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Electrochemical impedance spectroscopy is a reliable tool for
the electrochemical analysis of various types of electro-
chemical cells. It is commonly applied in research and
development to deconvolute and quantify different electro-
chemical processes limiting the cell performance and to un-
derstand ageing phenomena in the cell. Due to its
performance, electrochemical impedance spectroscopy is
increasingly considered to be used on the system level in
commercial applications of electrochemical cells.

In this contribution, recent approaches to apply electro-
chemical impedance spectroscopy in automotive lithium-ion
battery systems are reviewed. We will discuss advanced
measurement, data analysis and modelling approaches that
provide access to essential information of the battery’s state
and show a potential to meet the requirements of automotive
battery systems.
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Introduction

In the last decades, electrochemical impedance spec-
troscopy (EIS) has become a well-established tool for
lithium-ion battery cell analysis. Fundamentals of EIS
are described in a number of handbooks [1—4]. Since
the work of Aurbach [5], EIS has been widely applied for
Li-ion battery research and development, its actuality is
exemplarily shown by Nunes [6,7] and Teki [8].

Conventional EIS, due to its consecutive single fre-
quency measurement methodology, is not expedient for
automotive applications. Its boundary conditions
regarding linearity, time invariance and causality are
hardly fulfilled during car operation. The high-capacity,
low-resistance cells used in propulsion applications lead
to challenges regarding EIS hardware and bit resolution
during (s situ) analysis and modelling [9,10].

Nevertheless, EIS is considered for monitoring auto-
motive relevant parameters like State of Charge (SOC),
State of Health (SOH) and cell temperature in battery
systems [11]. In this review, recent developments in
advanced excitation methods and data analysis ap-
proaches for automotive use cases are discussed.

Excitation signals

Apart from standard consecutive frequency EIS,
different impedance measurement strategies are being
discussed in the literature. Figure 1 provides an over-
view on the excitation and subsequent signal processing
routes. A distinction must be made between sinusoidal
and binary excitations. Standard sinusoidal current or
voltage stimuli as well as the typical step signal are
directly useable for interpretation. Even with single-sine
excitation, impedance values are typically calculated
using discrete Fourier transformation. For all other signal
excitations, a time-to-frequency domain transformation
is necessary, requiring additional computing costs to be
considered for iz situ car measurements.

Based on the overview in Figure 1, Figure 2 shows ex-
amples for signal excitation and resulting.

Standard EIS

"Traditionally, the impedance is measured at consecutive
discrete frequencies by a sinusoidal current or voltage
stimulus correlated with the resulting voltage or current
response (Figure 2A1) and phase shift in signal. This
approach concentrates the excitation on the frequency of
interest and, as long as linearity requirements are fulfil-
led, avoids any higher harmonics. At the expense of time
and costly equipment, it enables a high impedance data
quality. While the methodology offers clear benefits,
these must be critically evaluated in light of potential
disadvantages, including time consumption, financial
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2 Electrochemical Impedance Spectroscopy (EIS) (2025)
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Different signal excitations and its various analysis paths.
Figure 2
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Different EIS techniques. Left signal, right processed data. A1: standard EIS, A2: multi-sinus both with response C, A3: characteristic frequency
measurement with characteristic frequency impedance in C (black markers), B: Step/binary excitation, with response C after FFT or D in time domain,
data after [12]. EIS, electrochemical impedance spectroscopy; FFT, fast Fourier transformation.

cost, and the necessity for vehicle standstill during and
before measurement. To reduce these disadvantages,
several alternative approaches are being developed.

Multisine EIS
The idealised multisine approach enables a shortening of
the measurement duration, without loss of datapoints.

This is realised by stimulation with multiple overlapping
sinusoidal stimuli (Figure 2AZ2). Based on a specific
number of frequency points, a wide impedance spectrum
can be calculated (Figure 2C). Challenges regarding phase
optimisation, power levelling of the single frequencies as
well as frequency selection have to be considered,
ensuring a high measurement quality [13—16].
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Impedance spectroscopy for automotive applications Klink et al. 3

For automotive cells with a specific capacity exceeding
100 Ah, the most relevant frequency range typically lies
below 100 Hz. In particular, the charge transfer resis-
tance is often most pronounced at frequencies below
1.5 Hz. A known limitation of multisine EIS is its
reduced frequency resolution at low frequencies
(impacting diffusion frequency analysis), due to the
requirement that excited frequencies be integer mul-
tiples of a fundamental frequency—resulting in imper-
fect logarithmic spacing and potential information loss.
In particular, high memory capacity is required in
potentiostats to handle wideband multisine signals and
large volumes of data. Hence, this comes at the expense
of computational power and costly equipment. In com-
parison, this approach allows measurements to be taken
during vehicle operation not only during parking. In the
context of automotive applications, where cost-
effectiveness is essential, a critical evaluation of the
benefits and limitations of this methodology is required.

