte Carlo
Simulation

Recall that the non-linear buckling load 𝑃cr depends on the prop-
erties of the structure 𝝃. For cases of practical interest, there
exists no closed-form relation between the model properties and
buckling load. Rather, they must be derived from an FE analy-
sis. As such, an analysis is usually only available in the form of a
black-box. That is, for a given input 𝝃, one obtains the output 𝑃cr.
In this context, Monte Carlo simulation appears as a natural alter-
native for computing the sought second-order statistics, see, for

example, [28]. In a nutshell, a Monte Carlo simulation consists of
generating 𝑛 independent samples 𝝃(𝑗), 𝑗 = 1, . . . , 𝑛 of the prop-
erties of the structure distributed according to 𝑝𝚵(𝝃). Then, the
buckling loads for each of the samples are calculated, yielding
𝑃cr

(
𝝃(𝑗)

)
, 𝑗 = 1, . . . , 𝑛. Under the assumption that the samples

of the properties 𝝃(𝑗), 𝑗 = 1, . . . , 𝑛 are grouped in matrix 𝚵𝑛, esti-
mates of the mean value 𝜇′1(𝑃cr,𝚵𝑛) and the variance 𝜇2(𝑃cr,𝚵𝑛)
are obtained by the following expressions

𝜇′1(𝑃cr,𝚵𝑛) =
1
𝑛

𝑛∑
𝑗=1
𝑃cr(𝝃(𝑗)) (13)

𝜇2(𝑃cr,𝚵𝑛) =
1
𝑛 − 1

𝑛∑
𝑗=1

(𝑃cr(𝝃(𝑗)) − 𝜇′1(𝑃cr,𝚵𝑛))2 (14)

As these estimates are produced by Monte Carlo simulations,
they are affected by inherent randomness associated with the
sampling process. A means to quantify the quality of these esti-
mates is by calculating their respective variances 𝜎2[⋅], see, for
example, [29],

𝜎2
[
𝜇′1
(
𝑃cr,𝚵𝑛

)]
=
𝜇2
(
𝑃cr,𝚵𝑛

)
𝑛

(15)

𝜎2
[
𝜇2
(
𝑃cr,𝚵𝑛

)]
=
𝜇4
(
𝑃cr,𝚵𝑛

)
𝑛

−
(𝑛 − 3)𝜇22

(
𝑃cr,𝚵𝑛

)
(𝑛 − 1)𝑛

(16)

In the last equation, 𝜇4
(
𝑃cr,𝚵𝑛

)
denotes the estimator of the

fourth-order central moment of the non-linear buckling load. It
is estimated using Equation (A2) in Appendix A.

Equations (15) and (16) indicate that the variances of the estima-
tors for the second-order statistics depend on the number of sam-
ples 𝑛. It is desirable that these variances are as small as possible,
as this increases the confidence that the quantities being esti-
mated are good approximations of the exact second-order statis-
tics. In other words, it is desirable to obtain estimates of these
statistics with sufficient precision. However, small variances (or
equivalently, high precision) may entail a large number of simu-
lations 𝑛, which can be quite costly from a numerical viewpoint,
as it implies performing 𝑛 non-linear buckling analyses. There-
fore, in practical applications, it is expected that 𝑛 is actually small
and therefore, the estimators will possess large variability. Such a
concept is illustrated schematically in Figure 2, where the prob-
ability density associated with an estimator 𝜇 (which represents
either mean or variance, see red curve) is relatively flat, reflecting
high uncertainty on the true value of the sought statistic.

FIGURE 2 | Schematic representation of Control Variates estimator.
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4 | Control Variates: A Tool for Aggregating
Estimates of Non-Linear and Linear Buckling
Analyses

4.1 | Control Variates

The objective is to estimate the second-order statistics of the
non-linear buckling load of a structural system. Estimating these
statistics with sufficient precision by means of a Monte Carlo sim-
ulation may demand a considerable number of non-linear buck-
ling analyses. However, from the discussion in Section 2, it is
known that calculating linear buckling loads is numerically less
demanding than its non-linear counterpart, although it leads to
different values of the sought buckling load. A natural question
in this scenario is: Is it possible to leverage linear analysis to esti-
mate statistics of the non-linear buckling load? The answer to
this question is affirmative, as this can be carried out within the
framework of Control Variates [28, 30]. Indeed, let 𝜇 denote a
statistic, which can represent either the mean 𝜇′1 or the variance
𝜇2. Then, the estimator of 𝜇 considering Control Variates (CV) is
the following:

𝜇(CV) = 𝜇(𝑃cr,𝚵𝑛) − 𝛾𝜇(𝑃 cr,𝚵𝑛) + 𝛾𝜇(𝑃 cr,𝚵𝑚) (17)

In the above equation, 𝚵𝑛 and 𝚵𝑚 denote two sets with 𝑛 and 𝑚
samples, respectively; 𝛾 is the so-called control parameter, which
is actually a real number whose calculation is discussed later on;
and 𝜇(𝑥,𝚵𝑦) denotes estimation of the statistics 𝜇 considering the
response 𝑥 (where 𝑥 could represent either the non-linear or lin-
ear buckling load) and 𝚵𝑦 denotes a sample set (where 𝑦 could
represent either 𝑛 or𝑚). It is assumed that𝑚 > 𝑛. The idea behind
the Control Variates estimator in Equation (17) is the following.

• The last term 𝛾𝜇(𝑃 cr,𝚵𝑚) denotes the sought statistic calcu-
lated considering the linear buckling load employing a large
number of samples 𝑚, which is moreover amplified by 𝛾 .
This last term by itself does not lead to the sought statistic
because it involves the linear buckling load (amplified by 𝛾)
instead of its non-linear counterpart. However, as 𝑚 is large,
this estimator should possess a relatively low variance. This
is illustrated schematically in Figure 2, where the probability
density associated with this estimator (shown with the green
line) is quite peaked.

• The difference 𝜇(𝑃cr,𝚵𝑛) − 𝛾𝜇(𝑃 cr,𝚵𝑛) in Equation (17) can
be interpreted as a correction term, as it subtracts the value of
the statistic associated with the linear buckling load ampli-
fied by 𝛾 and adds the statistic calculated with the non-linear
buckling load. Usually, the variance of this difference should
be relatively small, even if 𝑛 itself is small. The reason is that,
while the linear and non-linear buckling loads produce dif-
ferent results, it is nevertheless expected that there is a high
degree of correlation between them. The probability density
associated with this difference is represented schematically
with a violet line in Figure 2.

The summation of the two terms described above leads to the
Control Variates estimator of Equation (17). In essence, such an
estimator allows one to aggregate the results stemming from lin-
ear and non-linear buckling analyses but still leads to conclusions
about the non-linear buckling load. In fact, the effect of the linear

buckling load cancels out from Equation (17), as the subtraction
between the second and third terms of the right-hand side of that
equation is equal to zero. But in that process, the presence of those
second and third terms helps in decreasing the variance of the
statistics of the buckling load. Indeed, this estimator usually pos-
sesses a relatively small variance, as illustrated schematically in
Figure 2 with the probability density function in blue color.

