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ABSTRACT

Amazonian floodplains are the most extensive and
biodiverse riverine habitat on Earth. They currently
face unprecedented fire regimes as climate change
increases the frequency and intensity of drought.
While it is clear that fire impacts on floodplain
ecology can be severe, fire regimes and their effect
on forest ecosystems have yet to be fully examined
across the considerable spatial and ecological
heterogeneity of Amazonian floodplains. We used
the MODIS burned area product to map fire
occurrence across Amazonian floodplain forests.
Next, we assessed forest recovery after burning
using NDVI values from LandSat images. We
specifically focused on differences in wildfire
dynamics and forest recovery after burning across
floodplains associated with the three main river
types in the Amazon basin (black-, clear-, and
white-water rivers). We found that the occurrence
of forest fires in floodplains is strongly associated
with ENSO events and increases as land-use
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intensity increases, dry seasons get longer, soils
become sandier, and the synchrony between
flooding and precipitation patterns increases. Post-
fire forest recovery is slower, and reburning risk is
higher, on nutrient-poor floodplains of black-water
rivers, compared to the nutrient-richer floodplains
of white- and clear-water rivers. Moreover, forest
recovery is significantly slower in regions flooded
for prolonged periods, regardless of river type. Our
results call for urgent prevention and monitoring of
floodplain forest fires across the Amazon basin,
with particular attention to black-water flood-
plains, to prevent large-scale vegetation shifts and
cascading ecosystem changes on biodiversity and
ecosystem services provided by floodplain forests.

Key words: Amazon fire regime; Floodplain for-
est; Forest recovery rate; Flooding; Resilience; River

type.
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INTRODUCTION

Floodplain forests extend across ~ 14% of the
Amazon basin, and link terrestrial and aquatic
biodiversity hotspots throughout the largest river-
ine system on Earth (Wittmann and others 2006;
Householder and others 2024). These seasonally
flooded environments regulate the hydrological
cycle of northern South America (Gumbricht and
others 2017) and store globally relevant carbon
stocks. Fire has not, until recently, been considered
an important disturbance in Amazonian flood-
plains where conditions are typically wet and
unamenable to fire (but see Sanford and others
1985; Feldpausch and others 2022 for paleonto-
logical perspective). However, increasing drought
conditions and associated wildfires have impacted
even the wettest parts of the Amazon basin (Flores
and others 2014; Flores and others 2017; Carvalho
and others 2021). Wildfires in Amazonia, as in
other tropical rainforests, are strongly associated to
El Nifio Southern Oscillation (ENSO) (Holmgren
and others 2001; Alencar and others 2011), when
conditions become sufficiently dry to facilitate fire
ignition (Alencar and others 2015). Although the
impact of these wildfires has received considerable
attention (Barlow and Peres 2008; Malhi and oth-
ers 2008; Cochrane and Barber 2009; Aragao and
others 2018), most research has focused on non-
floodplain or “upland’” forests, that lie above the
upper limit of seasonal river flooding. Yet, the risks
and consequences of fire in floodplain forest are
likely fundamentally different from non-floodplain
forests (de Resende and others 2014; Almeida and
others 2016; Flores and others 2017). Evidence
suggests that floodplain forests across the Amazon
are less resilient to drought conditions and fire,
compared to upland forests, implying that they
could be the first to collapse if drying conditions
continue to increase (Flores and others 2017).
Generalizations on the risks and consequences of
fire in Amazonian floodplains are, however, com-
plicated by their heterogeneous nature, on both
small spatial scales (for example, associated with
topography and hence flooding duration) and lar-
ger spatial scales (for example, Amazonian sub-
basins and their geomorphologies). Across the
Amazon basin, nutrient and sediment concentra-
tions of rivers vary in important ways, and this may
result in different fire risks and very different tra-
jectories of floodplain forest regrowth after burn-
ing. For example, in nutrient poor black-water
floodplains (mainly distributed in the north-eastern
Amazon, but also along the tributaries of most sub-

