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Review — Electrochemical impedance spectroscopy 
for lithium-ion batteries: Measurement and analysis 
(for automotive applications)
Rico Klink1,2, René H. E. van Doorn1 and André Weber2

Electrochemical impedance spectroscopy is a reliable tool for 
the electrochemical analysis of various types of electro
chemical cells. It is commonly applied in research and 
development to deconvolute and quantify different electro
chemical processes limiting the cell performance and to un
derstand ageing phenomena in the cell. Due to its 
performance, electrochemical impedance spectroscopy is 
increasingly considered to be used on the system level in 
commercial applications of electrochemical cells.
In this contribution, recent approaches to apply electro
chemical impedance spectroscopy in automotive lithium-ion 
battery systems are reviewed. We will discuss advanced 
measurement, data analysis and modelling approaches that 
provide access to essential information of the battery’s state 
and show a potential to meet the requirements of automotive 
battery systems.

Addresses
1 AUDI AG, NSU-Str. 1, 74172 Neckarsulm, Germany
2 Institute for Applied Materials – Electrochemical Technologies (IAM- 
ET), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, 
Germany

Corresponding author: Klink, Rico (rico.klink@audi.de), (rico.klink@ 
kit.edu)

Current Opinion in Electrochemistry 2025, 54:101768 

This review comes from a themed issue on Electrochemical Imped
ance Spectroscopy (EIS) (2025) 

Edited by Mark E. Orazem and Vincent Vivier 

For complete overview about the section, refer Electrochemical 
Impedance Spectroscopy (EIS) (2025) 

Available online 10 October 2025 

https://doi.org/10.1016/j.coelec.2025.101768 

2451-9103/© 2025 The Author(s). Published by Elsevier B.V. This is an 
open access article under the CC BY license (http://creativecommons. 
org/licenses/by/4.0/). 

Introduction
In the last decades, electrochemical impedance spec
troscopy (EIS) has become a well-established tool for 

lithium-ion battery cell analysis. Fundamentals of EIS 

are described in a number of handbooks [1—4]. Since 

the work of Aurbach [5], EIS has been widely applied for 

Li-ion battery research and development, its actuality is 

exemplarily shown by Nunes [6,7] and Teki [8].

Conventional EIS, due to its consecutive single fre

quency measurement methodology, is not expedient for 

automotive applications. Its boundary conditions 

regarding linearity, time invariance and causality are 

hardly fulfilled during car operation. The high-capacity, 

low-resistance cells used in propulsion applications lead 

to challenges regarding EIS hardware and bit resolution 

during (in situ) analysis and modelling [9,10].

Nevertheless, EIS is considered for monitoring auto

motive relevant parameters like State of Charge (SOC), 

State of Health (SOH) and cell temperature in battery 

systems [11]. In this review, recent developments in 

advanced excitation methods and data analysis ap

proaches for automotive use cases are discussed.

Excitation signals
Apart from standard consecutive frequency EIS, 

different impedance measurement strategies are being 

discussed in the literature. Figure 1 provides an over

view on the excitation and subsequent signal processing 

routes. A distinction must be made between sinusoidal 

and binary excitations. Standard sinusoidal current or 

voltage stimuli as well as the typical step signal are 

directly useable for interpretation. Even with single-sine 

excitation, impedance values are typically calculated 

using discrete Fourier transformation. For all other signal 

excitations, a time-to-frequency domain transformation 

is necessary, requiring additional computing costs to be 

considered for in situ car measurements.

Based on the overview in Figure 1, Figure 2 shows ex

amples for signal excitation and resulting.

Standard EIS
Traditionally, the impedance is measured at consecutive 

discrete frequencies by a sinusoidal current or voltage 

stimulus correlated with the resulting voltage or current 

response (Figure 2A1) and phase shift in signal. This 

approach concentrates the excitation on the frequency of 

interest and, as long as linearity requirements are fulfil

led, avoids any higher harmonics. At the expense of time 

and costly equipment, it enables a high impedance data 

quality. While the methodology offers clear benefits, 

these must be critically evaluated in light of potential 

disadvantages, including time consumption, financial 
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cost, and the necessity for vehicle standstill during and 

before measurement. To reduce these disadvantages, 

several alternative approaches are being developed.