The advantage of the Control Variates estimator is that in the
calculation process, correlations between linear and non-linear
buckling loads are exploited. This implies that the information
retrieved from linear buckling analyses may improve the conclu-
sions drawn with respect to non-linear buckling analyses. In this
sense, the aforementioned control parameter 𝛾 plays a key role.
To understand this concept, it is essential to study the variance of
the Control Variates estimator. It can be shown that the variance
𝜎2 associated with the Control Variates estimator is equal to [28]:

𝜎2
[
𝜇(CV)] = 𝜎2[𝜇(𝑃cr,𝚵𝑛

)]
− 2𝛾𝛿

[
𝜇
(
𝑃cr,𝚵𝑛

)
, 𝜇

(
𝑃 cr,𝚵𝑛

)]
+ 𝛾2𝜎2

[
𝜇
(
𝑃 cr,𝚵𝑛

)]
+ 𝛾2𝜎2

[
𝜇
(
𝑃 cr,𝚵𝑚

)]
(18)

where 𝛿[⋅, ⋅] denotes the covariance estimator between the argu-
ments. It is noted that the variance of the Control Variates estima-
tor as shown in Equation (18) is a quadratic function with respect
to the control parameter 𝛾 . Therefore, 𝛾 can be selected such that
this variance is minimized, which implies forcing the derivative
of Equation (18) with respect to 𝛾 to be equal to zero. In such
way, one determines the optimal control parameter 𝛾∗, which is
equal to:

𝛾∗ =
𝛿
[
𝜇
(
𝑃cr,𝚵𝑛

)
, 𝜇

(
𝑃 cr,𝚵𝑛

)]
𝜎2
[
𝜇
(
𝑃 cr,𝚵𝑛

)]
+ 𝜎2

[
𝜇
(
𝑃 cr,𝚵𝑚

)] (19)

In summary, the application of Equations (17), (18), and (19)
allows estimating the sought statistic (either mean or variance)
by means of Control Variates. These equations are applied in the
following order. First, the buckling loads considering linear (𝑃 cr)
and non-linear analysis (𝑃cr) are calculated for each sample con-
tained in the set 𝚵𝑛. In addition, the buckling loads considering
linear analysis only are evaluated for each sample contained in
the set𝚵𝑚. Considering all of these samples, Equation (19) is eval-
uated to obtain the optimal control parameter 𝛾∗. This optimal
control parameter is then used together with the samples of the
buckling loads associated with the sets 𝚵𝑛 and 𝚵𝑚 to evaluate the
sought statistic through Equation (17) as well as the variance of
this estimator by means of Equation (18).

As noted from the above description, the application of Control
Variates is completely non-intrusive. That is, it is not necessary to
access to system’s matrices. It just suffices to conduct linear and
non-linear buckling analyses for different sets of samples. Then,
the Control Variates estimate in Equation (17) merges the infor-
mation contained in these samples to produce an estimate of the
sought statistic involving non-linear buckling analysis. Indeed,
the role of the samples of the linear buckling load in the estima-
tor is simply to exploit correlations to reduce the variance of the
estimator of the sought statistic. In that sense, the optimal control
parameter 𝛾∗ in Equation (19) plays a pivotal role. To understand
its role better, consider the case where there is a high covariance
between buckling loads calculated using linear and non-linear
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buckling analysis. In such a situation, performing linear buck-
ling analysis is almost as good as performing non-linear buck-
ling analysis, meaning that both types of analyses are capable of
uncovering the effects of uncertainty in the buckling load. In such
a situation of high covariance, the control parameter 𝛾⋆ will nat-
urally approach to 1 and thus, the Control Variates estimator pro-
vides more importance to the information carried by the samples
of the linear buckling load, which translates into an estimator of
the sought statistic with reduced variance. In the (unlikely) event
that the covariance 𝛿 between the linear and non-linear buckling
load is zero, the control parameter itself becomes zero and the
estimator of Equation (17) reduces to its plain Monte Carlo coun-
terpart. In such a case, as there is no covariance 𝛿, the Control
Variates estimate cannot leverage on the information carried by
the samples of the linear buckling load and therefore, the sought
estimate is produced based on the samples of the non-linear buck-
ling analysis only.

To summarize the concepts described above, the application of
Control Variates for estimating buckling loads can be visualized
as follows. First, a relatively small number of samples of the buck-
ling load are generated considering non-linear buckling analysis.
As the number of samples drawn is small, the estimators drawn
out of those samples (such as mean and variance) will be most
likely highly uncertain (implying that their variances are high).
But then, if one performs additional sampling using linear buck-
ling analyses, it is possible to exploit covariance between linear
and non-linear buckling analyses to reduce the variance of the
estimators associated with the non-linear buckling load.

4.2 | Control Variates With Splitting

The previous section has presented the application of the Con-
trol Variates framework. For its practical implementation, note
that the same samples of the linear and non-linear buckling load
are used for both evaluating the optimal control parameter (see
Equation (19)) and the sought statistic (see Equation (17)). How-
ever, such a strategy induces bias in the estimator of the statis-
tic, as documented, for example, in Reference [30]. The effect of
bias can be particularly notorious in the case that the sample set
𝚵𝑛 possesses a small number 𝑛 of samples, which is expected to
be precisely the case in practical applications, because perform-
ing 𝑛 non-linear buckling analyses is numerically demanding. A
remedy to eliminate bias is to resort to a Splitting approach, as
proposed in Reference [19]. This is quite a convenient scheme,
as it does not demand performing additional buckling analyses
(neither linear nor non-linear). The splitting approach consists of
dividing the set of available samples into subsets. Then, the asso-
ciated estimators (for example, mean, variance, optimal control
parameter) are estimated for each of these subsets. Finally, the
estimators for the subsets are aggregated in such a way that bias
is effectively eliminated. As discussed in Reference [19], the num-
ber of subsets to be considered should be equal to or larger than
3. However, a large number of subsets may increase the variance.
Therefore, in this paper, a minimum of 3 subsets is considered to
implement the splitting approach.

How does the splitting approach work in practice? First, each of
the sample sets 𝚵𝑛 and 𝚵𝑚 is partitioned into three subsets 𝚵𝑚∗ ,𝑘
and 𝚵𝑛∗ ,𝑘, where 𝑘 = 1, 2, 3 and 𝑛∗ = 𝑛∕3 and 𝑚∗ = 𝑚∕3. Here, it

is implicitly assumed that 𝑛 and 𝑚 are selected such that they
are multiples of 3. For each subset 𝑘, the subset controller 𝜏(𝑘)
is defined [19], as shown in Table 1.