basins; Figure la), forests typically have lower tree
density and stature, with tree heights around 15-
20 m (Junk and others 2015; Almeida and others
2016). Consequently, atmospheric drought condi-
tions can lead to strong desiccation in the under-
story (de Resende and others 2014; Almeida and
others 2016), which in combination with a thick
root mat (dos Santos and Nelson 2013), increases
fire risk (Flores and others 2016; Carvalho and
others 2021). Because black-water rivers have an
exceptionally low content of dissolved nutrients
(Furch 1984), carrying few sediments (Latrubesse
and Franzinelli 2005), nutrient loss after burning is
not replenished by floodwaters and soils quickly
lose fertility and become more sandy (Flores and
Holmgren 2021a). Black-water floodplain forests
may, therefore, regenerate very slowly after burn-
ing, and when exposed to repeated fires can tran-
sition to an open, white-sand savanna state (Flores
and Holmgren 2021a).

In other parts of the basin however, such as the
floodplains of white-water rivers, soils are annually
inundated by «clay- and nutrient-rich water
(Goulding and others 2003; Junk and others 2012).
Flooding, therefore, regularly replenishes clay
minerals and nutrients; a mechanism that could
potentially facilitate rapid forest regrowth after a
disturbance. Floodplain forests of clear-water rivers
(Figure la) may show intermediate forest resilience
relative to black- and white-water floodplains.

The heterogeneity of floodplain forests has re-
mained largely overlooked in the analysis of fire
and its consequences in Amazonian floodplains.
Here, we assess floodplain fire regimes and forest
recovery after burning, examining these across a
greater degree of geographic and environmental
variation than hitherto considered. Within this
heterogeneity, including multiple environmental
and anthropogenic drivers across spatial scales, we
expect a wide spectrum of floodplain fire regimes
and responses that can provide a more complete
view of floodplain fire regimes and forest resilience.
Understanding these dynamics at a finer spatial
scale can better inform research priorities and guide
ecosystem management and conservation efforts in
the face of increasing fire risk.

METHODS

We performed two main analyses: (1) mapping of
fire occurrence in floodplains across the Amazon
basin, and relating fire occurrence to environ-
mental conditions, and (2) assessing vegetation
recovery after burning in the different floodplain
forest types (Table 1).
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Figure 1. a Distribution of white, clear, and black-water rivers (based on data from Venticinque and others (2016)), and
vegetation type covering central Amazonian floodplains (based on data from Hess and others (2015)). The dashed
rectangle shows the study region. b Estimation of fire occurrence across Amazonian floodplains in the period 2000-2020.
An individual burned site is an area of 0.5-6.25 km?. Note that the scale bar does not translate to actual surface area
burned, since the estimations are extrapolated from a random sample of 200,000 floodplain points of 2.5 x 2.5 km? each

(10,000 sampling point per year).

Table 1.

Overview of Variables, Data Sources, and Sampling Scales

Response variable

Fire occurrence and return frequency Forest recovery

Scale

Basin

Basin Local (within floodplains)

Response variable data source

Sample size

Timespan

Environmental (explanatory) variables:

Resolution

Modis Burned Area product
200,000 points, 2.5 x 2.5 km? each
2001-2020
River type,

Dry season length,

Land-use intensity,

Soil texture,

Flooding-precipitation synchrony
0.1°

LandSat NDVI and Avocado Algorithm
23 sites, 100 km? each

2005-2010

River type Elevation

Pixels of 30 m across

Data sources of explanatory variables can be found in the Methods section

Study Area

Floodplains in the Amazon were categorized into
three main types: white-, clear-, and black-water
river floodplains, using the results of Venticinque
and others (2016) and the freshwater ecoregions of
the world (Abell and others 2008) to define
watershed boundaries (Figure la).