Multisine EIS
The idealised multisine approach enables a shortening of 

the measurement duration, without loss of datapoints. 

This is realised by stimulation with multiple overlapping 

sinusoidal stimuli (Figure 2A2). Based on a specific 

number of frequency points, a wide impedance spectrum 

can be calculated (Figure 2C). Challenges regarding phase 

optimisation, power levelling of the single frequencies as 

well as frequency selection have to be considered, 

ensuring a high measurement quality [13—16].

Figure 1 

Different signal excitations and its various analysis paths.

Figure 2 

Different EIS techniques. Left signal, right processed data. A1: standard EIS, A2: multi-sinus both with response C, A3: characteristic frequency 
measurement with characteristic frequency impedance in C (black markers), B: Step/binary excitation, with response C after FFT or D in time domain, 
data after [12]. EIS, electrochemical impedance spectroscopy; FFT, fast Fourier transformation.
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For automotive cells with a specific capacity exceeding 

100 Ah, the most relevant frequency range typically lies 

below 100 Hz. In particular, the charge transfer resis

tance is often most pronounced at frequencies below 

1.5 Hz. A known limitation of multisine EIS is its 

reduced frequency resolution at low frequencies 

(impacting diffusion frequency analysis), due to the 

requirement that excited frequencies be integer mul

tiples of a fundamental frequency―resulting in imper

fect logarithmic spacing and potential information loss. 

In particular, high memory capacity is required in 

potentiostats to handle wideband multisine signals and 

large volumes of data. Hence, this comes at the expense 

of computational power and costly equipment. In com

parison, this approach allows measurements to be taken 

during vehicle operation not only during parking. In the 

context of automotive applications, where cost- 

effectiveness is essential, a critical evaluation of the 

benefits and limitations of this methodology is required.

Characteristic frequency measurement
Provided that the characteristic frequencies of the 

system are known, and remain constant across different 

system states (temperature, SOC and SOH), one can 

measure at characteristic points only (Figure 2A3). 

Lazanas and Prodromidis [17] point out the correspon

dence of single frequencies to the ohmic resistance and 

to the maximum imaginary parts of the impedance. 

According to Chang et al. [18], a calculation of imped

ance at low frequencies based on a few measurement 

points at mid- or high frequencies is possible (as illus

trated by single measurement points in Figure 2C). In 

general, nested impedance features can be used for fast 

state calculations. A well-known example of this 

approach is the measurement of the internal battery 

resistance at f = 1 kHz. Details of this approach are 

described in Specific Car Issues — SOH estimation. The 

assumption of constant characteristic frequencies for 

measuring individual impedance properties carries a 

very high risk of error. This simplification is only valid if 

there is sufficient knowledge about the properties of the 

specific cell system and its ageing behaviour.

Binary signals
Alternatively, other signal forms can be used for stimu

lation, such as pulse or step functions in current or po

tential, respectively, as shown in Figure 2B. For 

batteries, the subsequent time-dependent response of 

the (over)potential after the pulse is commonly 

analysed (Figure 2D).

A distinction between single-step signal excitation and 

recurring signals like discrete-interval binary sequences 

(DIBSs) [19,20] and pseudorandom binary sequences 

(PRBSs) [20,21] have to be made. DIBS transforms 

multisine excitation into discrete binary sequences 

employing equation (2.1) [19]: 

b(t) = sign

(
∑N

n= 1

an sin (2πfnt +ϕn)

)

2.1 

PRBS uses pseudo random sequences like the maximum 

length sequence, which can be generated by using a 

linear-feedback shift register [21].