Once the subsets have been defined, the expressions for calcu-
lating the sought statistic, its variance, and the optimal con-
trol parameter by means of Control Variates with Splitting
(CV+S) are:

𝜇(CV+S) = 1
3

3∑
𝑘=1
𝜇(𝑃cr,𝚵𝑛∗ ,𝑘) − 𝛾𝜏(𝑘)𝜇(𝑃 cr,𝚵𝑛∗ ,𝑘) + 𝛾𝜏(𝑘)𝜇(𝑃 cr,𝚵𝑚∗ ,𝑘)

(20)

𝜎2
[
𝜇(CV+S)] = 1

32

3∑
𝑘=1
𝜎2
[
𝜇
(
𝑃cr,𝚵𝑛∗ ,𝑘

)]
− 2𝛾∗𝜏(𝑘)𝛿

[
𝜇
(
𝑃cr,𝚵𝑛∗ ,𝑘

)
, 𝜇

(
𝑃 cr,𝚵𝑛∗ ,𝑘

)]
+
(
𝛾∗𝜏(𝑘)

)2
𝜎2
[
𝜇
(
𝑃 cr,𝚵𝑛∗ ,𝑘

)]
+
(
𝛾∗𝜏(𝑘)

)2
𝜎2
[
𝜇
(
𝑃 cr,𝚵𝑚∗ ,𝑘

)]
(21)

𝛾∗𝜏(𝑘) =
𝛿
[
𝜇
(
𝑃cr,𝚵𝑛∗ ,𝜏(𝑘)

)
, 𝜇

(
𝑃 cr,𝚵𝑛∗ ,𝜏(𝑘)

)]
𝜎2
[
𝜇
(
𝑃 cr,𝚵𝑛∗ ,𝜏(𝑘)

)]
+ 𝜎2

[
𝜇
(
𝑃 cr,𝚵𝑚∗ ,𝜏(𝑘)

)] , 𝑘 = 1, 2, 3

(22)

The structure of Equations (20), (21), and (22) reveals the essence
of the Splitting approach. That is, when applying Control Vari-
ates to calculate either the estimator of the sought statistic (see
Equation (20)) or its variance (see Equation (21)), one considers
the 𝑘-th subset of samples for calculating 𝜇 while the optimal
control parameter is calculated using the 𝜏(𝑘)-th subset of sam-
ples. As 𝑘 ≠ 𝜏(𝑘), such a strategy effectively ensures that bias is
avoided, as demonstrated in detail in Reference [19]. Further-
more, it is noted from Equations (20), (21), and (22) that the
implementation of the Splitting strategy does not demand any
additional buckling analyses. Instead, it demands performing
calculations of the different estimators and optimal control
parameters over different subsets, which is quite cheap from a
numerical viewpoint. In summary, the Splitting technique offers
a convenient way to avoid the undesirable effects of bias while
not increasing numerical costs.

4.3 | Estimation of the Mean

The preceding section illustrates how a statistic of interest 𝜇 is
estimated by means of Control Variates with Splitting, where 𝜇
can represent either mean or variance. When the focus is on esti-
mating the mean of the non-linear buckling load (denoted as
𝜇′1

(CV+S)
) by means of Control Variates with Splitting as well as

TABLE 1 | Subset controllers 𝜏(𝑘) for each subset 𝑘.

Subset 𝒌 Subset controller 𝝉(𝒌)

1 2
2 3
3 1

6 of 17 International Journal for Numerical Methods in Engineering, 2025
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the variance of that estimator (i.e., 𝜎2
[
𝜇′1

(CV+S)
]

), Equations (20),

(21), and (22) adopt the following specific form, respectively

𝜇′1
(CV+S)

= 1
3

3∑
𝑘=1
𝜇′1(𝑃cr,𝚵𝑛∗ ,𝑘) − 𝛼𝜏(𝑘)𝜇′1(𝑃 cr,𝚵𝑛∗ ,𝑘)

+ 𝛼𝜏(𝑘)𝜇′1(𝑃 cr,𝚵𝑚∗ ,𝑘) (23)

𝜎2
[
𝜇′1

(CV+S)
]
= 1

32

3∑
𝑘=1

𝜇2,0
(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
𝑛∗

− 2𝛼∗𝜏(𝑘)
𝜇1,1

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
𝑛∗

+
(
𝛼∗𝜏(𝑘)

)2 𝜇0,2
(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
𝑛∗

+
(
𝛼∗𝜏(𝑘)

)2 𝜇0,2
(
𝑃cr, 𝑃 cr,𝚵𝑚∗ ,𝑘

)
𝑚∗

(24)

𝛼∗𝜏(𝑘) =
𝜇1,1(𝑃cr ,𝑃 cr ,𝚵𝑛∗ ,𝜏(𝑘))
𝑛∗

𝜇0,2(𝑃cr ,𝑃 cr ,𝚵𝑛∗ ,𝜏(𝑘))
𝑛∗

+ 𝜇0,2(𝑃cr ,𝑃 cr ,𝚵𝑚∗ ,𝜏(𝑘))
𝑚∗

, 𝑘 = 1, 2, 3 (25)

In the above equations, 𝜇′1 refers to the estimator of the mean
(see Equation (13)); 𝛼∗

𝜏(𝑘) represents the optimal control param-
eter associated the 𝜏(𝑘)-th subset which is related with the esti-
mation of the mean; and the term 𝜇𝑝,𝑞 represents the estimator
of the bivariate central co-moment of order (𝑝, 𝑞) between the
non-linear and linear buckling loads. Detailed expressions for
evaluating these co-moments are listed in Appendix A.

4.4 | Estimation of the Variance

When the objective is to estimate the variance of the buckling
load (denoted as 𝜇2

(CV+S)) as well as the variance of that estimator
(represented as 𝜎2

[
𝜇2

(CV+S)]
) by means of Control Variates with

Splitting, Equations (20), (21), and (22) must be formulated as

𝜇2
(CV+S) = 1

3

3∑
𝑘=1
𝜇2(𝑃cr,𝚵𝑛∗ ,𝑘) − 𝛽𝜏(𝑘)𝜇2(𝑃 cr,𝚵𝑛∗ ,𝑘)

+ 𝛽𝜏(𝑘)𝜇2(𝑃 cr,𝚵𝑚∗ ,𝑘) (26)

𝜎2
[
𝜇2

(CV+S)]
= 1

32

3∑
𝑘=1
𝐵1

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
− 2𝛽𝜏(𝑘)𝐵2

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
+
(
𝛽𝜏(𝑘)

)2
𝐵3

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
+
(
𝛽𝜏(𝑘)

)2
𝐵4

(
𝑃cr, 𝑃 cr,𝚵𝑚∗ ,𝑘

)
(27)

𝛽∗𝜏(𝑘) =
𝐵2

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝜏(𝑘)

)
𝐵3

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝜏(𝑘)

)
+ 𝐵4

(
𝑃cr, 𝑃 cr,𝚵𝑚∗ ,𝜏(𝑘)

) , 𝑘 = 1, 2, 3

(28)

In the last three equations, 𝜇2 represents the estimator of the vari-
ance (see Equation (14)); 𝛽∗

𝜏(𝑘) is the optimal control parameter

associated with the 𝜏(𝑘)-th subset which is related with the esti-
mation of the variance; and 𝐵1, 𝐵2, 𝐵3 and 𝐵4 are real constants
that are calculated by:

𝐵1
(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
=
𝜇4,0

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑗

)
𝑛∗

− (𝑛∗ − 3)
(𝑛∗ − 1)𝑛∗
𝜇22,0

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
(29)

𝐵2
(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
=

2𝜇21,1
(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
(𝑛∗ − 1)𝑛∗

+
𝜇2,2

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
𝑛∗

−
𝜇2,0𝜇0,2

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
𝑛∗

(30)

𝐵3
(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
=
𝜇0,4

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑗

)
𝑛∗

− (𝑛∗ − 3)
(𝑛∗ − 1)𝑛∗
𝜇20,2

(
𝑃cr, 𝑃 cr,𝚵𝑛∗ ,𝑘

)
(31)

𝐵4
(
𝑃cr, 𝑃 cr,𝚵𝑚∗ ,𝑘

)
=
𝜇0,4

(
𝑃cr, 𝑃 cr,𝚵𝑚∗ ,𝑘

)
𝑚∗

− (𝑚∗ − 3)
(𝑚∗ − 1)𝑚∗

𝜇20,2
(
𝑃cr, 𝑃 cr,𝚵𝑚∗ ,𝑘

)
(32)

Expressions for evaluating the co-moments associated with the
calculation of constants 𝐵1, 𝐵2, 𝐵3, and 𝐵4 can be found in
Appendix A.