We focused our analyses on the Amazon basin
north of 11°S for three main reasons. Firstly, dif-
ferent climatic teleconnections are associated with
droughts (and fires) above and below ~ 11°S (Or-
tega Rodriguez and others 2023). North of ~ 11/
12°S drought events are strongly associated with
ENSO events, whereas in the southern part of the
Amazon basin, a strong teleconnection to sea sur-

face temperature variability in the tropical Atlantic
Ocean also underlies drought and fire occurrence.
Secondly, because of higher human population
density and land-use change, fire occurrence is
very high in the southern part of the Amazon basin
(Alencar and others 2015) and this overrepresen-
tation may bias our focus on differences in fire re-
gimes across the main river types of the central
Amazon basin. Thirdly, south of 11 degrees large
regions are present that are dominated by more
open, and naturally more fire-prone, vegetation
types, such as the grasslands of the Llanos de
Moxos in Bolivia and Cerrado savannas in Brazil.
Including such areas would bias our results.
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Mapping Fire Occurrence

We used monthly data of the MODIS Burned Area
Product at a 500 m resolution (MCD64A1 Version
6; Giglio and others 2018) to detect forest fires and
their potential drivers in Amazonian floodplains.
We validated the ability of the MODIS Burned Area
product algorithm to detect floodplain fires by
comparing detection rates to 75 fire scars of known
origin distributed across the basin (Flores and oth-
ers 2017). We found that ~ 50% of the known
burned areas were also found in the MODIS
Burned Area product; most of the remaining fire
scars were likely undetected because of their rela-
tively small size. We also compared the known fire
scars to fires detected by the MODIS Thermal
Anomalies product (MOD14A2) but found a much
lower detection rate. The latter result is possibly a
consequence of the nature of forest fires in flood-
plains, being commonly ground fires that may be
concealed in closed-canopy forests. However, such
fires can ultimately lead to tree mortality rates of
up to 90% (Flores and others 2014) and create
burned areas that are detected in the MODIS
Burned Area product. We hence choose the
MODIS Burned Area product in the first part of our
analyses. Although MODIS Burned Area captures
most large forest fires, our estimation of fire
occurrence is likely conservative given its relatively
coarse resolution. We assume that undetected fires
are not systematically biased with respect to the
main river types investigated (that is, that (un)de-
tention rates do not differ between the main river
types). As such our conservative fire detection
should not change observed differences between
the river types and our environmental inferences.

Because floodplain forests cover a large area
(~ 250,000 km?), we used a sampling approach by
which ~ 25% of this area was randomly assessed
each year from 2001 to 2020. To this end, a total of
10,000 points of 2.5 x 2.5 km? were randomly ta-
ken for each year (note that each year a different
set of random points was sampled). We used the
wetland mask of Hess and others (2015) to select
these 200,000 (= 10,000 points x 20 years) sample
points in floodplains only. For each selected point,
we recorded if a fire occurred in any of the months
during the sample year, and how large the burned
area was (that is, how many 500 x 500 m pixels
burned). For all points for which a burned area was
detected, we used the full MODIS burned area time
series to assess: (1) if the area burned more than
once during 2001-2020 and (2) the mean time it
took to reburn. We used ANOVA to test for differ-

ences in burn frequency and mean reburn times
between the three main floodplain forest types.

Environmental Data

To assess drivers of spatial and temporal fire
occurrence, we used the following environmental
data:

(1) Dry season length, defined as the number of
months with mean monthly precipita-
tion £ 100 mm per year (averaged over the
period 1950-2020), and based on CRU TS4.05
precipitation data at 0.5° resolution (Jones and
others 2012);

(2) Land-use intensity using the Global Human
Modification of Terrestrial Systems data set, a
cumulative measure of the human modifica-
tion of terrestrial lands based on 13 anthro-
pogenic stressors (including human density,
mining and energy production, density of
roads, percentage of cropland, and livestock
density) and their estimated impacts for the
median year of 2016, at a 1-km resolution
(Kennedy and others 2020);

(3) Soil texture data (content of sand, in g/kg, at
15-30 cm soil depth) from ISRIC soil grids at a
250-m resolution (Poggio and others 2021).