All wideband signals, whether binary or multisine, have 

the problem of wide-spread energy. The excitation energy 

used for single frequencies is quite low. As a result, the 

signal-to-noise ratio (SNR) can be insufficient. Focussing 

on low-frequency behaviour, Geng et al. [20] imple

mented a low-frequency concentrated binary signal. 

Additionally, the useable frequency range is constrained 

by the steepness of the pulse edges of the excitation 

signal and the sampling frequency. With sinusoidal signal 

excitation forms (e.g. standard EIS), this limitation does 

not exist. The advantage of significantly more affordable 

hardware compared to multisine excitation comes at the 

cost of a lower SNR in the high-frequency range. How

ever, the dominant frequency spectrum of large-format 

automotive cells lies in the low-frequency range, which 

helps to limit the associated costs.

Analysis of the response curve can either be performed 

directly in the time domain (Figure 2E) or after trans

formation into the frequency domain (Figure 2C). The 

transformation of the time-based signals into frequency 

domain can generally be done in different ways: stan

dard transformation methods are the Fast Fourier 

Transformation (FFT) as well as the Morlet Wavelet 

Transformation (MWT) with its application-specific 

simplifications, Short Time Fourier Transformation and 

Fast-MWT [20] (Figure 1).

The cost-benefit assessment of the discussed technol

ogies must be carried out individually for each vehicle 

segment and its intended operating conditions. One of 

the initial challenges lies in the changing boundary 

conditions during vehicle use. Depending on the oper

ating state―driving, charging, or parking―certain 

measurement principles may be more or less suitable.

Specific car issues
Propulsion battery systems
Compared to standard (consumer) batteries, propulsion 

batteries present specific challenges. Having cell ca

pacities well above 100 Ah, (pseudo) internal resistance 

needs to be in the low single digit mΩ range. Additional 

limitations regarding current load capacity have to be 

considered. Small internal ohmic resistances of 

R0 < 1:0 mΩ are common (Figure 2). This requires 

current stimuli exceeding 10 A to generate a voltage 

excitation in the range of 10 mV. The useable minimum 

signal perturbation depends on the SNR.
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To reach a traction relevant voltage level, 100—200 cells 

are connected in series, frequently several of which are 

in parallel as well, easily resulting in 400+ cells to be 

individually monitored. The typical solution being the 

use of several Cell Module Controllers (CMCs), each of 

which measures the single cell potential of a number of 

cells as well as a selected number of temperatures, being 

broadcasted through a battery internal network to a 

central Battery Management Controller (BMC) which 

is the gateway to the rest of the car.

Battery system measurement
The aforementioned issues result in specific measure

ment challenges. The extremely low impedance 

severely hampers standard nonlinear least square—based 

parameter determination as the values are on the order 

of the standard squared error, hence processor byte level 

resolution [22]. Furthermore, due to the serial character 

of the battery system, each single cell has to be analysed. 

Monitoring the entire pack would not allow detection of 

cell-specific failures. For cost reasons, the single cells 

could be measured employing a MOSFET 

multiplexer as shown by Zhang et al. [23]. An alternative 

approach by Blömeke et al. [24] implements balancing 

resistor-based EIS by using the existing balancing 

hardware. Based on [24], the main problems are the 

voltage measurement as well as the high heat generation 

due to resistance based power dissipation.

Due to cost and size restrictions, automotive EIS/BMC 

setups try to use single-chip designs. Datang NXP intro

duced the BMC chip DNB1101A with integrated EIS 

measurement in the year 2022 [25]. With the focus on 

automotive applications, Marelli announced a BMC with 

standard sweeping EIS measurement at the CTI Sympo

sium Berlin 2024 [26]. Both chips are working with single- 

sinus excitations. Providing high measurement data reso

lutions and measurement speed, EIS-suitable BMC sys

tems (‘EIS-ready’) are marketed. Examples are from 

Infineon with its TLE9018DQK [27] or from Texas In

struments with its BQ79616-Q1 series [28]. Analog De

vices exemplarily developed the AD5940/AD5941 series, a 

front end with EIS measurement functionality [29]. The 

described systems for EIS measurement are primarily 

intended for measurements in a steady-state condition. 

