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Abstract

Particle-based kinetic Monte Carlo simulations of neutral particles is one of the major compu-
tational bottlenecks in tokamak scrape-off layer simulations. This computational cost comes from
the need to resolve individual collision events in high-collisional regimes. However, in such regimes,
one can approximate the high-collisional kinetic dynamics with computationally cheaper diffusion.
Asymptotic-preserving schemes make use of this limit to perform simulations in these regimes, with-
out a blow-up in computational cost as incurred by standard kinetic approaches. One such scheme
is Kinetic-diffusion Monte Carlo. In this paper, we present a first extension of this scheme to the
two-dimensional setting and its implementation in the Eiron particle code. We then demonstrate
that this implementation produces a significant speedup over kinetic simulations in high-collisional
cases.

1 Introduction

Particle-based, kinetic Monte Carlo simulation is a key component in modeling of neutral particles in the
tokamak scrape-off layer [3]. The EIRENE code [I8] is widely used to perform such simulations, as part of,
e.g., the SOLPS-ITER software [22]; however, we note the DEGAS code [20] as a widely used alternative.
A drawback of kinetic Monte Carlo simulation is that it requires the resolution of individual collision
events at the particle level. Resolving all of these collisions can become computationally infeasible,
especially in high-collisional regimes. Mathematically, it is known that one can approximate kinetic
models by drift-diffusion type models in this regime, assuming a diffusive scaling [I3], thus avoiding the
need to resolve all collisions.

A variety of hybrid approaches exist that combine kinetic simulation with diffusive simulation [3],
including approaches that combine Monte Carlo simulation with deterministic methods, e.g. [2,[8]. How-
ever, we make use of asymptotic-preserving Monte Carlo schemes (APMC) [15, 5], which work fully at
the Monte Carlo level. Specifically, we make use of the KDMC method [I5]. We note that these schemes
are a special case of a broader field of asymptotic-preserving schemes, see [9] and references therein.

The general idea behind APMC schemes is that they simulate particle trajectories through time-
stepping that alternates between kinetic and diffusive positional increments, weighted in such a way
that they produce consistent simulations in both low-collisional (kinetic) regimes and high-collisional
(diffusive) regimes. We note that these schemes, in general, do not provide any error guarantees in the
intermediate regimes. Any errors in these regimes can however be removed by the combination of APMC
with multilevel Monte Carlo techniques [6 [7], see [17, 12, 11]. In the cited works, the APMC approach
is shown to significantly reduce the required computational effort for simulating simplified mathematical
test problems.

Implementing APMC methods in EIRENE is a significant undertaking, due to the code’s complexity
and scope. Hence, we assess their feasibility in a simpler code, with limited physics, namely the Eiron
code [10]. Eiron is a newly developed C++ code, following modern software design principles. The code
serves as a sandbox in which to do performance analysis and test new numerical and programming
approaches at low development effort, before embarking on time intensive implementation in state-of-
the-art production codes.
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In this paper, we present the first two-dimensional implementation of KDMC. We have performed this
implementation in Eiron, allowing us to make use of it’s efficient, modular implementation to perform
HPC-scale simulations. We present the technical challenges of implementing this mathematical algorithm
in an efficient and robust way and perform an initial analysis of the resulting simulation accuracy and
computational speedup. The remainder of this paper is structured as follows. In Section [2] we provide an
introduction to and algorithmic description of the KDMC method. Next, in Section [3] we discuss relevant
practical aspects of the Eiron code and the details of the KDMC implementation. In Section 4l we then
present some simulation results and compare the convergence behavior of the Eiron implementation to
the original 1D results in [I5]. We also conduct a performance analysis demonstrating the computational
advantage of KDMC in high-collisional simulations. Finally, in Section [5] we draw conclusions from the
presented work and comment on future work.

2 Monte Carlo for neutral particle models
We consider the simulation of neutral particles, based on a Boltzmann-BGK [I] equation
616 f(x,v,t) +v-V, f(J],U,t) = Rex (p(l',t)M(U) - f(x,v,t)) . (1)

Here, f(x,v,t) represents the density of particles in a phase space over position = and velocity v, as a
function of time ¢. On the right-hand side of 7 we model charge exchange collisions with a homogeneous
event rate Rec. In the BGK collision operator, we make use of p(x,t) the particle density (integrating
f(x,v,t) over velocity space) and M(v) a Maxwellian distribution, with a given temperature T and
mean drift velocity u. Although we constrain ourselves to homogeneous test-cases, both for the sake of
exposition and for performing the initial experiments presented in this work, we note that neither Eiron,
nor the KDMC approach are inherently constrained to such cases.