(4) Flooding-precipitation synchrony; if droughts
occur during floodplain inundation periods,
forest fire risk could be strongly reduced. Thus,
the synchrony between the period of low pre-
cipitation (dry season) and floodplain inunda-
tion could be an important determinant of
floodplain fire occurrence. Floodplain inunda-
tion was estimated using GRACE Tellus satel-
lite data at 1° resolution, which measures
anomalies in the earth gravitational field that
are indicative of the distribution of water across
the planet (Landerer and Swenson 2012; Lan-
derer 2021). Previous studies have shown that
the annual hydrology of the Amazon basin is
clearly captured by GRACE (Tapley and others
2004). Yet, to better estimate river level fluc-
tuations for the floodplain pixels that are the
focus of our study, we used the scaling coeffi-
cients provided by Landerer (2021) to remove
the 300 km wide Gaussian filter that is stan-
dard applied to the data. We next used the
GRACE Tellus data from 2002 to 2020 to cal-
culate for each 1°x1° pixel an average yearly
flood cycle at bimonthly intervals (the turn-
around time of Grace). Flooding at every time
interval is calculated as the mean over the 20-
year period of Grace measurements (Fig-
ure S1). Using river level data from Manaus,



ENSO Wildfires Impact Amazonian Floodplains in Complex Ways

Page 5 of 13 20

Brazil (Agéncia Nacional de Aguas e Sanea-
mento Basico; ANA), we found that GRACE
Tellus data and observed river level fluctua-
tions strongly coincided (Figure Sla). To cor-
relate temporal flooding patterns with
precipitation, we used CRU TS4.05 data to
create a time series of mean monthly precipi-
tation from 2002 to 2020 for every pixel, at the
same temporal resolution of the GRACE data.
Annual patterns in flooding (GRACE Tellus)
and precipitation (CRU TS4.05) were corre-
lated, with the correlation coefficient indicat-
ing the level of synchrony between rainfall and
floodplain inundation: high positive correla-
tion coefficients (high synchrony) would sug-
gest that low precipitation seasons (dry season)
coincide with low-water periods, while strong
negative correlation (high asynchrony) would
suggest that low precipitation seasons occur
when floodplains are inundated (Figure S1b).
We also used the mean annual patterns to
determine the month of lowest precipitation
(that is peak of the dry season) and the month
of lowest river level. We next calculated the
delay (in months) between the two, for each
1°x1° grid cell (Figure Slc).

(5) Lastly, ENSO3.4 based on the Hadley Centre
Sea Surface Temperature dataset (HadISST) at
1° resolution (Rayner and others 2003) was
used to assess the role of ENSO variability on
temporal fire frequency in floodplains.

Prior to data analyses, the spatial resolution of the
environmental datasets was converted to 0.1° res-
olution. Fire occurrence in each 0.1° grid cell was
calculated as the total number of burned points
detected in that 0.1° grid cell over the period 2001-
2020. We thus do not estimate the actual surface
area burned, since the estimations are extrapolated
from fire occurrence in the random sample of
200,000 floodplain points of 2.5 x 2.5 km? each.
Instead we estimate where fires were concentrated
during the period 2001-2020. Inspection of scat-
terplots of fire occurrence and each of the envi-
ronmental conditions justified the use of ‘simple’
linear models. Regression models were therefore
used to assess the covariance between fire occur-
rence (in each 0.1° grid cell) and environmental
conditions (in each 0.1° grid cell). Model selection
was based on step-wise selection of environmental
variable using AIC. Variance inflation factors (VIFs)
were calculated to assess collinearity of predictor
values; VIF-values were below 2 for all predictors.
All analyses were performed in R; main packages

used were MODISTools (Hufkens 2023) and Raster
(Hijmans 2023).

Mapping Vegetation Recovery

We used the recently developed AVOCADO
(Anomaly Vegetation Change Detection) algorithm
(Decuyper and others 2022) to assess vegetation
recovery on burned areas. The AVOCADO algo-
rithm was used here to derive changes in the nor-
malized difference vegetation index (NDVI) data
from LandSat images relative to a predefined
(undisturbed) reference forest within each site. We
used NDVI instead of the normalized difference
moisture index (NDMI), because the latter is likely
unreliable in habitats that are flooded part of the
year (due to its sensitivity to moisture), which will
increase the probability of false recovery rates
during the flooding season (DeVries and others
2015).