5 | Numerical Examples

Three numerical examples are presented using geometric
non-linear quadrilateral shell elements with moderate rotations,
as described in Reference [31]. This four-node element is based
on the isoparametric concept with linear shape functions. To pre-
vent shear locking, the assumed natural strain (ANS) method is
implemented. The element is incorporated into an extended ver-
sion of the general finite element analysis program (FEAP) [32].
An interface has been developed to enable FEAP to be called
from MATLAB, allowing the calculation of buckling load solu-
tions within the Monte Carlo loop.

The linear buckling analysis is performed using the subspace
iteration method as described in References [33, 34]. In Refer-
ence [33], the recommended number of eigenvalues to be deter-
mined by iteration is given by 𝑁 = min{2 𝑛, 𝑛 + 8}, where 𝑛 is
the number of desired eigenvalues. The first eigenvalue indicates
the stability point. Therefore, 𝑛 is set to one to maximize the
performance of the Control Variates approach. To compare the
speed-up factors between the Control Variates approach and the
Monte Carlo simulation for the presented examples, all calcula-
tions are performed on the same workstation with the follow-
ing setup: 2 × CPUs Intel Xeon E5-2667 v4 8 cores @ 3.20 GHz,
128 GB RAM, Win 10 ×64.

5.1 | Folded Plate

The first example of a folded plate, as depicted in Figure 3, is to
show that the Control Variates method works successfully in the
presence of two types of stability points: bifurcation points and a
limit point (snap-through).
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FIGURE 3 | Folded Plate subjected to a distributed load.

FIGURE 4 | Load–displacement curves of the folded plate.

A distributed load 𝑝 is applied to the plate at the hinged sleeve
along the line 𝑥 = 𝐿𝑥. The folded plate is simply supported at
the edges 𝑥 = 0 and 𝑥 = 𝑘 ⋅ 𝐿𝑥, with boundary conditions 𝑢 = 𝑣 =
𝑤 = 0. The lengths 𝐿𝑥 and 𝐿𝑦 are set to 100 cm and the plate
thickness is defined as 𝑡 = 5 cm. A length factor 𝑘 allows for con-
trol of the symmetry of the system and thus also the buckling
behavior. For 𝑘 = 1.75, the system is non-symmetric, whereas
a symmetric system occurs when 𝑘 = 2.00. For an initial anal-
ysis, the Young’s modulus is set to 𝐸 = 1, 000 kN/cm2 and the
height to ℎ = 10 cm. Each subarea to the left and right of the
hinged sleeve is discretized with 10 × 10 elements. The verti-
cal displacements of all nodes of the hinged sleeve are linked.
The resulting load 𝑃 = 𝑝𝐿𝑦 is computed for an increasing ver-
tical displacement 𝑤𝑐 at 𝑥 = 𝐿𝑥, 𝑦 = 𝐿𝑦∕2 using the arc-length
method with a displacement control ofΔ𝑤 = 0.02 cm. The result-
ing load–displacement curve for a non-symmetric system (𝑘 =
1.75) is depicted in Figure 4.

Two bifurcation points (A) and (B) occur before the snap-through
point (C). In addition, associated eigenvectors 𝝋𝑐𝑟 are depicted in
Figure 4. The first eigenvectors in points (A) and (B) represent a
local buckling of the left or right part of the folded plate, whereas
the eigenvectors at point (C) indicate the snap-through as a global
buckling failure mode. By applying the corresponding eigenvec-
tors as small imperfections at points (A) and (B), the resulting
secondary equilibrium paths, illustrated by the red dashed lines,
can be traced. A non-linear buckling analysis yields a buckling
load of 𝑃𝑐𝑟 = 9.92 kN at bifurcation point (A), 𝑃𝑐𝑟 = 14.07 kN at
point (B) and 𝑃𝑐𝑟 = 14.67 kN at the snap-through point (C). The
critical load from the linear buckling analysis is 𝑃 𝑐𝑟 = 10.83 kN.

In the following, the length factor 𝑘, height ℎ, and Young’s modu-
lus𝐸 are modeled as truncated Gaussian random variables. Their
mean values 𝜇 and standard deviations 𝜎 are listed in Table 2.

8 of 17 International Journal for Numerical Methods in Engineering, 2025
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TABLE 2 | Folded plate: Quantification of material and geometric
parameters as truncated Gaussian random variables.

Parameter
Mean

value 𝝁

Standard
deviation 𝝈

length factor 𝑘 [-] 1.75 0.05
height ℎ [cm] 10 1
Young’s modulus 𝐸 [kN/cm2] 1000 100

FIGURE 5 | Correlation between buckling loads calculated using
non-linear 𝑃cr and linear analysis 𝑃 cr.

TABLE 3 | Estimates of second-order statistics for the buckling load
of the folded plate.

Approach Monte Carlo
Control Variates

with splitting

𝑛 1,750 150
𝑚 — 3,000
𝑛𝑒 1,750 736
𝜇′1 N 9.99 9.97
𝑉
[
𝜇′1

]
N2 0.002 0.002

𝛿
𝜇′1

0.45% 0.39%

𝜇2 N2 3.582 3.614
𝑉
[
𝜇2
]

N4 0.015 0.018
𝛿𝜇2 3.45% 3.65%
𝛿𝑃cr

19% 19%

The stochastic non-linear buckling response is analyzed via a
Monte Carlo simulation with 5000 samples, resulting in a mean
value of the critical buckling load of 𝜇𝑃cr

= 9.94 kN and a coef-
ficient of variation of 𝛿𝑃cr

= 18.82%. All buckling loads corre-
spond to the load at which the first diagonal element becomes
negative. Despite the significant influence of the three random
input parameters defined in Table 2 on the buckling behavior, a
strong correlation of 𝜌 = 0.99 between the linear and non-linear
buckling analysis is evident, see Figure 5. These conditions are
well-suited for applying the Control Variates method. The results
are given in Table 3.

