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ABSTRACT

Amazonian floodplains are the most extensive and

biodiverse riverine habitat on Earth. They currently

face unprecedented fire regimes as climate change

increases the frequency and intensity of drought.

While it is clear that fire impacts on floodplain

ecology can be severe, fire regimes and their effect

on forest ecosystems have yet to be fully examined

across the considerable spatial and ecological

heterogeneity of Amazonian floodplains. We used

the MODIS burned area product to map fire

occurrence across Amazonian floodplain forests.

Next, we assessed forest recovery after burning

using NDVI values from LandSat images. We

specifically focused on differences in wildfire

dynamics and forest recovery after burning across

floodplains associated with the three main river

types in the Amazon basin (black-, clear-, and

white-water rivers). We found that the occurrence

of forest fires in floodplains is strongly associated

with ENSO events and increases as land-use

intensity increases, dry seasons get longer, soils

become sandier, and the synchrony between

flooding and precipitation patterns increases. Post-

fire forest recovery is slower, and reburning risk is

higher, on nutrient-poor floodplains of black-water

rivers, compared to the nutrient-richer floodplains

of white- and clear-water rivers. Moreover, forest

recovery is significantly slower in regions flooded

for prolonged periods, regardless of river type. Our

results call for urgent prevention and monitoring of

floodplain forest fires across the Amazon basin,

with particular attention to black-water flood-

plains, to prevent large-scale vegetation shifts and

cascading ecosystem changes on biodiversity and

ecosystem services provided by floodplain forests.
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INTRODUCTION

Floodplain forests extend across � 14% of the

Amazon basin, and link terrestrial and aquatic

biodiversity hotspots throughout the largest river-

ine system on Earth (Wittmann and others 2006;

Householder and others 2024). These seasonally

flooded environments regulate the hydrological

cycle of northern South America (Gumbricht and

others 2017) and store globally relevant carbon

stocks. Fire has not, until recently, been considered

an important disturbance in Amazonian flood-

plains where conditions are typically wet and

unamenable to fire (but see Sanford and others

1985; Feldpausch and others 2022 for paleonto-

logical perspective). However, increasing drought

conditions and associated wildfires have impacted

even the wettest parts of the Amazon basin (Flores

and others 2014; Flores and others 2017; Carvalho

and others 2021). Wildfires in Amazonia, as in

other tropical rainforests, are strongly associated to

El Niño Southern Oscillation (ENSO) (Holmgren

and others 2001; Alencar and others 2011), when

conditions become sufficiently dry to facilitate fire

ignition (Alencar and others 2015). Although the

impact of these wildfires has received considerable

attention (Barlow and Peres 2008; Malhi and oth-

ers 2008; Cochrane and Barber 2009; Aragão and

others 2018), most research has focused on non-

floodplain or ‘‘upland’’ forests, that lie above the

upper limit of seasonal river flooding. Yet, the risks

and consequences of fire in floodplain forest are

likely fundamentally different from non-floodplain

forests (de Resende and others 2014; Almeida and

others 2016; Flores and others 2017). Evidence

suggests that floodplain forests across the Amazon

are less resilient to drought conditions and fire,

compared to upland forests, implying that they

could be the first to collapse if drying conditions

continue to increase (Flores and others 2017).

Generalizations on the risks and consequences of

fire in Amazonian floodplains are, however, com-

plicated by their heterogeneous nature, on both

small spatial scales (for example, associated with

topography and hence flooding duration) and lar-

ger spatial scales (for example, Amazonian sub-

basins and their geomorphologies). Across the

Amazon basin, nutrient and sediment concentra-

tions of rivers vary in important ways, and this may

result in different fire risks and very different tra-

jectories of floodplain forest regrowth after burn-

ing. For example, in nutrient poor black-water

floodplains (mainly distributed in the north-eastern

Amazon, but also along the tributaries of most sub-

basins; Figure 1a), forests typically have lower tree

density and stature, with tree heights around 15–

20 m (Junk and others 2015; Almeida and others

2016). Consequently, atmospheric drought condi-

tions can lead to strong desiccation in the under-

story (de Resende and others 2014; Almeida and

others 2016), which in combination with a thick

root mat (dos Santos and Nelson 2013), increases

fire risk (Flores and others 2016; Carvalho and

others 2021). Because black-water rivers have an

exceptionally low content of dissolved nutrients

(Furch 1984), carrying few sediments (Latrubesse

and Franzinelli 2005), nutrient loss after burning is

not replenished by floodwaters and soils quickly

lose fertility and become more sandy (Flores and

Holmgren 2021a). Black-water floodplain forests

may, therefore, regenerate very slowly after burn-

ing, and when exposed to repeated fires can tran-

sition to an open, white-sand savanna state (Flores

and Holmgren 2021a).

