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Abstract
Kolmogorov n-widths and Hankel singular values are two commonly used concepts 
in model reduction. Here, we show that for the special case of linear time-invariant 
(LTI) dynamical systems, these two concepts are directly connected. More specifi-
cally, the greedy search applied to the Hankel operator of an LTI system resembles 
the minimizing subspace for the Kolmogorov n-width and the Kolmogorov n-width 
of an LTI system equals its (n + 1)st Hankel singular value once the subspaces 
are appropriately defined. We also establish a lower bound for the Kolmorogov n-
width for parametric LTI systems and illustrate that the method of active subspaces 
can be viewed as the dual concept to the minimizing subspace for the Kolmogorov 
n-width.
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1 Introduction

Model reduction research has made great progress over the last two decades with 
major developments in many aspects ranging from linear to nonlinear and to
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parametric models, to data-driven model reduction, and more. The resulting theory
and algorithms were successfully employed in various applications, ranging from
inverse problems to shape optimization to uncertainty quantification (we refer the
reader to the recent surveys and books [2–5, 9, 20, 27] for further details).

Due to its wide range of applications, the model reduction research is carried out
by a diverse community, at times different groups using their own tools and language
to describe similar mathematical quantities.

The Hankel singular values, widely used in the systems and control theory com-
munity, and the Kolmogorov n-widths, widely used in the reduced basis community,
are two fundamental concepts in model reduction. A connection between the two has
been pointed out in [12, 13]. Even though in the earlier work [12] the subspaces were
properly identified, the subspace assumptions in the latter paper [13] seem to lead
to a contradicting conclusion (see Remark 1), thus requiring further inspection.
Therefore, we present the Hankel singular values and the Kolmogorov n-width con-
nection in a self-contained manner, by detailing the underlying subspaces and by
using a different proof (cf. Theorem 1 in Section 3). Further contributions are the
following:

– In Section 3, we show that optimal Hankel norm approximation yields a reduced
system that is optimal in the sense that it attains the Kolmogorov n-width
(Corollary 1).

– Theorem 2 and Remark 5 in Section 4 illustrate that for linear time-invariant sys-
tems, the method of active subspaces [10] can be understood as the dual concept
to the minimizing subspace for the Kolmogorov n-width.

– We give a lower bound for the Kolmorogov n-width for parametric linear time-
invariant system in Theorem 3 (see Section 5).

2 Problem setting

Given a closed and bounded subset W of a Hilbert space (W, 〈·, ·〉W ), called the set
of admissible inputs and the input space, respectively, and a further Hilbert space
(Y, 〈·, ·〉Y ), called the output space, the (physical) system under investigation is
described by an operator S

S : W → Y, w �→ y = S(w), (1)

where w ∈ W ⊆ W and y ∈ Y denote, respectively, the inputs and outputs of
the operator S. The usual assumption in model reduction is that we are interested in
evaluating S for many input values w and that the evaluation of S(w) is (compu-
tationally) demanding. Therefore, we would like to approximate S with a surrogate
operator

Sn : W → Y, w �→ yn = Sn(w), (2)

such that
∥
∥y − yn

∥
∥
Y = ‖(S − Sn)(w)‖Y is small for all w ∈ W and that evaluations

of Sn are computationally cheaper. Hereby, ‖·‖Y denotes the norm induced by the



inner product 〈·, ·〉Y . In many applications, the operator S in (1) is given implicitly
in terms of a (partial) differential-algebraic equation of the form

⎧

⎪⎨

⎪⎩

0 = F(t, z(t), ż(t), . . . , z(k)(t), p, u(t)),

y(t) = g(t, z(t), p, u(t)),

z(t0) = z0(p),

(3)

for some k ∈ N, where the state variable z is, for all t , an element of some Banach
space (Z, ‖ · ‖Z )—called the state space—and we use the convention ż := d/dt z.
The variable z0 ∈ Z is called initial condition and the input spaceW is separated into
a (time-independent) parameter space P and a control space U (i. e. W = P × U ).
Notice that in some cases, the state z itself is of interest, in which case one can use
as output function the identity on the state space, i. e.,

g : R × Z × P × U → Z, (t, z, p, u) �→ z.