Specifically, the AVOCADO algorithm assesses:
(1) the time a pixel’s NDVI values consistently drop
outside of the 95th percentile of NDVI values of a
predefined (mature) reference forest (Figure S2),
and (2) the time that pixel’s NDVI values are con-
sistently back at the level of the reference forest
(Figure S2d). Note that the following analyses were
thus based on the behavior in individual pixels
instead of entire fire scars. Because AVOCADO uses
all available LandSat images of a selected area
when making a robust and accurate forest phe-
nology baseline, it is labor intensive and compu-
tationally heavy. We therefore could not assess
forest recovery in each of the 2.5 x 2.5 km? sample
point that was flagged as burned by the MODIS
Burned Area product. Instead, we selected 23 larger
sites of 100 km? each, distributed in floodplain
forests of black- (n = 8), clear- (n = 7), and white-
water (n = 8) rivers (Figure S2). Site numbers were
chosen considering sufficient replication across the
basin and required computation time. Sites were
selected based on the fire maps of the MODIS
burned area product and hence concentrated in
regions where fires occurred. We did not select sites
located closely to large settlements or agricultural
frontiers, to avoid confounding effects of land-use
change. For each site, the avocado algorithm was
used to quantify forest disturbance and recovery.
More details on the method can be found in De-
cuyper and others (2022).

To assess forest recovery rates within and across
the sites, we focused on burned areas formed in
2005. We choose 2005 because it is the first large-
scale drought (and fire) year in the available time
series (Marengo and others 2008). Forest recovery
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rate was calculated as the time it took for the NDVI
data to return to, or exceed the most probable
forest reference baseline within the NDVI fre-
quency distribution of the reference forest (De-
cuyper and others 2022).

AVOCADO detects a disturbance as a drop in
NDVI. Such a drop can result from forest fires, but
other disturbances can reduce NDVI as well. For
example, white-water river channels are highly
dynamic and river meandering erodes banks and
forests. To avoid false disturbance detection by the
AVOCADO algorithm, in case a forest pixel became
a ““water”’ pixel in subsequent LandSat images, we
carefully masked out all open waterbodies in the
LandSat images. To this end, we used the semi-
automatic classification plugin (SCP) in QGIS
(Congedo 2021). For each sampling site, we se-
lected a recent, cloud-free, LandSat image during
the low-water season. Next, the SCP was used to
classify pixels into five categories: water, grass,
shrubs, low-floodplain forest, and high floodplain
forest. All avocado results from pixels classified as
““water’” were removed from subsequent analyses.
The AVOCADO method also limits false detection
due to temporal flooding, because at least three
consecutive pixels need to be below the 95% CI
(disturbance) or reach the line of the highest fre-
quency of observed NDVI values (dark red line in
Figure 3d) in case of regrowth. Furthermore, a
“water”” pixel will result in NDVI values between 0
and —1, which is different from NDVI changes due
to forest loss, when values typically drop to around
0.2 (Figure S2). Riverbank erosion and seasonal
flooding effects are, therefore, unlikely to be de-
tected as a forest disturbance event. We tested for
differences in forest recovery (that is, mean forest
recovery rate and the mean percentage of burned
pixels not recovered in each of 23 study sites) be-
tween the main floodplain forest types using AN-
OVA.

Habitat Heterogeneity in Floodplains

Floodplain tree species differ in their ability to tol-
erate prolonged flooding, and within each of the
major floodplain forest types, the composition and
structure of the forest therefore changes along the
flooding gradient, that is with distance from the
main river channel (Householder and others 2024).
To assess the role of such habitat heterogeneity on
recovery rates, we used high-resolution elevation
data, since low elevation areas will experience the
longest flooding duration, while higher elevation
sites are only flooded shortly each year or only in
years with exceptional flooding height. The Global

Multi-resolution Terrain Elevation Data
(GMTED2010) was used to obtain elevation data at
7.5-arc-second (225 m) spatial resolution (Daniel-
son and Gesch 2011) for each 100 km? sample site.
Elevation was standardized to allow for intersite
comparisons by subtracting the minimum site ele-
vation (assumed to represent river water level)
from all other elevations. Hence, our standardized
elevations are supposed to represent elevation
above river water levels. Mixed-effect models were
used to assess relationships between forest recovery
and elevation, as these can account for the nested
structure of the data by including each 100 km? site
as random variable.