In other parts of the basin however, such as the

floodplains of white-water rivers, soils are annually

inundated by clay- and nutrient-rich water

(Goulding and others 2003; Junk and others 2012).

Flooding, therefore, regularly replenishes clay

minerals and nutrients; a mechanism that could

potentially facilitate rapid forest regrowth after a

disturbance. Floodplain forests of clear-water rivers

(Figure 1a) may show intermediate forest resilience

relative to black- and white-water floodplains.

The heterogeneity of floodplain forests has re-

mained largely overlooked in the analysis of fire

and its consequences in Amazonian floodplains.

Here, we assess floodplain fire regimes and forest

recovery after burning, examining these across a

greater degree of geographic and environmental

variation than hitherto considered. Within this

heterogeneity, including multiple environmental

and anthropogenic drivers across spatial scales, we

expect a wide spectrum of floodplain fire regimes

and responses that can provide a more complete

view of floodplain fire regimes and forest resilience.

Understanding these dynamics at a finer spatial

scale can better inform research priorities and guide

ecosystem management and conservation efforts in

the face of increasing fire risk.

METHODS

We performed two main analyses: (1) mapping of

fire occurrence in floodplains across the Amazon

basin, and relating fire occurrence to environ-

mental conditions, and (2) assessing vegetation

recovery after burning in the different floodplain

forest types (Table 1).
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Study Area

Floodplains in the Amazon were categorized into

three main types: white-, clear-, and black-water

river floodplains, using the results of Venticinque

and others (2016) and the freshwater ecoregions of

the world (Abell and others 2008) to define

watershed boundaries (Figure 1a).

We focused our analyses on the Amazon basin

north of 11�S for three main reasons. Firstly, dif-

ferent climatic teleconnections are associated with

droughts (and fires) above and below � 11�S (Or-

tega Rodriguez and others 2023). North of � 11/

12�S drought events are strongly associated with

ENSO events, whereas in the southern part of the

Amazon basin, a strong teleconnection to sea sur-

face temperature variability in the tropical Atlantic

Ocean also underlies drought and fire occurrence.

Secondly, because of higher human population

density and land-use change, fire occurrence is

very high in the southern part of the Amazon basin

(Alencar and others 2015) and this overrepresen-

tation may bias our focus on differences in fire re-

gimes across the main river types of the central

Amazon basin. Thirdly, south of 11 degrees large

regions are present that are dominated by more

open, and naturally more fire-prone, vegetation

types, such as the grasslands of the Llanos de

Moxos in Bolivia and Cerrado savannas in Brazil.

Including such areas would bias our results.

Figure 1. a Distribution of white, clear, and black-water rivers (based on data from Venticinque and others (2016)), and

vegetation type covering central Amazonian floodplains (based on data from Hess and others (2015)). The dashed

rectangle shows the study region. b Estimation of fire occurrence across Amazonian floodplains in the period 2000–2020.

An individual burned site is an area of 0.5–6.25 km2. Note that the scale bar does not translate to actual surface area

burned, since the estimations are extrapolated from a random sample of 200,000 floodplain points of 2.5 9 2.5 km2 each

(10,000 sampling point per year).

Table 1. Overview of Variables, Data Sources, and Sampling Scales

Response variable Fire occurrence and return frequency Forest recovery

Scale Basin Basin Local (within floodplains)

Response variable data source Modis Burned Area product LandSat NDVI and Avocado Algorithm

Sample size 200,000 points, 2.5 9 2.5 km2 each 23 sites, 100 km2 each

Timespan 2001–2020 2005–2010

Environmental (explanatory) variables: River type,

Dry season length,

Land-use intensity,

Soil texture,

Flooding-precipitation synchrony

River type Elevation

Resolution 0.1º Pixels of 30 m across

Data sources of explanatory variables can be found in the Methods section
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Mapping Fire Occurrence

We used monthly data of the MODIS Burned Area

Product at a 500 m resolution (MCD64A1 Version

6; Giglio and others 2018) to detect forest fires and

their potential drivers in Amazonian floodplains.