A special case of (3) is parametric linear time-invariant (pLTI) dynamical systems
of the form

Σ(p) :

⎧

⎪⎨

⎪⎩

E(p)ż(t) = A(p)z(t) + B(p)u(t),

y(t) = C(p)z(t),

z(0) = z0(p),

(4)

where E,A : P → R
N×N , B : P → R

N×m, and C : P → R
p×N are smooth

functions and E(p) is assumed to be nonsingular for each p ∈ P . In principle,
E(p), A(p), B(p), and C(p) could be operators on infinite dimensional spaces. In
practice, however, model reduction usually starts with a finite dimensional, albeit
large-scale state-space, which is usually obtained by a semi-discretization of the infi-
nite dimensional space. The resulting large-scale finite-dimensional system (4) is
often referred to as the truth model. We assume that the truth model is accurate
enough and that its approximation error is negligible with respect to the model reduc-
tion error to follow. If E,A,B,C in (4) are constant, i.e., independent of p, we call
(4) a linear time-invariant (LTI) system.

A unifying feature of many model reduction schemes is that they can be formu-
lated in a projection framework. Hence, the construction of Sn is mainly based on
identifying a smaller linear subspace Yn ⊆ Y that allows a good approximation of
S(W), which is called the (parametrized) manifold of solutions [22]. To simplify
the notation, we write Yn ≤ Y to denote that Yn is a subspace of Y . Subsequently,
the operator S is projected onto this linear subspace. A natural question to ask is
what the best/optimal subspace of a given dimension is, where the optimality is
quantified by means of the minimal worst-case approximation error. Mathematically,
this is described by the notion of so-called Kolmogorov n-widths [21], denoted by
dn(S(W)):

dn(S(W)) := inf
Yn≤Y

dim(Yn)≤n

d(Yn,S(W)),

where d(Yn,S(W)) is the largest distance between any point in S(W) and the
subspace Yn, defined as

d(Yn,S(W)) := sup
y∈S(W)

inf
yn∈Yn

∥
∥y − yn

∥
∥
Y . (5)



Note that the supremum in (5) may not be finite if S(W) is unbounded. The situa-
tion is illustrated in Fig. 1. The length of the dashed line represents the distance from
Yn to S(W). Minimizing that distance over all subspaces results in the dotted line,
whose length is the Kolmogorov n-width. Notice that we have used orthogonal pro-
jections onto Yn, a technique that we use later in our derivations as well. Indeed, in
a Hilbert space setting the Kolmogorov n-width can be equivalently formulated via
linear projectors and there always exists a minimizing subspace Ŷn, i. e., we have

dn(S(W)) = d(Ŷn,S(W)).

These results and relations to further n-widths are presented in the monograph [25].
In addition, for special classes of problems, one can show that the Kolmogorov n-
widths decay exponentially [23, 24, 27], thus enabling model reduction to succeed.
For the sake of completeness, let us mention that the n-widths do not always decay
exponentially (for an example, we refer to [8]).

The question at hand is how to construct for each n ∈ N a subspace Yn of dimen-
sion at most n such that dn(S(W)) ≈ d(Yn,S(W)). A standard approach employed
in the reduced basis community is the greedy construction [17, 19, 26], which itera-
tively enlarges the subspace Yn such that the worst approximation error is minimized.
More precisely, let

e(S,Yn,W) := sup
w∈W

∥
∥(S − πYn

◦ S)(w)
∥
∥
Y

denote the worst approximation error for the projection of S onto Yn where πYn

denotes the orthogonal projection onto Yn. A sequence (y1, . . . , yn) ∈ Yn is called
a greedy sequence if it satisfies

inf
φi∈Y

e(S, span{y1, . . . , yi−1, φi},W) = e(S, span{y1, . . . , yi},W), (6)