The estimates obtained using Monte Carlo and Control Variates
with Splitting are nearly identical, as indicated by the coeffi-
cient of variation 𝛿 in Table 3. To compare the numerical efforts
between the two approaches for estimating second-order statis-
tics, the total number of analyses performed for Control Variates
is expressed as an equivalent number of analyses 𝑛𝑒 (relative to
plain Monte Carlo simulation). This equivalent number of anal-
yses is calculated by

𝑛𝑒 = 𝑛 +
𝑛 + 𝑚
𝑓𝑠

(33)

where 𝑛 is the number of samples for the non-linear buckling
analysis and 𝑚 is the number of samples for the linear buckling
analysis. The factor 𝑓𝑠 is defined as the ratio between the exe-
cution time of one non-linear buckling analysis and one linear
buckling analysis. For this example, the factor is 𝑓𝑠 = 5.38, indi-
cating that the linear buckling analysis is 5.38 times faster than
the non-linear buckling analysis. Thus, the equivalent number of
𝑛𝑒 = 736 in Table 3 can be calculated, showing that the Control
Variates method requires only 736 equivalent simulations instead
of 1750 Monte Carlo simulations. Overall, the ratio of the equiv-
alent numbers of the analyses shows that the stochastic buckling
analysis using Control Variates is approximately 1750∕736 ≈ 2.4
times more efficient than plain Monte Carlo simulation.

Finally, it should be noted that even if a bifurcation path exists
in the pre-buckling stage, the method still performs successfully.
The only essential requirement is a strong correlation between
the linear and non-linear buckling analyses, while the type of
stability point plays a subordinate role. If a sufficiently strong cor-
relation exists, the Control Variates method yields reliable results.

5.2 | Composite Shell Panel

This example demonstrates the use of the Control Variates
approach to predict buckling loads in a composite shell panel sub-
jected to a single load and random geometric imperfections. For
details on the shell panel model, see [35]. Figure 6 illustrates the

FIGURE 6 | Cylindrical composite shell panel subjected to a single
load.
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TABLE 4 | Transversal isotropic material properties of the laminate.

𝑬11 [N/mm2] 𝑬22 [N/mm2] 𝑮12 [N/mm2] 𝑮13 [N/mm2] 𝑮23 [N/mm2] 𝝂12 [-]

3,300 1,100 660 660 450 0.3

FIGURE 7 | Load–displacement curves of the composite shell panel.

system modeled with a 30 × 30 FE mesh. The panel is simply sup-
ported along the two lateral edges. System symmetry cannot be
exploited due to applied random geometrical imperfections.

The transversely isotropic material properties of the laminate are
provided in Table 4. The panel consists of a three-layer laminate
with a total thickness of ℎ = 12.7 mm. The corresponding stack-
ing sequence is given in Figure 6.

First of all, the buckling behavior is analyzed without any imper-
fections. The load–displacement curves, evaluating the load 𝑃
vs. the vertical displacement 𝑤𝑐 at the center of the panel,
are depicted in Figure 7. These curves are obtained using the
arc-length method with a displacement control Δ𝑤 = 0.5 mm.

A pronounced non-linear pre-buckling behavior is observed.
Consequently, the non-linear buckling analysis using the
criterion in Equation (12) results in a critical load of
𝑃cr = 1.73 kN, while the linear buckling analysis according
to Equation (9) yields a higher critical load of 𝑃 cr = 2.02 kN.

The next step is to generate random geometric imperfections of
the cylindrical shell shape (reference surface) modeled as Gaus-
sian random fields using the Karhunen-Loève Expansion (KLE).
For the fundamentals of random field modeling, see, for example,
[36, 37]. Accordingly, the random geometric deviations in the
radial direction of the shell panel can be expressed as

𝑤̂rad(𝒙, 𝜃) = 𝜇 +
𝑀∑
𝑖=1

√
𝜆𝑖 𝜉𝑖(𝜃) 𝜑𝑖(𝒙) (34)

Here, the mean value 𝜇 is set to zero to model geometric imper-
fections that vary around the reference surface. The parameter
𝜉𝑖(𝜃) is a standard normal distributed random variable, 𝝋𝑖(𝒙)
are the eigenfunctions and 𝜆𝑖 the eigenvalues of the covariance

matrix formulated for the FE mesh with 𝑀 nodes. This covari-
ance matrix is assumed to be homogeneous

𝐶(𝜏) = 𝜎2𝜌(𝜏) (35)

where the variance 𝜎2 is set to one in this example. The autocor-
relation function (acf) 𝜌(𝜏) is defined as a function of the relative
distance 𝜏 of two FE nodes 𝒙𝑖, 𝒙𝑗

𝜌(𝒙𝑖,𝒙𝑗) = 𝜌(𝜏) with 𝜏 = 𝒙𝑗 − 𝒙𝑖 (36)

In practical applications, analytical models for autocorrelation
are frequently used [38, 39]. For the presented example, the
Whittle–Matérn acf is chosen to generate the shell imperfections

𝜌(𝜏) = 21−𝜈

Γ(𝜈)

(√
2𝜈 𝜏

𝓁𝑐

)𝜈
𝐾𝜈

(√
2𝜈 𝜏

𝓁𝑐

)
(37)

where 𝐾𝜈 is the modified Bessel function of the second kind and
Γ(𝜈) denotes the Gamma function. The parameter 𝓁𝑐 is the cor-
relation length and 𝜈 is the so-called “smoothness” parameter,
which is set to 𝜈 = 1.5.

The correlation length influences the imperfection shape,
thereby it also influences the buckling behavior and the
second-order statistics of the buckling load. Figure 8 illustrates
the mean 𝜇𝑃cr

and the coefficient of variation 𝛿𝑃cr
of the buckling

load as functions of the correlation length.

For the small correlation length 𝓁𝑐 = 150 mm, a minimal mean
value of 𝜇𝑃cr

= 1.68 kN and a maximum coefficient of variation
of 𝛿𝑃cr

= 𝜎𝑃cr
∕𝜇𝑃cr

= 10% can be observed. From this point, the
mean value converges to the imperfection-free buckling load
𝑃cr = 1.73 kN, and the coefficient of variation decreases. This is
because, for large correlation lengths, the effect of geometric
imperfections vanishes. Examining the vertical axis of Figure 8
(left), the mean value shows small variation. However, the cor-
relation length has a significant influence on the coefficient of
variations, see Figure 8 (right). Therefore, two different correla-
tion lengths are selected to investigate the effectiveness of Control
Variates: The smaller length of 𝓁𝑐 = 150 mm, which results in
wavy realizations, and a larger length of𝓁𝑐 = 500 mm, which pro-
duces more uniform imperfection shapes as depicted in Figure 9.

In addition, the load–displacement curves for two realizations
of the selected correlation lengths are depicted in Figure 7. For
these realizations, a small difference in the buckling load can be
observed, consistent with the slight deviations in the mean value
shown in Figure 8 (left). In Figure 10, the eigenvectors 𝝋𝑐𝑟 at the
stability point are depicted for the panel without and with the
imperfection from Figure 9 (left).

The eigenvectors are quite similar. However, the eigenvec-
tor with imperfections is non-symmetric, leading to different
post-buckling behavior. Table 5 summarizes the second-order
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FIGURE 8 | Mean 𝜇𝑃cr
(left) and coefficient of variation 𝛿𝑃cr

(right) of the buckling load as a function of the correlation length.