We validated the ability of the MODIS Burned Area

product algorithm to detect floodplain fires by

comparing detection rates to 75 fire scars of known

origin distributed across the basin (Flores and oth-

ers 2017). We found that � 50% of the known

burned areas were also found in the MODIS

Burned Area product; most of the remaining fire

scars were likely undetected because of their rela-

tively small size. We also compared the known fire

scars to fires detected by the MODIS Thermal

Anomalies product (MOD14A2) but found a much

lower detection rate. The latter result is possibly a

consequence of the nature of forest fires in flood-

plains, being commonly ground fires that may be

concealed in closed-canopy forests. However, such

fires can ultimately lead to tree mortality rates of

up to 90% (Flores and others 2014) and create

burned areas that are detected in the MODIS

Burned Area product. We hence choose the

MODIS Burned Area product in the first part of our

analyses. Although MODIS Burned Area captures

most large forest fires, our estimation of fire

occurrence is likely conservative given its relatively

coarse resolution. We assume that undetected fires

are not systematically biased with respect to the

main river types investigated (that is, that (un)de-

tention rates do not differ between the main river

types). As such our conservative fire detection

should not change observed differences between

the river types and our environmental inferences.

Because floodplain forests cover a large area

(� 250,000 km2), we used a sampling approach by

which � 25% of this area was randomly assessed

each year from 2001 to 2020. To this end, a total of

10,000 points of 2.5 9 2.5 km2 were randomly ta-

ken for each year (note that each year a different

set of random points was sampled). We used the

wetland mask of Hess and others (2015) to select

these 200,000 (= 10,000 points 9 20 years) sample

points in floodplains only. For each selected point,

we recorded if a fire occurred in any of the months

during the sample year, and how large the burned

area was (that is, how many 500 9 500 m pixels

burned). For all points for which a burned area was

detected, we used the full MODIS burned area time

series to assess: (1) if the area burned more than

once during 2001–2020 and (2) the mean time it

took to reburn. We used ANOVA to test for differ-

ences in burn frequency and mean reburn times

between the three main floodplain forest types.

Environmental Data

To assess drivers of spatial and temporal fire

occurrence, we used the following environmental

data:

(1) Dry season length, defined as the number of

months with mean monthly precipita-

tion £ 100 mm per year (averaged over the

period 1950–2020), and based on CRU TS4.05

precipitation data at 0.5� resolution (Jones and

others 2012);

(2) Land-use intensity using the Global Human

Modification of Terrestrial Systems data set, a

cumulative measure of the human modifica-

tion of terrestrial lands based on 13 anthro-

pogenic stressors (including human density,

mining and energy production, density of

roads, percentage of cropland, and livestock

density) and their estimated impacts for the

median year of 2016, at a 1-km resolution

(Kennedy and others 2020);

(3) Soil texture data (content of sand, in g/kg, at

15–30 cm soil depth) from ISRIC soil grids at a

250-m resolution (Poggio and others 2021).

(4) Flooding-precipitation synchrony; if droughts

occur during floodplain inundation periods,

forest fire risk could be strongly reduced. Thus,

the synchrony between the period of low pre-

cipitation (dry season) and floodplain inunda-

tion could be an important determinant of

floodplain fire occurrence. Floodplain inunda-

tion was estimated using GRACE Tellus satel-

lite data at 1º resolution, which measures

anomalies in the earth gravitational field that

are indicative of the distribution of water across

the planet (Landerer and Swenson 2012; Lan-

derer 2021). Previous studies have shown that

the annual hydrology of the Amazon basin is

clearly captured by GRACE (Tapley and others

2004). Yet, to better estimate river level fluc-

tuations for the floodplain pixels that are the

focus of our study, we used the scaling coeffi-

cients provided by Landerer (2021) to remove

the 300 km wide Gaussian filter that is stan-

dard applied to the data. We next used the

GRACE Tellus data from 2002 to 2020 to cal-

culate for each 1�91� pixel an average yearly

flood cycle at bimonthly intervals (the turn-

around time of Grace). Flooding at every time

interval is calculated as the mean over the 20-

year period of Grace measurements (Fig-

ure S1). Using river level data from Manaus,
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Brazil (Agência Nacional de Águas e Sanea-