Fig. 1 Schematic illustration of the Kolmogorov n-width: The dashed line marks the maximal distance
d(Yn,S(W)) of the subspace Yn to the set S(W), while the dotted line indicates the distance of the
subspace Ŷn to S(W). Moreover, the dotted line represents the smallest distance of all subspaces with this
dimension, i.e., the Kolmogorov n-width



for i = 1, . . . , n. In a practical implementation, the true error e must be replaced by
a cheap-to-evaluate error estimator. Moreover, W is replaced by a discrete sampling
of W [27, 28] or the greedy search can be formulated as a sequence of adaptive
model-constrained optimization problems [7]. It is clear that such a (weak) greedy
search might not be optimal. However, for special cases, it is proven that the error
for the subspace spanned by a greedy sequence converges at a rate similar to that
of the Kolmogorov n-widths [6]. Moreover, convergence rates for the POD-greedy
algorithm are also established [18]. One of our main results here, mainly Theorem 1,
illustrates that the greedy search applied to the Hankel operator for an LTI system
resembles the minimizing subspace for the Kolmogorov n-width.

3 Linear time-invariant dynamical systems

When the matrix functions in (4) are constant over the parameter space or if we
are only interested in controlling system (4) for a given parameter, the underlying
dynamics simplifies to the LTI system

Σ : ż(t) = Az(t) + Bu(t), y = Cz(t), (7)

with A ∈ R
N×N , B ∈ R

N×m, and C ∈ R
p×N . To simplify the notation, we drop

the explicit dependency of (7) on the E matrix (cf. (4)), which was assumed to be
nonsingular; thus, E is incorporated into A and B. As commonly done in the con-
trol literature in analyzing the input-to-output mapping, we assume a zero initial
condition, i. e., z(0) = 0. Further, we assume that the system Σ is asymptotically sta-
ble, i.e., all the eigenvalues of A have negative real parts. Then, the input-to-output
mapping is given by the convolution integral

y(t) = (Su)(t) :=
∫ t

0
h(t − s)u(s)ds, (8)

where h(t) := C exp(tA)B is the impulse response of the system.
Before we compute the Kolmogorov n-widths in this setting, we make the follow-

ing observations. IfW is a subspace ofW , then S(W) is a subspace of Y , and hence
the Kolmogorov n-widths are either zero or infinity, thus giving no valuable informa-
tion. Therefore, we need to assume that the set of admissible inputs W is bounded,
which results in S(W) being bounded. Moreover, Proposition 1.2 in [25] states that
in this setting, dn(S(W)) converges to zero if and only if the closure of S(W) is
compact; thus, we need to assume that S is compact. Unfortunately, the convolution
operator in (8) is not compact in general [2, Section 5.2]. This issue is resolved by
modifying the domain and co-domain of the convolution operator to obtain the so-
called Hankel operator H that maps past inputs to future outputs. More precisely, we
have

H : L2(−∞, 0;Rm) → L2(0, ∞;Rp), (Hu)(t) =
∫ 0

−∞
h(t − s)u(s)ds. (9)

The Hankel operatorH is a finite-rank operator of at most rank N , and thus in partic-
ular compact (see [2, Section 5.4] or [14, Section 5.1]). The singular values ofH can



be computed as the square roots of the eigenvalues of the products of the Gramians
PQ, which solve the Lyapunov equations

AP + PAT + BBT = 0 and AT Q + QA + CT C = 0. (10)

The singular values of the Hankel operator, called the Hankel singular values, play
a fundamental role in control theory, especially in model reduction (see for instance
[2, Theorem 7.9] and [16]). We denote the ith Hankel singular value of the sys-
tem Σ by σi(Σ) using the convention to sort them in decreasing order, that is
σi(Σ) ≥ σi+1(Σ) for i = 1, . . . , N − 1. The Hankel singular values are input-
output invariant; i.e., they do not depend on a specific state-space transformation;
they provide a lower and an upper bound for the L2-induced norm of the underlying
convolution operator; and they provide a measure of how easy or hard the dynamical
system (7) is to reduce. The faster σi’s decay, the easier to reduce the system (7). The
Hankel-norm ‖ · ‖H of Σ is the L2-induced norm of the Hankel operator H and it is
well-known (cf. [2, Proposition 5.13]) that it equals the largest Hankel singular value:

‖Σ‖H = σ1(Σ). (11)

Since the Hankel operator is compact, it possesses a singular value decomposition
(SVD) of the form

Hu =
N

∑

i=1

σi(Σ)
〈

u,f i

〉

W gi .

where the orthonormal sets {f i} and {gi} can be computed explicitly in terms of the
eigenvectors of PQ (see [2, Section 5.4.2]): Let xi ∈ R

n \ {0} satisfy
PQxi = (σi(Σ))2 xi for i = 1, . . . , N .