2.1 Kinetic Monte Carlo

Neglecting domain boundary interactions, we can perform a kinetic Monte Carlo simulation of by
simulating random particle trajectories with collision events samples according to the Maxwellian M (v).
We present an algorithmic description of such a trajectory simulation in Algorithm [[} Note here that
E(Rcx) denotes an exponential distribution with rate R.x. Due to resolving all collision events, kinetic
Monte Carlo becomes prohibitively expensive in highly collisional regimes.

Algorithm 1 Simulating a particle with kinetic Monte Carlo until time 7T'.

L t+0, n<+0, {Xg, Vpo} < sample_source()
2: while t < T do
3: T~E (ch)
X;)H—l — XI’I)L +T‘/pn
Vpn+1 ~ M(U)
n<—n+1, t+t+r7
end while

2.2 Kinetic-diffusion Monte Carlo

The kinetic-diffusion Monte Carlo method (KDMC) approximates highly-collisional kinetic Monte Carlo
simulations by introducing diffusion at the particle level. The algorithm alternates between kinetic and
diffusive updates to a given particle’s position. The general idea behind this approach is that, in the
infinite collisional limit, one replaces an infinite number of kinetic positional updates (Algorithm [1f line
4) with a single normally distributed increment, through the application of the law of large numbers. We
refer to [15] for a detailed description of the algorithm.

We generalize the derivations in [I4] to the two-dimensional setting, to observe that a correct imple-
mentation requires computing diffusive increments AW} that are sampled from a multivariate normal
distribution A (p, ¥), with mean
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where the exponent ®2 is used to denote the outer product of a vector with itself. Here, Vp’“r1 is the
velocity of the subsequent kinetic increment, and 6 is a diffusive flight time. Algorithm 2| shows a KDMC
simulation of a single trajectory until time 7.

Algorithm 2 Simulating a particle with KDMC until time 7.
1: t+ 0, n<«0, {Xg, Vpo} + sample_source()
2: while ¢t < T do
3: T~E (ch)

X' X+ TV

Vit~ M(v)

0 « At — (17 mod At)

AW ~ N ()

X;“rl X+ AW
9: n<n+1, t+t+ At

10: end while

We refer to [15] for further details and a full analysis of the scheme, but make the following observations
in terms of the charge-exchange rate R.y in relation to the KDMC discretization time step size At. In
low-collisional regimes, i.e., R¢x < At, observe that, in general, 7 > 6. Hence, the kinetic component
(line 4) of Algorithm [2| will dominate and the results produced by Algorithm [2| will converge to those
produced by Algorithm [T} Inversely, in high-collisional regimes, i.e., Rex > At, we have that, in general,
7 < 6. Hence, the diffusive component (line 8) of Algorithm [2[ will dominate. An intuitive explanation
for the introduction of the diffusive step in line 8 is that one substitutes the sum of an infinite number of
i.i.d. steps of the form given in line 4 by a single normally distributed increment, making use of the law
of large numbers.

3 Implementation in Eiron

Eiron is a reduced 2D kinetic Monte Carlo simulation code, created to study the performance of the
different Monte Carlo parallelization strategies that could be used in EIRENE. We have implemented the
KDMC simulation algorithm (Algorithm in Eiron, reusing existing functionality for kinetic simulations.
Hence, only the diffusive step required implementation from scratch. We are also able to use the existing
parallel algorithms in Eiron to run KDMC simulations, as these are decoupled from the simulation and
estimation code.

Eiron supports a variety of shared and distributed-memory parallelism. Ideally, all parallelization
strategies would be available to KDMC; unfortunately KDMC breaks some assumptions in Eiron’s
domain-decomposition algorithm, hence constraining us to a single domain. Unlike kinetic transport,
a diffusive transport step is not just a continuous integral that can easily be broken at a subdomain
boundary and continued in a neighboring subdomain boundary. When simulating diffusive steps for het-
erogeneous backgrounds, we approximately evaluate R, at the midpoint of the step using an estimated
endpoint computed with p evaluated at X' and ¥ = 0. If this estimated endpoint lies in a separate
subdomain, this procedure introduces additional communication, not currently supported by Eiron. In
future work, we plan to resolve these technical issues and implement domain decomposition for KDMC.