mento Básico; ANA), we found that GRACE

Tellus data and observed river level fluctua-

tions strongly coincided (Figure S1a). To cor-

relate temporal flooding patterns with

precipitation, we used CRU TS4.05 data to

create a time series of mean monthly precipi-

tation from 2002 to 2020 for every pixel, at the

same temporal resolution of the GRACE data.

Annual patterns in flooding (GRACE Tellus)

and precipitation (CRU TS4.05) were corre-

lated, with the correlation coefficient indicat-

ing the level of synchrony between rainfall and

floodplain inundation: high positive correla-

tion coefficients (high synchrony) would sug-

gest that low precipitation seasons (dry season)

coincide with low-water periods, while strong

negative correlation (high asynchrony) would

suggest that low precipitation seasons occur

when floodplains are inundated (Figure S1b).

We also used the mean annual patterns to

determine the month of lowest precipitation

(that is peak of the dry season) and the month

of lowest river level. We next calculated the

delay (in months) between the two, for each

1�91� grid cell (Figure S1c).

(5) Lastly, ENSO3.4 based on the Hadley Centre

Sea Surface Temperature dataset (HadISST) at

1� resolution (Rayner and others 2003) was

used to assess the role of ENSO variability on

temporal fire frequency in floodplains.

Prior to data analyses, the spatial resolution of the

environmental datasets was converted to 0.1� res-

olution. Fire occurrence in each 0.1� grid cell was

calculated as the total number of burned points

detected in that 0.1� grid cell over the period 2001–

2020. We thus do not estimate the actual surface

area burned, since the estimations are extrapolated

from fire occurrence in the random sample of

200,000 floodplain points of 2.5 9 2.5 km2 each.

Instead we estimate where fires were concentrated

during the period 2001–2020. Inspection of scat-

terplots of fire occurrence and each of the envi-

ronmental conditions justified the use of ‘simple’

linear models. Regression models were therefore

used to assess the covariance between fire occur-

rence (in each 0.1� grid cell) and environmental

conditions (in each 0.1� grid cell). Model selection

was based on step-wise selection of environmental

variable using AIC. Variance inflation factors (VIFs)

were calculated to assess collinearity of predictor

values; VIF-values were below 2 for all predictors.

All analyses were performed in R; main packages

used were MODISTools (Hufkens 2023) and Raster

(Hijmans 2023).

Mapping Vegetation Recovery

We used the recently developed AVOCADO

(Anomaly Vegetation Change Detection) algorithm

(Decuyper and others 2022) to assess vegetation

recovery on burned areas. The AVOCADO algo-

rithm was used here to derive changes in the nor-

malized difference vegetation index (NDVI) data

from LandSat images relative to a predefined

(undisturbed) reference forest within each site. We

used NDVI instead of the normalized difference

moisture index (NDMI), because the latter is likely

unreliable in habitats that are flooded part of the

year (due to its sensitivity to moisture), which will

increase the probability of false recovery rates

during the flooding season (DeVries and others

2015).

Specifically, the AVOCADO algorithm assesses:

(1) the time a pixel’s NDVI values consistently drop

outside of the 95th percentile of NDVI values of a

predefined (mature) reference forest (Figure S2),

and (2) the time that pixel’s NDVI values are con-

sistently back at the level of the reference forest

(Figure S2d). Note that the following analyses were

thus based on the behavior in individual pixels

instead of entire fire scars. Because AVOCADO uses

all available LandSat images of a selected area

when making a robust and accurate forest phe-

nology baseline, it is labor intensive and compu-

tationally heavy. We therefore could not assess

forest recovery in each of the 2.5 9 2.5 km2 sample

point that was flagged as burned by the MODIS

Burned Area product. Instead, we selected 23 larger

sites of 100 km2 each, distributed in floodplain

forests of black- (n = 8), clear- (n = 7), and white-

water (n = 8) rivers (Figure S2). Site numbers were

chosen considering sufficient replication across the

basin and required computation time. Sites were

selected based on the fire maps of the MODIS

burned area product and hence concentrated in

regions where fires occurred. We did not select sites

located closely to large settlements or agricultural

frontiers, to avoid confounding effects of land-use

change. For each site, the avocado algorithm was

used to quantify forest disturbance and recovery.