Then, we have

span{g1, . . . , gn} = span
{

CeAtxi | i = 1, . . . , n
}

and (12)

span{f 1, . . . , f n} = span

{
1

(σi(Σ))2
BT e−AT tQxi , | i = 1, . . . , n

}

. (13)

Our main result establishes the connection between the SVD of the Hankel operator,
the Kolmogorov n-widths, and the greedy search.

Theorem 1 Let Σ = (A, B, C) be an asymptotically stable dynamical system with
the Hankel operator H = ∑N

i=1 σi(Σ)
〈·, f i

〉

W gi , W := L2(−∞, 0;Rm) with
standard inner product 〈·, ·〉W , and let

W := {u ∈ W | ‖u‖W ≤ 1} (14)

be the unit ball in the input spaceW . Then, (g1, . . . , gN) is a greedy sequence and

dn(H(W)) = d(span{g1, . . . , gn},H(W)) = σn+1(Σ), (15)

for n = 1, . . . , N .



Proof Let Yn denote an n-dimensional subspace of Y . Since L2(0, ∞;Rp) is a
Hilbert space, we have for y ∈ Y

inf
yn∈Yn

∥
∥y − yn

∥
∥
Y = ∥

∥y − πYn
y
∥
∥
Y ,

where πYn
is the orthogonal projection onto Yn. Thus,

dn(H(W)) = inf
Yn≤Y

dim(Yn)=n

sup
y∈S(W)

∥
∥y − πYn

y
∥
∥
Y = inf

Yn≤Y
dim(Yn)=n

e(H,Yn,W),

which shows (since H is linear) that the minimizing subspace for the Kolmogorov
n-width and the subspace generated by the greedy sequence in (6) coincide.

It remains to show that dn(H(W)) = σn+1. For general compact operators, a proof
of this fact is given in [25, Chapter IV]. Here, to explicitly highlight how the input
and output spaces appear and to be able to use it later in proving Theorem 2, we give a
version, which follows the Schmidt-Eckart-Young-Mirsky theorem [2, Theorem 3.6]
for optimal low-rank approximation in the finite dimensional case.

Recall that in our setting, the Hankel operator is a finite rank operator. Define
F := span{f 1, . . . , f N } and let F⊥ be its orthogonal complement such that
W = F ⊕ F⊥. Notice that we have H(F⊥) = {0}. Then, dim(πYn

H(W)) ≤ n and
there exists

w ∈ ker(πYn
H) ∩ span{f 1, . . . , f n+1} (16)

with ‖w‖W = 1; thus w ∈ W. We then obtain

e(H,Yn,W)2 ≥ ∥
∥(H − πYn

◦ H)w
∥
∥2
Y = ‖Hw‖2Y =

∥
∥
∥
∥
∥

n+1
∑

i=1

σi(Σ)
〈

w, f i

〉

W gi

∥
∥
∥
∥
∥

2

Y

=
n+1
∑

i=1

σi(Σ)
∥
∥
〈

w, f i

〉

W gi

∥
∥2
Y ≥ σn+1(Σ)2

n+1
∑

i=1

| 〈w, f i

〉

W |2

= σn+1(Σ)2,

yielding dn(H(W)) ≥ σn+1(Σ). Choosing Yn = span{g1, . . . , gn}, on the other
hand, yields

πYn
H =

n
∑

i=1

σi(Σ)
〈·, f i

〉

W gi ,

and hence

e(H, span{g1, . . . , gn},W)2 = sup
w∈W

∥
∥(H − πYn

◦ H)w
∥
∥2
Y

= sup
w∈W

∥
∥
∥
∥
∥
∥

N
∑

i=n+1

σi(Σ)
〈

w, f i

〉

W gi

∥
∥
∥
∥
∥
∥

2

Y

= sup
w∈W

N
∑

i=n+1

σi(Σ)2| 〈w, f i

〉

W |2.