Characteristic frequency measurement

Provided that the characteristic frequencies of the
system are known, and remain constant across different
system states (temperature, SOC and SOH), one can
measure at characteristic points only (Figure 2A3).
Lazanas and Prodromidis [17] point out the correspon-
dence of single frequencies to the ohmic resistance and
to the maximum imaginary parts of the impedance.
According to Chang et al. [18], a calculation of imped-
ance at low frequencies based on a few measurement
points at mid- or high frequencies is possible (as illus-
trated by single measurement points in Figure 2C). In
general, nested impedance features can be used for fast
state calculations. A well-known example of this
approach is the measurement of the internal battery
resistance at f/ = 1 kHz. Details of this approach are
described in Specific Car [ssues — SOH estimation. The
assumption of constant characteristic frequencies for
measuring individual impedance properties carries a
very high risk of error. This simplification is only valid if
there is sufficient knowledge about the properties of the
specific cell system and its ageing behaviour.

Binary signals

Alternatively, other signal forms can be used for stimu-
lation, such as pulse or step functions in current or po-
tential, respectively, as shown in Figure 2B. For
batteries, the subsequent time-dependent response of
the (over)potential after the pulse is commonly
analysed (Figure 2D).

A distinction between single-step signal excitation and
recurring signals like discrete-interval binary sequences
(DIBSs) [19,20] and pseudorandom binary sequences
(PRBSs) [20,21] have to be made. DIBS transforms
multisine excitation into discrete binary sequences
employing equation (2.1) [19]:

N
b(r) = sign ( Z ay sin (2mfyr + qﬁ,,)) 2.1

n=1

PRBS uses pseudo random sequences like the maximum
length sequence, which can be generated by using a
linear-feedback shift register [21].

All wideband signals, whether binary or multisine, have
the problem of wide-spread energy. The excitation energy
used for single frequencies is quite low. As a result, the
signal-to-noise ratio (SNR) can be insufficient. Focussing
on low-frequency behaviour, Geng et al. [20] imple-
mented a low-frequency concentrated binary signal.
Additionally, the useable frequency range is constrained
by the steepness of the pulse edges of the excitation
signal and the sampling frequency. With sinusoidal signal
excitation forms (e.g. standard EIS), this limitation does
not exist. The advantage of significantly more affordable
hardware compared to multisine excitation comes at the
cost of a lower SNR in the high-frequency range. How-
ever, the dominant frequency spectrum of large-format
automotive cells lies in the low-frequency range, which
helps to limit the associated costs.

Analysis of the response curve can either be performed
directly in the time domain (Figure 2E) or after trans-
formation into the frequency domain (Figure 2C). The
transformation of the time-based signals into frequency
domain can generally be done in different ways: stan-
dard transformation methods are the Fast Fourier
Transformation (FFT) as well as the Morlet Wavelet
Transformation (MWT) with its application-specific
simplifications, Short Time Fourier Transformation and

Fast-MWT [20] (Figure 1).

The cost-benefit assessment of the discussed technol-
ogies must be carried out individually for each vehicle
segment and its intended operating conditions. One of
the initial challenges lies in the changing boundary
conditions during vehicle use. Depending on the oper-
ating state—driving, charging, or parking—certain
measurement principles may be more or less suitable.

Specific car issues

Propulsion battery systems

Compared to standard (consumer) batteries, propulsion
batteries present specific challenges. Having cell ca-
pacities well above 100 Ah, (pseudo) internal resistance
needs to be in the low single digit m{ range. Additional
limitations regarding current load capacity have to be
considered. Small internal ohmic resistances of
Ry < 1.0 mQ are common (Figure 2). This requires
current stimuli exceeding 10 A to generate a voltage
excitation in the range of 10 mV. The useable minimum
signal perturbation depends on the SNR.
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4 Electrochemical Impedance Spectroscopy (EIS) (2025)

To reach a traction relevant voltage level, 100—200 cells
are connected in series, frequently several of which are
in parallel as well, easily resulting in 4004 cells to be
individually monitored. The typical solution being the
use of several Cell Module Controllers (CMCs), each of
which measures the single cell potential of a number of
cells as well as a selected number of temperatures, being
broadcasted through a battery internal network to a
central Battery Management Controller (BMC) which
is the gateway to the rest of the car.