Operando EIS or real-time dynamic EIS methods use 

optimised multisine signals or special binary sequences 

(such as DIBS) to significantly reduce measurement time 

[30,31]. Research also focuses on superimposing charging 

or operating currents with small current excitations or 

utilising natural current changes [32]. Considering the 

challenges described in the subsection ‘Propulsion battery 

systems’, wide-spread application is still pending, 

although patent submissions already exist.

Zhang et al. [23] developed a method based on an 

equivalent sampling, ignoring the Nyquist sampling 

limits law. Their calculation model achieved robustness 

in frequencies from a few Hz to kHz. Validation of the 

measurements based on the diagnostic of lithium 

plating, focussing on the shape and size of the semi

circles, yielded reliable results with errors up to 

0.6 mΩ (<0.8 %).

To fulfil the requirement of time invariance, measure

ments should only be performed in the resting state after 

compensatory processes have subsided, which implies an 

active high voltage system at standstill. In this context, 

standstill as well as parking refer to a current of I = 0. 

Depending on the system’s history (duration, direction 

and amplitude of current load, temperature, SOC, and 

SOH), different waiting periods (relaxation times) are 

required before the system can be considered as time- 

invariant (ΔV/t < threshold). These relaxation times 

range from a few hours to several days. Particularly, full 

cells based on primary lithium iron phosphate (LFP) 

chemistry, with a high degree of electrode utilisation on 

both sides, exhibit disproportionately long relaxation 

times exceeding 100 h, especially at low states of charge. 

On top of this, ageing effects are typically observable in 

the μHz range, violating linearity requirements and need 

hours per frequency.

High excitation signals, low-frequency measurements 

and the superposition with DC current, all lead to a 

nonlinear cell behaviour. A possible way to detect this is 

the use of Lissajous plots in the case of single sinus EIS 

[33]. Alternatively, the direct detection out of the signal 

spectrum is possible. Nonlinearity results in the pres

ence of higher order harmonics [33]. Nonstationarity 

can typically be detected effectively at low frequencies 

due to the presence of drift spectra and so-called 

“skirts”―spectral components surrounding the 

excited frequencies.

Ji and Schwartz [34,35] employed the second harmonic 

of nonlinear EIS to develop a more comprehensive 

model of full-cell behaviour than is achievable with 

conventional EIS. The modelling effort is high and re

quires half-cell measurements for a parameter input. An 

alternative approach for model parametrisation based on 

the second harmonic was developed by Kirk et al. [36]. A 

more applied use case was investigated by Ulrich et al. 

[37], using the nonlinear frequency response analysis for 

detection of lithium plating. The approach shows po

tential for automotive applications aiming at lithium 

plating detection during fast charging (alternating be

tween fast charging and nonlinear EIS). The use of 

precise equipment, as well as the switch between 

charging current and sinusoidal excitation, remains 

challenging but offers promising potential for 

future applications.

It is well known that different electrode processes 

exhibit temperature, SOC- and SOH-dependent 
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behaviour. Hence, EIS-based analysis of these parame

ters is suitable for single-cell diagnostics. When focus

sing on multicell systems, which by nature exhibit 

nonuniform behaviour among individual cells, this re

sults in significantly different state characteristics.

In the following subsections, current approaches to the 

estimation of these states are presented.

Internal cell temperature measurement
Typically, the temperature inside the cell of a traction 

battery is determined by temperature sensors in the 

battery module combined with thermal battery models. 