Using

N
∑

i=n+1

σi(Σ)2| 〈w, f i

〉

W |2 ≤ σn+1(Σ)2 sup
w̃∈W

N∑

i=n+1
| 〈w̃, f i

〉

W |2 ≤ σn+1(Σ)2

with equality for w = f n+1, we obtain e(H, span{g1, . . . , gn},W) = σn+1. Thus,
we have

dn(H(W)) = σn+1(Σ),

which completes the proof.

Let us highlight the results of Theorem 1 with a small toy example.

Example 1 Consider the dynamical system (7) with

A =
⎡

⎢
⎣

− 1
6 − 1

5 − 1
4

− 1
5 − 1

4 − 1
3

− 1
4 − 1

3 − 1
2

⎤

⎥
⎦ , B =

⎡

⎢
⎣

1

1

1

⎤

⎥
⎦ , and CT =

⎡

⎢
⎣

1

1

1

⎤

⎥
⎦ .

It is easy to see that the matrices P := Q := diag(3, 2, 1) ∈ R
3×3 satisfy the

Lyapunov Eqs. 10, and thus the Hankel singular values are σ1(Σ) = 3, σ2(Σ) = 2,
and σ3(Σ) = 1. Following Theorem 1, we thus have

d1(H(L2(−∞, 0;R))) = 2 and d2(H(L2(−∞, 0;R))) = 1.

Note that (12) can be used to compute the minimizing subspaces.

Remark 1 Theorem 1 seems to contradict a result from [13], where the author claims
(cf. [13, Theorem 1]) that

dn(H(L2(−∞, 0;Rm))) = σn+1(Σ) (17)

for an asymptotically stable LTI system Σ . However, since the Hankel operator H
is linear, the set H(L2(−∞, 0;Rm)) is a linear subspace, and thus the Kolmogorov
n-widths are either infinity or zero, which shows that (17) cannot be true.

Even with the knowledge of the minimizing subspace Ŷn := span{g1, . . . , gn},
it is, computationally, a nontrivial task to determine an explicit state-space repre-
sentation Σn = (An, Bn, Cn) of πŶn

H. This issue was resolved by Glover [16]
who developed a computational procedure for constructing πŶn

H. Together with the
Adamjan-Arov-Krein theorem [1], this implies the following result.

Corollary 1 Let the assumptions and definitions be as in Theorem 1. Then,

dn(H(W)) = inf
Σ̃ asym. stable
dim(Σ̃)≤n

‖Σ − Σ̃‖H , (18)

where W denotes the unit ball in the input space W as defined in (14).

Remark 2 Even though Theorem 1 is based on the finite-rank Hankel operator, model
reduction via optimal Hankel norm approximation has a direct implication in terms



of the original convolution operator; in the sense that it provides a lower and an upper
bound for the L2-induced norm of the convolution operator of the error system, see
for instance [2, Sections 5.7 and 7.2] and [16].

Remark 3 As already mentioned in the proof of Theorem 1, it suffices to assume that
H is a compact operator to proof that dn(H(W)) = σn+1(Σ) (cf. [25, Chapter IV]).
As an immediate consequence, Theorem 1 generalizes to the infinite-dimensional
case, whenever the Hankel operator is compact. This is for instance the case, if the
impulse response is an L1 function [11, Chapter 8].

Remark 4 Corollary 1 implies that for any asymptotically stable dynamical system
Σ̃ with dim(Σ̃) ≤ n, one obtains ‖Σ − Σ̃‖H ≥ σn+1, in direct agreement with
[16, Lemma 7.1]. Since in addition the Hankel norm is also a lower bound for the
H∞ norm [2, Chapter 5], we observe that the Kolmogorov n-widths for the Hankel
operator are also a lower bound for the model reduction error for the convolution
operator S.

