KIT | KIT-Bibliothek | Impressum | Datenschutz

Prediction of Cutting Tool Condition in Milling Using Optimization and Non-Optimization Techniques

Jamali, Amirmohammad 1; Schulze, Volker 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

In an automated machining environment, monitoring tool conditions is essential. In this study, experiments were conducted to classify tool conditions during high-speed machining of AISI4140. During the machining process, vibration and force signals were continuously monitored in situ using an accelerometer and a dynamometer, respectively. In addition, tool wear was measured ex-situ after every 10 cutting passes using a microscope. Features were extracted from the vibration and force signals, and a set of prominent features was selected using the ANOVA-Whale optimization technique. These selected features were then fed into a classification algorithm to determine the condition of the tool. The tool condition classification was performed using machine learning algorithms, specifically the Support Vector Machine (SVM). The results obtained using the ANOVA-Whale optimization technique were compared with those obtained using the ANOVA technique without the optimization method. The methodology used in this study is expected to be beneficial for online tool condition monitoring.


Verlagsausgabe §
DOI: 10.5445/IR/1000187530
Veröffentlicht am 25.11.2025
Originalveröffentlichung
DOI: 10.1016/j.procir.2025.02.015
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2025
Sprache Englisch
Identifikator ISSN: 2212-8271
KITopen-ID: 1000187530
Erschienen in Procedia CIRP
Verlag Elsevier
Band 133
Heft 1
Seiten 78–83
Bemerkung zur Veröffentlichung 20th CIRP Conference on Modeling of Machining Operations
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page