KIT | KIT-Bibliothek | Impressum | Datenschutz

Scaling Laws of Distributed Random Forests

Flügel, Katharina 1; Debus, Charlotte 1; Götz, Markus ORCID iD icon 1; Streit, Achim ORCID iD icon 1; Weiel, Marie ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Random forests are a widely used machine learning technique valued for their robust predictive performance and conceptual simplicity. They are applied in many critical applications and often combined with federated learning to collaboratively build machine learning models across multiple distributed sites. The independent decision trees make random forests inherently parallelizable and well-suited for distributed and federated settings. Despite this
perfect fit, there is a lack of comprehensive scalability studies, and many existing methods show limited parallel efficiency or are tested only at smaller scales. To address this gap, we present a comprehensive analysis of the scaling capabilities of distributed random forests on up to 64 compute nodes. Using a tree-parallel approach, we demonstrate a strong scaling speedup of up to 31.98 and a weak scaling efficiency of over 0.96 without affecting
predictive performance of the global model. Comparing the performance trade-offs of distributed and local inference strategies enables us to simulate various real-life scenarios in terms of distributed computing resources, data availability, and privacy considerations. ... mehr


Postprint §
DOI: 10.5445/IR/1000187481
Veröffentlicht am 22.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2835-8856
KITopen-ID: 1000187481
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Erschienen in Transactions on Machine Learning Research
Verlag OpenReview.net
Bemerkung zur Veröffentlichung Survey Certification
Vorab online veröffentlicht am 19.11.2025
Externe Relationen Siehe auch
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page