Although a simple straightforward approach, the rele

vant core temperature of the cell can, at best, be esti

mated. EIS can be employed for monitoring the 

internal cell temperature due to its extreme sensitivity 

to temperature changes [38,39]. Older approaches 

correlate a characteristic single-frequency measure

ment (mainly at the intercept frequency) with the core 

temperature of the cell [38]. Yet problems regarding 

different sensitivity of the impedance at different 

temperatures and frequencies as well as a decoupling 

from SOC, SOH and nonlinear in situ car 

measurements exist. Shen et al. [40] proposed a new 

methodology by using a temperature calculation algo

rithm based on a two-step estimation to circumvent 

these issues. In a first step, the cell core temperature is 

calculated based on the ambient and surface tempera

ture of the cell. In a subsequent step, the ideal fre

quency for EIS measurement, based on this estimate, is 

selected. In an iterative process, based on EIS mea

surement, a new core temperature is calculated. This 

new core temperature is used to calculate a new, better 

frequency for EIS measurements and optimise tem

perature calculation once more. An additional approach 

from Li et al. [41] focuses on the multifrequency 

imaginary part impedance in combination with a ma

chine learning algorithm. In the first step, they charac

terised the impedance based on temperature, SOC, and 

SOH. With the Pearson correlation, they separated 

imaginary part points which correlate to temperature. In 

a second step, employing Gaussian process regression, 

the core temperature is calculated. A disadvantage is 

that a sufficiently large data set is required in order to 

accurately estimate the cell’s core temperature.

Considering the necessary equipment and efforts to 

determine the cell temperature via EIS, it can be stated 

that the application of EIS for temperature measure

ments only is not meaningful. However, if EIS is applied 

for a more detailed battery analysis as described in the 

following chapters, the additional information about the 

temperature of the different cells will become available 

and can be applied in an enhanced thermal control 

strategy for the battery system.

SOC estimation
In [42], Demirci et al. reviewed different SOC estima

tion methods. Due to the high experimental re

quirements, they concluded that EIS is not a 

practical approach.

Despite these considerations, a trend towards “indirect” 

usage of EIS data is currently observable. In this case, 

EIS is used to obtain specific parameters in a laboratory 

surrounding, which are then used for different concepts 

to determine the SOC in the car. Such an approach 

dealing with the estimation of fractional SOC based on 

open circuit voltage (OCV) hysteretic characteristics 

was published by Chen et al. [43] They combined the 

SOC—OCV estimation model with a fractional second- 

order ohmic resistance in parallel with a constant 

phase element equivalent circuit model (ohmic resis

tance in parallel with a constant phase element). A 

correction of the SOC estimation based on charging/ 

discharging history and relaxation times improves the 

SOC calculation although ageing-dependent changes of 

OCV characteristics are not considered. A problem arises 

when calculating the SOC of typical LFP cells. Che 

et al. [44] assessed a combination of coulomb counting, 

machine learning and relaxation behaviour for SOC 

estimation in LFP systems. Their approach shows a 

relatively high error in the SOC estimate. Lu et al. [45] 

proposed reducing the SOC calculation effort by using 

linearisation of voltage hysteresis curves and a linear 

neural network using voltage signal data, its deviation, 

and the historical current direction to calculate SOC.

Despite the complexity of using EIS for SOC estima

tion, the combination of determining (parts of) an EIS 

spectrum that is analysed by machine learning algo

rithms is under development. Kong et al. [46] used 

frequency-dependent features of EIS caused by diffu

sion characteristic for SOC calculation. Buchicchio et al. 

[47,48] combined data-driven machine learning with 

equivalent circuit models. It is pointed out that the 

usage of circuit parameters instead of direct impedance 

values from EIS improves the accuracy and efficiency of 

calculation. The usage of machine learning algorithms 

like 2D convolutional neural networks seems to be 

target-aimed. Additional approaches focussing on the 

EIS-based SOC estimation for aged batteries are from 

Wang et al. [49] as well as from Anekal and William

son [50].