More details on the method can be found in De-

cuyper and others (2022).

To assess forest recovery rates within and across

the sites, we focused on burned areas formed in

2005. We choose 2005 because it is the first large-

scale drought (and fire) year in the available time

series (Marengo and others 2008). Forest recovery
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rate was calculated as the time it took for the NDVI

data to return to, or exceed the most probable

forest reference baseline within the NDVI fre-

quency distribution of the reference forest (De-

cuyper and others 2022).

AVOCADO detects a disturbance as a drop in

NDVI. Such a drop can result from forest fires, but

other disturbances can reduce NDVI as well. For

example, white-water river channels are highly

dynamic and river meandering erodes banks and

forests. To avoid false disturbance detection by the

AVOCADO algorithm, in case a forest pixel became

a ‘‘water’’ pixel in subsequent LandSat images, we

carefully masked out all open waterbodies in the

LandSat images. To this end, we used the semi-

automatic classification plugin (SCP) in QGIS

(Congedo 2021). For each sampling site, we se-

lected a recent, cloud-free, LandSat image during

the low-water season. Next, the SCP was used to

classify pixels into five categories: water, grass,

shrubs, low-floodplain forest, and high floodplain

forest. All avocado results from pixels classified as

‘‘water’’ were removed from subsequent analyses.

The AVOCADO method also limits false detection

due to temporal flooding, because at least three

consecutive pixels need to be below the 95% CI

(disturbance) or reach the line of the highest fre-

quency of observed NDVI values (dark red line in

Figure 3d) in case of regrowth. Furthermore, a

‘‘water’’ pixel will result in NDVI values between 0

and -1, which is different from NDVI changes due

to forest loss, when values typically drop to around

0.2 (Figure S2). Riverbank erosion and seasonal

flooding effects are, therefore, unlikely to be de-

tected as a forest disturbance event. We tested for

differences in forest recovery (that is, mean forest

recovery rate and the mean percentage of burned

pixels not recovered in each of 23 study sites) be-

tween the main floodplain forest types using AN-

OVA.

Habitat Heterogeneity in Floodplains

Floodplain tree species differ in their ability to tol-

erate prolonged flooding, and within each of the

major floodplain forest types, the composition and

structure of the forest therefore changes along the

flooding gradient, that is with distance from the

main river channel (Householder and others 2024).

To assess the role of such habitat heterogeneity on

recovery rates, we used high-resolution elevation

data, since low elevation areas will experience the

longest flooding duration, while higher elevation

sites are only flooded shortly each year or only in

years with exceptional flooding height. The Global

Multi-resolution Terrain Elevation Data

(GMTED2010) was used to obtain elevation data at

7.5-arc-second (225 m) spatial resolution (Daniel-

son and Gesch 2011) for each 100 km2 sample site.

Elevation was standardized to allow for intersite

comparisons by subtracting the minimum site ele-

vation (assumed to represent river water level)

from all other elevations. Hence, our standardized

elevations are supposed to represent elevation

above river water levels. Mixed-effect models were

used to assess relationships between forest recovery

and elevation, as these can account for the nested

structure of the data by including each 100 km2 site

as random variable.

RESULTS

Fire Occurrence

Fire is a widespread disturbance across the Amazon

basin (Figure 1b), but its occurrence significantly

increases with land-use intensity, dry season

length, flood-precipitation synchrony, and the

proportion of sand in the soil (Table S1, Figure S3).

The annual burned area fluctuates substantially

among the three floodplain types, but averages

across years are quite similar regardless of flood-

plain type (Figure 2a). This however, does not

mean similar fire risk among floodplain, due to the

differences in floodplain extents: the area that

burns annually is proportionally larger clear-water

(0.67%) and black-water (0.47%) floodplains

compared to white-water (0.20%) floodplains

(Figure 2a). Temporal variability in fire occurrence

in Amazonian floodplains is significantly correlated

to sea surface temperature variability in the tropical

Pacific (that is, ENSO3.4 variability; Figure 2b). We

found no significant trends in the number of pixels

that burned, or their total area, from 2001 to 2020

in any of the three river types (Figure 2a).