REsuLTS
Fire Occurrence

Fire is a widespread disturbance across the Amazon
basin (Figure 1b), but its occurrence significantly
increases with land-use intensity, dry season
length, flood-precipitation synchrony, and the
proportion of sand in the soil (Table S1, Figure S3).
The annual burned area fluctuates substantially
among the three floodplain types, but averages
across years are quite similar regardless of flood-
plain type (Figure 2a). This however, does not
mean similar fire risk among floodplain, due to the
differences in floodplain extents: the area that
burns annually is proportionally larger clear-water
(0.67%) and black-water (0.47%) floodplains
compared to white-water (0.20%) floodplains
(Figure 2a). Temporal variability in fire occurrence
in Amazonian floodplains is significantly correlated
to sea surface temperature variability in the tropical
Pacific (that is, ENSO3.4 variability; Figure 2b). We
found no significant trends in the number of pixels
that burned, or their total area, from 2001 to 2020
in any of the three river types (Figure 2a).

Risk of Reburning

Of the 200,000 random sites assessed, 1837 sites
were flagged as burned. Using the full MODIS
Burned Area time series for these 1837 burned
sites, we found that the proportion of burned sites
(that is, pixels) that reburned at least once during
the period 2001-2020, was significantly higher in
black-water floodplain forests compared to white-
and clear-water floodplain forests (Figure 3b; AN-
OVA df = 1, F-value = 184, p-value < 0.0001). On
average reburning risk was 62-73% higher in the
black-water floodplains (mean: 76%) compared to
white-water floodplains (mean: 47%) and clear-
water floodplains (mean: 44%). We also found that
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Figure 2. a Floodplain area that burned annually from 2001 to 2020 for each of the three main river types, as well as
across the entire basin (total; same as shown in panel b). Spatial division of river types in Figure S5a. Percentage calculated
as the total area that was detected in each year as burned, divided by the total surface area surveyed for each river type
(62.500 km?/year in total). b Total floodplain area burned annually from 2001 to 2020 (as a percentage of the total; black
line) covaries with El Nifio-Southern Oscillation (ENSO 3.4 index averaged for the months January to March; red line).
Pearson’s correlation coefficient and associated p-value are given in panel b.

the minimum time between fire events was sig-
nificantly shorter in black-water floodplain forests
compared white- and clear-water floodplain forests
(Figure 3b; ANOVA, df =1, F-value =95, p-va-
lue < 0.0001). On average the time for a pixel to
be detected as reburned was 60% shorter in black-
water floodplains (mean: 3.2 years) than in clear-
water floodplains (mean: 4.1 years) and white-
water floodplains (mean: 5 years).

NDVI Recovery After Burning

We found that NDVI recovery after burning is sig-
nificantly slower in black-water floodplains com-
pared to white- and clear-water floodplains
(ANOVA df = 2, F-value = 11.5, p = 0.0003; Fig-
ure 3b). On average, the NDVI recovery time was
20% and 35% slower in black-water floodplains
forests compared to white- and clear-water flood-
plain forests, respectively. In addition, the per-
centage of pixels that burned in 2005 and that did
not recover after 15 years was significantly higher
in black-water floodplains (mean = 49%) than in

clear-water (mean = 18%) and white-water
floodplains (mean = 27%; ANOVA df =2, F-va-
lue = 6.9, p = 0.004; Figure 3b). We also found
that within floodplains, fire occurrence and post-
fire forest recovery time were significantly higher
in low elevation areas. This result was consistent
across all river types (Figure S4, Table S2).

