KIT | KIT-Bibliothek | Impressum | Datenschutz

Advances in Battery Modeling and Management Systems: A Comprehensive Review of Techniques, Challenges, and Future Perspectives

Madani, Seyed Saeed; Shabeer, Yasmin ; Nair, Ananthu Shibu; Fowler, Michael; Panchal, Satyam; Ziebert, Carlos ORCID iD icon 1; Chaoui, Hicham ; Dou, Shi Xue; See, Khay; Mekhilef, Saad; Allard, François
1 Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Energy storage systems (ESSs) and electric vehicle (EV) batteries depend on battery management systems (BMSs) for their longevity, safety, and effectiveness. Battery modeling is crucial to the operation of BMSs, as it enhances temperature control, fault detection, and state estimation, thereby maximizing efficiency and preventing malfunctions. This paper thoroughly examines the most recent advancements in battery and BMS modeling, including data-driven, thermal, and electrochemical methods. Advanced modeling approaches are explored, including physics-based models that incorporate mechanical stress and aging effects, as well as artificial intelligence (AI)-driven state estimation. New technologies that facilitate data-driven decision-making, real-time monitoring, and simplified systems include digital twins (DTs), cloud computing, and wireless BMSs. Nonetheless, there are still issues with cost optimization, cybersecurity, and computing efficiency. This study presents key advancements in battery modeling and BMS applications, including defect diagnostics, temperature management, and state-of-health (SOH) prediction. A comparison of machine learning (ML) methods for SOH prediction is given, emphasizing how well neural networks (NNs) and transfer learning function with real-world datasets. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000187457
Veröffentlicht am 24.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2313-0105
KITopen-ID: 1000187457
HGF-Programm 38.02.02 (POF IV, LK 01) Components and Cells
Erschienen in Batteries
Verlag MDPI
Band 11
Heft 11
Seiten 426
Vorab online veröffentlicht am 20.11.2025
Schlagwörter battery management systems, artificial intelligence, machine learning, digital twins, energy storage systems, cloud and IoT integration, lithium-ion batteries
Nachgewiesen in OpenAlex
Dimensions
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page