4 Connection to active subspaces

Instead of looking at the best approximation of the image of S in terms of a linear
subspace, we can also ask for the best approximation of the input space of S in terms
of a low-dimensional subspace, which leads to the notion of the so-called active
subspace (see [10] and the references therein). In other words, the active subspace
describes the important directions in the input space W . More precisely, we call an
n-dimensional subspace Ŵn ≤ W an active subspace if it satisfies

dn
A(S,W) := sup

w∈W
‖S(w) − S(πŴnw)‖Y

= inf
Wn≤W

dim(Wn)≤n

sup
w∈W

∥
∥S(w) − S(πWn

w)
∥
∥
Y , (19)

where πWn
denotes the orthogonal projection onto Wn. Having identified an active

subspace means that the computational cost of a parameter study inW can be reduced
by performing the parameter study in πŴnW. Note that similar to the minimiz-
ing subspace for Kolmogorov n-widths, in practical applications, the minimization
problem in (19) is not resolved exactly but only approximately [10]. As for the Kol-
mogorov n-widths, the active subspace for the Hankel operator restricted to the unit
ball can be computed exactly, as the following result shows.

Theorem 2 Let the assumptions and definitions be as in Theorem 1. Then, the n-
dimensional active subspace is given by Ŵn = span{f 1, . . . , f n} with worst-case
approximation error dn

A(H,W) = σn+1(Σ).

Proof The proof follows similarly to that of Theorem 1; thus, we only give a brief
sketch. LetWn be an n-dimensional subspace ofW and letW⊥

n denote its orthogonal



complement. Then, there exists w ∈ W⊥
n ∩ span{f 1, . . . , f n+1} with ‖w‖ = 1, and

thus, ‖H(w − πWn
w)‖2Y ≥ σn+1(Σ)2, which shows that dn

A(H,W) ≥ σn+1(Σ).
Conversely, the choice Wn = span{f 1, . . . , f n} yields the inequality
‖H(w − πWn

w)‖2Y ≤ σn+1(Σ)2 with equality for w = f n+1. Thus, the active
subspace is given by Ŵn = span{f 1, . . . , f n} with approximation error
dn
A(H,W) = σn+1(Σ)2.

Example 2 Continuing with Example 1, we observe

d1
A(H, L2(−∞, 0;R)) = 2 and d2

A(H, L2(−∞, 0;R)) = 1.

The active subspace can be computed via (13).

Remark 5 Since the vectors f i can be computed as the minimizing subspace for the
dual system Σ∗ = (−AT , −CT , BT ), we can interpret the active subspace as the
dual concept of the minimizing subspace for the Kolmogorov n-width. Hence, the
Hankel operator and the greedy selection procedure can be seen as the linking theory
between Kolmogorov n-widths and active subspaces.

5 Parametric LTI systems

As expected, the analysis for the pLTI case in (4) is more involved than for the LTI
case. As in Section 3, we assume E(p) = IN for all p ∈ P, where IN denotes the
N-dimensional identity matrix. Let U := L2((−∞, 0],Rm), assume that the control
variable u is an element of the unit ball

U := {u ∈ U | ‖u‖U ≤ 1},
and that the parameter p varies in a compact parameter set P ⊆ P . In particular, we
set W = P × U with norm

‖(p, u)‖W = ‖p‖P + ‖u‖U .
For each p ∈ P, the Hankel operator H(p) is given by

(H(p, u))(t) =
∫ 0

−∞
h(p, t − s)u(s)ds

with h(p, t) = C(p) exp(tA(p))B(p). We are interested in the Kolmogorov n-width
dn(H(P,U)). Since for the constant parameter case we needed to assume that the
system is asymptotically stable, we assume that (4) is asymptotically stable for each
p ∈ P. This set-up leads to our final result.