FIGURE 9 | Random geometrical imperfection with respect to the shell surface for 𝓁𝑐 = 150 mm (left) and 𝓁𝑐 = 500 mm (right).

FIGURE 10 | Eigenvectors 𝝋𝑐𝑟 at the stability point of the shell panel without (left) and realization with random imperfection for the correlation
length 𝓁𝑐 = 150 mm (right).

TABLE 5 | Second-order statistics of the buckling load for different
correlation lengths.

Correlation length 𝓵𝒄 [mm] 𝝁𝑷cr
[kN] 𝜹𝑷cr

[%]

150 1.68 10.0
500 1.72 4.7

statistics for both correlation lengths, as evaluated using a Monte
Carlo simulation with 5000 realizations.

For instance, Figure 11 shows the Monte Carlo convergence
test for generated random imperfections with the correlation
length 𝓁𝑐 = 150 mm. For 1000 samples, the relative error of 𝛿𝑃cr

compared to the reference solution provided in Table 5 is smaller
than 5%.

Figure 12 shows the correlations between buckling loads calcu-
lated using non-linear (𝑃cr) and linear analysis (𝑃 cr) for the small
and large correlation length. For each correlation length, 5000
random fields are generated, and the buckling loads with the lin-
ear and non-linear buckling analysis are calculated.

It is noteworthy that a strong correlation of 𝜌 = 0.97 is observed
even for the small correlation length of 𝓁𝑐 = 150 mm. Compared
to the larger length 𝓁𝑐 = 500 mm, the correlation between linear
and non-linear buckling analyses decreases only slightly. This
is a good condition for using Control Variates. Calculating the
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FIGURE 11 | Monte Carlo convergence test for correlation length 𝓁𝑐 = 150 mm.

FIGURE 12 | Comparison between buckling loads calculated using non-linear (𝑃cr) and linear analysis (𝑃 cr) for the correlation lengths 𝓁𝑐 = 150𝑚𝑚
(left) and 𝓁𝑐 = 500𝑚𝑚 (right).

TABLE 6 | Estimates of second-order statistics for the buckling load of the composite shell panel.

Approach Monte Carlo Control Variates with splitting Monte Carlo Control Variates with splitting

𝓁𝑐 [mm] 150 500
𝑛 600 90 600 60
𝑚 — 999 — 900
𝑛𝑒 600 285 600 227
𝜇′1 kN 1.7 1.69 1.72 1.73
𝑉
[
𝜇′1

]
kN2 5 × 10−5 4.1 × 10−5 1.0 × 10−5 8.1 × 10−6

𝛿
𝜇′1

0.4% 0.4% 0.2% 0.2%

𝜇2 kN2 0.03 0.03 0.006 0.006
𝑉
[
𝜇2
]

kN4 2.8 × 10−6 2.8 × 10−6 1.2 × 10−7 1.0 × 10−7

𝛿𝜇2 5.6% 5.8% 5.6% 5.6%
𝛿𝑃cr

10.2% 10% 4.6% 4.4%

linear solutions is 4.8 times faster than performing the non-linear
buckling analyses. However, for the small correlation length, the
subspace eigenvalue solver sometimes requires more iteration
steps to compute the correct eigenvalue. This means that the cho-
sen eigenvalue solver and its properties significantly influence
the effectiveness of the Control Variates approach.

The results of the estimates of second-order statistics using the
Control Variates approach are provided for both correlation
lengths in Table 6. The estimates produced using Monte Carlo
and Control Variates with Splitting are practically identical in
terms of both accuracy and precision, measured in terms of the
coefficient of variation 𝛿 in Table 6.
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For a smaller correlation length 𝓁𝑐 = 150 mm, the time factor
between linear and non-linear buckling analysis is 𝑓𝑠 = 5.58.
According to Equation (33), it follows an equivalent number
of 𝑛𝑒 = 285 simulations using the Control Variates approach.
Compared to an equivalent number of 𝑛𝑒 = 600 Monte Carlo
simulations, the proposed approach is approximately 600∕285 ≈
2.1 times faster. For the larger correlation length, the factor
between linear and non-linear buckling analysis increases to
𝑓𝑠 = 5.75, as the subspace eigenvalue solver converges faster for
smoother imperfection shapes. In addition, the equivalent num-
ber decreases to 𝑛𝑒 = 227 compared to 𝑛𝑒 = 285 for the smaller
correlation length. This can be explained by analyzing Figure 12,
as the correlation coefficient between linear and non-linear buck-
ling loads is 𝜌 = 0.99, which is larger than the correlation coeffi-
cient associated with a shorter correlation length. In other words,
for the case of a longer correlation length, linear buckling analysis
provides a better approximation for calculating the exact buckling
load. This results in better performance of the Control Variates
method, with a speed-up factor of approximately 600∕227 ≈ 2.6.

As a final remark, when examining the results of Table 6, it is
observed that while the mean buckling load increases slightly
with the correlation length, the variance decreases considerably.
This is a very interesting behavior, as in problems of linear static
stochastic FE analysis, usually the opposite behavior is observed
[40, 41]. This highlights the non-linear nature of the problem
at hand.

5.3 | Composite Cylinder

Buckling analysis of cylindrical shells is particularly challeng-
ing from both theoretical and numerical perspectives, and it is
associated with high computational costs. Therefore, the effec-
tiveness of the Control Variates method is investigated for an
imperfection-sensitive composite cylinder subjected to random
geometric imperfections. For this purpose, cylinder Z23, derived
from References [42, 43], is analyzed. The corresponding FE
model is depicted in Figure 13.

The cylinder has a length of 𝐿 = 510 mm and a radius of 𝑅 =
250 mm, resulting in a circumference approximately three times

larger than its length. Based on a convergence study, an FE
mesh with 240 shell elements in the circumferential direction
and 80 elements in the axial direction is chosen. This approxi-
mately regular FE mesh effectively captures the critical buckling
modes and is used as the high-fidelity model for the non-linear
buckling analysis. In contrast, a coarser mesh of 120 × 40 ele-
ments is used as a low-fidelity model to perform the linear buck-
ling analysis within the Control Variates approach. The cylin-
der’s laminate consists of 10 layers with a stacking sequence of
[±60∘, 0∘2,±68∘,±52∘,±37∘], corresponding to the fiber orienta-
tion 𝜑 depicted in Figure 13. A single layer has a thickness of
0.125 mm, leading to a total shell thickness of 𝑡 = 1.25 mm. The
material parameters are given in Table 7.

The cylinder is clamped at both ends. At the lower edge, the
boundary conditions are 𝑢 = 𝑣 = 𝑤 = 0, 𝜑𝑥 = 𝜑𝑦 = 0. Only ver-
tical displacements of the nodes at the upper edge are allowed,
𝑢 = 𝑢𝑎, while 𝑣 = 𝑤 = 0, 𝜑𝑥 = 𝜑𝑦 = 0 remain fixed. The resulting
axial load is computed as 𝑃 = 2𝜋𝑅𝑝 for an increasing vertical
displacement 𝑢𝑎 using the arc-length method. The displacement
step size significantly influences the computational time. There-
fore, five initial coarse displacement steps of Δ𝑢𝑎 = 0.1 mm are
applied. These coarse steps are estimated based on the lowest
expected buckling load of the cylinder under random imperfec-
tions. Subsequently, the cylinder is further loaded with a smaller
displacement step size of Δ𝑢𝑎 = 0.01 mm until the first zero diag-
onal element𝐷𝑖𝑖 occurs in the tangent stiffness matrix.