4 Simulation results

We now present the performance of our implementation, both in terms of accuracy and computational
efficiency. In Section we consider the low-collisional, kinetic test case (Rex < At™1). Here we
show that KDMC and kinetic simulations converge to the same results as At — 0, with comparable
computational cost. In Section we consider a high-collisional, diffusive test case (Rex > At~!). Here
we show that KDMC and kinetic simulations also converge as R¢x — oo, with the KDMC simulations



- o0.008
- 10006 |10
- 10.004
0
0.002
—-1-107
0
(a) KDMC result (b) Difference with kinetic simulation

Figure 1: A two-dimensional histogram of a KDMC simulation in the kinetic regime with At = 274 s,
Ree = 0.78125 s~! and a mean post-collisional speed of 0.013847 ms~'. To compute the pointwise
difference we subtract the KDMC result from the kinetic result.
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Figure 2: Behavior of KDMC, compared to kinetic simulation, in the kinetic regime. To reduce variance,
we average the 2D results in the z-direction and fold the the results around the origin.

significantly outperforming the kinetic simulations in terms of computational cost. In general, one expects
the largest errors to occur when At and R, are of the same order of magnitude.

Throughout this Section, our test-case is a two-dimensional slab with ionizing boundaries. In what
follows, we normalize all simulation parameters, assuming that the domain has dimensions 1 m x 1 m.
We initialize all particles using an isotropic point-source at the center of the domain with velocities
sampled from a 2D-Maxwellian. We then simulate the particles to a given end time tenq, at which point
we construct a histogram of their final location in the domain using a 128 x 128-grid. We consider
homogeneous collision backgrounds, with a fixed charge-exchange rate R.x. Post-collisional velocities are
sampled from an unbiased isotropic Maxwellian. We elaborate on precise numerical parameter values
when discussing individual test-cases.

The simulations discussed in this section were run on CSC’s Mahti supercomputer [4] using 128
OpenMP threads all running on separate CPU cores.

4.1 Kinetic regime

When refining the time step parameter At, KDMC should converge to a kinetic simulation. In the 1D
setting, it has been shown that both particle distributions converges O(At!-%) in Wasserstein-1 distance
for At — 0 [15]. However, we note that this theoretical bound cannot be applied directly to our setting.
To verify this limit we set a source mean speed of 0.15625 ms ™!, the charge-exchange rate is Rc, = 0.78125
and the post-collisional velocities have mean speed 0.013847 ms—!. We then run both kinetic and KDMC
simulations with 10'© particles until te,q = 1 s for a sequence of time step values At in the range
[27%5s,1].

To visualize the results, we show a KDMC simulation for At = 27 s in Figure [1} together with a
cell-by-cell difference with the reference kinetic simulation. As the two simulations are visually indis-
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Figure 3: A two-dimensional histogram of a KDMC simulation in the diffusive regime with At = 1 s,
R = 256 s~! and a mean post-collisional speed of 0.19817 ms~!. To compute the pointwise difference
we subtract the KDMC result from the kinetic result.
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Figure 4: Behavior of KDMC, compared to kinetic simulation, in the diffusive regime. To reduce variance,
we average the 2D results in the z-direction and fold the the results around the origin.

tinguishable, we opt not to show the reference separately. Comparing the computed solution with the
difference, we see that we observe that we achieve between three and four digits of accuracy in the region
of interest at the center of the domain.

In Figure 2] we consider the convergence of the KDMC simulation. To reduce variance, we flatten
the solution to one dimension, by averaging over the x-dimension. We then mirror the solution around
the source at the middle of the domain. In Figure 2a] we plot the 2-norm of the differences of these
curves. We observe that this two norm decreases with roughly an order 3 until it hits a plateau caused by
the sampling error due to the finite number of trajectories. This indicates a convergence that is roughly
one and a half orders better than that predicted by the theoretical results in [I5]. Next to the fact that
there is no direct link between the Wasserstein metric on the particles’ location and the 2-norm on the
histogram, it is likely that the symmetry of the problem is a cause for this increased rate of convergence.
In Figure 2B} we show the corresponding run times and observe that the KDMC and kinetic simulations
incur a comparable computational cost, with KDMC slightly outperforming the kinetic simulation.

