KIT | KIT-Bibliothek | Impressum | Datenschutz

A class of invariant consistent tests for multivariate normality

Henze, Norbert ORCID iD icon 1; Zirkler, Bernd
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Let X$_1$,..., X$_n$ be independent identically distributed random vectors in R$^d$ d ≥ 1 , with sample mean [Xbar]$_n$ and sample covariance matrix S$_n$ . We present a class of practicable afflne-invariant tests for the composite hypothesis H$_d$ the law of X$_1$ is a non-degenerate normal distribution which are consistent against any fixed non- normal alternative distribution. The test statistic is a weighted integral of the squared modulus of the difference between the empirical characteristic function of the scaled residuals S$_n$$^{-\frac{1}{2}}$(X$_j$ - X$_n$) and its pointwise limit exp(-$\frac{1}{2}||t||^2)$ under H$_d$ - An alternative representation is given in terms of an L$^2$-distance between densities. The limiting null distribution of the test statistic is obtained. Power performance of the new tests is assessed in a Monte Carlo study.


Originalveröffentlichung
DOI: 10.1080/03610929008830400
Scopus
Zitationen: 561
Web of Science
Zitationen: 588
Dimensions
Zitationen: 598
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 1990
Sprache Englisch
Identifikator ISSN: 0361-0926, 1532-415X
KITopen-ID: 1000187527
Erschienen in Communications in statistics / Theory and methods
Verlag Taylor and Francis
Band 19
Heft 10
Seiten 3595-3617
Schlagwörter test for multivariate normality, affine- invanance, consistency, empirical characteristic function, V-statistics
Nachgewiesen in OpenAlex
Web of Science
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 16 – Frieden, Gerechtigkeit und starke Institutionen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page