Risk of Reburning

Of the 200,000 random sites assessed, 1837 sites

were flagged as burned. Using the full MODIS

Burned Area time series for these 1837 burned

sites, we found that the proportion of burned sites

(that is, pixels) that reburned at least once during

the period 2001–2020, was significantly higher in

black-water floodplain forests compared to white-

and clear-water floodplain forests (Figure 3b; AN-

OVA df = 1, F-value = 184, p-value < 0.0001). On

average reburning risk was 62–73% higher in the

black-water floodplains (mean: 76%) compared to

white-water floodplains (mean: 47%) and clear-

water floodplains (mean: 44%). We also found that
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the minimum time between fire events was sig-

nificantly shorter in black-water floodplain forests

compared white- and clear-water floodplain forests

(Figure 3b; ANOVA, df = 1, F-value = 95, p-va-

lue < 0.0001). On average the time for a pixel to

be detected as reburned was 60% shorter in black-

water floodplains (mean: 3.2 years) than in clear-

water floodplains (mean: 4.1 years) and white-

water floodplains (mean: 5 years).

NDVI Recovery After Burning

We found that NDVI recovery after burning is sig-

nificantly slower in black-water floodplains com-

pared to white- and clear-water floodplains

(ANOVA df = 2, F-value = 11.5, p = 0.0003; Fig-

ure 3b). On average, the NDVI recovery time was

20% and 35% slower in black-water floodplains

forests compared to white- and clear-water flood-

plain forests, respectively. In addition, the per-

centage of pixels that burned in 2005 and that did

not recover after 15 years was significantly higher

in black-water floodplains (mean = 49%) than in

clear-water (mean = 18%) and white-water

floodplains (mean = 27%; ANOVA df = 2, F-va-

lue = 6.9, p = 0.004; Figure 3b). We also found

that within floodplains, fire occurrence and post-

fire forest recovery time were significantly higher

in low elevation areas. This result was consistent

across all river types (Figure S4, Table S2).

DISCUSSION

We found that fire occurrence is widespread in the

Amazon floodplains but is concentrated in the

eastern part of the basin. Temporal variation in the

frequency of floodplain forest fires was significantly

related to ENSO (Figure 2b), corroborating results

from previous studies focusing on Amazonian

droughts and fires in the general (for example,

Fonseca and others 2017; Aragão and others 2018;

Berenguer and others 2021; dos Reis and others

2021). The spatial occurrence of forest fires on the

other hand was significantly related to land-use

intensity, soil texture, dry season length, and the

Figure 2. a Floodplain area that burned annually from 2001 to 2020 for each of the three main river types, as well as

across the entire basin (total; same as shown in panel b). Spatial division of river types in Figure S5a. Percentage calculated

as the total area that was detected in each year as burned, divided by the total surface area surveyed for each river type

(62.500 km2/year in total). b Total floodplain area burned annually from 2001 to 2020 (as a percentage of the total; black

line) covaries with El Niño-Southern Oscillation (ENSO 3.4 index averaged for the months January to March; red line).

Pearson’s correlation coefficient and associated p-value are given in panel b.
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synchrony between flooding and precipitation

(Figure 1, S2, Table S1). Some of these factors are

well-known drivers of increased forest fire risk

(Flores and others 2017; Silveira and others 2020),

but our results highlight the additional roles of soil

texture and the interaction between flooding and

precipitation patterns for floodplain forests. Soil

texture affects many forest properties that in turn

influence fire risk, as well as forest recovery after

burning, which is further discussed below. Regions

Figure 3. a Distribution of the 23 study sites, each 100 km2, underlying the results shown in panel c. Note that the

assignment of floodplain sites to white-, clear-, or black-water rivers is based on the water type of the main tributary river

in each of the sub-basins, but smaller tributaries may have a different water type (Figure 1a). b The proportion of areas

that burned at least twice during the period 2001–2020 and the mean minimum time to reburn across the three main river