Battery system measurement

The aforementioned issues result in specific measure-
ment challenges. The extremely low impedance
severely hampers standard nonlinear least square—based
parameter determination as the values are on the order
of the standard squared error, hence processor byte level
resolution [22]. Furthermore, due to the serial character
of the battery system, each single cell has to be analysed.
Monitoring the entire pack would not allow detection of
cell-specific failures. For cost reasons, the single cells
could be measured employing a MOSFET
multiplexer as shown by Zhang et al. [23]. An alternative
approach by Blomeke et al. [24] implements balancing
resistor-based EIS by using the existing balancing
hardware. Based on [24], the main problems are the
voltage measurement as well as the high heat generation
due to resistance based power dissipation.

Due to cost and size restrictions, automotive EIS/BMC
setups try to use single-chip designs. Datang NXP intro-
duced the BMC chip DNB1101A with integrated EIS
measurement in the year 2022 [25]. With the focus on
automotive applications, Marelli announced a BMC with
standard sweeping EIS measurement at the CTT Sympo-
sium Berlin 2024 [26]. Both chips are working with single-
sinus excitations. Providing high measurement data reso-
lutions and measurement speed, EIS-suitable BMC sys-
tems (‘EIS-ready’) are marketed. Examples are from
Infineon with its TLE9018DQK [27] or from Texas In-
struments with its BQ79616-Q1 series [28]. Analog De-
vices exemplarily developed the AD5940/AD5941 series, a
front end with EIS measurement functionality [29]. The
described systems for EIS measurement are primarily
intended for measurements in a steady-state condition.
Operando EIS or real-time dynamic EIS methods use
optimised multisine signals or special binary sequences
(such as DIBS) to significantly reduce measurement time
[30,31]. Research also focuses on superimposing charging
or operating currents with small current excitations or
utilising natural current changes [32]. Considering the
challenges described in the subsection ‘Propulsion battery
systems’, wide-spread application is still pending,
although patent submissions already exist.

Zhang et al. [23] developed a method based on an
equivalent sampling, ignoring the Nyquist sampling

limits law. Their calculation model achieved robustness
in frequencies from a few Hz to kHz. Validation of the
measurements based on the diagnostic of lithium
plating, focussing on the shape and size of the semi-
circles, yielded reliable results with errors up to
0.6 mQ (<0.8 %).

To fulfil the requirement of time invariance, measure-
ments should only be performed in the resting state after
compensatory processes have subsided, which implies an
active high voltage system at standstill. In this context,
standstill as well as parking refer to a current of I = 0.
Depending on the system’s history (duration, direction
and amplitude of current load, temperature, SOC, and
SOH), different waiting periods (relaxation times) are
required before the system can be considered as time-
invariant (AV/t < threshold). These relaxation times
range from a few hours to several days. Particularly, full
cells based on primary lithium iron phosphate (LLFP)
chemistry, with a high degree of electrode utilisation on
both sides, exhibit disproportionately long relaxation
times exceeding 100 h, especially at low states of charge.
On top of this, ageing effects are typically observable in
the PHz range, violating linearity requirements and need
hours per frequency.

High excitation signals, low-frequency measurements
and the superposition with DC current, all lead to a
nonlinear cell behaviour. A possible way to detect this is
the use of Lissajous plots in the case of single sinus EIS
[33]. Alternatively, the direct detection out of the signal
spectrum is possible. Nonlinearity results in the pres-
ence of higher order harmonics [33]. Nonstationarity
can typically be detected effectively at low frequencies
due to the presence of drift spectra and so-called
“skirts”—spectral ~ components  surrounding  the
excited frequencies.

Ji and Schwartz [34,35] employed the second harmonic
of nonlinear EIS to develop a more comprehensive
model of full-cell behaviour than is achievable with
conventional EIS. The modelling effort is high and re-
quires half-cell measurements for a parameter input. An
alternative approach for model parametrisation based on
the second harmonic was developed by Kirk et al. [36]. A
more applied use case was investigated by Ulrich et al.
[37], using the nonlinear frequency response analysis for
detection of lithium plating. The approach shows po-
tential for automotive applications aiming at lithium
plating detection during fast charging (alternating be-
tween fast charging and nonlinear EIS). The use of
precise equipment, as well as the switch between
charging current and sinusoidal excitation, remains
challenging but offers promising potential for
future applications.