4.2 Diffusive regime

When increasing the collision rate, the modeling error incurred by approximating kinetic increments by
diffusion in the KDMC scheme should vanish. In [I5], it was show that this convergence should occur as
O(R_1?), in terms of Wasserstein-1 distance of the particle distribution, as R — oo. To verify the limit
we perform simulations with a similar particle source with mean speed 0.0625 ms™'. We fix At = 1 s and
consider combinations the mean post-collisional speed % I’T—Oﬁ ms~! and collision rate Reyx = e%ﬁls s71
with e taking values in the range [2’7'5, 1]. In this case we use 2 - 10° particles until time teng = 4 5. We

then generate the similar figures to those in Section



In Figure [3] we show the KDMC simulation and pointwise error for the case R = 256 s~! and
the mean post-collisional speed 0.19817 ms~!. Note that the shape of the solution differs from that for
the kinetic case, in that it resembles a bell-curve, as opposed to the exponential decay from the center
source, observed in Figure [[l We consider the convergence behavior in Figure [l On the right-hand side
of Figure [Ab] we empirically observe a convergence rate of with approximate order 1 as Ry increases.
Notably, this convergence is slower than the known bound in the Wasserstein-1 distance. However, in
parallel work [21I] a similar rate was shown in the Lo-norm, when computing time-integrated quantities
using KDMC, combined with the diffusive estimator presented in [16].

On the right-hand side of the figure, we see a similar phenomenon to that shown in Figure ie., as
Ry decreases, the both simulations converge to kinetic simulations until a plateau is achieved due to the
sampling error. What is initially surprising, is that we observe a sharp dip approximately R., = 4 s~ .
To explain this phenomenon, we plot the pointwise differences of the averaged and folded simulation
results for a selection of values of Rx in Figure [fa] In this figure, we see that KDMC underestimates
the particles’ displacement in kinetic regimes and overestimates the displacement in diffusive regimes
(compare the curves for Rey = 2 g1 [peak error on the kinetic side of Figure and Re = 11.314 71
[peak error on the diffusive side of Figure ) Hence, during the transition between the two regimes,
there is a value of R.x for which these two errors cancel, causing the sharp dip in error.

In Figure we show that KDMC achieves a significant speedup in the diffusive regime, growing
proportionally to R.x. Here it is clear that the runtime of the kinetic simulations directly scale with the
number of collision events that need to be resolved, while that for the KDMC simulations stays more-or-
less constant. In the highest-collisional cases, this results in a speedup of between two and three orders
of magnitude, showing the strength of KDMC over standard kinetic simulation in this regime.

5 Conclusions

We have introduced the first two-dimensional implementation of the KDMC scheme for the Boltzman-
BGK equation in the Eiron code. Using this implementation, we confirmed that the results produced by
KDMC converge to those produced by a standard kinetic simulation in both the kinetic limit (At — 0) and
diffusive limit (Rcx — 00). Our measured 2-norm convergence, does not match the rates given in [I5] for
the Wasserstein-1 distance. However, we believe the improved rate in At to be due to the symmetry in the
considered test-case and our rate in the limit R.x — 0 matches the Ly-norm results shown in parallel work
on analyzing time-integrated simulations with KDMC. In the kinetic regime, KDMC simulations attain
similar run times to the equivalent kinetic simulations. However, in diffusive regimes, they outperform
the kinetic reference simulations. In some cases, by multiple orders of magnitude.

This implementation in Eiron, is a first step towards the use of KDMC for large scale fusion simula-
tions. In future work, we plan to extend the implementation to make full use of the domain-decomposition
available in Eiron. We also plan to tackle more generic classes of boundary conditions such as reflective
boundaries, in addition to improving the existing (biased) implementation of absorbing boundaries. One
strategy for this could be the work presented in [19]. We also plan to run more extensive experiments for
non-homogeneous test-cases. Further down the road, we plan to support time-integrated simulations by
implementing suitable estimators for the diffusive increments, e.g., the scheme presented in [I6].
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