In this example, the random geometric imperfections are gen-
erated using the EOLE (Expansion Optimal Linear Estimation)
method from Reference [44]. The method allows representing the
random field with only a few random variables by minimizing the
variance error. The main advantage is that the covariance matrix
is required only on a subset of field nodes, the so-called “random
field mesh.” Thus, a coarser mesh can be defined for the random

TABLE 7 | Material parameters for the composite cylinder Z23.

𝑬11[N/mm2] 𝑬22 [N/mm2] 𝑮12 [N/mm2] 𝑮23 [N/mm2] 𝝂12 [−]

123,550 8,708 5,695 3,400 0.319

FIGURE 13 | FE model of the composite cylinder.
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field compared to the finer mesh required for the FE analysis. The
expression for the series to compute random radial imperfections
of the cylinder is

𝑤̂rad(𝒙, 𝜃) = 𝜇 +

(
𝑀∑
𝑖=1

𝜉𝑖(𝜃)√
𝜆𝑖
𝜑𝑖(𝒙𝑆 )

)
𝐶(𝒙𝑆,𝒙) (38)

with the standard normal distributed random variable 𝜉𝑖(𝜃), the
vector 𝒙𝑆 = [𝒙1 ... 𝒙

𝑆
𝑖 ... 𝒙
𝑆
𝑀
] of 𝑀 random field nodes and the

vector𝒙 = [𝒙1 ... 𝒙𝑗 ... 𝒙𝑁 ] of𝑁 nodes in the full domain (e.g., FE
nodes). Consequently, 𝐶(𝒙𝑆,𝒙) denotes the covariance matrix,
which contains the covariances between random field nodes
and FE nodes. The eigenfunctions 𝜑𝑖(𝒙𝑆 ) and eigenvalues 𝜆𝑖 are
obtained from the covariance matrix 𝐶(𝒙𝑆𝑖 ,𝒙

𝑆
𝑗 ) based on the ran-

dom field mesh. Both covariance matrices𝐶(𝒙𝑆,𝒙) and𝐶(𝒙𝑆,𝒙𝑆 )
are calculated using the homogeneous correlation structure in
Equation (36) and the Whittle–Matérn autocorrelation function
in Equation (37). Depending on the smoothness of the random
field, the number of random field nodes can be smaller than the
number of FE nodes. This allows reducing the size of the eigen-
value problem of the covariance matrix. In this example, a ran-
dom field mesh with 𝑀 = 60 × 20 nodes is defined based on a
convergence study, where the second-order statistics of the buck-
ling load are evaluated. In Equation (38), the constant mean value
𝜇 is set to zero and the standard deviation of the field is chosen as
𝜎 = 1. Considering the presented measured geometric imperfec-
tions of the cylinder in Reference [43], the random imperfections
are scaled to a peak-to-peak value of 2 mm.

In a first study, the stochastic buckling behavior is analyzed for
different correlation lengths. The results of the mean 𝜇𝑃cr

and the
coefficient of variation 𝛿𝑃cr

of the buckling load as functions of the
correlation length are depicted in Figure 14.

For each correlation length, a Monte Carlo simulation with 500
samples is performed. In Figure 14 (left), the resulting non-linear
buckling load of 𝑃cr = 261.64 kN of the cylinder without imper-
fections is depicted as a horizontal line. Due to the applied
scaling of the random geometric imperfections, the mean of
the buckling load asymptotically approaches a value below the
non-linear buckling load as the correlation length increases. In
contrast, the coefficient of variation decreases with increasing
correlation length, see Figure 14 (right). A maximum coefficient

of variation of 𝛿𝑃cr
= 𝜎𝑃cr

∕𝜇𝑃cr
= 7.3% results for the correla-

tion length of 𝓁𝑐 = 150 mm, which is selected for the following
investigations. With respect to the mean of the buckling load
𝜇𝑃cr

= 174.70 for the chosen correlation length of 𝓁𝑐 = 150 mm,
the knockdown factor (KDF) is 𝜇𝑃cr

∕𝑃cr = 174.7∕261.64 = 0.67.

The load–displacement curves of the composite cylinder with
and without random radial imperfections are depicted in
Figure 15.

A typical linear pre-buckling behavior of a cylindrical shell can be
observed. At the stability point (A) of the cylinder without imper-
fections, the initial post-buckling mode 𝝋cr is depicted. Due to
the clamped edges, where the radial expansion of the cylinder
is suppressed, the buckling mode is characterized by radial dis-
placements at the top and bottom of the cylinder. Furthermore, a
sample of the scaled radial imperfection is depicted in Figure 14,
which corresponds to the blue load–displacement curve and a
buckling load of 𝑃cr = 165.86 kN (KDF of 0.63).

The buckling load of the linear analysis using the high-fidelity
model (FE mesh with 240 × 80 elements) is 𝑃 cr = 276.96 kN.
Whereas, the linear buckling load using the low-fidelity model
(FE mesh with 140 × 40 elements) is 𝑃 cr = 301.02 kN. The model
behaves significantly stiffer. However, the correlation between
the linear and non-linear analyses decreases only slightly. This
can be observed in the correlation plots in Figure 16, where only
the model of the linear analysis is changed. The non-linear buck-
ling analysis is performed with the high-fidelity model.

On the given computational setup, the linear analysis using the
low-fidelity model is 13 times faster compared to the high-fidelity
model. Thus, the effectiveness of the Control Variates method can
be enhanced by performing the linear buckling analysis using the
low-fidelity model. The results of the Control Variates approach
compared to the Monte Carlo simulation are given in Table 8.

According to Equation (33), the Control Variates require only
a number of 𝑛𝑒 = 285 equivalent simulations instead of 390
Monte Carlo simulations. The linear buckling analysis using the
low-fidelity model is 20.68 times faster than the non-linear anal-
ysis using the high-fidelity model. Considering the equivalent
numbers of the Monte Carlo simulation and the Control Variates

FIGURE 14 | Mean 𝜇𝑃cr
(left) and coefficient of variation 𝛿𝑃cr

(right) of the buckling load as a function of the correlation length.
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FIGURE 15 | Load–displacement curve of the composite cylinder Z23 with the first eigenvector at the stability point of the cylinder without imper-
fection and a random radial imperfection, magnified (x20).

FIGURE 16 | Comparison between buckling loads calculated using non-linear (𝑃cr) and linear analysis (𝑃 cr) using the high-fidelity model (left) and
the low fidelity model (right) for the linear buckling analysis.

TABLE 8 | Estimates of second-order statistics for the buckling load
for the composite cylinder.