Theorem 3 Let Y = L2((−∞, 0],Rp), U = L2([0, ∞),Rm), and consider the
asymptotically stable parametric LTI system Σ(p) = (E(p), A(p), B(p), C(p))

as in (4) with E(p) = IN for all p ∈ P and Hankel operator H. Assume that



P is compact; the Hankel singular values σi(Σ(p)) are continuous on P, and set
U := {u ∈ U | ‖u‖U ≤ 1}. Then,

dn(H(P,U)) ≥ max
p∈P

σn+1(Σ(p)). (20)

Proof Let Yn denote a subspace of Y with dimension n ∈ N and Y⊥
n its orthogonal

complement (with respect to the standard inner product in Y , which we denote with
〈·, ·〉Y ). Fix p ∈ P and consider y ∈ H(p,W), yn ∈ Yn and x ∈ Y⊥

n . Then, we
obtain

∥
∥y − yn

∥
∥2
Y = ∥

∥πYn
y − yn + (

IdY −πYn

)

y
∥
∥2
Y ≥ ∥

∥
(

IdY − πYn

)

y
∥
∥2
Y ,

〈y, x〉Y = 〈(

IdY − πYn

)

y, x
〉

Y ≤ ∥
∥
(

IdY − πYn

)

y
∥
∥
Y ‖x‖Y ,

and hence

inf
yn∈Yn

∥
∥y − yn

∥
∥
Y = sup

x∈Y⊥
n \{0}

〈y, x〉Y
‖x‖Y .

Thus, we can reformulate the Kolmogorov n-width as

dn(H(P,W)) = inf
Yn≤Y

dim(Yn)=n

sup
y∈H(P,W)

inf
yn∈Yn

∥
∥y − yn

∥
∥
Y

= inf
Yn≤Y

dim(Yn)=n

sup
x∈Y⊥

n \{0}
sup

y∈H(P,W)

〈y, x〉Y
‖x‖Y

= inf
Yn≤Y

dim(Yn)=n

sup
x∈Y⊥

n \{0}
sup

(p,u)∈P×W

〈H(p)u, x〉Y
‖x‖Y

= inf
Yn≤Y

dim(Yn)=n

sup
x∈Y⊥

n \{0}
sup

(p,u)∈P×W

〈u,H(p)∗x〉W
‖x‖Y ,

where H(p)∗ denotes the adjoint operator of H(p). Due to the definition of W, we
have

sup
u∈W

〈u,H(p)∗x〉W
‖x‖Y = ‖H(p)∗x‖W

‖x‖Y =
√〈H(p)H(p)∗x, x〉Y

‖x‖Y
and thus

dn(H(P,W)) = inf
Yn≤Y

dim(Yn)=n

sup
p∈P

sup
x∈Y⊥

n \{0}

√〈H(p)H(p)∗x,x〉Y
‖x‖Y

≥ sup
p∈P

inf
Yn≤Y

dim(Yn)=n

sup
x∈Y⊥

n \{0}

√〈H(p)H(p)∗x,x〉Y
‖x‖Y .

SinceH(p) is compact for every p, so isH(p)H(p)∗ and from the Courant-Fischer-
Weyl min-max principle for self-adjoint compact operators (cf. [29]), we obtain

dn(H(p,W)) ≥ √

λn+1(H(p)H(p)∗) = σn+1 (Σ(p)) .



Remark 6 The continuity of the Hankel singular values with respect to the parameter
p can be guaranteed if we assume that A, B, and C are holomorphic on the logarith-
mically convex Reinhardt domain P (see [30] for further details). Theorem 3 reveals
if only a non-parametric approximation basis (a global basis) is employed for reduc-
ing a parametric LTI dynamical system, one can only obtain a lower bound for the
Kolmogorov n-width. In general, to attain this lower bound, one will need to use a
parametrically varying basis.

6 Summary and outlook

In this paper, we have illustrated a direct connection between the Hankel singular
values and the Kolmogorov n-widths for LTI systems. For parametric LTI systems,
the same analysis has lead to a lower bound for the Kolmorogov n-width. We also
showed that the method of active subspaces can be considered as the dual concept to
the minimizing subspace for the Kolmogorov n-width. Extensions of these results to
more general cases such as nonlinear dynamical systems will be of interest. Although
there is a nonlinear version of the Hankel operator [15], the associated Hankel singu-
lar values depend on the state of the system thus posing additional challenges. Also,
it will be interesting to investigate further if the connections established here can lead
to an approximate, but numerically more feasible, implementation of optimal Han-
kel norm approximation. Finally, the systems theoretical perspective can lead to new
approaches for the analysis of active subspaces.
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