It is well known that different electrode processes
exhibit temperature, SOC- and SOH-dependent
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behaviour. Hence, EIS-based analysis of these parame-
ters is suitable for single-cell diagnostics. When focus-
sing on multicell systems, which by nature exhibit
nonuniform behaviour among individual cells, this re-
sults in significantly different state characteristics.

In the following subsections, current approaches to the
estimation of these states are presented.

Internal cell temperature measurement

Typically, the temperature inside the cell of a traction
battery is determined by temperature sensors in the
battery module combined with thermal battery models.
Although a simple straightforward approach, the rele-
vant core temperature of the cell can, at best, be esti-
mated. EIS can be employed for monitoring the
internal cell temperature due to its extreme sensitivity
to temperature changes [38,39]. Older approaches
correlate a characteristic single-frequency measure-
ment (mainly at the intercept frequency) with the core
temperature of the cell [38]. Yet problems regarding
different sensitivity of the impedance at different
temperatures and frequencies as well as a decoupling
from SOC, SOH and nonlinear i situ car
measurements exist. Shen et al. [40] proposed a new
methodology by using a temperature calculation algo-
rithm based on a two-step estimation to circumvent
these issues. In a first step, the cell core temperature is
calculated based on the ambient and surface tempera-
ture of the cell. In a subsequent step, the ideal fre-
quency for EIS measurement, based on this estimate, is
selected. In an iterative process, based on EIS mea-
surement, a new core temperature is calculated. This
new core temperature is used to calculate a new, better
frequency for EIS measurements and optimise tem-
perature calculation once more. An additional approach
from Li et al. [41] focuses on the multifrequency
imaginary part impedance in combination with a ma-
chine learning algorithm. In the first step, they charac-
terised the impedance based on temperature, SOC, and
SOH. With the Pearson correlation, they separated
imaginary part points which correlate to temperature. In
a second step, employing Gaussian process regression,
the core temperature is calculated. A disadvantage is
that a sufficiently large data set is required in order to
accurately estimate the cell’s core temperature.

Considering the necessary equipment and efforts to
determine the cell temperature via EIS, it can be stated
that the application of EIS for temperature measure-
ments only is not meaningful. However, if EIS is applied
for a more detailed battery analysis as described in the
following chapters, the additional information about the
temperature of the different cells will become available
and can be applied in an enhanced thermal control
strategy for the battery system.

Impedance spectroscopy for automotive applications Klink et al.

SOC estimation

5

In [42], Demirci et al. reviewed different SOC estima-
tion methods. Due to the high experimental re-

quirements, they concluded that EIS is

practical approach.

not

a

Despite these considerations, a trend towards “indirect”
usage of EIS data is currently observable. In this case,

EIS is used to obtain specific parameters in a laboratory

surrounding, which are then used for different concepts
to determine the SOC in the car. Such an approach
dealing with the estimation of fractional SOC based on
open circuit voltage (OCV) hysteretic characteristics
was published by Chen et al. [43] They combined the
SOC—OCV estimation model with a fractional second-
order ohmic resistance in parallel with a constant
phase element equivalent circuit model (ohmic resis-

tance in parallel with a constant phase element). A

correction of the SOC estimation based on charging/
discharging history and relaxation times improves the

SOC calculation although ageing-dependent changes of

OCV characteristics are not considered. A problem arises
when calculating the SOC of typical LFP cells. Che
et al. [44] assessed a combination of coulomb counting,
machine learning and relaxation behaviour for SOC

estimation in LFP systems. Their approach shows

a

relatively high error in the SOC estimate. Lu et al. [45]
proposed reducing the SOC calculation effort by using
linearisation of voltage hysteresis curves and a linear
neural network using voltage signal data, its deviation,

and the historical current direction to calculate SOC.

Despite the complexity of using EIS for SOC estima-
tion, the combination of determining (parts of) an EIS
spectrum that is analysed by machine learning algo-
rithms is under development. Kong et al. [46] used
frequency-dependent features of EIS caused by diffu-
sion characteristic for SOC calculation. Buchicchio et al.
[47,48] combined data-driven machine learning with
equivalent circuit models. It is pointed out that the
usage of circuit parameters instead of direct impedance

values from EIS improves the accuracy and efficiency of

calculation. The usage of machine learning algorithms
like 2D convolutional neural networks seems to be
target-aimed. Additional approaches focussing on the
EIS-based SOC estimation for aged batteries are from
Wang et al. [49] as well as from Anekal and William-

son [50].