Approach Monte Carlo
Control Variates
with splitting

𝑛 390 210
𝑚 — 990
𝑛𝑒 390 268
𝜇′1 N 176.5 176.1
𝑉
[
𝜇′1

]
N2 0.41 0.33

𝛿
𝜇′1

0.4% 0.3%

𝜇2 N2 161.4 154.2
𝑉
[
𝜇2
]

N4 137.8 129.8
𝛿𝜇2 7.3% 7.4%
𝛿𝑃cr

7.2% 7.1%

method, a speed-up factor of approximately 390∕268 ≈ 1.5 is
achieved. Although the correlation is approximately 10% lower
than in the other examples, the computational time is reduced.
Thus, the CV method can serve as an effective tool for increasing
the efficiency of stochastic analyses in shell buckling.

6 | Conclusions

The paper highlights a promising approach to estimate the
second-order statistics of buckling loads. By integrating results
from both linear and non-linear buckling analyses, this method
achieves enhanced accuracy and significantly reduced compu-
tational costs compared to full-scale Monte Carlo simulations.
However, the effectiveness of the Control Variates method for
buckling problems depends on various factors and can be further
optimized. One factor is the eigenvalue solver used for the lin-
ear buckling analysis. Therefore, other solvers have to be tested
in this context.
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Another important factor is the correlation properties of the
random geometric imperfections. In this paper, the influence
of different correlation lengths is studied, but the correlation
function and its differentiability may also influence the com-
putational efficiency of calculating second-order statistics with
Control Variates. Defining relevant correlation lengths and func-
tions based on experimental data is essential for quantifying the
benefits of Control Variates in realistic scenarios. To account
for epistemic uncertainties, correlation parameters can be quan-
tified using polymorphic uncertainty models. The application
of the Control Variates method in the context of polymorphic
uncertainties (imprecise probabilities) is also conceivable.

Finally, the Control Variates approach should be tested for
advanced structures, including stiffened panels and cylindrical
shells, fiber-steered composites, and large-scale structures, to
assess its broader applicability. New ideas for further research can
be summarized as follows:

• Efficient eigenvalue solvers for Control Variates

• Study on the influence of the correlation functions and their
differentiability on estimating second-order statistics using
Control Variates.

• Application of Control Variates for various structures, such
as cylindrical shells, stiffened panels, fiber-steered compos-
ites, and large-scale structures

• Application of Control Variates in the framework of poly-
morphic uncertainties (imprecise probabilities)

• Extension of the current framework from a single variable
for performing Control Variates (in this case, buckling load
from linear analysis) to several variables (e.g., higher-order
buckling loads from linear analysis). It is to be noted that
extension towards several variables within the framework
of Control Variates is possible, as discussed in, for example,
[19].
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Appendix A

Bivariate Central Co-Moments

Bivariate central co-moments between the non-linear buckling load 𝑃cr
and linear buckling load 𝑃 cr are denoted as 𝜇𝑝,𝑞

(
𝑃cr, 𝑃 cr

)
, where the

pair of integer numbers 𝑝 and 𝑞 represent the order associated with 𝑃cr
and 𝑃 cr, respectively. Monte Carlo simulation is employed to estimate
these co-moments considering a sample set 𝚵𝑙 with 𝑙 independent, iden-
tically distributed samples of 𝚵. The list of co-moments required to imple-
ment the expressions in this paper is listed below. This list has been
produced using the software package mathStatica [45]. Note that the
expressions below consider the auxiliary variable 𝑠𝑝,𝑞 , which is defined
as 𝑠𝑝,𝑞 =

∑𝑙
𝑖=1

(
𝑃cr

(
𝝃(𝑖)

))𝑝(
𝑃 cr

(
𝝃(𝑖)

))𝑞 , where 𝝃(𝑖) is the 𝑖-th sample of the
sample set 𝚵𝑙 .

𝜇1,1 =
𝑙𝑠1,1 − 𝑠0,1𝑠1,0

(𝑙 − 1)𝑙
(A1)

𝜇2,2 = 1
(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙

((
−2𝑙2 + 4𝑙 − 6

)
𝑠2,1𝑠0,1 +

(
−2𝑙2 + 4𝑙 − 6

)
𝑠1,0𝑠1,2

+
(
𝑙3 − 2𝑙2 + 3𝑙

)
𝑠2,2 + 𝑙𝑠2,0𝑠20,1 + 4𝑙𝑠1,0𝑠1,1𝑠0,1 + 𝑙𝑠0,2𝑠21,0

+ (6 − 4𝑙)𝑠21,1 + (3 − 2𝑙)𝑠0,2𝑠2,0 − 3𝑠21,0𝑠
2
0,1

)
(A2)

𝜇4,0 = 1
(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙

((
−4𝑙2 + 8𝑙 − 12

)
𝑠3,0𝑠1,0

+
(
𝑙3 − 2𝑙2 + 3𝑙

)
𝑠4,0 + 6𝑙𝑠2,0𝑠21,0 + (9 − 6𝑙)𝑠22,0 − 3𝑠41,0

)
(A3)

𝜇0,4 = 1
(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙

((
−4𝑙2 + 8𝑙 − 12

)
𝑠0,3𝑠0,1

+
(
𝑙3 − 2𝑙2 + 3𝑙

)
𝑠0,4 + 6𝑙𝑠0,2𝑠20,1 + (9 − 6𝑙)𝑠20,2 − 3𝑠40,1

)
(A4)

Squared co-moments as well as co-moment products are estimated with
the equations listed below [45].

𝜇21,1 = 1
(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙

((
𝑙2 − 3𝑙 + 2

)
𝑠21,1 +

(
𝑙 − 𝑙2

)
𝑠2,2

+ (2 − 2𝑙)𝑠1,0𝑠1,1𝑠0,1 + (2𝑙 − 2)𝑠2,1𝑠0,1 + (2𝑙 − 2)𝑠1,0𝑠1,2

+ 𝑠21,0𝑠
2
0,1 − 𝑠2,0𝑠

2
0,1 − 𝑠0,2𝑠

2
1,0 + 𝑠0,2𝑠2,0

)
(A5)

𝜇22,0 =

(
𝑙2 − 3𝑙 + 3

)
𝑠22,0 +

(
𝑙 − 𝑙2

)
𝑠4,0 − 2𝑙𝑠2,0𝑠21,0

+(4𝑙 − 4)𝑠3,0𝑠1,0 + 𝑠41,0
(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙

(A6)

𝜇20,2 =

(
𝑙2 − 3𝑙 + 3

)
𝑠20,2 +

(
𝑙 − 𝑙2

)
𝑠0,4 − 2𝑙𝑠0,2𝑠20,1

+(4𝑙 − 4)𝑠0,3𝑠0,1 + 𝑠40,1
(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙

(A7)

𝜇2,0𝜇0,2 = 1
(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙

((
𝑙2 − 3𝑙 + 1

)
𝑠0,2𝑠2,0

+
(
𝑙 − 𝑙2

)
𝑠2,2 + (2 − 𝑙)𝑠2,0𝑠20,1 + (2𝑙 − 2)𝑠2,1𝑠0,1

+ (2 − 𝑙)𝑠0,2𝑠21,0 + (2𝑙 − 2)𝑠1,0𝑠1,2

+𝑠21,0𝑠
2
0,1 − 4𝑠1,0𝑠1,1𝑠0,1 + 2𝑠21,1

)
(A8)
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