The latter approaches are meaningful as the impedance 

spectra of the considered cells are monitored and, next 

to information about the SOH discussed in the next 

section, provide a higher accuracy in SOC calculation. It 

should be noted that accurate and up-to-date values of 

the battery’s internal resistance are not only supporting 

SOC determination but also driving range predictions.
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SOH estimation
SOH estimation by means of EIS is by far the most 

complex topic as various ageing mechanisms can 

simultaneously affect different frequency ranges in the 

impedance spectrum. A direct SOH calculation method 

was proposed by Pang et al. [51], based on a two- 

frequency measurement (frequency 1: the gain cross

over frequency, frequency 2: the charge transfer resis

tance corner frequency). The SOH shift is given by 

equation (3.1). 

nSOH =
Zreal freq: 1

Zreal freq: 2

3.1 

Xing et al. [52] described an approach interpreting 

EIS data based on transferring information from 

reference cells to predict SOH. It assumes a good 

knowledge of cell-specific ageing. However, it employs 

a state of the battery hardly present in cars and is 

difficult to apply in a continuously changing cell 

development process. Another approach by Li et al. 

[53] combines a data-driven methodology with EIS- 

based equivalent circuit models to evaluate SOH. 

They pointed out different categories of data-driven 

methods for using the impedance data on SOH 

calculation. Complete EIS data at different tempera

tures and SOH levels are used, in combination with an 

autoencoder-based neural network, for SOH calcula

tion [54].

Employing their minimalistic measurement approach, 

Chang et al. [18] used only a few data points from the 

medium—high frequency segments measured via EIS. 

With a sparrow search algorithm optimised network, it 

is possible to extrapolate the impedance at the low- 

frequency segments. However, this calculation 

method has to be used carefully. Mombrini et al. [55], 

for instance, studied the change of the phase transition 

in active materials over the lifetime. The coexistence 

of different lithiation stages results in a changing phase 

transition and as a consequence in changing diffusion 

characteristics, which affect the impedance behaviour 

in low-frequency segments. In light of changes in 

phase transition over cell lifetime, a direct correlation 

between charge transfer in the mid-frequency range 

and diffusion behaviour in the low-frequency range is 

not guaranteed.

Employing a neural network, Gao et al. [56] used six 

characteristic feature points of the Nyquist plot and 

their change over lifetime for calculating SOH. 

Employing small relatively high ohmic coin cells, their 

methodology showed promising results, although 

further analysis including SOC and temperature de

pendencies for the EIS measurements have to 

be performed.

Considering that the SOH of an automotive battery is 

accessible via the charging/discharging capacity and the 

battery performance in different states, a general SOH 

determination via EIS is not mandatory but can be a 

useful tool to track ageing processes and detect critical 

states of the cells in an early stage.

Summary and outlook
EIS for lithium-ion batteries is reviewed, focussing on 

recent progress in measurements and analysis for auto

motive applications, along with a description of typical 

high-capacity cell specifics. Measurement techniques 

based on sinusoidal excitation are distinguished from 

those using binary signals.

Despite recent improvements in cost and time as well as 

the significantly grown experience and knowledge on 

EIS, direct in situ application of EIS in vehicles remains 

difficult due to low internal resistances, cell switching 

requirements, and hardware limitations. Practical solu

tions are still in the research state. The application of 

EIS under operating conditions (charging, driving, and 

parking) requires expensive hardware as well as suffi

ciently advanced data processing capabilities. The 

benefits of enhanced state estimation are currently 

outweighed by the high costs associated with vehicle 

integration. Applying EIS remains technically 

demanding and economically challenging.

Applications under investigation are temperature, SOC, 

and SOH estimation. Temperature determination re

mains typically sensor-based and is supported by ther

mal modelling. For SOC estimation, indirect methods 

based on time-resolved overpotential measurements are 

prevalent, alongside machine learning approaches. LFP 

cells pose a specific challenge due to their voltage and 

current characteristics as well as their phase change 

behaviour. To improve SOC accuracy as well as SOH 

estimation using EIS, new approaches primarily relying 

on neural networks and data-driven models are proposed 

in the literature.

The highest potential for practical application is seen in 

the combination of artificial intelligence-based model

ling with EIS. This is a rapidly evolving field, and further 

applications are expected in the near future.
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