The latter approaches are meaningful as the impedance
spectra of the considered cells are monitored and, next
to information about the SOH discussed in the next
section, provide a higher accuracy in SOC calculation. It

should be noted that accurate and up-to-date values of

the battery’s internal resistance are not only supporting

SOC determination but also driving range predictions.

www.sciencedirect.com
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6 Electrochemical Impedance Spectroscopy (EIS) (2025)

SOH estimation

SOH estimation by means of EIS is by far the most
complex topic as various ageing mechanisms can
simultaneously affect different frequency ranges in the
impedance spectrum. A direct SOH calculation method
was proposed by Pang et al. [51], based on a two-
frequency measurement (frequency 1: the gain cross-
over frequency, frequency 2: the charge transfer resis-
tance corner frequency). The SOH shift is given by
equation (3.1).

” Zreal freg. 1
SOH —
Zrm/ freq. 2

3.1

Xing et al. [52] described an approach interpreting
EIS data based on transferring information from
reference cells to predict SOH. It assumes a good
knowledge of cell-specific ageing. However, it employs
a state of the battery hardly present in cars and is
difficult to apply in a continuously changing cell
development process. Another approach by Li et al.
[53] combines a data-driven methodology with EIS-
based equivalent circuit models to evaluate SOH.
They pointed out different categories of data-driven
methods for using the impedance data on SOH
calculation. Complete EIS data at different tempera-
tures and SOH levels are used, in combination with an
autoencoder-based neural network, for SOH calcula-
tion [54].

Employing their minimalistic measurement approach,
Chang et al. [18] used only a few data points from the
medium—high frequency segments measured via EIS.
With a sparrow search algorithm optimised network, it
is possible to extrapolate the impedance at the low-
frequency segments. However, this calculation
method has to be used carefully. Mombrini et al. [55],
for instance, studied the change of the phase transition
in active materials over the lifetime. The coexistence
of different lithiation stages results in a changing phase
transition and as a consequence in changing diffusion
characteristics, which affect the impedance behaviour
in low-frequency segments. In light of changes in
phase transition over cell lifetime, a direct correlation
between charge transfer in the mid-frequency range
and diffusion behaviour in the low-frequency range is
not guaranteed.

Employing a neural network, Gao et al. [56] used six
characteristic feature points of the Nyquist plot and
their change over lifetime for calculating SOH.
Employing small relatively high ohmic coin cells, their
methodology showed promising results, although
further analysis including SOC and temperature de-
pendencies for the EIS measurements have to
be performed.

Considering that the SOH of an automotive battery is
accessible via the charging/discharging capacity and the
battery performance in different states, a general SOH
determination via EIS is not mandatory but can be a
useful tool to track ageing processes and detect critical
states of the cells in an early stage.

Summary and outlook

EIS for lithium-ion batteries is reviewed, focussing on
recent progress in measurements and analysis for auto-
motive applications, along with a description of typical
high-capacity cell specifics. Measurement techniques
based on sinusoidal excitation are distinguished from
those using binary signals.

Despite recent improvements in cost and time as well as
the significantly grown experience and knowledge on
EIS, direct iz situ application of EIS in vehicles remains
difficult due to low internal resistances, cell switching
requirements, and hardware limitations. Practical solu-
tions are still in the research state. The application of
EIS under operating conditions (charging, driving, and
parking) requires expensive hardware as well as suffi-
ciently advanced data processing capabilities. The
benefits of enhanced state estimation are currently
outweighed by the high costs associated with vehicle
integration.  Applying EIS remains technically
demanding and economically challenging.

Applications under investigation are temperature, SOC,
and SOH estimation. Temperature determination re-
mains typically sensor-based and is supported by ther-
mal modelling. For SOC estimation, indirect methods
based on time-resolved overpotential measurements are
prevalent, alongside machine learning approaches. LFP
cells pose a specific challenge due to their voltage and
current characteristics as well as their phase change
behaviour. To improve SOC accuracy as well as SOH
estimation using EIS, new approaches primarily relying
on neural networks and data-driven models are proposed
in the literature.

The highest potential for practical application is seen in
the combination of artificial intelligence-based model-
ling with EIS. This is a rapidly evolving field, and further
applications are expected in the near future.
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