DiscussioN

We found that fire occurrence is widespread in the
Amazon floodplains but is concentrated in the
eastern part of the basin. Temporal variation in the
frequency of floodplain forest fires was significantly
related to ENSO (Figure 2b), corroborating results
from previous studies focusing on Amazonian
droughts and fires in the general (for example,
Fonseca and others 2017; Aragao and others 2018;
Berenguer and others 2021; dos Reis and others
2021). The spatial occurrence of forest fires on the
other hand was significantly related to land-use
intensity, soil texture, dry season length, and the
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Figure 3. a Distribution of the 23 study sites, each 100 km? underlying the results shown in panel c. Note that the
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types.

synchrony between flooding and precipitation
(Figure 1, S2, Table S1). Some of these factors are
well-known drivers of increased forest fire risk
(Flores and others 2017; Silveira and others 2020),
but our results highlight the additional roles of soil

texture and the interaction between flooding and
precipitation patterns for floodplain forests. Soil
texture affects many forest properties that in turn
influence fire risk, as well as forest recovery after
burning, which is further discussed below. Regions
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were flooding and precipitation cycles are, on
average, highly synchronous appear to be more
prone to burn (that is, where precipitation dry
seasons generally coincide with periods of low river
levels). Likewise, drought-induced forest fires ap-
pear less likely to occur when floodplains are
inundated (high asynchrony), allowing forests to
escape from fire, even when they are exposed to
climatological droughts. However, we do
acknowledge that the coarseness of the data used to
calculate flooding cycles may have led to high
inaccuracies (Figure S1) and that the precise role of
flood-precipitation synchrony warrants further
study.

Overall, the environmental variables explained
only 3% of the fire occurrence from 2001 to 2020,
which likely reflects the scattered nature of forest
fires, the role of microenvironmental conditions, as
well as the relatively short time period analyzed. In
addition, spatial variability of climate extreme
events (for example, exceptional droughts or
flooding) was not explicitly considered in our test
of the potential drivers of fire, while this has
strongly affected fire occurrence during the last
decades (Aragdo and others 2007; Gloor and others
2013; Barichivich and others 2018; Silveira and
others 2020).

Impact of Fire

The consequences of fire varied between floodplain
types, with forests on black-water floodplains
showing the slowest recovery rates compared to
forests on white- and clear-water floodplains (Fig-
ure 3). Slow recovery of black-water floodplain
forests after disturbances has been related to the
higher proportion of sand and low nutrient content
in the topsoil (Figure S3, S5), causing lower growth
rates compared to forests in the other major
floodplain types (Schongart and others 2005; Junk
and others 2015; Flores and others 2016; Flores and
others 2017; Carvalho and others 2021). Experi-
mental evidence indicates that slow recovery of
black-water forests after fire can also be related to
seed dispersal limitation (Flores and Holmgren
2021b), for instance due to changes in the com-
position of aquatic- (Lugo Carvajal and others
2023) and terrestrial animal communities (Ritter
and others 2012) observed in burned black-water
forests. Black-water floodplain forest may therefore
need decades to recover dense canopies that ex-
clude grasses and reduce flammability (Flores and
others 2016) and centuries to recover to a late-
successional forest state (Junk and others 2015).
Consequently, black-water floodplains remain in a

prolonged early successional stage after burning,
characterized by dense herbaceous vegetation and
a low density of young trees and shrubs (Flores and
others 2016). Such open vegetation can dry out
easily when drought conditions prevail (for exam-
ple, during El Nifio events; Figure 2), increasing the
risk of reburning. Indeed, we found that the per-
centage of areas that reburned at least once over
the period 2001-2020 was significantly higher in
black-water floodplains compared to clear- and
white-water floodplains. Our study thus provides
evidence that repeated fires are driving a vegetation
transition in black-water floodplain forests from
closed-canopy forests to open vegetation types.
Such fire traps determine vegetation transitions in
upland regions (for example, Hoffmann and others
2009; Oliveras and Malhi 2016) and here we show
that fire traps can also lead to state transitions in
one of the wettest regions of the world. Higher clay
content and nutrient status, and higher abundance
of animal dispersers, in clear- and white-water
floodplains on the other hand, promotes fast forest
recovery after burning, lowering the risk of recur-
rent burning.