types. c Mean NDVI recovery time and the percentage of burned areas that did not recover after 15 years across the three

main river types. Small letters in panels b and c indicate significant differences between floodplain forests in different river

types.
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were flooding and precipitation cycles are, on

average, highly synchronous appear to be more

prone to burn (that is, where precipitation dry

seasons generally coincide with periods of low river

levels). Likewise, drought-induced forest fires ap-

pear less likely to occur when floodplains are

inundated (high asynchrony), allowing forests to

escape from fire, even when they are exposed to

climatological droughts. However, we do

acknowledge that the coarseness of the data used to

calculate flooding cycles may have led to high

inaccuracies (Figure S1) and that the precise role of

flood-precipitation synchrony warrants further

study.

Overall, the environmental variables explained

only 3% of the fire occurrence from 2001 to 2020,

which likely reflects the scattered nature of forest

fires, the role of microenvironmental conditions, as

well as the relatively short time period analyzed. In

addition, spatial variability of climate extreme

events (for example, exceptional droughts or

flooding) was not explicitly considered in our test

of the potential drivers of fire, while this has

strongly affected fire occurrence during the last

decades (Aragão and others 2007; Gloor and others

2013; Barichivich and others 2018; Silveira and

others 2020).

Impact of Fire

The consequences of fire varied between floodplain

types, with forests on black-water floodplains

showing the slowest recovery rates compared to

forests on white- and clear-water floodplains (Fig-

ure 3). Slow recovery of black-water floodplain

forests after disturbances has been related to the

higher proportion of sand and low nutrient content

in the topsoil (Figure S3, S5), causing lower growth

rates compared to forests in the other major

floodplain types (Schöngart and others 2005; Junk

and others 2015; Flores and others 2016; Flores and

others 2017; Carvalho and others 2021). Experi-

mental evidence indicates that slow recovery of

black-water forests after fire can also be related to

seed dispersal limitation (Flores and Holmgren

2021b), for instance due to changes in the com-

position of aquatic- (Lugo Carvajal and others

2023) and terrestrial animal communities (Ritter

and others 2012) observed in burned black-water

forests. Black-water floodplain forest may therefore

need decades to recover dense canopies that ex-

clude grasses and reduce flammability (Flores and

others 2016) and centuries to recover to a late-

successional forest state (Junk and others 2015).

Consequently, black-water floodplains remain in a

prolonged early successional stage after burning,

characterized by dense herbaceous vegetation and

a low density of young trees and shrubs (Flores and

others 2016). Such open vegetation can dry out

easily when drought conditions prevail (for exam-

ple, during El Niño events; Figure 2), increasing the

risk of reburning. Indeed, we found that the per-

centage of areas that reburned at least once over

the period 2001–2020 was significantly higher in

black-water floodplains compared to clear- and

white-water floodplains. Our study thus provides

evidence that repeated fires are driving a vegetation

transition in black-water floodplain forests from

closed-canopy forests to open vegetation types.

Such fire traps determine vegetation transitions in

upland regions (for example, Hoffmann and others

2009; Oliveras and Malhi 2016) and here we show

that fire traps can also lead to state transitions in

one of the wettest regions of the world. Higher clay

content and nutrient status, and higher abundance

of animal dispersers, in clear- and white-water

floodplains on the other hand, promotes fast forest

recovery after burning, lowering the risk of recur-

rent burning.

Within floodplains forests, independent of the

river type, recovery time increases at lower eleva-

tion. The extended flooding period at low

topographies decreases the length of the tree

growing season (that is, the dry season) and as a

consequence lowers forest recovery rates (Resende

and others 2020). Low elevation sites also exhibit

the most specialized tree communities, including

many endemic species adapted to periods of

flooding lasting > 9 months (Junk and others

2015). Increasing fire perturbations could, there-

fore, impact the abundance of such highly-adapted

and often slow-growing species, such as the iconic

Eschweilera tenuifolia that may live up to 1000 years

(Resende and others 2020).

Limitations

Our estimations of forest recovery are likely very

conservative since we used the recovery of the

NDVI signal for a forest. Field observations indicate

that some fire scars in black-water floodplains can

be colonized relatively quickly by herbaceous veg-

etation (Flores and others 2016), reaching high

density and heights higher than 2 m. The leaf area

index of such vegetation cover may resemble NDVI

values of a reference forest site. Hence, the reported

forest recovery rates here are likely a considerable

overestimation of actual forest recovery rates.