Within floodplains forests, independent of the
river type, recovery time increases at lower eleva-
tion. The extended flooding period at low
topographies decreases the length of the tree
growing season (that is, the dry season) and as a
consequence lowers forest recovery rates (Resende
and others 2020). Low elevation sites also exhibit
the most specialized tree communities, including
many endemic species adapted to periods of
flooding lasting > 9 months (Junk and others
2015). Increasing fire perturbations could, there-
fore, impact the abundance of such highly-adapted
and often slow-growing species, such as the iconic
Eschweilera tenuifolia that may live up to 1000 years
(Resende and others 2020).

Limitations

Our estimations of forest recovery are likely very
conservative since we used the recovery of the
NDVI signal for a forest. Field observations indicate
that some fire scars in black-water floodplains can
be colonized relatively quickly by herbaceous veg-
etation (Flores and others 2016), reaching high
density and heights higher than 2 m. The leaf area
index of such vegetation cover may resemble NDVI
values of a reference forest site. Hence, the reported
forest recovery rates here are likely a considerable
overestimation of actual forest recovery rates.
Therefore, it is particularly noteworthy to realize
that although NDVI may overestimate recovery
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rates, on average 49% of the burned pixels in
black-water floodplains, did not recover after
15 years (Figure 3b), while this percentage was
18% and 27% in clear- and white-water floodplain
forests. It is unlikely that such a lack of forest
recovery in black-water floodplain forests (or in
any of the other river types) was a consequence of
land-use change, for example of forest clearing for
agricultural purposes. Our sampling sites were
carefully selected to avoid this issue and images
were manually checked to confirm land-use
change was absent, which can easily be identified
on remote sensing images by rectangular or
straight-lined disturbances, instead of more erratic
disturbance shapes.

Floodplains are highly heterogeneous habitats
(Junk and others 2011) and the use of only three
main floodplain forest types is, therefore, an over-
simplification of a complex reality. This is especially
true for white-water floodplains that cover the
greatest area across the Amazon, and in our rough
division (Figure S5) include many black-water
tributaries (Figure la). This implies that the range
of possible responses of white-water forests to fire
could be broader than we actually found. Fur-
thermore, even within true white-water flood-
plains, burning risk and recovery after burning may
vary spatially due to differences in climatic condi-
tions (with mean annual precipitation varying be-
tween < 1000 and over 4000 mm within the area
covered by white-water floodplain forests), soil
properties (Figure S5), and/or flooding regimes (for
example, Goulding and others 2003).

Future Directions

Floodplain ecosystems form a continuous network
that spreads across the core of the Amazon forest.
Increased floodplain fires and forest mortality
within this core could affect the resilience of the
system at larger scales, which is particularly the
case in black-water tributaries. Floodplain forests in
black-water tributaries may exhibit a relatively
early tipping point (Flores and others 2024); a
percentage of floodplain forest cover loss after
which positive feedbacks cause an irreversible shift
from a forest-dominated landscape to a landscape
consisting of low tree cover ecosystems, such as
white-sand savannas or open degraded areas that
are maintained by recurrent fire (Flores and others
2016; Flores and others 2017; Flores and Holmgren
2021a). Our study highlights that such a transition
is underway. Undoubtedly, this vegetation shift
will be associated with tremendous biodiversity loss
(for example, Ritter and others 2012; Junk and

others 2015; Lugo Carvajal and others 2023) and
alter the ecosystem services provided by black-
water floodplain forests, including sustaining of
commercial and subsistence fisheries (Barthem and
Goulding 2007). Furthermore, increasingly fire-
prone floodplains of black-water rivers can facili-
tate the spillover of fire into surrounding forests,
affecting the resilience of the wider Amazon forest
system at much larger spatial scales than the
floodplains themselves. An important conservation
priority in the Amazon basin is, therefore, to
monitor fires, especially in black-water floodplains.
Preventing forest fires in black-water floodplains is
likely needed to avoid pervasive vegetation shifts in
the near future (Flores and Holmgren 2021a; Flores
and others 2024). Such measures could include
promoting alternatives for fire-based agricultural
practices, in particular in drought years, as well as
an expansion of Protected Areas and Indigenous
Territories to include floodplains, which are now
often not included in such protected areas. In
addition, the development of Integrated Fire
Management programs by Amazonian countries
should recognize the higher flammability and
sensitivity of these floodplain ecosystems.
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