Therefore, it is particularly noteworthy to realize

that although NDVI may overestimate recovery
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rates, on average 49% of the burned pixels in

black-water floodplains, did not recover after

15 years (Figure 3b), while this percentage was

18% and 27% in clear- and white-water floodplain

forests. It is unlikely that such a lack of forest

recovery in black-water floodplain forests (or in

any of the other river types) was a consequence of

land-use change, for example of forest clearing for

agricultural purposes. Our sampling sites were

carefully selected to avoid this issue and images

were manually checked to confirm land-use

change was absent, which can easily be identified

on remote sensing images by rectangular or

straight-lined disturbances, instead of more erratic

disturbance shapes.

Floodplains are highly heterogeneous habitats

(Junk and others 2011) and the use of only three

main floodplain forest types is, therefore, an over-

simplification of a complex reality. This is especially

true for white-water floodplains that cover the

greatest area across the Amazon, and in our rough

division (Figure S5) include many black-water

tributaries (Figure 1a). This implies that the range

of possible responses of white-water forests to fire

could be broader than we actually found. Fur-

thermore, even within true white-water flood-

plains, burning risk and recovery after burning may

vary spatially due to differences in climatic condi-

tions (with mean annual precipitation varying be-

tween < 1000 and over 4000 mm within the area

covered by white-water floodplain forests), soil

properties (Figure S5), and/or flooding regimes (for

example, Goulding and others 2003).

Future Directions

Floodplain ecosystems form a continuous network

that spreads across the core of the Amazon forest.

Increased floodplain fires and forest mortality

within this core could affect the resilience of the

system at larger scales, which is particularly the

case in black-water tributaries. Floodplain forests in

black-water tributaries may exhibit a relatively

early tipping point (Flores and others 2024); a

percentage of floodplain forest cover loss after

which positive feedbacks cause an irreversible shift

from a forest-dominated landscape to a landscape

consisting of low tree cover ecosystems, such as

white-sand savannas or open degraded areas that

are maintained by recurrent fire (Flores and others

2016; Flores and others 2017; Flores and Holmgren

2021a). Our study highlights that such a transition

is underway. Undoubtedly, this vegetation shift

will be associated with tremendous biodiversity loss

(for example, Ritter and others 2012; Junk and

others 2015; Lugo Carvajal and others 2023) and

alter the ecosystem services provided by black-

water floodplain forests, including sustaining of

commercial and subsistence fisheries (Barthem and

Goulding 2007). Furthermore, increasingly fire-

prone floodplains of black-water rivers can facili-

tate the spillover of fire into surrounding forests,

affecting the resilience of the wider Amazon forest

system at much larger spatial scales than the

floodplains themselves. An important conservation

priority in the Amazon basin is, therefore, to

monitor fires, especially in black-water floodplains.

Preventing forest fires in black-water floodplains is

likely needed to avoid pervasive vegetation shifts in

the near future (Flores and Holmgren 2021a; Flores

and others 2024). Such measures could include

promoting alternatives for fire-based agricultural

practices, in particular in drought years, as well as

an expansion of Protected Areas and Indigenous

Territories to include floodplains, which are now

often not included in such protected areas. In

addition, the development of Integrated Fire

Management programs by Amazonian countries

should recognize the higher flammability and

sensitivity of these floodplain ecosystems.
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Venticinque EM, Manzatto AG, Reis NFC, Terborgh J, Casula

KR, Costa FRC, Honorio Coronado EN, Monteagudo Mendoza

A, Montero JC, Feldpausch TR, Aymard GAC, Baraloto C,

Castaño Arboleda N, Engel J, Petronelli P, Zartman CE, Kill-

een TJ, Rincón LM, Marimon BS, Marimon-Junior BH,

Schietti J, Sousa TR, Vasquez R, Mostacedo B, do Dantas AD,

Castellanos H, Medeiros MBD, Simon MF, Andrade A, Ca-

margo JL, Laurance WF, Laurance SGW, Farias EDS, Lopes
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